1
|
Rico-Díaz A, Barreiro-Alonso A, Rey-Souto C, Becerra M, Lamas-Maceiras M, Cerdán ME, Vizoso-Vázquez Á. The HMGB Protein KlIxr1, a DNA Binding Regulator of Kluyveromyces lactis Gene Expression Involved in Oxidative Metabolism, Growth, and dNTP Synthesis. Biomolecules 2021; 11:biom11091392. [PMID: 34572607 PMCID: PMC8465852 DOI: 10.3390/biom11091392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
In the traditional fermentative model yeast Saccharomyces cerevisiae, ScIxr1 is an HMGB (High Mobility Group box B) protein that has been considered as an important regulator of gene transcription in response to external changes like oxygen, carbon source, or nutrient availability. Kluyveromyces lactis is also a useful eukaryotic model, more similar to many human cells due to its respiratory metabolism. We cloned and functionally characterized by different methodologies KlIXR1, which encodes a protein with only 34.4% amino acid sequence similarity to ScIxr1. Our data indicate that both proteins share common functions, including their involvement in the response to hypoxia or oxidative stress induced by hydrogen peroxide or metal treatments, as well as in the control of key regulators for maintenance of the dNTP (deoxyribonucleotide triphosphate) pool and ribosome synthesis. KlIxr1 is able to bind specific regulatory DNA sequences in the promoter of its target genes, which are well conserved between S. cerevisiae and K. lactis. Oppositely, we found important differences between ScIrx1 and KlIxr1 affecting cellular responses to cisplatin or cycloheximide in these yeasts, which could be dependent on specific and non-conserved domains present in these two proteins.
Collapse
|
2
|
Cavinato M, Madreiter-Sokolowski CT, Büttner S, Schosserer M, Zwerschke W, Wedel S, Grillari J, Graier WF, Jansen-Dürr P. Targeting cellular senescence based on interorganelle communication, multilevel proteostasis, and metabolic control. FEBS J 2020; 288:3834-3854. [PMID: 33200494 PMCID: PMC7611050 DOI: 10.1111/febs.15631] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Cellular senescence, a stable cell division arrest caused by severe damage and stress, is a hallmark of aging in vertebrates including humans. With progressing age, senescent cells accumulate in a variety of mammalian tissues, where they contribute to tissue aging, identifying cellular senescence as a major target to delay or prevent aging. There is an increasing demand for the discovery of new classes of small molecules that would either avoid or postpone cellular senescence by selectively eliminating senescent cells from the body (i.e., ‘senolytics’) or inactivating/switching damage‐inducing properties of senescent cells (i.e., ‘senostatics/senomorphics’), such as the senescence‐associated secretory phenotype. Whereas compounds with senolytic or senostatic activity have already been described, their efficacy and specificity has not been fully established for clinical use yet. Here, we review mechanisms of senescence that are related to mitochondria and their interorganelle communication, and the involvement of proteostasis networks and metabolic control in the senescent phenotype. These cellular functions are associated with cellular senescence in in vitro and in vivo models but have not been fully exploited for the search of new compounds to counteract senescence yet. Therefore, we explore possibilities to target these mechanisms as new opportunities to selectively eliminate and/or disable senescent cells with the aim of tissue rejuvenation. We assume that this research will provide new compounds from the chemical space which act as mimetics of caloric restriction, modulators of calcium signaling and mitochondrial physiology, or as proteostasis optimizers, bearing the potential to counteract cellular senescence, thereby allowing healthy aging.
Collapse
Affiliation(s)
- Maria Cavinato
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| | - Corina T Madreiter-Sokolowski
- Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Austria.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Austria
| | - Werner Zwerschke
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| | - Sophia Wedel
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Austria.,BioTechMed Graz, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| |
Collapse
|
3
|
Sessions AO, Min P, Cordes T, Weickert BJ, Divakaruni AS, Murphy AN, Metallo CM, Engler AJ. Preserved cardiac function by vinculin enhances glucose oxidation and extends health- and life-span. APL Bioeng 2018; 2. [PMID: 30105314 PMCID: PMC6086353 DOI: 10.1063/1.5019592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Despite limited regenerative capacity as we age, cardiomyocytes maintain their function in part through compensatory mechanisms, e.g., Vinculin reinforcement of intercalated discs in aged organisms. This mechanism, which is conserved from flies to non-human primates, creates a more crystalline sarcomere lattice that extends lifespan, but systemic connections between the cardiac sarcomere structure and lifespan extension are not apparent. Using the rapidly aging fly system, we found that cardiac-specific Vinculin-overexpression [Vinculin heart-enhanced (VincHE)] increases heart contractility, maximal cardiac mitochondrial respiration, and organismal fitness with age. Systemic metabolism also dramatically changed with age and VincHE; steady state sugar concentrations, as well as aerobic glucose metabolism, increase in VincHE and suggest enhanced energy substrate utilization with increased cardiac performance. When cardiac stress was induced with the complex I inhibitor rotenone, VincHE hearts sustain contractions unlike controls. This work establishes a new link between the cardiac cytoskeleton and systemic glucose utilization and protects mitochondrial function from external stress.
Collapse
Affiliation(s)
- Ayla O Sessions
- Biomedical Sciences Program, UC San Diego, La Jolla, California 92093, USA
| | - Peter Min
- Department of Bioengineering, UC San Diego, La Jolla, California 92093, USA
| | - Thekla Cordes
- Department of Bioengineering, UC San Diego, La Jolla, California 92093, USA
| | - Barry J Weickert
- Department of Bioengineering, UC San Diego, La Jolla, California 92093, USA
| | - Ajit S Divakaruni
- Department of Pharmacology, UC San Diego, La Jolla, California 92093, USA
| | - Anne N Murphy
- Department of Pharmacology, UC San Diego, La Jolla, California 92093, USA
| | | | - Adam J Engler
- Biomedical Sciences Program, UC San Diego, La Jolla, California 92093, USA.,Department of Bioengineering, UC San Diego, La Jolla, California 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California 92037, USA
| |
Collapse
|
4
|
Kluyveromyces lactis: a suitable yeast model to study cellular defense mechanisms against hypoxia-induced oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:634674. [PMID: 22928082 PMCID: PMC3425888 DOI: 10.1155/2012/634674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/22/2012] [Indexed: 11/17/2022]
Abstract
Studies about hypoxia-induced oxidative stress in human health disorders take advantage from the use of unicellular eukaryote models. A widely extended model is the fermentative yeast Saccharomyces cerevisiae. In this paper, we describe an overview of the molecular mechanisms induced by a decrease in oxygen availability and their interrelationship with the oxidative stress response in yeast. We focus on the differential characteristics between S. cerevisiae and the respiratory yeast Kluyveromyces lactis, a complementary emerging model, in reference to multicellular eukaryotes.
Collapse
|
5
|
Piazza N, Wessells RJ. Drosophila models of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:155-210. [PMID: 21377627 PMCID: PMC3551295 DOI: 10.1016/b978-0-12-384878-9.00005-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fruit fly Drosophila melanogaster has emerged as a useful model for cardiac diseases, both developmental abnormalities and adult functional impairment. Using the tools of both classical and molecular genetics, the study of the developing fly heart has been instrumental in identifying the major signaling events of cardiac field formation, cardiomyocyte specification, and the formation of the functioning heart tube. The larval stage of fly cardiac development has become an important model system for testing isolated preparations of living hearts for the effects of biological and pharmacological compounds on cardiac activity. Meanwhile, the recent development of effective techniques to study adult cardiac performance in the fly has opened new uses for the Drosophila model system. The fly system is now being used to study long-term alterations in adult performance caused by factors such as diet, exercise, and normal aging. The fly is a unique and valuable system for the study of such complex, long-term interactions, as it is the only invertebrate genetic model system with a working heart developmentally homologous to the vertebrate heart. Thus, the fly model combines the advantages of invertebrate genetics (such as large populations, facile molecular genetic techniques, and short lifespan) with physiological measurement techniques that allow meaningful comparisons with data from vertebrate model systems. As such, the fly model is well situated to make important contributions to the understanding of complicated interactions between environmental factors and genetics in the long-term regulation of cardiac performance.
Collapse
Affiliation(s)
- Nicole Piazza
- University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
6
|
Laschober GT, Ruli D, Hofer E, Muck C, Carmona-Gutierrez D, Ring J, Hutter E, Ruckenstuhl C, Micutkova L, Brunauer R, Jamnig A, Trimmel D, Herndler-Brandstetter D, Brunner S, Zenzmaier C, Sampson N, Breitenbach M, Fröhlich KU, Grubeck-Loebenstein B, Berger P, Wieser M, Grillari-Voglauer R, Thallinger GG, Grillari J, Trajanoski Z, Madeo F, Lepperdinger G, Jansen-Dürr P. Identification of evolutionarily conserved genetic regulators of cellular aging. Aging Cell 2010; 9:1084-97. [PMID: 20883526 PMCID: PMC2997327 DOI: 10.1111/j.1474-9726.2010.00637.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To identify new genetic regulators of cellular aging and senescence, we performed genome-wide comparative RNA profiling with selected human cellular model systems, reflecting replicative senescence, stress-induced premature senescence, and distinct other forms of cellular aging. Gene expression profiles were measured, analyzed, and entered into a newly generated database referred to as the GiSAO database. Bioinformatic analysis revealed a set of new candidate genes, conserved across the majority of the cellular aging models, which were so far not associated with cellular aging, and highlighted several new pathways that potentially play a role in cellular aging. Several candidate genes obtained through this analysis have been confirmed by functional experiments, thereby validating the experimental approach. The effect of genetic deletion on chronological lifespan in yeast was assessed for 93 genes where (i) functional homologues were found in the yeast genome and (ii) the deletion strain was viable. We identified several genes whose deletion led to significant changes of chronological lifespan in yeast, featuring both lifespan shortening and lifespan extension. In conclusion, an unbiased screen across species uncovered several so far unrecognized molecular pathways for cellular aging that are conserved in evolution.
Collapse
Affiliation(s)
- Gerhard T Laschober
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Doris Ruli
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | - Edith Hofer
- Institute for Genomics and Bioinformatics, Graz University of TechnologyPetersgasse 14, 8010 Graz, Austria
| | - Christoph Muck
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Didac Carmona-Gutierrez
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | - Julia Ring
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | - Eveline Hutter
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Christoph Ruckenstuhl
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | - Lucia Micutkova
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Regina Brunauer
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Angelika Jamnig
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Daniela Trimmel
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | | | - Stefan Brunner
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Christoph Zenzmaier
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Natalie Sampson
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | | | - Kai-Uwe Fröhlich
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | | | - Peter Berger
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Matthias Wieser
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Regina Grillari-Voglauer
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Gerhard G Thallinger
- Institute for Genomics and Bioinformatics, Graz University of TechnologyPetersgasse 14, 8010 Graz, Austria
| | - Johannes Grillari
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Zlatko Trajanoski
- Institute for Genomics and Bioinformatics, Graz University of TechnologyPetersgasse 14, 8010 Graz, Austria
- Biocenter, Section for Bioinformatics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Frank Madeo
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | - Günter Lepperdinger
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| |
Collapse
|
7
|
Hackl M, Brunner S, Fortschegger K, Schreiner C, Micutkova L, Mück C, Laschober GT, Lepperdinger G, Sampson N, Berger P, Herndler-Brandstetter D, Wieser M, Kühnel H, Strasser A, Rinnerthaler M, Breitenbach M, Mildner M, Eckhart L, Tschachler E, Trost A, Bauer JW, Papak C, Trajanoski Z, Scheideler M, Grillari-Voglauer R, Grubeck-Loebenstein B, Jansen-Dürr P, Grillari J. miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell 2010; 9:291-6. [PMID: 20089119 PMCID: PMC2848978 DOI: 10.1111/j.1474-9726.2010.00549.x] [Citation(s) in RCA: 285] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aging is a multifactorial process where deterioration of body functions is driven by stochastic damage while counteracted by distinct genetically encoded repair systems. To better understand the genetic component of aging, many studies have addressed the gene and protein expression profiles of various aging model systems engaging different organisms from yeast to human. The recently identified small non-coding miRNAs are potent post-transcriptional regulators that can modify the expression of up to several hundred target genes per single miRNA, similar to transcription factors. Increasing evidence shows that miRNAs contribute to the regulation of most if not all important physiological processes, including aging. However, so far the contribution of miRNAs to age-related and senescence-related changes in gene expression remains elusive. To address this question, we have selected four replicative cell aging models including endothelial cells, replicated CD8+ T cells, renal proximal tubular epithelial cells, and skin fibroblasts. Further included were three organismal aging models including foreskin, mesenchymal stem cells, and CD8+ T cell populations from old and young donors. Using locked nucleic acid-based miRNA microarrays, we identified four commonly regulated miRNAs, miR-17 down-regulated in all seven; miR-19b and miR-20a, down-regulated in six models; and miR-106a down-regulated in five models. Decrease in these miRNAs correlated with increased transcript levels of some established target genes, especially the cdk inhibitor p21/CDKN1A. These results establish miRNAs as novel markers of cell aging in humans.
Collapse
Affiliation(s)
- Matthias Hackl
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria, Muthgasse 18, A-1190 Vienna
| | - Stefan Brunner
- Departments of Immunology, Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, 6020 Innsbruck, Austria (IBA)
| | - Klaus Fortschegger
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria, Muthgasse 18, A-1190 Vienna
| | - Carina Schreiner
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria, Muthgasse 18, A-1190 Vienna
| | - Lucia Micutkova
- Molecular and Cell Biology, Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, 6020 Innsbruck, Austria (IBA)
| | - Christoph Mück
- Molecular and Cell Biology, Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, 6020 Innsbruck, Austria (IBA)
| | - Gerhard T Laschober
- Extracellular Matrix Research, Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, 6020 Innsbruck, Austria (IBA)
| | - Günter Lepperdinger
- Extracellular Matrix Research, Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, 6020 Innsbruck, Austria (IBA)
| | - Natalie Sampson
- Endocrinology, Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, 6020 Innsbruck, Austria (IBA)
| | - Peter Berger
- Endocrinology, Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, 6020 Innsbruck, Austria (IBA)
| | - Dietmar Herndler-Brandstetter
- Departments of Immunology, Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, 6020 Innsbruck, Austria (IBA)
| | - Matthias Wieser
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria, Muthgasse 18, A-1190 Vienna
| | - Harald Kühnel
- Department of Natural Sciences, Institute of Physiology, University of Veterinary Medicine ViennaVeterinärplatz 1, A-1210 Wien, Austria
| | - Alois Strasser
- Department of Natural Sciences, Institute of Physiology, University of Veterinary Medicine ViennaVeterinärplatz 1, A-1210 Wien, Austria
| | - Mark Rinnerthaler
- Department of Genetics, University of SalzburgHeilbrunnerstraße 34, 5020 Salzburg, Austria
| | - Michael Breitenbach
- Department of Genetics, University of SalzburgHeilbrunnerstraße 34, 5020 Salzburg, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of ViennaA-1090 Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of ViennaA-1090 Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of ViennaA-1090 Vienna, Austria
| | - Andrea Trost
- Department of Dermatology, SALK and Paracelsus Medical UniversitySalzburg, Austria
| | - Johann W Bauer
- Department of Dermatology, SALK and Paracelsus Medical UniversitySalzburg, Austria
| | - Christine Papak
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of TechnologyPetersgasse 14, 8010 Graz, Austria
| | - Zlatko Trajanoski
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of TechnologyPetersgasse 14, 8010 Graz, Austria
| | - Marcel Scheideler
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of TechnologyPetersgasse 14, 8010 Graz, Austria
| | - Regina Grillari-Voglauer
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria, Muthgasse 18, A-1190 Vienna
| | - Beatrix Grubeck-Loebenstein
- Departments of Immunology, Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, 6020 Innsbruck, Austria (IBA)
| | - Pidder Jansen-Dürr
- Molecular and Cell Biology, Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, 6020 Innsbruck, Austria (IBA)
| | - Johannes Grillari
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria, Muthgasse 18, A-1190 Vienna
| |
Collapse
|
8
|
González-Siso MI, García-Leiro A, Tarrío N, Cerdán ME. Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis. Microb Cell Fact 2009; 8:46. [PMID: 19715615 PMCID: PMC2754438 DOI: 10.1186/1475-2859-8-46] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/30/2009] [Indexed: 12/04/2022] Open
Abstract
A lot of studies have been carried out on Saccharomyces cerevisiae, an yeast with a predominant fermentative metabolism under aerobic conditions, which allows exploring the complex response induced by oxidative stress. S. cerevisiae is considered a eukaryote model for these studies. We propose Kluyveromyces lactis as a good alternative model to analyse variants in the oxidative stress response, since the respiratory metabolism in this yeast is predominant under aerobic conditions and it shows other important differences with S. cerevisiae in catabolic repression and carbohydrate utilization. The knowledge of oxidative stress response in K. lactis is still a developing field. In this article, we summarize the state of the art derived from experimental approaches and we provide a global vision on the characteristics of the putative K. lactis components of the oxidative stress response pathway, inferred from their sequence homology with the S. cerevisiae counterparts. Since K. lactis is also a well-established alternative host for industrial production of native enzymes and heterologous proteins, relevant differences in the oxidative stress response pathway and their potential in biotechnological uses of this yeast are also reviewed.
Collapse
Affiliation(s)
- M Isabel González-Siso
- Department of Molecular and Cell Biology, University of A Coruña, Campus da Zapateira s/n, 15071- A Coruña, Spain.
| | | | | | | |
Collapse
|