1
|
Chen P, Lin C, Jin Q, Ye B, Liu X, Wang K, Zhang H, Liu J, Zhang R, Huang H, Zhang C, Li L. Investigating mechanisms of Sophora davidii (Franch.) skeels flower extract in treating LPS-induced acute pneumonia based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118914. [PMID: 39369925 DOI: 10.1016/j.jep.2024.118914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In TCM opinion, most of pneumonia is related to "lung heat". Sophora davidii (Franch.) Skeels flower was first documented in "Guizhou Herbal Medicine", and was recorded as having functions of clearing heat, detoxifying, and cooling blood. It can be used to treat lung heat cough. AIM OF THE STUDY To investigate main mechanisms of Sophora davidii flower extract (SDFE) in Treating LPS-induced acute Pneumonia. MATERIALS AND METHODS Acute pneumonia models on BEAS-2B cells and rats were established using LPS. The rat model was used to verified the protective effects of SDFE through HE staining, lung tissue W/D ratio assay, white blood cell count analysis, and ammonia-induced coughing test. Network pharmacology was applied to predict the active compounds, core targets and main pathways of SDFE in treating acute pneumonia. Western Blot and ELISA kits were employed to validate representative proteins in selected pathway in vivo and in vitro. RESULTS HE staining, lung tissue W/D ratio assay, white blood cell count analysis, and ammonia-induced coughing test showed SDFE could improve pathological features (leukocyte infiltration, pulmonary edema, lung injury and cough). Network pharmacology indicated MAPK/NF-κB pathway was the most relevant pathway. SDFE could significantly inhibit the expression of Fos and Jun, and the phosphorylation levels of p38, ERK, JNK, NF-κB and IκB. It also down-regulated the expression of pro-inflammatory factors (TNF-α, IL-6 and IL-1β). CONCLUSIONS SDFE can exert protective effects against acute pneumonia through the MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ping Chen
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Cheng Lin
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Qi Jin
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Baibai Ye
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Xinxu Liu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Keke Wang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Han Zhang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Jiahui Liu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Runan Zhang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Hao Huang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Chenning Zhang
- Department of Pharmacy, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441100, China.
| | - Linfu Li
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
2
|
Jain A, Mishra AK, Hurkat P, Shilpi S, Mody N, Jain SK. Navigating liver cancer: Precision targeting for enhanced treatment outcomes. Drug Deliv Transl Res 2025:10.1007/s13346-024-01780-x. [PMID: 39847205 DOI: 10.1007/s13346-024-01780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting. While various drug delivery systems have shown potential for reaching hepatic cells, nano-carriers offer significant size, distribution, and targetability advantages. Engineered nanocarriers can be customized to achieve effective and safe targeting of tumors by manipulating physical characteristics such as particle size or attaching receptor-specific ligands. This method is particularly advantageous in treating liver cancer by targeting specific hepatocyte receptors and enzymatic pathways for both passive and active therapeutic strategies. It highlights the epidemiology of liver cancer and provides an in-depth analysis of the various targeting approaches, including prodrugs, liposomes, magneto-liposomes, micelles, glycol-dendrimers, magnetic nanoparticles, chylomicron-based emulsion, and quantum dots surface modification with receptor-specific moieties. The insights from this review can be immensely significant for preclinical and clinical researchers working towards developing effective treatments for liver cancer. By utilizing these novel strategies, we can overcome the limitations of conventional therapies and offer better outcomes for liver cancer patients.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| | - Ashwini Kumar Mishra
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Pooja Hurkat
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | - Satish Shilpi
- School of Pharmaceuticals and Population Health Informatics, FOP, DIT University, Dehradun, Uttarakahnad, India
| | - Nishi Mody
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | | |
Collapse
|
3
|
Choi D, Lee JG, Heo SH, Cho MK, Nam HS, Lee SH, Lee YJ. Curcumin and Its Potential to Target the Glycolytic Behavior of Lactate-Acclimated Prostate Carcinoma Cells with Docetaxel. Nutrients 2024; 16:4338. [PMID: 39770959 PMCID: PMC11677565 DOI: 10.3390/nu16244338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. Methods: In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The effects of curcumin and the role of hexokinase 2 (HK2) in this process were also examined. Results: PC-3AcT and DU145AcT cells that preadapted to lactic acid displayed increased growth behavior, increased dependence on glycolysis, and reduced sensitivity to docetaxel compared to parental PC-3 and DU145 cells. Molecular analyses revealed activation of the c-Raf/MEK/ERK pathway, upregulation of cyclin D1, cyclin B1, and p-cdc2Thr161, and increased levels and activities of key regulatory enzymes in glycolysis, including HK2, in lactate-acclimated cells. HK2 knockdown resulted in decreased cell growth and glycolytic activity, decreased levels of complexes I-V in the mitochondrial electron transport chain, loss of mitochondrial membrane potential, and depletion of intracellular ATP, ultimately leading to cell death. In a xenograft animal model, curcumin combined with docetaxel reduced tumor size and weight, induced downregulation of glycolytic enzymes, and stimulated the upregulation of apoptotic and necroptotic proteins. This was consistent with the in vitro results from 2D monolayer and 3D spheroid cultures, suggesting that the efficacy of curcumin is not affected by docetaxel. Conclusions: Overall, our findings suggest that metabolic plasticity through enhanced glycolysis observed in lactate-acclimated PC cells may be one of the underlying causes of docetaxel resistance, and targeting glycolysis by curcumin may provide potential for drug development that could improve treatment outcomes in PC patients.
Collapse
Affiliation(s)
- Dongsic Choi
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31511, Republic of Korea; (D.C.); (S.-H.L.)
| | - Jun Gi Lee
- Biochemistry and Molecular Biology, Marquette University, Milwaukee, WI 53233, USA;
| | - Su-Hak Heo
- Department of Medicinal Bioscience, College of Biomedical and Health Science, Konkuk University Glocal Campus, Chungju 27478, Republic of Korea;
| | - Moon-Kyen Cho
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 31151, Republic of Korea; (M.-K.C.); (H.-S.N.)
| | - Hae-Seon Nam
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 31151, Republic of Korea; (M.-K.C.); (H.-S.N.)
| | - Sang-Han Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31511, Republic of Korea; (D.C.); (S.-H.L.)
| | - Yoon-Jin Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31511, Republic of Korea; (D.C.); (S.-H.L.)
| |
Collapse
|
4
|
Aliyari M, Hashemy SI, Hashemi SF, Reihani A, Kesharwani P, Hosseini H, Sahebkar A. Targeting the Akt signaling pathway: Exploiting curcumin's anticancer potential. Pathol Res Pract 2024; 261:155479. [PMID: 39068859 DOI: 10.1016/j.prp.2024.155479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Cancer is recognized as one of the leading causes of death worldwide. In recent years, advancements in early detection and expanding treatment options have contributed to a decrease in mortality rates. However, the emergence of drug-resistant cancers necessitates the exploration of innovative and more effective drugs. The Akt kinases play a central role in various signaling pathways that regulate crucial cellular processes, including cell growth, proliferation, survival, angiogenesis, and glucose metabolism. Due to frequent disruptions of the Akt signaling pathway in numerous human cancers and its broad biological implications, targeting this pathway has become a key focus in combating tumor aggressiveness and a promising avenue for therapeutic intervention. Curcumin, a compound found in turmeric, has been extensively studied for its potential as an anti-cancer agent. It demonstrates inhibitory effects on cancer initiation, progression, and metastasis by influencing various processes involved in tumor growth and development. These effects are achieved through negative regulation of transcription factors, growth factors, cytokines, protein kinases, and other oncogenic molecules. This review aims to explore curcumin's anticancer activity against different types of cancer mediated via the PI3K/Akt signaling pathway, as well as its practical applications in treatment.
Collapse
Affiliation(s)
- Mahdieh Aliyari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Fatemeh Hashemi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirali Reihani
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Heimesaat MM, Mousavi S, Lobo de Sá FD, Peh E, Schulzke JD, Bücker R, Kittler S, Bereswill S. Oral curcumin ameliorates acute murine campylobacteriosis. Front Immunol 2024; 15:1363457. [PMID: 38855111 PMCID: PMC11157060 DOI: 10.3389/fimmu.2024.1363457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Human infections with the food-borne enteropathogen Campylobacter jejuni are responsible for increasing incidences of acute campylobacteriosis cases worldwide. Since antibiotic treatment is usually not indicated and the severity of the enteritis directly correlates with the risk of developing serious autoimmune disease later-on, novel antibiotics-independent intervention strategies with non-toxic compounds to ameliorate and even prevent campylobacteriosis are utmost wanted. Given its known pleiotropic health-promoting properties, curcumin constitutes such a promising candidate molecule. In our actual preclinical placebo-controlled intervention trial, we tested the anti-microbial and anti-inflammatory effects of oral curcumin pretreatment during acute experimental campylobacteriosis. Methods Therefore, secondary abiotic IL-10-/- mice were challenged with synthetic curcumin via the drinking water starting a week prior oral C. jejuni infection. To assess anti-pathogenic, clinical, immune-modulatory, and functional effects of curcumin prophylaxis, gastrointestinal C. jejuni bacteria were cultured, clinical signs and colonic histopathological changes quantitated, pro-inflammatory immune cell responses determined by in situ immunohistochemistry and intestinal, extra-intestinal and systemic pro-inflammatory mediator measurements, and finally, intestinal epithelial barrier function tested by electrophysiological resistance analysis of colonic ex vivo biopsies in the Ussing chamber. Results and discussion Whereas placebo counterparts were suffering from severe enterocolitis characterized by wasting symptoms and bloody diarrhea on day 6 post-infection, curcumin pretreated mice, however, were clinically far less compromised and displayed less severe microscopic inflammatory sequelae such as histopathological changes and epithelial cell apoptosis in the colon. In addition, curcumin pretreatment could mitigate pro-inflammatory innate and adaptive immune responses in the intestinal tract and importantly, rescue colonic epithelial barrier integrity upon C. jejuni infection. Remarkably, the disease-mitigating effects of exogenous curcumin was also observed in organs beyond the infected intestines and strikingly, even systemically given basal hepatic, renal, and serum concentrations of pro-inflammatory mediators measured in curcumin pretreated mice on day 6 post-infection. In conclusion, the anti-Campylobacter and disease-mitigating including anti-inflammatory effects upon oral curcumin application observed here highlight the polyphenolic compound as a promising antibiotics-independent option for the prevention from severe acute campylobacteriosis and its potential post-infectious complications.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Soraya Mousavi
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fábia Daniela Lobo de Sá
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jörg-Dieter Schulzke
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Roland Bücker
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Besasie BD, Saha A, DiGiovanni J, Liss MA. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia 2024; 91:90-106. [PMID: 37776274 DOI: 10.1177/03915603231202304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The major barriers to phytonutrients in prostate cancer therapy are non-specific mechanisms and bioavailability issues. Studies have pointed to a synergistic combination of curcumin (CURC) and ursolic acid (UA). We investigate this combination using a systematic review process to assess the most likely mechanistic pathway and human testing in prostate cancer. We used the PRISMA statement to screen titles, abstracts, and the full texts of relevant articles and performed a descriptive analysis of the literature reviewed for study inclusion and consensus of the manuscript. The most common molecular and cellular pathway from articles reporting on the pathways and effects of CURC (n = 173) in prostate cancer was NF-κB (n = 25, 14.5%). The most common molecular and cellular pathway from articles reporting on the pathways and effects of UA (n = 24) in prostate cancer was caspase 3/caspase 9 (n = 10, 41.6%). The three most common molecular and cellular pathway from articles reporting on the pathways and effects of both CURC and UA (n = 193) in prostate cancer was NF-κB (n = 28, 14.2%), Akt (n = 22, 11.2%), and androgen (n = 19, 9.6%). Therefore, we have identified the potential synergistic target pathways of curcumin and ursolic acid to involve NF-κB, Akt, androgen receptors, and apoptosis pathways. Our review highlights the limited human studies and specific effects in prostate cancer.
Collapse
Affiliation(s)
- Benjamin D Besasie
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
- Department of Urology, South Texas Veterans Healthcare System, USA
| |
Collapse
|
7
|
Chen Z, Zeng L, Chen Z, Xu J, Zhang X, Ying H, Zeng Y, Yu F. Combined OLA1 and CLEC3B Gene Is a Prognostic Signature for Hepatocellular Carcinoma and Impact Tumor Progression. Technol Cancer Res Treat 2024; 23:15330338241241935. [PMID: 38564315 PMCID: PMC11007312 DOI: 10.1177/15330338241241935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC), partly because of its complexity and high heterogeneity, has a poor prognosis and an extremely high mortality rate. In this study, mRNA sequencing expression profiles and relevant clinical data of HCC patients were gathered from different public databases. Kaplan-Meier survival curves as well as ROC curves validated that OLA1|CLEC3B was an independent predictor with better predictive capability of HCC prognosis compared to OLA1 and CLEC3B separately. Further, the cell transfection experiment verified that knockdown of OLA1 inhibited cell proliferation, facilitated apoptosis, and improved sensitivity of HCC cells to gemcitabine. In this study, the prognostic model of HCC composed of OLA1/CLEC3B genes was constructed and verified, and the prediction ability was favorable. A higher level of OLA1 along with a lower level of CEC3B is a sign of poor prognosis in HCC. We revealed a novel gene pair OLA1|CLEC3B overexpressed in HCC patients, which may serve as a promising independent predictor of HCC survival and an approach for innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zhoufeng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuwei Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuoyan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiya Ying
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Islam MR, Rauf A, Akash S, Trisha SI, Nasim AH, Akter M, Dhar PS, Ogaly HA, Hemeg HA, Wilairatana P, Thiruvengadam M. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives. Biomed Pharmacother 2024; 170:116034. [PMID: 38141282 DOI: 10.1016/j.biopha.2023.116034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Sadiya Islam Trisha
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Akram Hossain Nasim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
9
|
Sivaganesh V, Peethambaran B. Receptor tyrosine kinase-like orphan receptor 1 inhibitor strictinin exhibits anti-cancer properties against highly aggressive androgen-independent prostate cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1188-1209. [PMID: 38213538 PMCID: PMC10784114 DOI: 10.37349/etat.2023.00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 01/13/2024] Open
Abstract
Aim It is important to identify anti-cancer compounds that can inhibit specific molecular targets to eradicate androgen-receptor negative (ARneg), androgen-independent (AI) prostate cancer, which is an aggressive form of prostate cancer with limited treatment options. The goal of this study was to selectively target prostate cancer cells that have high levels of oncogenic protein Receptor tyrosine kinase-like orphan receptor 1 (ROR1) by using strictinin, a small molecule ROR1 inhibitor. Methods The methods performed in this study include western blots, methyl thiazolyl tetrazolium (MTT) proliferation assays, phosphatidylserine apoptosis assays, apoptosis flow cytometry (Annexin V, caspase 3/7), migration scratch assays, Boyden chamber invasion assays, and cell cycle flow cytometry. Results Strictinin was most lethal against PC3 [half-maximal drug inhibitory concentration (IC50) of 277.2 µmol/L], an ARneg-AI cell type that expresses the highest levels of ROR1. Strictinin inhibited ROR1 expression, downstream phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)-glycogen synthase kinase 3beta (GSK3β) pro-survival signaling, and epithelial-to-mesenchymal transition markers in PC3 cells. Additionally, strictinin decreased PC3 cell migration and invasion, while increasing S-phase cell cycle arrest. In ARneg-AI DU145 cells, strictinin inhibited ROR1 expression and modulated downstream AKT-GSK3β signaling. Furthermore, strictinin exhibited anti-migratory, anti-invasive, but minimal pro-apoptotic effects in DU145 cells likely due to DU145 having less ROR1 expression in comparison to PC3 cells. Throughout the study, strictinin minimally impacted the phenotype of normal prostatic epithelial cells RWPE-1 (IC50 of 658.5 µmol/L). Strictinin was further identified as synergistic with docetaxel [combination index (CI) = 0.311] and the combination therapy was found to reduce the IC50 of strictinin to 38.71 µmol/L in PC3 cells. Conclusions ROR1 is an emerging molecular target that can be utilized for treating prostate cancer. The data from this study establishes strictinin as a potential therapeutic agent that targets ARneg-AI prostate cancer with elevated ROR1 expression to reduce the migration, invasion, cell cycle progression, and survival of prostate cancer.
Collapse
Affiliation(s)
- Vignesh Sivaganesh
- Department of Biology, Saint Joseph’s University, Philadelphia, PA 19104, USA
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Bela Peethambaran
- Department of Biology, Saint Joseph’s University, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Hussein HA, Khaphi FL. The Apoptotic Activity of Curcumin Against Oral Cancer Cells Without Affecting Normal Cells in Comparison to Paclitaxel Activity. Appl Biochem Biotechnol 2023; 195:5019-5033. [PMID: 37032374 DOI: 10.1007/s12010-023-04454-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
Until now, chemotherapy, which has a series of side effects, has been the most widely employed treatment for different types of cancer. However, bioactive products have been utilized as alternative medicines for tumors due to their bioactivities with low or no side effects in normal cells. This research reported for the first time that curcumin (CUR) and paclitaxel (PTX) have significant anti-cancer activity against normal human gingival fibroblast (HGF) and tongue squamous cell carcinoma fibroblast (TSCCF) cell lines. The results showed that CUR (13.85 µg mL-1) and PTX (8.17 µg mL-1) significantly inhibited TSCCF cell viability, with no significant effect on normal HGF cells. SEM showed morphological changes in cells treated with CUR and PTX, especially with TSCCF cells, compared to HGF normal cells. For TSCCF, the results showed the highest necrosis was achieved with CUR (58.8%) and PTX (39%) as compared to the control (2.99%). For normal HGF cells, the highest early and late apoptosis was achieved with PTX. Further, DCFH-DA analyses showed no significant ROS stimulation in TSCCF and HGF cell lines treated with CUR and PTX. The 1H NMR analysis results show the presence of methoxy and hydroxyl groups and aromatic hydrogens in the CUR structure. In conclusion, the results confirmed that CUR is more specific to the oral cancer cells but not normal cells by inducing apoptosis in a dose- and time-dependent manner, with decreased TSCCF cell viability, and the cytotoxicity of CUR and PTX is not through the ROS pathway.
Collapse
Affiliation(s)
- Hanaa Ali Hussein
- College of Dentistry, University of Basrah 61004, Basic Science Branch, Al-Bara'iyah Street, Al-Sadir Teaching Hospital, Basrah city, 61001, Basrah, Iraq.
| | - Fatin L Khaphi
- College of Dentistry, University of Basrah 61004, Basic Science Branch, Al-Bara'iyah Street, Al-Sadir Teaching Hospital, Basrah city, 61001, Basrah, Iraq
| |
Collapse
|
11
|
Yadav S. Advanced therapeutics avenues in hepatocellular carcinoma: a novel paradigm. Med Oncol 2023; 40:239. [PMID: 37442842 DOI: 10.1007/s12032-023-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, and it poses a significant risk to patients health and longevity due to its high morbidity and fatality rates. Surgical ablation, radiotherapy, chemotherapy, and, most recently, immunotherapy have all been investigated for HCC, but none have yielded the desired outcomes. Several unique nanocarrier drug delivery techniques have been studied for their potential therapeutic implications in the treatment of HCC. Nanoparticle-based imaging could be effective for more accurate HCC diagnosis. Since its inception, nanomedicine has significantly transformed the approach to both the treatment and diagnostics of liver cancer. Nanoparticles (NPs) are being studied as a potential treatment for liver cancer because of their ability to carry small substances, such as treatment with chemotherapy, microRNA, and therapeutic genes. The primary focus of this study is on the most current discoveries and practical uses of nanomedicine-based diagnostic and therapeutic techniques for liver cancer. In this section, we had gone over what we know about metabolic dysfunction in HCC and the treatment options that attempt to fix it by targeting metabolic pathways. Furthermore, we propose a multi-target metabolic strategy as a viable HCC treatment option. Based on the findings given here, the scientists believe that smart nanomaterials have great promise for improving cancer theranostics and opening up new avenues for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No.2, Sector 17-A, Yamuna Expressway, Gautam Buddhnagar, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
12
|
Eslami SS, Jafari D, Ghotaslou A, Amoupour M, Asri Kojabad A, Jafari R, Mousazadeh N, Tarighi P, Sadeghizadeh M. Combined Treatment of Dendrosomal-Curcumin and Daunorubicin Synergistically Inhibit Cell Proliferation, Migration and Induce Apoptosis in A549 Lung Cancer Cells. Adv Pharm Bull 2023; 13:539-550. [PMID: 37646049 PMCID: PMC10460814 DOI: 10.34172/apb.2023.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose Chemotherapy drugs used to treat lung cancer are associated with drug resistance and severe side effects. There have been rising demands for new therapeutic candidates and novel approaches, including combination therapy. Here, we aimed to investigate the combinatorial effect of a dendrosomal formulation of curcumin (DNC) and daunorubicin (DNR) on the A549 lung cancer cell line. Methods We performed cytotoxicity, apoptosis, cell migration, colony-formation capacity, and gene expression analysis to interpret the mechanism of action for a combination of DNC and DNR on A549 cells. Results Our results revealed that the combination of DNC and DNR could synergistically inhibit the A549 cells' growth. This synergistic cytotoxicity was further approved by flow cytometry, migration assessment, colony-forming capacity and gene expression analysis. DNR combination with DNC resulted in increased apoptosis to necrosis ratio compared to DNR alone. In addition, the migration and colony-forming capacity were at the minimal range when DNC was combined with DNR. Combined treatment decreased the expression level of MDR-1, hTERT and Bcl-2 genes significantly. In addition, the ratio of Bax/Bcl2 gene expression significantly increased. Our analysis by free curcumin, dendrosomes and DNC also showed that dendrosomes do not have any significant cytotoxic effect on the A549 cells, suggesting that this carrier has a high potential for enhancing the curcumin's biological effects. Conclusion Our observations suggest that the DNC formulation of curcumin synergistically enhances the antineoplastic effect of DNR on the A549 cell line through the modulation of apoptosis/necrosis ratio, as well as Bax/Bcl2 ratio, MDR-1 and hTERT gene expression.
Collapse
Affiliation(s)
- Seyed Sadegh Eslami
- Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davod Jafari
- Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Ghotaslou
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Amoupour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Asri Kojabad
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Rasool Jafari
- Department of Medical Parasitology and Mycology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Mousazadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Asmawi AA, Salim N, Abdulmalek E, Abdul Rahman MB. Size-Controlled Preparation of Docetaxel- and Curcumin-Loaded Nanoemulsions for Potential Pulmonary Delivery. Pharmaceutics 2023; 15:pharmaceutics15020652. [PMID: 36839974 PMCID: PMC9964819 DOI: 10.3390/pharmaceutics15020652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Lung cancer is one of the deadliest pulmonary diseases in the world. Although docetaxel (DTX) has exhibited superior efficacy in lung cancer treatment, it has demonstrated numerous adverse effects and poor bioavailability. The natural product extract, curcumin (CCM), has reportedly reduced toxicity and synergistically improved DTX bioavailability. Nonetheless, the hydrophobic nature of DTX and CCM limits their clinical use. Nanoemulsion pulmonary delivery of DTX and CCM has demonstrated potential as a drug carrier to alleviate these drawbacks. The controlled preparation of inhalable DTX- and CCM-loaded nanoemulsions within the 100 to 200 nm range was explored in this study. A response surface methodology (RSM) based on a central composite design (CCD) was utilized to fabricate the desired size of the nanoemulsion under optimized conditions. Different process parameters were employed to control the size of the nanoemulsions procured through a high-energy emulsification technique. The size of the resultant nanoemulsions decreased with increasing energy input. The actual response according to the targeted sizes for DTX- and CCM-loaded nanoemulsion models exhibited excellent agreement with the predicted value at below 5% residual standard error under optimized conditions. The nanoemulsion of 100 nm particle size demonstrated better membrane permeability than their larger counterparts. Moreover, the formulations documented favorable physicochemical and aerodynamic pulmonary delivery properties and reduced toxicity in human lung fibroblast (MRC-5) cells. Hence, this tunable size of nanoemulsions could be a suitable alternative drug delivery for pulmonary diseases with increased local lung concentration.
Collapse
Affiliation(s)
- Azren Aida Asmawi
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (A.A.A.); (M.B.A.R.); Tel.: +60-397696798 (M.B.A.R.)
| | - Norazlinaliza Salim
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Emilia Abdulmalek
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (A.A.A.); (M.B.A.R.); Tel.: +60-397696798 (M.B.A.R.)
| |
Collapse
|
14
|
Berlin IG, Jennings CC, Shin S, Kenealey J. Utilizing mixture design response surface methodology to determine effective combinations of plant derived compounds as prostate cancer treatments. Cancer Rep (Hoboken) 2023; 6:e1790. [PMID: 36772872 PMCID: PMC10075293 DOI: 10.1002/cnr2.1790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/22/2022] [Accepted: 01/21/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Prostate cancer (PC) is estimated to cause 13.1% of all new cancer cases in the United States in 2021. Natural bioactive compounds have drawn the interest of researchers worldwide in their efforts to find novel treatments for PC. Many of these bioactive compounds have been identified from traditional Chinese medicine (TCM) remedies often containing multiple bioactive compounds. However, in vitro studies frequently focus on the compounds in isolation. AIM We used mixture design response surface methodology (MDRSM) to assess changes in PC cell viability after 48 h of treatment to identify the optimal mixture of all 35 three-compound combinations of seven bioactive compounds from TCM. METHODS AND RESULTS We used berberine, wogonin, shikonin, curcumin, triptolide, emodin, and silybin to treat PC3 and LNCaP human PC cells at their IC50 concentrations that we calculated. These compounds modulate many chemotherapeutic pathways including intrinsic and extrinsic apoptosis, increasing reactive oxygen species, decreasing metastatic pathways, inhibiting cell cycle progression. We hypothesize that because these compounds bind to unique molecular targets to activate different chemotherapeutic pathways, they will act synergistically to decrease tumor cell viability. Results from MDRSM showed that two-way combinations were more effective than three-way or single compounds. Most notably wogonin, silybin, emodin and berberine responded well in two-compound combinations with each other in PC3 and LNCaP cells. We then conducted cell viability tests combining two bioactive compound ratios with docetaxel (Doc) and found significant results within the LNCaP cell line. In particular, mixtures of berberine and wogonin, berberine and silybin, emodin and berberine, and emodin and silybin reduced LNCaP cell viability up to an average of 90.02%. The two-compound combinations were significantly better than docetaxel treatment of LNCaP cells. CONCLUSION Within the PC3 cells, we show that a combination of berberine, wogonin and docetaxel is just as effective as docetaxel alone. Thus, we provide new combination treatments that are highly effective in vitro for treating androgen-dependent and androgen-independent PC.
Collapse
Affiliation(s)
- Ian Geddes Berlin
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| | - Charity Conlin Jennings
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| | - Spencer Shin
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| | - Jason Kenealey
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
15
|
Augmented efficacy of nano-formulated docetaxel plus curcumin in orthotopic models of neuroblastoma. Pharmacol Res 2023; 188:106639. [PMID: 36586642 DOI: 10.1016/j.phrs.2022.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Neuroblastoma is a biologically heterogeneous extracranial tumor, derived from the sympathetic nervous system, that affects most often the pediatric population. Therapeutic strategies relying on aggressive chemotherapy, surgery, radiotherapy, and immunotherapy have a negative outcome in advanced or recurrent disease. Here, spherical polymeric nanomedicines (SPN) are engineered to co-deliver a potent combination therapy, including the cytotoxic docetaxel (DTXL) and the natural wide-spectrum anti-inflammatory curcumin (CURC). Using an oil-in-water emulsion/solvent evaporation technique, four SPN configurations were engineered depending on the therapeutic payload and characterized for their physico-chemical and pharmacological properties. All SPN configurations presented a hydrodynamic diameter of ∼ 185 nm with a narrow size distribution. A biphasic release profile was observed for all the configurations, with almost 90 % of the total drug mass released within the first 24 h. SPN cytotoxic potential was assessed on a panel of human neuroblastoma cells, returning IC50 values in the order of 1 nM at 72 h and documenting a strong synergism between CURC and DTXL. Therapeutic efficacy was tested in a clinically relevant orthotopic model of neuroblastoma, following the injection of SH-SY5Y-Luc+ cells in the left adrenal gland of athymic mice. Although ∼ 2 % of the injected SPN per mass tissue reached the tumor, the overall survival of mice treated with CURC/DTXL-SPN was extended by 50 % and 25 % as compared to the untreated control and the monotherapies, respectively. In conclusion, these results demonstrate that the therapeutic potential of the DTXL/CURC combination can be fully exploited only by reformulating these two compounds into systemically injectable nanoparticles.
Collapse
|
16
|
Sevastre AS, Manea EV, Popescu OS, Tache DE, Danoiu S, Sfredel V, Tataranu LG, Dricu A. Intracellular Pathways and Mechanisms of Colored Secondary Metabolites in Cancer Therapy. Int J Mol Sci 2022; 23:ijms23179943. [PMID: 36077338 PMCID: PMC9456420 DOI: 10.3390/ijms23179943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the great advancements made in cancer treatment, there are still many unsatisfied aspects, such as the wide palette of side effects and the drug resistance. There is an obvious increasing scientific attention towards nature and what it can offer the human race. Natural products can be used to treat many diseases, of which some plant products are currently used to treat cancer. Plants produce secondary metabolites for their signaling mechanisms and natural defense. A variety of plant-derived products have shown promising anticancer properties in vitro and in vivo. Rather than recreating the natural production environment, ongoing studies are currently setting various strategies to significantly manipulate the quantity of anticancer molecules in plants. This review focuses on the recently studied secondary metabolite agents that have shown promising anticancer activity, outlining their potential mechanisms of action and pathways.
Collapse
Affiliation(s)
- Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Elena Victoria Manea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Oana Stefana Popescu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Daniela Elise Tache
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Suzana Danoiu
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-334-30-25
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| |
Collapse
|
17
|
Talib WH, Awajan D, Hamed RA, Azzam AO, Mahmod AI, AL-Yasari IH. Combination Anticancer Therapies Using Selected Phytochemicals. Molecules 2022; 27:5452. [PMID: 36080219 PMCID: PMC9458090 DOI: 10.3390/molecules27175452] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is still one of the most widespread diseases globally, it is considered a vital health challenge worldwide and one of the main barriers to long life expectancy. Due to the potential toxicity and lack of selectivity of conventional chemotherapeutic agents, discovering alternative treatments is a top priority. Plant-derived natural products have high potential in cancer treatment due to their multiple mechanisms of action, diversity in structure, availability in nature, and relatively low toxicity. In this review, the anticancer mechanisms of the most common phytochemicals were analyzed. Furthermore, a detailed discussion of the anticancer effect of combinations consisting of natural product or natural products with chemotherapeutic drugs was provided. This review should provide a strong platform for researchers and clinicians to improve basic and clinical research in the development of alternative anticancer medicines.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Aya O. Azzam
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Intisar Hadi AL-Yasari
- Department of Genetic Engineering, College of Biotechnology, Al-Qasim Green University, Babylon 964, Iraq
| |
Collapse
|
18
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
19
|
Gao Q, Feng J, Liu W, Wen C, Wu Y, Liao Q, Zou L, Sui X, Xie T, Zhang J, Hu Y. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Deliv Rev 2022; 188:114445. [PMID: 35820601 DOI: 10.1016/j.addr.2022.114445] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
The therapeutic limitations such as insufficient efficacy, drug resistance, metastasis, and undesirable side effects are frequently caused by the long duration monotherapy based on chemotherapeutic drugs. multiple combinational anticancer strategies such as nucleic acids combined with chemotherapeutic agents, chemotherapeutic combinations, chemotherapy and tumor immunotherapy combinations have been embraced, holding great promise to counter these limitations, while still taking including some potential risks. Nowadays, an increasing number of research has manifested the anticancer effects of phytochemicals mediated by modulating cancer cellular events directly as well as the tumor microenvironment. Specifically, these natural compounds exhibited suppression of cancer cell proliferation, apoptosis, migration and invasion of cancer cells, P-glycoprotein inhibition, decreasing vascularization and activation of tumor immunosuppression. Due to the low toxicity and multiple modulation pathways of these phytochemicals, the combination of chemotherapeutic agents with natural compounds acts as a novel approach to cancer therapy to increase the efficiency of cancer treatments as well as reduce the adverse consequences. In order to achieve the maximized combination advantages of small-molecule chemotherapeutic drugs and natural compounds, a variety of functional nano-scaled drug delivery systems, such as liposomes, host-guest supramolecules, supramolecules, dendrimers, micelles and inorganic systems have been developed for dual/multiple drug co-delivery. These co-delivery nanomedicines can improve pharmacokinetic behavior, tumor accumulation capacity, and achieve tumor site-targeting delivery. In that way, the improved antitumor effects through multiple-target therapy and reduced side effects by decreasing dose can be implemented. Here, we present the synergistic anticancer outcomes and the related mechanisms of the combination of phytochemicals with small-molecule anticancer drugs. We also focus on illustrating the design concept, and action mechanisms of nanosystems with co-delivery of drugs to synergistically improve anticancer efficacy. In addition, the challenges and prospects of how these insights can be translated into clinical benefits are discussed.
Collapse
Affiliation(s)
- Quan Gao
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jiao Feng
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wencheng Liu
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chengyong Wen
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Xinbing Sui
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Tian Xie
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China.
| |
Collapse
|
20
|
Synergistic effects of natural compounds and conventional chemotherapeutic agents: recent insights for the development of cancer treatment strategies. Heliyon 2022; 8:e09519. [PMID: 35669542 PMCID: PMC9163513 DOI: 10.1016/j.heliyon.2022.e09519] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/06/2022] [Accepted: 05/17/2022] [Indexed: 01/02/2023] Open
Abstract
Cancer is one of the leading causes of death in the world. Chemotherapy is presented as an option for treatment of this disease, however, low specificity, high resistance rates, toxicity and hypersensitivity reactions, make it necessary to search for therapeutic alternatives that increase the selectivity of treatment, reduce the side effects and enhance its antitumor potential. Natural products are accessible, inexpensive and less toxic sources; in addition, they have multiple mechanisms of action that can potentiate the outcome of chemotherapeutics. In this review, we present evidence on the beneficial effect of the interaction of dietary phytochemicals with chemotherapeutical agents for cancer treatment. This effect is generated by different mechanisms of action such as, increased tumoricidal effect via sensitization of cancer cells, reversing chemoresistance through inhibition of several targets involved in the development of drug resistance and, decreasing chemotherapy-induced toxicity in non-tumoral cells by the promotion of repair mechanisms. Studies discussed in this review will provide a solid basis for the exploration of the potential use of natural products in combination with chemotherapeutical agents, to overcome some of the difficulties that arise in the management of cancer patients.
Collapse
|
21
|
Jie Z, Jinna Z, Jingjun Z, Pengcheng L, Fang Y, Qinyang C, Taiyu C, Hequn J, Tao R. Antitumor Effects of 10058-F4 and Curcumin in Combination Therapy for Pancreatic Cancer In Vitro and In Vivo. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1620802. [PMID: 35368919 PMCID: PMC8970865 DOI: 10.1155/2022/1620802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/30/2022]
Abstract
Background Pancreatic cancer (PC) stands out as one of the most lethal cancers. Due to late diagnosis, only a fraction of patients can be resected. Although it still has significant adverse effects and poor results, the treatment is connected with better overall survival than the prior treatment. Thus, new alternative therapy for advanced PC is needed. Materials/Methods. The impact of 10058-F4 and curcumin combination therapy on apoptosis and cell growth in SW1990 pancreatic cancer cells were determined in vitro using the CCK-8 assay and flow cytometry of Annexin V-FITC/PI, and the in vivo antitumor effect was determined utilizing SW1990-bearing pancreatic tumor mouse models induced by subcutaneous implantation. Results At concentrations of (10 mol/L+2 mol/L), 10058-F4+curcumin obtained the highest rate of SW1990 cell death, and they had a beneficial effect on SW1990 pancreatic tumor-bearing animals. Furthermore, c-Myc, Akt phosphorylation, and the expression of apoptosis-related molecular were reduced, and the combination therapy modified the expression of apoptosis-related molecular. Conclusions In vitro and in vivo, the combination of 10058-F4 plus curcumin has antipancreatic cancer actions that are substantially effective.
Collapse
Affiliation(s)
- Zhang Jie
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Si Chuan, China
| | - Zhang Jinna
- No.4 West China Teaching Hospital of Si Chuan University, Si Chuan, China
| | - Zhang Jingjun
- The People's Hospital of JianYang City, Si Chuan, China
| | - Li Pengcheng
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Si Chuan, China
| | - Yang Fang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Si Chuan, China
| | | | - Chen Taiyu
- Chengdu Medical College, Si Chuan, China
| | - Jiang Hequn
- South China Hospital of Shenzhen University, Guang Dong, China
| | - Ren Tao
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Si Chuan, China
| |
Collapse
|
22
|
Khorsand M, Mostafavi-Pour Z, Razban V, Khajeh S, Zare R. Combinatorial effects of telmisartan and docetaxel on cell viability and metastatic gene expression in human prostate and breast cancer cells. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2022; 11:11-20. [PMID: 35463822 PMCID: PMC9012430 DOI: 10.22099/mbrc.2022.42638.1700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a unique process resulting in enhanced cell motility, invasiveness, and metastasis in cancer. The EMT is regulated by several transcription factors, including Snail and Slug, which exert crucial roles during cancer progression. We have studied the effects of Docetaxel as the first-line chemotherapy agent for prostate cancer, and Telmisartan as an anti-hypertensive drug on the expression level of Snail and Slug. In addition, the effects of Docetaxel, Telmisartan and their combination on cancer cell proliferation were investigated. The PC3, DU145, MDA-MB468, and HEK cell lines were used for this study. Quantitative RT-PCR analysis and MTT assay were used to study the expression of Snail and Slug level and cell proliferative assay, respectively. We found that a combination of Docetaxel + Telmisartan effectively inhibits the cell proliferation in cancerous cells in comparison with each drug alone (P<0.05). Furthermore, in these cell lines, Docetaxel, Telmisartan and their combination significantly diminished the expression level of Snail and Slug genes compared to control cells (P<0.001), however, in the HEK cell line, this effect was seen only in the combination group. Our data imply that Telmisartan and its combination with Docetaxel exert strong inhibitory effects on the expression level of Snail and Slug genes. Also, these drugs and their combination could inhibit cancer cell proliferation. In conclusion, the combination of Telmisartan and Docetaxel has the potential to suppress the metastasis of prostate and breast cancer cells.
Collapse
Affiliation(s)
- Marjan Khorsand
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,#Zohreh Mostafavi-Pour and Vahid Razban are both corresponding authors and have got the same contribution in this work,Corresponding Author: Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.Tel:+98 71-32 303029 ; Fax: +98 71-32 303029 , E. mail:
| | - Vahid Razban
- Molecular Medicine Department, School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran,Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,#Zohreh Mostafavi-Pour and Vahid Razban are both corresponding authors and have got the same contribution in this work
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Zare
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Khorsand M, Khajeh S, Eslami M, Nezafat N, Ghasemi Y, Razban V, Mostafavi‐Pour Z. Telmisartan anti‐cancer activities mechanism through targeting N‐cadherin by mimicking ADH‐1 function. J Cell Mol Med 2022; 26:2392-2403. [PMID: 35224849 PMCID: PMC8995460 DOI: 10.1111/jcmm.17259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/02/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
This study aimed to investigate if Telmisartan as a novel N‐cadherin antagonist, can overcome cell migration of cancer cells. We investigated the mechanism and influence of Docetaxel and Telmisartan (as an analogous to ADH‐1, which is a well‐known N‐cadherin antagonist) on cancer cells. The effect of ADH‐1 and Telmisartan on cell attachment in PC3, DU145, MDA‐MB‐468 cell lines using recombinant human N‐cadherin was studied. Cell viability assay was performed to examine the anti‐proliferative effects of Telmisartan, ADH‐1 and Docetaxel. Migration was examined via wound healing assay, and apoptosis was determined by flow cytometry. The expression of AKT‐1 as a downstream gene of N‐cadherin signalling pathway was assayed by real‐time PCR. Treatment of PC3, MDA‐MB‐468 and DU145 cells with Telmisartan (0.1 µM) and ADH‐1 (40 µM) resulted in 50%, 58% and approximately 20% reduction in cell attachment to N‐cadherin coated plate respectively. It shows reduction of cell attachment in PC3 and MDA‐MB‐468 cell lines appeared to be more sensitive than that of DU145 cells to the Telmisartan and ADH‐1 treatments. Telmisartan (0.1 µM) and Docetaxel (0.01 nM) significantly reduced cell migration in PC3 and MDA‐MB‐468 cell lines compared with the control group. Using Real‐time PCR, we found that Telmisartan, Docetaxel and ADH‐1 had significant influence on the AKT‐1 mRNA level. The results of the current study for the first time suggest that, Telmisartan, exerts anti‐proliferation and anti‐migration effects by targeting antagonistically N‐cadherin. Also, these data suggest that Telmisartan as a less expensive alternative to ADH‐1 could potentiate Docetaxel anticancer effects.
Collapse
Affiliation(s)
- Marjan Khorsand
- Department of Biochemistry School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Mahboobeh Eslami
- Pharmaceutical Sciences Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center Shiraz University of Medical Sciences Shiraz Iran
- Department of Pharmaceutical Biotechnology School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center Shiraz University of Medical Sciences Shiraz Iran
- Department of Pharmaceutical Biotechnology School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Vahid Razban
- Molecular Medicine Department School of Advanced Medical Sciences and Technology Shiraz University of Medical Sciences Shiraz Iran
- Stem Cell Technology Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Zohreh Mostafavi‐Pour
- Department of Biochemistry School of Medicine Shiraz University of Medical Sciences Shiraz Iran
- Autophagy Research Center Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
24
|
Melim C, Magalhães M, Santos AC, Campos EJ, Cabral C. Nanoparticles as phytochemical carriers for cancer treatment: News of the last decade. Expert Opin Drug Deliv 2022; 19:179-197. [PMID: 35166619 DOI: 10.1080/17425247.2022.2041599] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The development and application of novel therapeutic medicines for the treatment of cancer are of vital importance to improve the disease's outcome and survival rate. One noteworthy treatment approach is the use of biologically active compounds present in natural products. Even though these phytocompounds present anti-inflammatory, antioxidant, and anticancer properties, their use is limited essentially due to poor systemic delivery, low bioavailability, and water solubility concerns. To make full use of the anticancer potential of natural products, these limitations need to be technologically addressed. In this sense, nanotechnology emerges as a promising drug delivery system strategy. AREAS COVERED In this review, the benefits and potential of nanodelivery systems for natural products encapsulation as promising therapeutic approaches for cancer, which were developed during the last decade, are highlighted. EXPERT OPINION The nanotechnology area has been under extensive research in the medical field given its capacity for improving the therapeutic potential of drugs by increasing their bioavailability and allowing a targeted delivery to the tumor site. Thereby, the nanoencapsulation of phytocompounds can have a direct impact on the recognized therapeutic activity of natural products towards cancer.
Collapse
Affiliation(s)
- Catarina Melim
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
| | - Mariana Magalhães
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Elisa Julião Campos
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Célia Cabral
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
25
|
Vemuri SK, Halder S, Banala RR, Rachamalla HK, Devraj VM, Mallarpu CS, Neerudu UK, Bodlapati R, Mukherjee S, Venkata SGP, Venkata GRA, Thakkumalai M, Jana K. Modulatory Effects of Biosynthesized Gold Nanoparticles Conjugated with Curcumin and Paclitaxel on Tumorigenesis and Metastatic Pathways-In Vitro and In Vivo Studies. Int J Mol Sci 2022; 23:ijms23042150. [PMID: 35216264 PMCID: PMC8876049 DOI: 10.3390/ijms23042150] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Breast cancer is the most common cancer in women globally, and diagnosing it early and finding potential drug candidates against multi-drug resistant metastatic breast cancers provide the possibilities of better treatment and extending life. Methods: The current study aimed to evaluate the synergistic anti-metastatic activity of Curcumin (Cur) and Paclitaxel (Pacli) individually, the combination of Curcumin–Paclitaxel (CP), and also in conjugation with gold nanoparticles (AuNP–Curcumin (Au-C), AuNP–Paclitaxel (Au-P), and AuNP–Curcumin–Paclitaxel (Au-CP)) in various in vitro and in vivo models. Results: The results from combination treatments of CP and Au-CP demonstrated excellent synergistic cytotoxic effects in triple-negative breast cancer cell lines (MDA MB 231 and 4T1) in in vitro and in vivo mouse models. Detailed mechanistic studies were performed that reveal that the anti-cancer effects were associated with the downregulation of the expression of VEGF, CYCLIN-D1, and STAT-3 genes and upregulation of the apoptotic Caspase-9 gene. The group of mice that received CP combination therapy (with and without gold nanoparticles) showed a significant reduction in the size of tumor when compared to the Pacli alone treatment and control groups. Conclusions: Together, the results suggest that the delivery of gold conjugated Au-CP formulations may help in modulating the outcomes of chemotherapy. The present study is well supported with observations from cell-based assays, molecular and histopathological analyses.
Collapse
Affiliation(s)
- Satish Kumar Vemuri
- Sunshine Medical Academy Research and Technoloy (SMART), Sunshine Hospitals, PG Road, Secunderabad 500003, Telangana, India; (R.R.B.); (V.M.D.); (S.G.P.V.); (G.R.A.V.)
- Department of Biochemistry, Bharathidasan University Constituent College for Women, Tiruchirappalli 620009, Tamil Nadu, India;
- Correspondence: (S.K.V.); (K.J.); Tel.: +91-807-431-7348 (S.K.V.); +91-900-704-2850 (K.J.)
| | - Satyajit Halder
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, West Bengal, India;
| | - Rajkiran Reddy Banala
- Sunshine Medical Academy Research and Technoloy (SMART), Sunshine Hospitals, PG Road, Secunderabad 500003, Telangana, India; (R.R.B.); (V.M.D.); (S.G.P.V.); (G.R.A.V.)
| | - Hari Krishnreddy Rachamalla
- Biomaterials Group, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad 500007, Telangana, India;
| | - Vijaya Madhuri Devraj
- Sunshine Medical Academy Research and Technoloy (SMART), Sunshine Hospitals, PG Road, Secunderabad 500003, Telangana, India; (R.R.B.); (V.M.D.); (S.G.P.V.); (G.R.A.V.)
| | | | - Uttam Kumar Neerudu
- Department of Biochemistry, Osmania University, Hyderabad 500007, Telangana, India;
| | - Ravikiran Bodlapati
- TBRC, Business Research Private Limited, Hyderabad 500033, Telangana, India;
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA;
| | - Subbaiah Goli Peda Venkata
- Sunshine Medical Academy Research and Technoloy (SMART), Sunshine Hospitals, PG Road, Secunderabad 500003, Telangana, India; (R.R.B.); (V.M.D.); (S.G.P.V.); (G.R.A.V.)
| | - Gurava Reddy Annapareddy Venkata
- Sunshine Medical Academy Research and Technoloy (SMART), Sunshine Hospitals, PG Road, Secunderabad 500003, Telangana, India; (R.R.B.); (V.M.D.); (S.G.P.V.); (G.R.A.V.)
| | - Malarvilli Thakkumalai
- Department of Biochemistry, Bharathidasan University Constituent College for Women, Tiruchirappalli 620009, Tamil Nadu, India;
| | - Kuladip Jana
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, West Bengal, India;
- Correspondence: (S.K.V.); (K.J.); Tel.: +91-807-431-7348 (S.K.V.); +91-900-704-2850 (K.J.)
| |
Collapse
|
26
|
Zhu M, Li G, Chen Y, Gong G, Guo W. Clinical features and treatment of hepatic abscesses with biloma formation after transcatheter arterial chemoembolization. Arab J Gastroenterol 2022; 23:32-38. [DOI: 10.1016/j.ajg.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 05/20/2021] [Accepted: 12/09/2021] [Indexed: 11/27/2022]
|
27
|
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol 2021; 12:772510. [PMID: 34867402 PMCID: PMC8634471 DOI: 10.3389/fphar.2021.772510] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.
Collapse
Affiliation(s)
- Sareshma Sudhesh Dev
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| |
Collapse
|
28
|
McFadden M, Singh SK, Oprea-Ilies G, Singh R. Nano-Based Drug Delivery and Targeting to Overcome Drug Resistance of Ovarian Cancers. Cancers (Basel) 2021; 13:cancers13215480. [PMID: 34771642 PMCID: PMC8582784 DOI: 10.3390/cancers13215480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OvCa) is a destructive malignancy due to difficulties in early detection and late advanced-stage diagnoses, leading to high morbidity and mortality rates for women. Currently, the quality treatment for OvCa includes tumor debulking surgery and intravenous platinum-based chemotherapy. However, numerous patients either succumb to the disease or undergo relapse due to drug resistance, such as to platinum drugs. There are several mechanisms that cause cancer cells' resistance to chemotherapy, such as inactivation of the drug, alteration of the drug targets, enhancement of DNA repair of drug-induced damage, and multidrug resistance (MDR). Some targeted therapies, such as nanoparticles, and some non-targeted therapies, such as natural products, reverse MDR. Nanoparticle targeting can lead to the reversal of MDR by allowing direct access for agents to specific tumor sites. Natural products have many anti-cancer properties that adversely regulate the factors contributing to MDR. The present review displays the current problems in OvCa treatments that lead to resistance and proposes using nanotechnology and natural products to overcome drug resistance.
Collapse
Affiliation(s)
- Melayshia McFadden
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Correspondence:
| |
Collapse
|
29
|
Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, Nucera S, Scicchitano M, Bosco F, Macri R, Ruga S, Cardamone A, Coppoletta A, Mollace A, Cognetti F, Mollace V. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021; 13:nu13113834. [PMID: 34836091 PMCID: PMC8619660 DOI: 10.3390/nu13113834] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death globally, associated with multifactorial pathophysiological components. In particular, genetic mutations, infection or inflammation, unhealthy eating habits, exposition to radiation, work stress, and/or intake of toxins have been found to contribute to the development and progression of cancer disease states. Early detection of cancer and proper treatment have been found to enhance the chances of survival and healing, but the side effects of anticancer drugs still produce detrimental responses that counteract the benefits of treatment in terms of hospitalization and survival. Recently, several natural bioactive compounds were found to possess anticancer properties, capable of killing transformed or cancerous cells without being toxic to their normal counterparts. This effect occurs when natural products are associated with conventional treatments, thereby suggesting that nutraceutical supplementation may contribute to successful anticancer therapy. This review aims to discuss the current literature on four natural bioactive extracts mostly characterized by a specific polyphenolic profile. In particular, several activities have been reported to contribute to nutraceutical support in anticancer treatment: (1) inhibition of cell proliferation, (2) antioxidant activity, and (3) anti-inflammatory activity. On the other hand, owing to their attenuation of the toxic effect of current anticancer therapies, natural antioxidants may contribute to improving the compliance of patients undergoing anticancer treatment. Thus, nutraceutical supplementation, along with current anticancer drug treatment, may be considered for better responses and compliance in patients with cancer. It should be noted, however, that when data from studies with bioactive plant preparations are discussed, it is appropriate to ensure that experiments have been conducted in accordance with accepted pharmacological research practices so as not to disclose information that is only partially correct.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annarita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
30
|
Song P, Huang H, Ma Y, Wu C, Yang X, Choi HY. Davidone C Induces the Death of Hepatocellular Carcinoma Cells by Promoting Apoptosis and Autophagy. Molecules 2021; 26:molecules26175219. [PMID: 34500653 PMCID: PMC8434093 DOI: 10.3390/molecules26175219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Davidone C is a newly discovered flavonoid compound purified from the ethyl acetate-soluble fraction of Sophora davidii (Franch.) Skeels. This study explored the anti-tumor activity of davidone C on hepatocellular carcinoma HepG2 and Bel-7402 cells and its mechanism through MTT method, morphological observation, flow cytometry and Western blotting. The results showed that davidone C significantly inhibited the proliferation of HepG2 and Bel-7402 cells in a time- and dose-dependent manner. The morphological changes of apoptotic cells can be observed under an inverted microscope, such as cell floating, chromosome condensation, apoptotic bodies, and other phenomena. The expressions of Bax, cleaved caspase-9, cleaved caspase-3 and cleaved PARP increased with the increase of dosage while Bcl-2 decreased, suggesting that the apoptotic mechanism might be related to the mitochondrial apoptotic pathway. Moreover, davidone C administration can down-regulate the expression of Grp78, and simultaneously up-regulate the expression of caspase-7 and caspase-12, indicating that the apoptotic mechanism might be related to the ERS pathway. In addition, davidone C can down-regulate the expression of p62, and simultaneously up-regulate the expression of LC3-I and LC3-II with a quantitative dependence, suggesting that the mechanism of apoptosis may be related to the autophagy signal pathway. All these results showed davidone C has potential effects on hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ping Song
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining 810007, China;
| | - Huiqi Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (H.H.); (Y.M.); (C.W.)
| | - Yuanren Ma
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (H.H.); (Y.M.); (C.W.)
| | - Chaoqun Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (H.H.); (Y.M.); (C.W.)
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (H.H.); (Y.M.); (C.W.)
- Correspondence: (X.Y.); (H.-Y.C.); Tel.: +86-27-6784-1196 (X.Y.); +82-2-9619372 (H.-Y.C.)
| | - Ho-Young Choi
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (X.Y.); (H.-Y.C.); Tel.: +86-27-6784-1196 (X.Y.); +82-2-9619372 (H.-Y.C.)
| |
Collapse
|
31
|
Mandlik DS, Mandlik SK. An Overview of Hepatocellular Carcinoma with Emphasis on Dietary Products and Herbal Remedies. Nutr Cancer 2021; 74:1549-1567. [PMID: 34396860 DOI: 10.1080/01635581.2021.1965630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The most common principal malignant tumor that accounts for ∼80% of cases of liver cancer across the world is hepatocellular carcinoma (HCC). It is a multifacetedillness that is caused by several risk factors and often progresses in the context of underlying cirrhosis. It is tremendously difficult and essential for the screening of novel therapeutic medications to establish HCC preclinical models that are equivalent to clinical diseases settings, i.e., representing the tumor microenvironment of HCC. In the progress of HCC, numerous molecular cascades have been supposed to play a part. Sorafenib is the only drug permitted by the US Food and Drug Administration for the treatment of HCC. Yet because of the increasing resistance to the drug and its toxicity, clinical treatment methods are not completely adequate. Newer treatment therapy options are essential for the management of HCC in patients. Natural compounds can be afforded by the patients with improved results with less toxicity and fewer side effects, among different methods of liver cancer treatment. The treatment and management of HCC with natural drugs and their phytoconstituents are connected to several paths that can prevent the occurrence and progress of HCC in several ways. The present review summarizes the etiology of HCC, molecular pathways, newer therapeutic approaches, natural dietary products, herbal plants and phytoconstituents for HCC treatment.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Poona College of Pharmacy, Bharati Vidyapeeth, Deemed to be University, Pune, India
| | - Satish K Mandlik
- Poona College of Pharmacy, Bharati Vidyapeeth, Deemed to be University, Pune, India
| |
Collapse
|
32
|
Kong WY, Ngai SC, Goh BH, Lee LH, Htar TT, Chuah LH. Is Curcumin the Answer to Future Chemotherapy Cocktail? Molecules 2021; 26:4329. [PMID: 34299604 PMCID: PMC8303331 DOI: 10.3390/molecules26144329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
The rise in cancer cases in recent years is an alarming situation worldwide. Despite the tremendous research and invention of new cancer therapies, the clinical outcomes are not always reassuring. Cancer cells could develop several evasive mechanisms for their survivability and render therapeutic failure. The continuous use of conventional cancer therapies leads to chemoresistance, and a higher dose of treatment results in even greater toxicities among cancer patients. Therefore, the search for an alternative treatment modality is crucial to break this viscous cycle. This paper explores the suitability of curcumin combination treatment with other cancer therapies to curb cancer growth. We provide a critical insight to the mechanisms of action of curcumin, its role in combination therapy in various cancers, along with the molecular targets involved. Curcumin combination treatments were found to enhance anticancer effects, mediated by the multitargeting of several signalling pathways by curcumin and the co-administered cancer therapies. The preclinical and clinical evidence in curcumin combination therapy is critically analysed, and the future research direction of curcumin combination therapy is discussed.
Collapse
Affiliation(s)
- Wei-Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia; (W.-Y.K.); (S.C.N.)
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia; (W.-Y.K.); (S.C.N.)
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (B.-H.G.); (T.-T.H.)
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
| | - Thet-Thet Htar
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (B.-H.G.); (T.-T.H.)
| | - Lay-Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (B.-H.G.); (T.-T.H.)
| |
Collapse
|
33
|
Almatroodi SA, Syed MA, Rahmani AH. Potential Therapeutic Targets of Curcumin, Most Abundant Active Compound of Turmeric Spice: Role in the Management of Various Types of Cancer. Recent Pat Anticancer Drug Discov 2021; 16:3-29. [PMID: 33143616 DOI: 10.2174/1574892815999201102214602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin, an active compound of turmeric spice, is one of the most-studied natural compounds and has been widely recognized as a chemopreventive agent. Several molecular mechanisms have proven that curcumin and its analogs play a role in cancer prevention through modulating various cell signaling pathways as well as in the inhibition of the carcinogenesis process. OBJECTIVE To study the potential role of curcumin in the management of various types of cancer through modulating cell signalling molecules based on available literature and recent patents. METHODS A wide-ranging literature survey was performed based on Scopus, PubMed, PubMed Central, and Google scholar for the implication of curcumin in cancer management, along with a special emphasis on human clinical trials. Moreover, patents were searched through www.google.com/patents, www.freepatentsonline.com, and www.freshpatents.com. RESULT Recent studies based on cancer cells have proven that curcumin has potential effects against cancer cells as it prevents the growth of cancer and acts as a cancer therapeutic agent. Besides, curcumin exerted anti-cancer effects by inducing apoptosis, activating tumor suppressor genes, cell cycle arrest, inhibiting tumor angiogenesis, initiation, promotion, and progression stages of tumor. It was established that co-treatment of curcumin and anti-cancer drugs could induce apoptosis and also play a significant role in the suppression of the invasion and metastasis of cancer cells. CONCLUSION Accumulating evidences suggest that curcumin has the potential to inhibit cancer growth, induce apoptosis, and modulate various cell signaling pathway molecules. Well-designed clinical trials of curcumin based on human subjects are still needed to establish the bioavailability, mechanism of action, efficacy, and safe dose in the management of various cancers.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah 52571, Saudi Arabia
| | - Mansoor Ali Syed
- Department of Biotechnology, Faculty of Natural Sciences, Translational Research Lab, Jamia Millia Islamia, New Delhi 110025, India
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
34
|
Jantan I, Haque MA, Arshad L, Harikrishnan H, Septama AW, Mohamed-Hussein ZA. Dietary polyphenols suppress chronic inflammation by modulation of multiple inflammation-associated cell signaling pathways. J Nutr Biochem 2021; 93:108634. [PMID: 33794330 DOI: 10.1016/j.jnutbio.2021.108634] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
The high failure rate of the reductionist approach to discover effective and safe drugs to treat chronic inflammatory diseases has led scientists to seek alternative ways. Recently, targeting cell signaling pathways has been utilized as an innovative approach to discover drug leads from natural products. Cell signaling mechanisms have been identified playing key role in diverse diseases by inducing proliferation, cell survival and apoptosis. Phytochemicals are known to be able to modulate the cellular and molecular networks which are associated to chronic diseases including cancer-associated inflammation. In this review, the roles of dietary polyphenols (apigenin, kaempferol, quercetin, curcumin, genistein, isoliquiritigenin, resveratrol and gallic acid) in modulating multiple inflammation-associated cell signaling networks are deliberated. Scientific databases on suppressive effects of the polyphenols on chronic inflammation via modulation of the pathways especially in the recent five years are gathered and critically analyzed. The polyphenols are able to modulate several inflammation-associated cell signaling pathways, namely nuclear factor-kappa β, mitogen activated protein kinases, Wnt/β-catenin and phosphatidylinositol 3-kinase and protein kinase B via selective actions on various components of the networks. The suppressive effects of the polyphenols on the multiple cell signaling pathways reveal their potential use in prevention and treatment of chronic inflammatory disorders. Understanding the mechanistic effects involved in modulation of the signaling pathways by the polyphenols is necessary for lead identification and development of future functional foods for prevention and treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia.
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Laiba Arshad
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Hemavathy Harikrishnan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abdi Wira Septama
- Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten, Indonesia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia; Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor
| |
Collapse
|
35
|
Markowitsch SD, Juetter KM, Schupp P, Hauschulte K, Vakhrusheva O, Slade KS, Thomas A, Tsaur I, Cinatl J, Michaelis M, Efferth T, Haferkamp A, Juengel E. Shikonin Reduces Growth of Docetaxel-Resistant Prostate Cancer Cells Mainly through Necroptosis. Cancers (Basel) 2021; 13:882. [PMID: 33672520 PMCID: PMC7923752 DOI: 10.3390/cancers13040882] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
The prognosis for advanced prostate carcinoma (PCa) remains poor due to development of therapy resistance, and new treatment options are needed. Shikonin (SHI) from Traditional Chinese Medicine has induced antitumor effects in diverse tumor entities, but data related to PCa are scarce. Therefore, the parental (=sensitive) and docetaxel (DX)-resistant PCa cell lines, PC3, DU145, LNCaP, and 22Rv1 were exposed to SHI [0.1-1.5 μM], and tumor cell growth, proliferation, cell cycling, cell death (apoptosis, necrosis, and necroptosis), and metabolic activity were evaluated. Correspondingly, the expression of regulating proteins was assessed. Exposure to SHI time- and dose-dependently inhibited tumor cell growth and proliferation in parental and DX-resistant PCa cells, accompanied by cell cycle arrest in the G2/M or S phase and modulation of cell cycle regulating proteins. SHI induced apoptosis and more dominantly necroptosis in both parental and DX-resistant PCa cells. This was shown by enhanced pRIP1 and pRIP3 expression and returned growth if applying the necroptosis inhibitor necrostatin-1. No SHI-induced alteration in metabolic activity of the PCa cells was detected. The significant antitumor effects induced by SHI to parental and DX-resistant PCa cells make the addition of SHI to standard therapy a promising treatment strategy for patients with advanced PCa.
Collapse
Affiliation(s)
- Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Kira M. Juetter
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Patricia Schupp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Kristine Hauschulte
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Olesya Vakhrusheva
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Kimberly Sue Slade
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe-University, 60596 Frankfurt, Germany;
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany;
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| |
Collapse
|
36
|
Wu C, Shu G, Huang H, Pang K, Yang X, Yang G. Methylgerambullin derived from plant Glyccsmis pentaphylla (Retz) correa. Mediates anti-hepatocellular carcinoma cancer effect by activating mitochondrial and endoplasmic reticulum stress signaling and inhibiting AKT and STAT3 pathways. Food Chem Toxicol 2021; 149:112031. [PMID: 33529679 DOI: 10.1016/j.fct.2021.112031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common fatal malignant tumors. Glycosmis pentaphylla is used by traditional medical practitioners worldwide to treat various diseases. We isolated and identified a chemical component with potential anti-hepatocellular carcinoma (HCC) effects. Methylgerambullin is a sulfur containing amine and has significant antihepatoma activity in vitro and in vivo. Methylgerambullin was significantly cytotoxic to HCC cells and induces apoptosis in HCC cells. In addition, methylgerambullin is able to inhibit the growth of transplanted tumors in nude mice without significant toxicity. Regarding the anti-cancer mechanism of methylgerambullin, treatment with methylgerambullin increased the expression of caspase-3, caspase-9 and Bax in vitro and in vivo and reduce the expression of B-cell lymphoma-2 (Bcl-2). Simultaneously, methylgerambullin can also affect ERS-related proteins, inhibit Protein Kinase B (Akt) activity, cause dephosphorylation of downstream Bad, and inhibit the expression of the Signal Transducer and Activator of Transcription 3 (STAT3) protein to inhibit HCC cells proliferation. Overall, these results suggest that methylgerambullin can inhibit HCC cells proliferation by inducing mitochondrial apoptosis, activating ERS signaling pathways and inhibiting the Akt and STAT3 pathways.
Collapse
Affiliation(s)
- Chaoqun Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Huiqi Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Kejian Pang
- Hotian Uygur Pharmaceutical Co., Ltd, Hotian, 848200, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Guangzhong Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
37
|
Deng L, Wu X, Zhu X, Yu Z, Liu Z, Wang J, Zheng Y. Combination effect of curcumin with docetaxel on the PI3K/AKT/mTOR pathway to induce autophagy and apoptosis in esophageal squamous cell carcinoma. Am J Transl Res 2021; 13:57-72. [PMID: 33527008 PMCID: PMC7847521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Docetaxel (DTX) is widely used to treat many malignant tumors but has many adverse effects. Curcumin (CUR) also has effects on a variety of tumor cells and can reduce the toxicity and side effects of chemotherapy drugs and the occurrence of drug resistance. However, the combination of CUR and DTX for treating esophageal cancer has not been reported. METHODS Human esophageal squamous cell carcinoma (ESCC) KYSE150 and KYSE510 cells were treated with CUR or DTX alone or both drugs and cancer cell viability was detected by CCK8, apoptosis, scratch-healing and migration assays. Electron microscopy and Western blots were used. In vivo experiments were used observe anti-tumor effects. RESULTS CUR combined with DTX significantly inhibited the viability and migration of esophageal cancer cells (P<0.01) and further promoted the apoptosis of cancer cells. In addition, CUR induced autophagy in esophageal cancer cells when combined with DTX. DTX combined with CUR may induce apoptosis and autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway. The compound 3-methyladenine (3MA) inhibited the autophagy induced by DTX and CUR (DC), further accelerated apoptosis and inhibited the proliferation of esophageal cancer cells when combined with DC. CONCLUSION CUR combined with DTX induced apoptosis and autophagy of ESCC and probably worked through the PI3K/AKT/mTOR signaling pathway. The combination of the autophagy inhibitor, CUR and DTX may become a new treatment strategy for esophageal cancer.
Collapse
Affiliation(s)
- Lian Deng
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
- Second Department of Oncology, Guilin Nanxishan HospitalGuangxi, China
| | - Xiaoran Wu
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Xiongjie Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Zhongjian Yu
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Zhile Liu
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Jinting Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Yanfang Zheng
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
38
|
Tanaudommongkon I, Tanaudommongkon A, Prathipati P, Nguyen JT, Keller ET, Dong X. Curcumin Nanoparticles and Their Cytotoxicity in Docetaxel-Resistant Castration-Resistant Prostate Cancer Cells. Biomedicines 2020; 8:biomedicines8080253. [PMID: 32751450 PMCID: PMC7459888 DOI: 10.3390/biomedicines8080253] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/14/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022] Open
Abstract
Most prostate cancer patients develop resistance to anti-androgen therapy. This is referred to as castration-resistant prostate cancer (CRPC). Docetaxel (DTX) is the mainstay treatment against CRPC. However, over time patients eventually develop DTX resistance, which is the cause of the cancer-related mortality. Curcumin (CUR) as a natural compound has been shown to have very broad pharmacological activities, e.g., anti-inflammatory and antioxidant properties. However, CUR is very hydrophobic. The objective of this study was to develop CUR nanoparticles (NPs) and evaluate their cytotoxicity in DTX-resistant CRPC cells for the treatment of DTX-resistant CRPC. We tested solubility of CUR in different lipids and surfactants. Finally, Miglyol 812 and D-alpha-tocopheryl poly (ethylene glycol) succinate 1000 (TPGS) were chosen to prepare lipid-based NPs for CUR. We fully characterized CUR NPs that had particle size < 150 nm, high drug loading (7.5%), and entrapment efficiency (90%). Moreover, the CUR NPs were successfully lyophilized without using cryoprotectants. We tested the cytotoxicity of blank NPs, free CUR, and CUR NPs in sensitive DU145 and PC3 cells as well as their matching docetaxel-resistant cells. Cytotoxicity studies showed that blank NPs were very safe for all tested prostate cancer cell lines. Free CUR overcame the resistance in PC3 cells, but not in DU145 cells. In contrast, CUR NPs significantly increased CUR potency in all tested cell lines. Importantly, CUR NPs completely restored CUR potency in both resistant DU145 and PC3 cells. These results demonstrate that the CUR NPs have potential to overcome DTX resistance in CRPC.
Collapse
Affiliation(s)
- Irin Tanaudommongkon
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (I.T.); (A.T.); (P.P.); (J.T.N.)
| | - Asama Tanaudommongkon
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (I.T.); (A.T.); (P.P.); (J.T.N.)
| | - Priyanka Prathipati
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (I.T.); (A.T.); (P.P.); (J.T.N.)
| | - Joey Trieu Nguyen
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (I.T.); (A.T.); (P.P.); (J.T.N.)
| | - Evan T. Keller
- Department of Urology and Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Xiaowei Dong
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (I.T.); (A.T.); (P.P.); (J.T.N.)
- Correspondence: ; Tel.: +1-817-735-2785
| |
Collapse
|
39
|
Eslami SS, Jafari D, Montazeri H, Sadeghizadeh M, Tarighi P. Combination of Curcumin and Metformin Inhibits Cell Growth and Induces Apoptosis without Affecting the Cell Cycle in LNCaP Prostate Cancer Cell Line. Nutr Cancer 2020; 73:1026-1039. [PMID: 32657143 DOI: 10.1080/01635581.2020.1783327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Side effects and chemotherapy resistance, demand new therapeutics with minimal side effects. Here, we investigated the combined effect of curcumin and metformin on the LNCaP prostate cancer cell line. LNCaP cells were treated with curcumin, metformin, and their combination at different concentrations. Cell viability was assessed by MTT assay and expression of Bax, Bcl-2, mTOR, hTERT, PUMA, p53 and p21 genes was analyzed by real-time PCR. Apoptosis and cell cycle were assessed by flow cytometry. Our results revealed that the viability of cells treated with curcumin, metformin, and their combination was significantly (P < 0.05) reduced with increasing the concentration and prolonging the treatment time. Meanwhile, the combination showed a synergistic effect within 48 h. In the curcumin treated group, the expression of Bcl-2 and hTERT genes diminished. In the metformin treated group, the expression of Bax and PUMA genes was enhanced while the expression of Bcl-2, hTERT, mTOR, and p53 genes declined. Although all treatments induced apoptosis, the combination of curcumin and metformin showed the maximum level of apoptosis, cytotoxicity, and expression of Bax gene. The combination of curcumin and metformin showed synergistic effects within 48 h. This combination could be a potential therapeutic candidate for prostate cancer to be further investigated.
Collapse
Affiliation(s)
- Seyed Sadegh Eslami
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davod Jafari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Montazeri
- School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Eftekhari S, Montazeri H, Tarighi P. Synergistic anti-tumor effects of Liraglutide, a glucagon-like peptide-1 receptor agonist, along with Docetaxel on LNCaP prostate cancer cell line. Eur J Pharmacol 2020; 878:173102. [DOI: 10.1016/j.ejphar.2020.173102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/29/2022]
|
41
|
Abstract
Aim: The current study aims to co-deliver docetaxel (DTX) and alpha-lipoic acid (ALA) using solid lipid nanoparticles (SLNs) as a carrier for the treatment of breast cancer. Methods: Computational analysis was used to screen different solid lipids as carriers, following which SLNs were prepared and characterized. Furthermore, antioxidant activity assays and cell culture studies were performed. Results: In vitro assessment in 4T1 (murine mammary carcinoma) and MCF-7 (human breast adenocarcinoma) cells revealed enhanced efficacy of the co-loaded SLNs as compared with free drugs and single drug-loaded SLNs. Increased apoptosis following treatment with DTX-ALA co-loaded SLN was also observed. Conclusion: The developed SLNs showed significantly higher uptake efficiency along with improved cytotoxic and apoptotic potential indicating the usefulness of this combination.
Collapse
|
42
|
Asmawi AA, Salim N, Abdulmalek E, Abdul Rahman MB. Modeling the Effect of Composition on Formation of Aerosolized Nanoemulsion System Encapsulating Docetaxel and Curcumin Using D-Optimal Mixture Experimental Design. Int J Mol Sci 2020; 21:E4357. [PMID: 32575390 PMCID: PMC7352744 DOI: 10.3390/ijms21124357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 02/03/2023] Open
Abstract
The synergistic anticancer effect of docetaxel (DTX) and curcumin (CCM) has emerged as an attractive therapeutic candidate for lung cancer treatment. However, the lack of optimal bioavailability because of high toxicity, low stability, and poor solubility has limited their clinical success. Given this, an aerosolized nanoemulsion system for pulmonary delivery is recommended to mitigate these drawbacks. In this study, DTX- and CCM-loaded nanoemulsions were optimized using the D-optimal mixture experimental design (MED). The effect of nanoemulsion compositions towards two response variables, namely, particle size and aerosol size, was studied. The optimized formulations for both DTX- and CCM-loaded nanoemulsions were determined, and their physicochemical and aerodynamic properties were evaluated as well. The MED models achieved the optimum formulation for DTX- and CCM-loaded nanoemulsions containing a 6.0 wt% mixture of palm kernel oil ester (PKOE) and safflower seed oils (1:1), 2.5 wt% of lecithin, 2.0 wt% mixture of Tween 85 and Span 85 (9:1), and 2.5 wt% of glycerol in the aqueous phase. The actual values of the optimized formulations were in line with the predicted values obtained from the MED, and they exhibited desirable attributes of physicochemical and aerodynamic properties for inhalation therapy. Thus, the optimized formulations have potential use as a drug delivery system for a pulmonary application.
Collapse
Affiliation(s)
- Azren Aida Asmawi
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.A.); (N.S.); (E.A.)
| | - Norazlinaliza Salim
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.A.); (N.S.); (E.A.)
| | - Emilia Abdulmalek
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.A.); (N.S.); (E.A.)
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.A.); (N.S.); (E.A.)
- UPM-MAKNA Cancer Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
43
|
Mohajeri M, Bianconi V, Ávila-Rodriguez MF, Barreto GE, Jamialahmadi T, Pirro M, Sahebkar A. Curcumin: a phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol Res 2020; 156:104765. [PMID: 32217147 DOI: 10.1016/j.phrs.2020.104765] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 01/06/2023]
Abstract
Curcumin (Cur) is an active derivative extracted from turmeric which exerts a wide range of interactions with biomolecules through complex signaling pathways. Cur has been extensively shown to possess potential antitumor properties. In addition, there is growing body of evidence suggesting that Cur may exert potential anti-estrogen and anti-androgen activity. In vitro and in vivo studies suggest that anticancer properties of Cur against tumors affecting the reproductive system in females and males may be underlied by the Cur-mediated inhibition of androgen and estrogen signaling pathways. In this review we examine various studies assessing the crosstalk between Cur and both androgen and estrogen hormonal activity. Also, we discuss the potential chemopreventive and antitumor role of Cur in the most prevalent cancers affecting the reproductive system in females and males.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology & Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Highly Bioavailable Forms of Curcumin and Promising Avenues for Curcumin-Based Research and Application: A Review. Molecules 2020; 25:molecules25061397. [PMID: 32204372 PMCID: PMC7144558 DOI: 10.3390/molecules25061397] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 01/08/2023] Open
Abstract
Curcumin exerts a wide range of beneficial physiological and pharmacological activities, including antioxidant, anti-amyloid, anti-inflammatory, anti-microbial, anti-neoplastic, immune-modulating, metabolism regulating, anti-depressant, neuroprotective and tissue protective effects. However, its poor solubility and poor absorption in the free form in the gastrointestinal tract and its rapid biotransformation to inactive metabolites greatly limit its utility as a health-promoting agent and dietary supplement. Recent advances in micro- and nano-formulations of curcumin with greatly enhanced absorption resulting in desirable blood levels of the active forms of curcumin now make it possible to address a wide range of potential applications, including pain management, and as tissue protective. Using these forms of highly bioavailable curcumin now enable a broad spectrum of appropriate studies to be conducted. This review discusses the formulations designed to enhance bioavailability, metabolism of curcumin, relationships between solubility and particle size relative to bioavailability, human pharmacokinetic studies involving formulated curcumin products, the widely used but inappropriate practice of hydrolyzing plasma samples for quantification of blood curcumin, current applications of curcumin and its metabolites and promising directions for health maintenance and applications.
Collapse
|
45
|
Nutraceutical Boom in Cancer: Inside the Labyrinth of Reactive Oxygen Species. Int J Mol Sci 2020; 21:ijms21061936. [PMID: 32178382 PMCID: PMC7139678 DOI: 10.3390/ijms21061936] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/02/2023] Open
Abstract
In recent years, epidemiological studies have shown that food is a very powerful means for maintaining a state of well-being and for health prevention. Many degenerative, autoimmune and neoplastic diseases are related to nutrition and the nutrient-organism interaction could define the balance between health and disease. Nutrients and dietary components influence epigenetic phenomena and modify drugs response; therefore, these food-host interactions can influence the individual predisposition to disease and its potential therapeutic response. Do nutraceuticals have positive or negative effects during chemotherapy? The use of nutraceutical supplements in cancer patients is a controversial debate without a definitive conclusion to date. During cancer treatment, patients take nutraceuticals to alleviate drug toxicity and improve long-term results. Some nutraceuticals may potentiate the effect of cytotoxic chemotherapy by inducing cell growth arrest, cell differentiation, and alteration of the redox state of cells, but in some cases, high levels of them may interfere with the effectiveness of chemotherapy, making cancer cells less reactive to chemotherapy. In this review, we highlighted the emerging opinions and data on the pros and cons on the use of nutraceutical supplements during chemotherapy.
Collapse
|
46
|
Noel B, Singh SK, Lillard JW, Singh R. Role of natural compounds in preventing and treating breast cancer. Front Biosci (Schol Ed) 2020; 12:137-160. [PMID: 32114452 DOI: 10.2741/s544] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer (BrCa) is the most commonly diagnosed cancer and the second leading cause of cancer-related death in women. Alarming increases in the cases quests for more effective treatment of BrCa. As most chemotherapeutic drugs are associated with drug resistance, cancer relapse, and side effects, scientists are turning to agents with more efficacy, such as natural compounds for treatment and prevention of BrCa. Selected natural compounds, substances derived from living organisms, promote apoptosis and inhibit metastasis, preventing cancer growth. As a result, these compounds have the potential to suppress BrCa progression, thus increasing patient survival rates and decreasing the number of BrCa-related deaths. In this review, we summarize natural compounds that have displayed, anti-cancer effects on BrCa cells in various studies. These natural compounds inhibit the development of BrCa, suppress the growth of cancer cells, and promote cell death. We conclude that natural compounds are efficient, effective and promising agents for treating BrCa other than therapeutic methods.
Collapse
Affiliation(s)
- Brianna Noel
- Morehouse School of Medicine, 720 Westview Drive SW, Atlanta GA 30310
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology,Morehouse School of Medicine, 720 Westview drive, SW, Atlanta- 30310 USA
| | - James W Lillard
- Morehouse School of Medicine, 720 Westview Drive SW, Atlanta GA 30310
| | - Rajesh Singh
- Morehouse School of Medicine, 720 Westview Drive SW, Atlanta,
| |
Collapse
|
47
|
Waghmare MN, Qureshi TS, Shaikh AN, Khade BS, Murali Krishna C, Dongre PM. Functionalized Alpha‐lactalbumin Conjugated with Gold Nanoparticle for Targeted Drug Delivery. ChemistrySelect 2020. [DOI: 10.1002/slct.201904190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Manik N. Waghmare
- Department of Biophysics University of Mumbai, Mumbai Maharashtra India
| | - Tazeen S. Qureshi
- Department of Biophysics University of Mumbai, Mumbai Maharashtra India
| | - Afrin N. Shaikh
- Department of Biophysics University of Mumbai, Mumbai Maharashtra India
| | - Bipin S. Khade
- Department of Biophysics University of Mumbai, Mumbai Maharashtra India
| | - C. Murali Krishna
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC) Navi Mumbai, Maharashtra India
| | | |
Collapse
|
48
|
Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer 2020; 1873:188314. [PMID: 31682895 PMCID: PMC6981221 DOI: 10.1016/j.bbcan.2019.188314] [Citation(s) in RCA: 799] [Impact Index Per Article: 159.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
Globally, liver cancer is the most frequent fatal malignancy; in the United States, it ranks fifth. Patients are often diagnosed with liver cancer in advanced stages, contributing to its poor prognosis. Of all liver cancer cases, >90% are hepatocellular carcinomas (HCCs) for which chemotherapy and immunotherapy are the best options for therapy. For liver cancer patients, new treatment options are necessary. Use of natural compounds and/or nanotechnology may provide patients with better outcomes with lower systemic toxicity and fewer side effects. Improved treatments can lead to better prognoses. Finally, in this review, we present some of the problems and current treatment options contributing to the poor outcomes for patients with liver cancer.
Collapse
Affiliation(s)
- David Anwanwan
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shriti Singh
- Department of Kriya Sharir, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP 221 005, India
| | - Varma Saikam
- Department of Chemistry, Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30302, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| |
Collapse
|
49
|
Ohandjo AQ, Liu Z, Dammer EB, Dill CD, Griffen TL, Carey KM, Hinton DE, Meller R, Lillard JW. Transcriptome Network Analysis Identifies CXCL13-CXCR5 Signaling Modules in the Prostate Tumor Immune Microenvironment. Sci Rep 2019; 9:14963. [PMID: 31628349 PMCID: PMC6802083 DOI: 10.1038/s41598-019-46491-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
The tumor immune microenvironment (TIME) consists of multiple cell types that contribute to the heterogeneity and complexity of prostate cancer (PCa). In this study, we sought to understand the gene-expression signature of patients with primary prostate tumors by investigating the co-expression profiles of patient samples and their corresponding clinical outcomes, in particular “disease-free months” and “disease reoccurrence”. We tested the hypothesis that the CXCL13-CXCR5 axis is co-expressed with factors supporting TIME and PCa progression. Gene expression counts, with clinical attributes from PCa patients, were acquired from TCGA. Profiles of PCa patients were used to identify key drivers that influence or regulate CXCL13-CXCR5 signaling. Weighted gene co-expression network analysis (WGCNA) was applied to identify co-expression patterns among CXCL13-CXCR5, associated genes, and key genetic drivers within the CXCL13-CXCR5 signaling pathway. The processing of downloaded data files began with quality checks using NOISeq, followed by WGCNA. Our results confirmed the quality of the TCGA transcriptome data, identified 12 co-expression networks, and demonstrated that CXCL13, CXCR5 and associated genes are members of signaling networks (modules) associated with G protein coupled receptor (GPCR) responsiveness, invasion/migration, immune checkpoint, and innate immunity. We also identified top canonical pathways and upstream regulators associated with CXCL13-CXCR5 expression and function.
Collapse
Affiliation(s)
- Adaugo Q Ohandjo
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Zongzhi Liu
- R & D Bioinformatics, Sema4, Stamford, CT, 06902, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Courtney D Dill
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Tiara L Griffen
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Kaylin M Carey
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Denise E Hinton
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Robert Meller
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| |
Collapse
|
50
|
Tan BL, Norhaizan ME. Curcumin Combination Chemotherapy: The Implication and Efficacy in Cancer. Molecules 2019; 24:E2527. [PMID: 31295906 PMCID: PMC6680685 DOI: 10.3390/molecules24142527] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/28/2022] Open
Abstract
Many chemotherapeutic drugs have been used for the treatment of cancer, for instance, doxorubicin, irinotecan, 5-fluorouracil, cisplatin, and paclitaxel. However, the effectiveness of chemotherapy is limited in cancer therapy due to drug resistance, therapeutic selectivity, and undesirable side effects. The combination of therapies with natural compounds is likely to increase the effectiveness of drug treatment as well as reduce the adverse outcomes. Curcumin, a polyphenolic isolated from Curcuma longa, belongs to the rhizome of Zingiberaceae plants. Studies from in vitro and in vivo revealed that curcumin exerts many pharmacological activities with less toxic effects. The biological mechanisms underlying the anticancer activity of co-treatment curcumin and chemotherapy are complex and worth to discuss further. Therefore, this review aimed to address the molecular mechanisms of combined curcumin and chemotherapy in the treatment of cancer. The anticancer activity of combined nanoformulation of curcumin and chemotherapy was also discussed in this study. Taken together, a better understanding of the implication and underlying mechanisms of action of combined curcumin and chemotherapy may provide a useful approach to combat cancer diseases.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|