1
|
Khoshbayan A, Narimisa N, Elahi Z, Bostanghadiri N, Razavi S, Shariati A. Global prevalence of mutation in the mgrB gene among clinical isolates of colistin-resistant Klebsiella pneumoniae: a systematic review and meta-analysis. Front Microbiol 2024; 15:1386478. [PMID: 38912352 PMCID: PMC11190090 DOI: 10.3389/fmicb.2024.1386478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Background Colistin is used as a last resort for managing infections caused by multidrug-resistant bacteria. However, the high emergence of colistin-resistant strains has restricted the clinical use of this antibiotic in the clinical setting. In the present study, we evaluated the global prevalence of the mutation in the mgrB gene, one of the most important mechanisms of colistin resistance in Klebsiella pneumoniae. Methods Several databases, including Scopus, Medline (via PubMed), and Web of Science, were searched (until August 2023) to identify those studies that address the mgrB mutation in clinical isolates of K. pneumoniae. Using Stata software, the pooled prevalence of mgrB mutation and subgroup analyses for the year of publication, country, continent, mgrB mutation types, and detection methods of mgrB mutation were analyzed. Results Out of the 115 studies included in the analysis, the prevalence of mgrB mutations in colistin-resistant K. pneumoniae isolates was estimated at 65% of isolates, and mgrB variations with insertional inactivation had the highest prevalence among the five investigated mutations with 69%. The year subgroup analysis indicated an increase in mutated mgrB from 46% in 2014 to 61% in 2022. Europe had the highest prevalence of mutated mgrB at 73%, while Africa had the lowest at 54%. Conclusion Mutations in the mgrB gene are reported as one of the most common mechanisms of colistin resistance in K. pneumoniae, and the results of the present study showed that 65% of the reported colistin-resistant K. pneumoniae had a mutation in this gene.
Collapse
Affiliation(s)
- Amin Khoshbayan
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Narimisa
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Narjess Bostanghadiri
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine research center, Khomein University of Medical Sciences, Khomein, Iran
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
2
|
Li H, Sun L, Qiao H, Sun Z, Wang P, Xie C, Hu X, Nie T, Yang X, Li G, Zhang Y, Wang X, Li Z, Jiang J, Li C, You X. Polymyxin resistance caused by large-scale genomic inversion due to IS 26 intramolecular translocation in Klebsiella pneumoniae. Acta Pharm Sin B 2023; 13:3678-3693. [PMID: 37719365 PMCID: PMC10501869 DOI: 10.1016/j.apsb.2023.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 09/19/2023] Open
Abstract
Polymyxin B and polymyxin E (colistin) are presently considered the last line of defense against human infections caused by multidrug-resistant Gram-negative organisms such as carbapenemase-producer Enterobacterales, Acinetobacter baumannii, and Klebsiella pneumoniae. Yet resistance to this last-line drugs is a major public health threat and is rapidly increasing. Polymyxin S2 (S2) is a polymyxin B analogue previously synthesized in our institute with obviously high antibacterial activity and lower toxicity than polymyxin B and colistin. To predict the possible resistant mechanism of S2 for wide clinical application, we experimentally induced bacterial resistant mutants and studied the preliminary resistance mechanisms. Mut-S, a resistant mutant of K. pneumoniae ATCC BAA-2146 (Kpn2146) induced by S2, was analyzed by whole genome sequencing, transcriptomics, mass spectrometry and complementation experiment. Surprisingly, large-scale genomic inversion (LSGI) of approximately 1.1 Mbp in the chromosome caused by IS26 mediated intramolecular transposition was found in Mut-S, which led to mgrB truncation, lipid A modification and hence S2 resistance. The resistance can be complemented by plasmid carrying intact mgrB. The same mechanism was also found in polymyxin B and colistin induced drug-resistant mutants of Kpn2146 (Mut-B and Mut-E, respectively). This is the first report of polymyxin resistance caused by IS26 intramolecular transposition mediated mgrB truncation in chromosome in K. pneumoniae. The findings broaden our scope of knowledge for polymyxin resistance and enriched our understanding of how bacteria can manage to survive in the presence of antibiotics.
Collapse
Affiliation(s)
- Haibin Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Han Qiao
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zongti Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Penghe Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chunyang Xie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tongying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Obradović M, Malešević M, Di Luca M, Kekić D, Gajić I, McAuliffe O, Neve H, Stanisavljević N, Vukotić G, Kojić M. Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae. Viruses 2023; 15:v15030628. [PMID: 36992337 PMCID: PMC10052179 DOI: 10.3390/v15030628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Klebsiella pneumoniae is a global health threat and bacteriophages are a potential solution in combating pandrug-resistant K. pneumoniae infections. Two lytic phages, LASTA and SJM3, active against several pandrug-resistant, nosocomial strains of K. pneumoniae were isolated and characterized. Their host range is narrow and latent period is particularly long; however, their lysogenic nature was refuted using both bioinformatic and experimental approaches. Genome sequence analysis clustered them with only two other phages into the new genus Lastavirus. Genomes of LASTA and SJM3 differ in only 13 base pairs, mainly located in tail fiber genes. Individual phages, as well as their cocktail, demonstrated significant bacterial reduction capacity in a time-dependent manner, yielding up to 4 log reduction against planktonic, and up to 2.59 log on biofilm-embedded, cells. Bacteria emerging from the contact with the phages developed resistance and achieved numbers comparable to the growth control after 24 h. The resistance to the phage seems to be of a transient nature and varies significantly between the two phages, as resistance to LASTA remained constant while resensitization to SJM3 was more prominent. Albeit with very few differences, SJM3 performed better than LASTA overall; however, more investigation is needed in order to consider them for therapeutic application.
Collapse
Affiliation(s)
- Mina Obradović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Milka Malešević
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Dušan Kekić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ina Gajić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Olivia McAuliffe
- Department of Food Biosciences, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany
| | - Nemanja Stanisavljević
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Goran Vukotić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: (G.V.); (M.K.)
| | - Milan Kojić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: (G.V.); (M.K.)
| |
Collapse
|
4
|
Davari N, Khashei R, Pourabbas B, Nikbin VS, Zand F. High frequency of carbapenem-resistant Enterobacteriaceae fecal carriage among ICU hospitalized patients from Southern Iran. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1416-1423. [PMID: 36544530 PMCID: PMC9742572 DOI: 10.22038/ijbms.2022.63099.13938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022]
Abstract
Objectives The worldwide emergence of carbapenem-resistant Enterobacteriaceae (CRE) has become a major therapeutic concern to medical institutions. To date, no study has determined the frequency and risk factors of inpatients with CRE fecal carriage in Southern Iran. We studied the features of carbapenemase-producing Enterobacteriaceae (CPE) collected from the central ICU of a university hospital. Materials and Methods Totally, 173 samples, including 124 stool samples from 46 ICU inpatients on admission and different follow-ups, 9 ICU staff, and 40 environmental samples were included. CRE was identified using microbiological methods. Antimicrobial susceptibility was investigated by using the disk diffusion method and E-test. Carbapenemase producers were detected using the mCIM method. Seven carbapenemase genes were characterized. The genetic relationship among 20 CPE was elucidated by PFGE. Results The overall fecal carriage rate was 28.2%, while CRE acquisition was 6.1%. CRE were classified as Klebsiella pneumoniae (71.4%), Escherichia coli (23.8%), and Enterobacter aerogenes (4.8%). From 21 CRE, 20 (95.2%) produced carbapenemases, of which 10, 15, 10, 25, 5, and 65% were blaKPC, blaSME, blaIMP, blaVIM, blaNDM and blaOXA-48-positive, respectively. Out of 20 CPE, 14 different PFGE patterns were observed, categorized into six clusters, suggestive of non-clonal spread. No difference between the examined risk factors with CRE carriage was shown. Conclusion The data indicate a high CRE fecal carriage rate among inpatients. Our findings implicate the widespread of OXA-48 carbapenemase together with heterogeneity among CRE with great concern for dissemination and therapeutic threat. Early diagnosis and monitoring of CRE among inpatients are urgent.
Collapse
Affiliation(s)
- Nima Davari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Khashei
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran ,Corresponding authors: Reza Khashei. Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Zand St, Shiraz, Iran. Tel: +98-71-32305410; Fax: +98-71-32304356; ; ; Bahman Pourabbas. Professor Alborzi Clinical Microbiology Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Bahman Pourabbas
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Corresponding authors: Reza Khashei. Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Zand St, Shiraz, Iran. Tel: +98-71-32305410; Fax: +98-71-32304356; ; ; Bahman Pourabbas. Professor Alborzi Clinical Microbiology Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Farid Zand
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Hamame A, Davoust B, Hasnaoui B, Mwenebitu DL, Rolain JM, Diene SM. Screening of colistin-resistant bacteria in livestock animals from France. Vet Res 2022; 53:96. [DOI: 10.1186/s13567-022-01113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractColistin is frequently used as a growth factor or treatment against infectious bacterial diseases in animals. The Veterinary Division of the European Medicines Agency (EMA) restricted colistin use as a second-line treatment to reduce colistin resistance. In 2020, 282 faecal samples were collected from chickens, cattle, sheep, goats, and pigs in the south of France. In order to track the emergence of mobilized colistin resistant (mcr) genes in pigs, 111 samples were re-collected in 2021 and included pig faeces, food, and water from the same location. All samples were cultured in a selective Lucie Bardet Jean-Marc Rolain (LBJMR) medium and colonies were identified using MALDI-TOF mass spectrometry and then antibiotic susceptibility tests were performed. PCR and Sanger sequencing were performed to screen for the presence of mcr genes. The selective culture revealed the presence of 397 bacteria corresponding to 35 different bacterial species including Gram-negative and Gram-positive. Pigs had the highest prevalence of colistin-resistant bacteria with an abundance of intrinsically colistin-resistant bacteria and from these samples one strain harbouring both mcr-1 and mcr-3 has been isolated. The second collection allowed us to identify 304 bacteria and revealed the spread of mcr-1 and mcr-3 in pigs. In the other samples, naturally, colistin-resistant bacteria were more frequent, nevertheless the mcr-1 variant was the most abundant gene found in chicken, sheep, and goat samples and one cattle sample was positive for the mcr-3 gene. Animals are potential reservoir of colistin-resistant bacteria which varies from one animal to another. Interventions and alternative options are required to reduce the emergence of colistin resistance and to avoid zoonotic transmissions.
Collapse
|
6
|
Jansen W, van Hout J, Wiegel J, Iatridou D, Chantziaras I, De Briyne N. Colistin Use in European Livestock: Veterinary Field Data on Trends and Perspectives for Further Reduction. Vet Sci 2022; 9:650. [PMID: 36423099 PMCID: PMC9697203 DOI: 10.3390/vetsci9110650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 09/29/2023] Open
Abstract
Polymyxin E (colistin) is a medically important active substance both in human and veterinary medicine. Colistin has been used in veterinary medicine since the 1950s. Due to the discovery of the plasmid-borne mcr gene in 2015 and the simultaneously increased importance in human medicine as a last-resort antibiotic, the use of colistin for animals was scrutinised. Though veterinary colistin sales dropped by 76.5% between 2011 to 2020, few studies evaluated real-world data on the use patterns of colistin in different European countries and sectors. A survey among veterinarians revealed that 51.9% did not use or ceased colistin, 33.4% decreased their use, 10.4% stabilised their use, and 2.7% increased use. The most important indications for colistin use were gastrointestinal diseases in pigs followed by septicaemia in poultry. A total of 106 (16.0%) responding veterinarians reported governmental/industry restrictions regarding colistin use, most commonly mentioning "use only after susceptibility testing" (57%). In brief, colistin was perceived as an essential last-resort antibiotic in veterinary medicine for E. coli infections in pigs and poultry, where there is no alternative legal, safe, and efficacious antimicrobial available. To further reduce the need for colistin, synergistic preventive measures, including improved biosecurity, husbandry, and vaccinations, must be employed.
Collapse
Affiliation(s)
- Wiebke Jansen
- Federation of Veterinarians of Europe (FVE), Rue Victor Oudart 7, 1030 Brussels, Belgium
| | - Jobke van Hout
- Royal GD, Arnsbergstraat 7, 7418 EZ Deventer, The Netherlands
| | - Jeanine Wiegel
- Royal GD, Arnsbergstraat 7, 7418 EZ Deventer, The Netherlands
| | - Despoina Iatridou
- Federation of Veterinarians of Europe (FVE), Rue Victor Oudart 7, 1030 Brussels, Belgium
| | - Ilias Chantziaras
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nancy De Briyne
- Federation of Veterinarians of Europe (FVE), Rue Victor Oudart 7, 1030 Brussels, Belgium
| |
Collapse
|
7
|
Application Effect of Transparent Supervision Based on Informatization in Prevention and Control of Carbapenem-Resistant Klebsiella pneumoniae Nosocomial Infection. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:2193430. [PMID: 36329985 PMCID: PMC9626236 DOI: 10.1155/2022/2193430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Objective To explore the effect of transparent supervision model on the prevention and control of carbapenem-resistant Klebsiella pneumoniae (CRKP) nosocomial infection and the value of the autoregressive integrated moving average (ARIMA) model in predicting the incidence of CRKP infection. Methods A total of 46,873 inpatients from Jiawang District People's Hospital of Xuzhou between January 2019 and December 2019 (prior to COVID-19 prevention and control) were selected as the preintervention group and 45,217 inpatients from January 2020 to December 2020 (after the COVID-19 prevention and control) as the postintervention group. We performed transparent supervision on CRKP patients detected by the real-time monitoring system for nosocomial infection. Incidence and detection rate of CRKP, utilization rate of special grade hydrocarbon enzyme alkene antibiotics, hand hygiene compliance rate, qualified rate of ATP tests on surface of environmental objects, and execution rate of CRKP core prevention and control were compared between the two groups. Results Transparent supervision of CRKP-infected patients was conducted daily from January to December 2020, which resulted in the following: (a) the infection rate of CRKP decreased in a fluctuating manner, and the actual value of hydrocarbon alkene use rate was basically the same as the predicted value with an overall decreasing trend; (b) after the intervention, hand hygiene compliance rate increased from 53.30% to 70.24% (P < 0.001) and the ATP qualified rate increased from 53.77% to 92.24% (P < 0.001); (c) the fitted value of the ARIMA model was in good agreement with the actual value. The incidence of CRKP infection and the utilization rate of carbene antibiotics were also in good agreement with the predicted value. The average relative errors were 11% and 10.78%. Conclusions During the COVID-19 outbreak in 2020, the ARIMA model effectively fit and predicted the CRKP infection rate, thereby providing scientific guidance for the prevention and control of CRKP infection. In addition, the transparent supervision intervention model improved the hand hygiene compliance and environmental hygiene qualification rates of medical staff, effectively reducing CRKP cross-infection in the hospital.
Collapse
|
8
|
OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob Agents Chemother 2022; 66:e0021622. [PMID: 35856662 PMCID: PMC9380527 DOI: 10.1128/aac.00216-22] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Modern medicine is threatened by the rising tide of antimicrobial resistance, especially among Gram-negative bacteria, where resistance to β-lactams is most often mediated by β-lactamases. The penicillin and cephalosporin ascendancies were, in their turn, ended by the proliferation of TEM penicillinases and CTX-M extended-spectrum β-lactamases. These class A β-lactamases have long been considered the most important. For carbapenems, however, the threat is increasingly from the insidious rise of a class D carbapenemase, OXA-48, and its close relatives. Over the past 20 years, OXA-48 and "OXA-48-like" enzymes have proliferated to become the most prevalent enterobacterial carbapenemases across much of Europe, Northern Africa, and the Middle East. OXA-48-like enzymes are notoriously difficult to detect because they often cause only low-level in vitro resistance to carbapenems, meaning that the true burden is likely underestimated. Despite this, they are associated with carbapenem treatment failures. A highly conserved incompatibility complex IncL plasmid scaffold often carries blaOXA-48 and may carry other antimicrobial resistance genes, leaving limited treatment options. High conjugation efficiency means that this plasmid is sometimes carried by multiple Enterobacterales in a single patient. Producers evade most β-lactam-β-lactamase inhibitor combinations, though promising agents have recently been licensed, notably ceftazidime-avibactam and cefiderocol. The molecular machinery enabling global spread, current treatment options, and the development pipeline of potential new therapies for Enterobacterales that produce OXA-48-like β-lactamases form the focus of this review.
Collapse
|
9
|
Hamame A, Davoust B, Cherak Z, Rolain JM, Diene SM. Mobile Colistin Resistance ( mcr) Genes in Cats and Dogs and Their Zoonotic Transmission Risks. Pathogens 2022; 11:698. [PMID: 35745552 PMCID: PMC9230929 DOI: 10.3390/pathogens11060698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Pets, especially cats and dogs, represent a great potential for zoonotic transmission, leading to major health problems. The purpose of this systematic review was to present the latest developments concerning colistin resistance through mcr genes in pets. The current study also highlights the health risks of the transmission of colistin resistance between pets and humans. Methods: We conducted a systematic review on mcr-positive bacteria in pets and studies reporting their zoonotic transmission to humans. Bibliographic research queries were performed on the following databases: Google Scholar, PubMed, Scopus, Microsoft Academic, and Web of Science. Articles of interest were selected using the PRISMA guideline principles. Results: The analyzed articles from the investigated databases described the presence of mcr gene variants in pets including mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-8, mcr-9, and mcr-10. Among these articles, four studies reported potential zoonotic transmission of mcr genes between pets and humans. The epidemiological analysis revealed that dogs and cats can be colonized by mcr genes that are beginning to spread in different countries worldwide. Overall, reported articles on this subject highlight the high risk of zoonotic transmission of colistin resistance genes between pets and their owners. Conclusions: This review demonstrated the spread of mcr genes in pets and their transmission to humans, indicating the need for further measures to control this significant threat to public health. Therefore, we suggest here some strategies against this threat such as avoiding zoonotic transmission.
Collapse
Affiliation(s)
- Afaf Hamame
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Bernard Davoust
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Zineb Cherak
- Faculté des Sciences de la Nature et de la Vie, Université Batna-2, Route de Constantine, Fésdis, Batna 05078, Algeria;
| | - Jean-Marc Rolain
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Seydina M. Diene
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| |
Collapse
|
10
|
Decano AG, Pettigrew K, Sabiiti W, Sloan DJ, Neema S, Bazira J, Kiiru J, Onyango H, Asiimwe B, Holden MTG. Pan-Resistome Characterization of Uropathogenic Escherichia coli and Klebsiella pneumoniae Strains Circulating in Uganda and Kenya, Isolated from 2017-2018. Antibiotics (Basel) 2021; 10:1547. [PMID: 34943759 PMCID: PMC8698711 DOI: 10.3390/antibiotics10121547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 01/24/2023] Open
Abstract
Urinary tract infection (UTI) develops after a pathogen adheres to the inner lining of the urinary tract. Cases of UTIs are predominantly caused by several Gram-negative bacteria and account for high morbidity in the clinical and community settings. Of greater concern are the strains carrying antimicrobial resistance (AMR)-conferring genes. The gravity of a UTI is also determined by a spectrum of other virulence factors. This study represents a pilot project to investigate the burden of AMR among uropathogens in East Africa. We examined bacterial samples isolated in 2017-2018 from in- and out-patients in Kenya (KY) and Uganda (UG) that presented with clinical symptoms of UTI. We reconstructed the evolutionary history of the strains, investigated their population structure, and performed comparative analysis their pangenome contents. We found 55 Escherichia coli and 19 Klebsiella pneumoniae strains confirmed uropathogenic following screening for the prevalence of UTI virulence genes including fimH, iutA, feoA/B/C, mrkD, and foc. We identified 18 different sequence types in E. coli population while all K. pneumoniae strains belong to ST11. The most prevalent E. coli sequence types were ST131 (26%), ST335/1193 (10%), and ST10 (6%). Diverse plasmid types were observed in both collections such as Incompatibility (IncF/IncH/IncQ1/IncX4) and Col groups. Pangenome analysis of each set revealed a total of 2862 and 3464 genes comprised the core genome of E. coli and K. pneumoniae population, respectively. Among these are acquired AMR determinants including fluoroquinolone resistance-conferring genes aac(3)-Ib-cr and other significant genes: aad, tet, sul1, sul2, and cat, which are associated with aminoglycoside, tetracycline, sulfonamide, and chloramphenicol resistance, respectively. Accessory genomes of both species collections were detected several β-lactamase genes, blaCTX-M, blaTEM and blaOXA, or blaNDM. Overall, 93% are multi-drug resistant in the E. coli collection while 100% of the K. pneumoniae strains contained genes that are associated with resistance to three or more antibiotic classes. Our findings illustrate the abundant acquired resistome and virulome repertoire in uropathogenic E. coli and K. pneumoniae, which are mainly disseminated via clonal and horizontal transfer, circulating in the East African region. We further demonstrate here that routine genomic surveillance is necessary for high-resolution bacterial epidemiology of these important AMR pathogens.
Collapse
Affiliation(s)
- Arun Gonzales Decano
- School of Medicine, University of St Andrews, St Andrews KY16 8BQ, UK; (K.P.); (W.S.); (D.J.S.); (M.T.G.H.)
| | - Kerry Pettigrew
- School of Medicine, University of St Andrews, St Andrews KY16 8BQ, UK; (K.P.); (W.S.); (D.J.S.); (M.T.G.H.)
| | - Wilber Sabiiti
- School of Medicine, University of St Andrews, St Andrews KY16 8BQ, UK; (K.P.); (W.S.); (D.J.S.); (M.T.G.H.)
| | - Derek J. Sloan
- School of Medicine, University of St Andrews, St Andrews KY16 8BQ, UK; (K.P.); (W.S.); (D.J.S.); (M.T.G.H.)
| | - Stella Neema
- Department of Sociology and Anthropology, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Joel Bazira
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara P.O. Box 410, Uganda;
| | - John Kiiru
- Centre of Microbiology Research, Kenya Medical Research Institute, Off Raila Odinga Way, Nairobi P.O. Box 54840 00200, Kenya;
| | - Hellen Onyango
- Department of Medical Microbiology, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62 000, Kenya;
| | - Benon Asiimwe
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala P.O. Box 7062, Uganda;
| | - Matthew T. G. Holden
- School of Medicine, University of St Andrews, St Andrews KY16 8BQ, UK; (K.P.); (W.S.); (D.J.S.); (M.T.G.H.)
| |
Collapse
|
11
|
Sakai Y, Gotoh K, Nakano R, Iwahashi J, Miura M, Horita R, Miyamoto N, Yano H, Kannae M, Takasu O, Watanabe H. Infection Control for a Carbapenem-Resistant Enterobacteriaceae Outbreak in an Advanced Emergency Medical Services Center. Antibiotics (Basel) 2021; 10:1537. [PMID: 34943749 PMCID: PMC8698558 DOI: 10.3390/antibiotics10121537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A carbapenem-resistant Enterobacteriaceae (CRE) outbreak occurred in an advanced emergency medical service center [hereafter referred to as the intensive care unit (ICU)] between 2016 and 2017. AIM Our objective was to evaluate the infection control measures for CRE outbreaks. METHODS CRE strains were detected in 16 inpatients located at multiple sites. Environmental cultures were performed and CRE strains were detected in 3 of 38 sites tested. Pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and detection of β-lactamase genes were performed against 25 CRE strains. FINDINGS Molecular typing showed the PFGE patterns of two of four Klebsiella pneumoniae strains were closely related and the same MLST (ST2388), and four of five Enterobacter cloacae strains were closely related and same MLST (ST252). Twenty-three of 25 CRE strains harbored the IMP-1 β-lactamase gene and 15 of 23 CRE strains possessed IncFIIA replicon regions. Despite interventions by the infection control team, new inpatients with the CRE strain continued to appear. Therefore, the ICU was partially closed and the inpatients with CRE were isolated, and the ICU staff was divided into two groups between inpatients with CRE and non-CRE strains to avoid cross-contamination. Although the occurrence of new cases dissipated quickly after the partial closure, a few months were required to eradicate the CRE outbreak. CONCLUSION Our data suggest that the various and combined measures that were used for infection control were essential in stopping this CRE outbreak. In particular, partial closure to isolate the ICU and division of the ICU staff were effective.
Collapse
Affiliation(s)
- Yoshiro Sakai
- Department of Pharmacy, Kurume University Hospital, Kurume 831-0011, Japan
- Department of Infection Control and Prevention, Kurume University School of Medicine, Kurume 831-0011, Japan
- Division of Infection Control and Prevention, Kurume University Hospital, Kurume 831-0011, Japan
| | - Kenji Gotoh
- Department of Infection Control and Prevention, Kurume University School of Medicine, Kurume 831-0011, Japan
- Division of Infection Control and Prevention, Kurume University Hospital, Kurume 831-0011, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Nara 634-8521, Japan
| | - Jun Iwahashi
- Department of Infection Control and Prevention, Kurume University School of Medicine, Kurume 831-0011, Japan
| | - Miho Miura
- Division of Infection Control and Prevention, Kurume University Hospital, Kurume 831-0011, Japan
| | - Rie Horita
- Department of Clinical Laboratory Medicine, Kurume University Hospital, Kurume 831-0011, Japan
| | - Naoki Miyamoto
- Department of Clinical Laboratory Medicine, Kurume University Hospital, Kurume 831-0011, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Nara 634-8521, Japan
| | - Mikinori Kannae
- Department of Emergency and Critical Care Medicine, Kurume University School of Medicine, Kurume 831-0011, Japan
| | - Osamu Takasu
- Department of Emergency and Critical Care Medicine, Kurume University School of Medicine, Kurume 831-0011, Japan
| | - Hiroshi Watanabe
- Department of Infection Control and Prevention, Kurume University School of Medicine, Kurume 831-0011, Japan
- Division of Infection Control and Prevention, Kurume University Hospital, Kurume 831-0011, Japan
| |
Collapse
|
12
|
Clonal Dissemination of Plasmid-Mediated Carbapenem and Colistin Resistance in Refugees Living in Overcrowded Camps in North Lebanon. Antibiotics (Basel) 2021; 10:antibiotics10121478. [PMID: 34943690 PMCID: PMC8698793 DOI: 10.3390/antibiotics10121478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
Carbapenem and colistin-resistant bacteria represent a global public health problem. Refugees carrying these bacteria and living in inadequate shelters can spread these microorganisms. The aim of this study was to investigate the intestinal carriage of these bacteria in Syrian refugees in Lebanon. Between June and July 2019, 250 rectal swabs were collected from two refugee camps in North Lebanon. Swabs were cultured on different selective media. Antibiotic susceptibility testing was performed using the disk diffusion method. Carbapenemase-encoding genes and mcr genes were investigated using real-time polymerase chain reaction (RT-PCR) and standard polymerase chain reaction (PCR). Epidemiological relatedness was studied using multilocus sequence typing (MLST). From 250 rectal swabs, 16 carbapenem-resistant, 5 colistin-resistant, and 4 colistin and carbapenem-resistant Enterobacteriaceae were isolated. The isolates exhibited multidrug-resistant phenotypes. Seven Klebsiella pneumoniae isolates harboured the blaOXA-48 gene, and in addition four K. pneumoniae had mutations in the two component systems pmrA/pmrB, phoP/phoQ and co-harboured the blaNDM-1 gene. Moreover, the blaNDM-1 gene was detected in six Escherichia coli and three Enterobacter cloacae isolates. The remaining five E. coli isolates harboured the mcr-1 gene. MLST results showed several sequence types, with a remarkable clonal dissemination. An urgent strategy needs to be adopted in order to avoid the spread of such resistance in highly crowded underserved communities.
Collapse
|
13
|
AL-Mahfoodh WJM, Pekacar FS, Abbas AH. The molecular study for evaluation the antibiotic resistance of Escherichia coli and Klebsiella pneumoniae bacteria isolated from urinary tract infection patients. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Binsker U, Käsbohrer A, Hammerl JA. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev 2021; 46:6382128. [PMID: 34612488 PMCID: PMC8829026 DOI: 10.1093/femsre/fuab049] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
The dramatic global rise of MDR and XDR Enterobacterales in human medicine forced clinicians to the reintroduction of colistin as last-resort drug. Meanwhile, colistin is used in the veterinary medicine since its discovery, leading to a steadily increasing prevalence of resistant isolates in the livestock and meat-based food sector. Consequently, transmission of resistant isolates from animals to humans, acquisition via food and exposure to colistin in the clinic are reasons for the increased prevalence of colistin-resistant Enterobacterales in humans in the last decades. Initially, resistance mechanisms were caused by mutations in chromosomal genes. However, since the discovery in 2015, the focus has shifted exclusively to mobile colistin resistances (mcr). This review will advance the understanding of chromosomal-mediated resistance mechanisms in Enterobacterales. We provide an overview about genes involved in colistin resistance and the current global situation of colistin-resistant Enterobacterales. A comparison of the global colistin use in veterinary and human medicine highlights the effort to reduce colistin sales in veterinary medicine under the One Health approach. In contrast, it uncovers the alarming rise in colistin consumption in human medicine due to the emergence of MDR Enterobacterales, which might be an important driver for the increasing emergence of chromosome-mediated colistin resistance.
Collapse
Affiliation(s)
- Ulrike Binsker
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jens A Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
15
|
Baron SA, Cassir N, Hamel M, Hadjadj L, Saidani N, Dubourg G, Rolain JM. Risk factors for acquisition of colistin-resistant Klebsiella pneumoniae and expansion of a colistin-resistant ST307 epidemic clone in hospitals in Marseille, France, 2014 to 2017. ACTA ACUST UNITED AC 2021; 26. [PMID: 34047270 PMCID: PMC8161728 DOI: 10.2807/1560-7917.es.2021.26.21.2000022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BackgroundFrance is a low prevalence country for colistin resistance. Molecular and epidemiological events contributing to the emergence of resistance to colistin, one of the 'last-resort' antibiotics to treat multidrug-resistant Gram-negative infections, are important to investigate.AimThis retrospective (2014 to 2017) observational study aimed to identify risk factors associated with acquisition of colistin-resistant Klebsiella pneumoniae (CRKP) in hospitals in Marseille, France, and to molecularly characterise clinical isolates.MethodsTo identify risk factors for CRKP, a matched-case-control (1:2) study was performed in two groups of patients with CRKP or colistin-susceptible K. pneumoniae respectively. Whole-genome-sequences (WGS) of CRKP were compared with 6,412 K. pneumoniae genomes available at the National Center for Biotechnology Information (NCBI).ResultsMultivariate analysis identified male sex and contact with a patient carrying a CRKP as significant independent factors (p < 0.05) for CRKP acquisition, but not colistin administration. WGS of nine of 14 CRKP clinical isolates belonged to the same sequence type (ST)307. These isolates were from patients who had been hospitalised in the same wards, suggesting an outbreak. Comparison of the corresponding strains' WGS to K. pneumoniae genomes in NCBI revealed that in chromosomal genes likely playing a role in colistin resistance, a subset of five specific mutations were significantly associated with ST307 (p < 0.001).ConclusionA ST307 CRKP clone was identified in this study, with specific chromosomal mutations in genes potentially implicated in colistin resistance. ST307 might have a propensity to be or become resistant to colistin, however confirming this requires further investigations.
Collapse
Affiliation(s)
- Sophie Alexandra Baron
- IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Marseille, France.,Aix Marseille Univ, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France
| | - Nadim Cassir
- IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Marseille, France.,Aix Marseille Univ, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France
| | - Mouna Hamel
- IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Marseille, France.,Aix Marseille Univ, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France
| | - Linda Hadjadj
- IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Marseille, France.,Aix Marseille Univ, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France
| | - Nadia Saidani
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Marseille, France
| | - Gregory Dubourg
- IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Marseille, France.,Aix Marseille Univ, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France
| | - Jean-Marc Rolain
- IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Marseille, France.,Aix Marseille Univ, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France
| |
Collapse
|
16
|
De La Cadena E, Mojica MF, García-Betancur JC, Appel TM, Porras J, Pallares CJ, Solano-Gutiérrez JS, Rojas LJ, Villegas MV. Molecular Analysis of Polymyxin Resistance among Carbapenemase-Producing Klebsiella pneumoniae in Colombia. Antibiotics (Basel) 2021; 10:antibiotics10030284. [PMID: 33801833 PMCID: PMC8035654 DOI: 10.3390/antibiotics10030284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Polymyxin resistance in Klebsiella pneumoniae has been attributed to mutations in mgrB, phoPQ, pmrAB, and crrAB and to the presence of mcr plasmid-mediated genes. Herein, we describe the molecular characteristics of 24 polymyxin- and carbapenem-resistant K. pneumoniae isolates recovered from six Colombian cities between 2009 and 2019. Minimum inhibitory concentrations (MICs) to polymyxin were confirmed by broth microdilution, and whole-genome sequencing was performed to determine sequence type, resistome, and mutations in the genes related to polymyxin resistance, as well the presence of mcr. The results showed high-level resistance to polymyxin (MICs ≥ 4 μg/mL). blaKPC-3 was present in the majority of isolates (17/24; 71%), followed by blaKPC-2 (6/24; 25%) and blaNDM-1 (1/24; 4%). Most isolates belonged to the CG258 (17/24; 71%) and presented amino acid substitutions in PmrB (22/24; 92%) and CrrB (15/24; 63%); mutations in mgrB occurred in only five isolates (21%). Additional mutations in pmrA, crrA, and phoPQ nor any of the mcr resistance genes were identified. In conclusion, we found clonal dissemination of polymyxin and carbapenem-resistant K. pneumoniae isolates in Colombia, mainly associated with CG258 and blaKPC-3. Surveillance of this multidrug-resistant clone is warranted due to the limited therapeutic options for the treatment of carbapenem-resistant K. pneumoniae infections.
Collapse
Affiliation(s)
- Elsa De La Cadena
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiologia Hospitalaria, Universidad El Bosque, Bogotá 110121, Colombia; (M.F.M.); (J.C.G.-B.); (T.M.A.); (J.P.); (C.J.P.); (M.V.V.)
- Correspondence: ; Tel.: +57-1-6489-000
| | - María Fernanda Mojica
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiologia Hospitalaria, Universidad El Bosque, Bogotá 110121, Colombia; (M.F.M.); (J.C.G.-B.); (T.M.A.); (J.P.); (C.J.P.); (M.V.V.)
- Department of Infectious Diseases, Case Western Reserve University, Cleveland, OH 44106-7164, USA;
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106-7164, USA
| | - Juan Carlos García-Betancur
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiologia Hospitalaria, Universidad El Bosque, Bogotá 110121, Colombia; (M.F.M.); (J.C.G.-B.); (T.M.A.); (J.P.); (C.J.P.); (M.V.V.)
| | - Tobías Manuel Appel
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiologia Hospitalaria, Universidad El Bosque, Bogotá 110121, Colombia; (M.F.M.); (J.C.G.-B.); (T.M.A.); (J.P.); (C.J.P.); (M.V.V.)
| | - Jessica Porras
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiologia Hospitalaria, Universidad El Bosque, Bogotá 110121, Colombia; (M.F.M.); (J.C.G.-B.); (T.M.A.); (J.P.); (C.J.P.); (M.V.V.)
| | - Christian José Pallares
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiologia Hospitalaria, Universidad El Bosque, Bogotá 110121, Colombia; (M.F.M.); (J.C.G.-B.); (T.M.A.); (J.P.); (C.J.P.); (M.V.V.)
- Comité de Infecciones y Vigilancia Epidemiológica, Clínica Imbanaco, Cali 760031, Colombia
| | | | - Laura J. Rojas
- Department of Infectious Diseases, Case Western Reserve University, Cleveland, OH 44106-7164, USA;
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106-7164, USA
| | - María Virginia Villegas
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiologia Hospitalaria, Universidad El Bosque, Bogotá 110121, Colombia; (M.F.M.); (J.C.G.-B.); (T.M.A.); (J.P.); (C.J.P.); (M.V.V.)
- Comité de Infecciones y Vigilancia Epidemiológica, Clínica Imbanaco, Cali 760031, Colombia
| |
Collapse
|
17
|
Liao W, Liu Y, Zhang W. Virulence evolution, molecular mechanisms of resistance and prevalence of ST11 carbapenem-resistant Klebsiella pneumoniae in China: A review over the last 10 years. J Glob Antimicrob Resist 2020; 23:174-180. [PMID: 32971292 DOI: 10.1016/j.jgar.2020.09.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/24/2022] Open
Abstract
Sequence type 11 (ST11) carbapenem-resistant Klebsiella pneumoniae (CRKP) has become the dominant clone in China. In this review, we trace the prevalence of ST11 CRKP in the China Antimicrobial Surveillance Network (CHINET), the key antimicrobial resistance mechanisms and virulence evolution. The recent emergence of ST11 carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) strains in China due to the acquisition of a pLVPK-like virulence plasmid, which may cause severe infections in relatively healthy individuals that are difficult to treat with current antibiotics, has attracted worldwide attention. There is a very close linkage among IncF plasmids, NTEKPC and ST11 K. pneumoniae in China. Hybrid conjugative virulence plasmids are demonstrated to readily convert a ST11 CRKP strain to a CR-hvKP strain via conjugation. Understanding the molecular evolutionary mechanisms of resistance and virulence-bearing plasmids as well as the prevalence of ST11 CRKP in China allows improved tracking and control of such organisms.
Collapse
Affiliation(s)
- Wenjian Liao
- Department of Respiratory and Critical Care, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, Jiangxi 330006, PR China
| | - Yang Liu
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, Jiangxi 330006, PR China.
| | - Wei Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
18
|
Growcott EJ, Gamboa L, Roth T, Lopez S, Osborne CS. Efficacy of piperacillin in combination with novel β-lactamase inhibitor IID572 against β-lactamase-producing strains of Enterobacteriaceae and Staphylococcus aureus in murine neutropenic thigh infection models. J Antimicrob Chemother 2020; 75:1530-1536. [PMID: 32108878 DOI: 10.1093/jac/dkaa026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The neutropenic murine thigh infection model was used to assess the effectiveness of IID572, a novel β-lactamase inhibitor, in rescuing piperacillin activity against bacterial strains expressing various β-lactamase enzymes. METHODS Mice (n = 4/group) were inoculated with Enterobacteriaceae or Staphylococcus aureus bacterial strains expressing a range of β-lactamases via intramuscular injection. Two hours after bacterial inoculation, subcutaneous treatment with piperacillin/IID572 or piperacillin/tazobactam every 3 h was initiated. Animals were euthanized via CO2 24 h after the start of therapy and bacterial cfu (log10 cfu) per thigh was determined, and the static dose was calculated. RESULTS In a dose-dependent manner, piperacillin/IID572 reduced the thigh bacterial burden in models established with Enterobacteriaceae producing class A, C and D β-lactamases (e.g. ESBLs, KPC, CMY-2 and OXA-48). Piperacillin/IID572 was also efficacious against MSSA strains, including one producing β-lactamase. Static doses of piperacillin/IID572 were calculable from animals infected with all strains tested and the calculated static doses ranged from 195 to 4612 mg/kg/day piperacillin, the active component in the combination. Of the 13 strains investigated, a 1 log10 bacterial reduction was achieved for 9 isolates and a 2 log10 reduction was achieved for 3 isolates; piperacillin/tazobactam was not efficacious against 6 of the 13 isolates tested. CONCLUSIONS In contrast to tazobactam, IID572 was able to rescue piperacillin efficacy in murine thigh infection models established with β-lactamase-producing strains of Enterobacteriaceae and S. aureus, including those expressing ESBLs or serine carbapenemases.
Collapse
Affiliation(s)
- E J Growcott
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - L Gamboa
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - T Roth
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - S Lopez
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - C S Osborne
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| |
Collapse
|
19
|
Nawfal Dagher T, Al-Bayssari C, Chabou S, Baron S, Hadjadj L, Diene SM, Azar E, Rolain JM. Intestinal carriage of colistin-resistant Enterobacteriaceae at Saint Georges Hospital in Lebanon. J Glob Antimicrob Resist 2020; 21:386-390. [DOI: 10.1016/j.jgar.2019.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/16/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022] Open
|
20
|
MgrB Inactivation Is Responsible for Acquired Resistance to Colistin in Enterobacter hormaechei subsp. steigerwaltii. Antimicrob Agents Chemother 2020; 64:AAC.00128-20. [PMID: 32253218 DOI: 10.1128/aac.00128-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant strains belonging to the Enterobacter cloacae complex (ECC) group, and especially those belonging to clusters C-III, C-IV, and C-VIII, have increasingly emerged as a leading cause of health care-associated infections, with colistin used as one of the last lines of treatment. However, colistin-resistant ECC strains have emerged. The aim of this study was to prove that MgrB, the negative regulator of the PhoP/PhoQ two-component regulatory system, is involved in colistin resistance in ECC of cluster C-VIII, formerly referred to as Enterobacter hormaechei subsp. steigerwaltii An in vitro mutant (Eh22-Mut) was selected from a clinical isolate of Eh22. The sequencing analysis of its mgrB gene showed the presence of one nucleotide deletion leading to the formation of a truncated protein of six instead of 47 amino acids. The wild-type mgrB gene from Eh22 and that of a clinical strain of Klebsiella pneumoniae used as controls were cloned, and the corresponding recombinant plasmids were used for complementation assays. The results showed a fully restored susceptibility to colistin and confirmed for the first time that mgrB gene expression plays a key role in acquired resistance to colistin in ECC strains.
Collapse
|
21
|
Benulič K, Pirš M, Couto N, Chlebowicz M, Rossen JWA, Zorec TM, Seme K, Poljak M, Lejko Zupanc T, Ružić-Sabljić E, Cerar T. Whole genome sequencing characterization of Slovenian carbapenem-resistant Klebsiella pneumoniae, including OXA-48 and NDM-1 producing outbreak isolates. PLoS One 2020; 15:e0231503. [PMID: 32282829 PMCID: PMC7153892 DOI: 10.1371/journal.pone.0231503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/24/2020] [Indexed: 11/21/2022] Open
Abstract
Objectives The first hospital outbreak of carbapenemase-producing Enterobacteriaceae in Slovenia occurred in 2014–2016. Whole genome sequencing was used to analyse the population of carbapenem-resistant Klebsiella pneumoniae collected in Slovenia in 2014–2017, including OXA-48 and/or NDM-1 producing strains from the outbreak. Methods A total of 32 K. pneumoniae isolates were analysed using short-read sequencing. Multi-locus sequence typing and core genome multi-locus sequence typing were used to infer genetic relatedness. Antimicrobial resistance markers, virulence factors, plasmid content and wzi types were determined. Long-read sequencing was used for six isolates for detailed analysis of plasmids and their possible transmission. Results Overall, we detected 10 different sequence types (STs), the most common being ST437 (40.6%). Isolates from the initial outbreak belonged to ST437 (12/16) and ST147 (4/16). A second outbreak of four ST15 isolates was discovered. A new ST (ST3390) and two new wzi types (wzi-556, wzi-559) were identified. blaOXA-48 was found in 17 (53.1%) isolates, blaNDM-1 in five (15.6%), and a combination of blaOXA-48/NDM-1 in seven (21.9%) isolates. Identical plasmids carrying blaOXA-48 were found in outbreak isolates sequenced with long-read sequencing technology. Conclusions Whole genome sequencing of Slovenian carbapenem-resistant K. pneumoniae isolates revealed multiple clusters of STs, two of which were involved in the first hospital outbreak of carbapenem producing K. pneumoniae in Slovenia. Transmission of the plasmid carrying blaOXA-48 between two STs was likely to have occurred. A previously unidentified second outbreak was also discovered, highlighting the importance of whole genome sequencing in detection and/or characterization of hospital outbreaks and surveillance of drug-resistant bacterial clones.
Collapse
Affiliation(s)
- Katarina Benulič
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| | - Mateja Pirš
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Monika Chlebowicz
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tomaž Mark Zorec
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Seme
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Mario Poljak
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Lejko Zupanc
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Eva Ružić-Sabljić
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Cerar
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
22
|
Mitra S, Basu S, Rath S, Sahu SK. Colistin resistance in Gram-negative ocular infections: prevalence, clinical outcome and antibiotic susceptibility patterns. Int Ophthalmol 2020; 40:1307-1317. [DOI: 10.1007/s10792-020-01298-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
|
23
|
Growcott EJ, Cariaga TA, Morris L, Zang X, Lopez S, Ansaldi DA, Gold J, Gamboa L, Roth T, Simmons RL, Osborne CS. Pharmacokinetics and pharmacodynamics of the novel monobactam LYS228 in a neutropenic murine thigh model of infection. J Antimicrob Chemother 2020; 74:108-116. [PMID: 30325447 DOI: 10.1093/jac/dky404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022] Open
Abstract
Objectives The neutropenic murine thigh infection model and a dose-fractionation approach were used to determine the pharmacokinetic/pharmacodynamic (PK/PD) relationship of LYS228, a novel monobactam antibiotic with activity against Enterobacteriaceae including carbapenem-resistant strains. Methods Mice (n = 4 per group) were inoculated with Enterobacteriaceae strains via intramuscular injection. Two hours post-bacterial inoculation, treatment with LYS228 was initiated. Animals were euthanized with CO2 24 h after the start of therapy and bacterial counts (log10 cfu) per thigh were determined. PK parameters were calculated using free (f) plasma drug levels. Results Following a dose-fractionation study, non-linear regression analysis determined that the predominant PK/PD parameter associated with antibacterial efficacy of LYS228 was the percentage of the dosing interval that free drug concentrations remained above the MIC (%fT>MIC). In a dose-dependent manner, LYS228 reduced the thigh bacterial burden in models established with Enterobacteriaceae producing β-lactamase enzymes of all classes (e.g. ESBLs, NDM-1, KPC, CMY-2 and OXA-48). The range of the calculated static dose was 86-649 mg/kg/day for the isolates tested, and the magnitude of the driver of efficacy was 37-83 %fT>MIC. %fT>MIC was confirmed as the parameter predominantly driving efficacy as evidenced by a strong coefficient of determination (r2 = 0.68). Neutrophils had minimal impact on the effect of LYS228 in the murine thigh infection model. Conclusions LYS228 is efficacious in murine thigh infection models using β-lactamase-producing strains of Enterobacteriaceae, including those expressing metallo-β-lactamases, ESBLs and serine carbapenemases, with the PK/PD driver of efficacy identified as %T>MIC.
Collapse
Affiliation(s)
- E J Growcott
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - T A Cariaga
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - L Morris
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - X Zang
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - S Lopez
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - D A Ansaldi
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - J Gold
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - L Gamboa
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - T Roth
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - R L Simmons
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - C S Osborne
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| |
Collapse
|
24
|
Mavroidi A, Katsiari M, Likousi S, Palla E, Roussou Z, Nikolaou C, Mathas C, Merkouri E, Platsouka ED. Changing Characteristics and In Vitro Susceptibility to Ceftazidime/Avibactam of Bloodstream Extensively Drug-Resistant Klebsiella pneumoniae from a Greek Intensive Care Unit. Microb Drug Resist 2020; 26:28-37. [DOI: 10.1089/mdr.2019.0090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Angeliki Mavroidi
- Department of Microbiology, Konstantopouleio-Patission, General Hospital of N. Ionias, Athens, Greece
| | - Maria Katsiari
- Intensive Care Unit, Konstantopouleio-Patission, General Hospital of N. Ionias, Athens, Greece
| | - Sofia Likousi
- Department of Microbiology, Konstantopouleio-Patission, General Hospital of N. Ionias, Athens, Greece
| | - Eleftheria Palla
- Department of Microbiology, Konstantopouleio-Patission, General Hospital of N. Ionias, Athens, Greece
| | - Zoi Roussou
- Department of Microbiology, Konstantopouleio-Patission, General Hospital of N. Ionias, Athens, Greece
| | - Charikleia Nikolaou
- Intensive Care Unit, Konstantopouleio-Patission, General Hospital of N. Ionias, Athens, Greece
| | - Christos Mathas
- Intensive Care Unit, Konstantopouleio-Patission, General Hospital of N. Ionias, Athens, Greece
| | - Eleni Merkouri
- Department of Microbiology, Konstantopouleio-Patission, General Hospital of N. Ionias, Athens, Greece
| | - Evangelia D. Platsouka
- Department of Microbiology, Konstantopouleio-Patission, General Hospital of N. Ionias, Athens, Greece
| |
Collapse
|
25
|
Stefaniuk EM, Tyski S. Colistin Resistance in Enterobacterales Strains - A Current View. Pol J Microbiol 2019; 68:417-427. [PMID: 31880886 PMCID: PMC7260631 DOI: 10.33073/pjm-2019-055] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Colistin is a member of cationic polypeptide antibiotics known as polymyxins. It is widely used in animal husbandry, plant cultivation, animal and human medicine and is increasingly used as one of the last available treatment options for patients with severe infections with carbapenem-resistant Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant (MDR) bacteria, the resistance to this antibiotic ought to be monitored. Bacterial resistance to colistin may be encoded on transposable genetic elements (e.g. plasmids with the mcr genes). Thus far, nine variants of the mcr gene, mcr-1 – mcr-9, have been identified. Chromosomal resistance to colistin is associated with the modification of lipopolysaccharide (LPS). Various methods, from classical microbiology to molecular biology methods, are used to detect the colistin-resistant bacterial strains and to identify resistance mechanisms. The broth dilution method is recommended for susceptibility testing of bacteria to colistin.
Collapse
Affiliation(s)
- Elżbieta M Stefaniuk
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland ; Department of Pharmaceutical and Microbiology, Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
26
|
Abstract
Surveillance studies have shown that OXA-48-like carbapenemases are the most common carbapenemases in Enterobacterales in certain regions of the world and are being introduced on a regular basis into regions of nonendemicity, where they are responsible for nosocomial outbreaks. OXA-48, OXA-181, OXA-232, OXA-204, OXA-162, and OXA-244, in that order, are the most common enzymes identified among the OXA-48-like carbapenemase group. OXA-48 is associated with different Tn1999 variants on IncL plasmids and is endemic in North Africa and the Middle East. OXA-162 and OXA-244 are derivatives of OXA-48 and are present in Europe. OXA-181 and OXA-232 are associated with ISEcp1, Tn2013 on ColE2, and IncX3 types of plasmids and are endemic in the Indian subcontinent (e.g., India, Bangladesh, Pakistan, and Sri Lanka) and certain sub-Saharan African countries. Overall, clonal dissemination plays a minor role in the spread of OXA-48-like carbapenemases, but certain high-risk clones (e.g., Klebsiella pneumoniae sequence type 147 [ST147], ST307, ST15, and ST14 and Escherichia coli ST38 and ST410) have been associated with the global dispersion of OXA-48, OXA-181, OXA-232, and OXA-204. Chromosomal integration of bla OXA-48 within Tn6237 occurred among E. coli ST38 isolates, especially in the United Kingdom. The detection of Enterobacterales with OXA-48-like enzymes using phenotypic methods has improved recently but remains challenging for clinical laboratories in regions of nonendemicity. Identification of the specific type of OXA-48-like enzyme requires sequencing of the corresponding genes. Bacteria (especially K. pneumoniae and E. coli) with bla OXA-48, bla OXA-181, and bla OXA-232 are emerging in different parts of the world and are most likely underreported due to problems with the laboratory detection of these enzymes. The medical community should be aware of the looming threat that is posed by bacteria with OXA-48-like carbapenemases.
Collapse
|
27
|
Lalaoui R, Djukovic A, Bakour S, Hadjadj L, Sanz J, Salavert M, López-Hontangas JL, Sanz MA, Ubeda C, Rolain JM. Genomic characterization of Citrobacter freundii strains coproducing OXA-48 and VIM-1 carbapenemase enzymes isolated in leukemic patient in Spain. Antimicrob Resist Infect Control 2019; 8:167. [PMID: 31687131 PMCID: PMC6820958 DOI: 10.1186/s13756-019-0630-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/16/2019] [Indexed: 11/25/2022] Open
Abstract
Background The emergence of carbapenemase-producing (CP) Citrobacter freundii poses a significant threat to public health, especially in high-risk populations. In this study, whole genome sequencing was used to characterize the carbapenem resistance mechanism of three C. freundii clinical isolates recovered from fecal samples of patients with acute leukemia (AL) from Spain. Materials and methods Twelve fecal samples, collected between 2013 and 2015 from 9 patients with AL, were screened for the presence of CP strains by selecting them on MacConkey agar supplemented with ertapenem (0.5 mg/L). Bacteria were identified by MALDI-TOF mass spectrometry and were phenotypically characterized. Whole genome sequencing of C. freundii isolates was performed using the MinION and MiSeq Illumina sequencers. Bioinformatic analysis was performed in order to identify the molecular support of carbapenem resistance and to study the genetic environment of carbapenem resistance encoding genes. Results Three carbapenem-resistant C. freundii strains (imipenem MIC≥32 mg/L) corresponding to three different AL patients were isolated. Positive modified Carba NP test results suggested carbapenemase production. The genomes of each C. freundii tested were assembled into a single chromosomal contig and plasmids contig. In all the strains, the carbapenem resistance was due to the coproduction of OXA-48 and VIM-1 enzymes encoded by genes located on chromosome and on an IncHI2 plasmid, respectively. According to the MLST and the SNPs analysis, all strains belonged to the same clone ST169. Conclusion We report in our study, the intestinal carrying of C. freundii clone ST169 coproducing OXA-48 and VIM-1 identified in leukemic patients.
Collapse
Affiliation(s)
- Rym Lalaoui
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- MEPHI, IHU Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Ana Djukovic
- Centro Superior de Investigación en Salud Pública – FISABIO, Valencia, Spain
| | - Sofiane Bakour
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- MEPHI, IHU Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Linda Hadjadj
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- MEPHI, IHU Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Jaime Sanz
- Department of Medicine, Hospital Universitari I Politecnic La Fe, University of Valencia, and Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, Valencia, Spain
| | | | | | - Miguel A. Sanz
- Department of Medicine, Hospital Universitari I Politecnic La Fe, University of Valencia, and Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, Valencia, Spain
| | - Carles Ubeda
- Centro Superior de Investigación en Salud Pública – FISABIO, Valencia, Spain
- Centers of Biomedical Research Network (CIBER) in Epidemiology and Public Health, Madrid, Spain
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- MEPHI, IHU Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| |
Collapse
|
28
|
Molecular Detection of Serine Carbapenemase Genes in Carbapenem-Resistant Isolates of Pseudomonas aeruginosa Recovered from Patients in Al-Diwaniyah Province, Iraq. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Turbett SE, Desrosiers L, Andrews-Dunleavey C, Becker M, Walker AT, Esposito D, Woodworth KR, Branda JA, Rosenberg E, Ryan ET, LaRocque R. Evaluation of a Screening Method for the Detection of Colistin-Resistant Enterobacteriaceae in Stool. Open Forum Infect Dis 2019; 6:ofz211. [PMID: 31211157 PMCID: PMC6559274 DOI: 10.1093/ofid/ofz211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
Emergence of mobile colistin resistance (mcr)-containing Enterobacteriaceae is a public health threat, prompting enhanced surveillance through the Centers for Disease Control and Prevention. We evaluated a selective culture medium for the isolation of Enterobacteriaceae with non-wild-type colistin minimum inhibitory concentrations, including those with mcr-1 genes, in spiked stool samples.
Collapse
Affiliation(s)
- Sarah E Turbett
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Lisa Desrosiers
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Margaret Becker
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Allison Taylor Walker
- Travelers' Health Branch, Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Douglas Esposito
- Travelers' Health Branch, Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kate Russell Woodworth
- Prevention and Response Branch, Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - John A Branda
- Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eric Rosenberg
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Edward T Ryan
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Regina LaRocque
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Izdebski R, Baraniak A, Zabicka D, Machulska M, Urbanowicz P, Fiett J, Literacka E, Bojarska K, Kozinska A, Zieniuk B, Hryniewicz W, Gniadkowski M. Enterobacteriaceae producing OXA-48-like carbapenemases in Poland, 2013-January 2017. J Antimicrob Chemother 2019; 73:620-625. [PMID: 29237086 DOI: 10.1093/jac/dkx457] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/06/2017] [Indexed: 11/14/2022] Open
Abstract
Objectives To analyse OXA-48 (OXA-48/181)-type carbapenemase-producing Enterobacteriaceae reported in Poland from 2013 until January 2017. Methods Bacterial isolates were typed by PFGE and MLST. Genes coding for OXA-48/181 types and other β-lactamases were amplified and sequenced. Mobile elements with blaOXA-48/181-like genes were PCR mapped. blaOXA-48/181-carrying plasmids were characterized by nuclease S1-hybridization profiling, transfer assays and PCR-based replicon typing, while the chromosomal location of the genes was confirmed by the I-CeuI analysis. Results Fifty-four isolates from 52 patients in 20 hospitals (14 cities) were included, in 14 cases having probable foreign origins indicated. The organisms were genetically diverse and represented numerous pandemic clones, including Klebsiella pneumoniae ST395 (n = 23), ST11, ST15 and ST101, Escherichia coli ST38, ST410 and ST648, and Enterobacter cloacae complex ST78. These produced OXA-48 (n = 49), OXA-181 (n = 4) or OXA-232 (n = 1). One of five K. pneumoniae ST395 pulsotypes caused a multicentre outbreak with 18 cases, which significantly contributed to the total number of patients. Depending on the variant, the blaOXA-48/181-like genes were parts of the Tn1999-, Tn2013- or Tn2016-like transposons, with blaOXA-48 found in an ISEcp1-associated module (Tn2016-like) for the first time. Three genotypes, including E. coli ST38, had chromosomal blaOXA-48 genes, while others carried transmissible IncL (∼60 kb; blaOXA-48; n = 30), IncM (∼80-95 kb; blaOXA-48; n = 4), IncX3 (∼50 kb; blaOXA-181; n = 4) or non-typeable (∼90-160 kb; blaOXA-48 or blaOXA-232) plasmids. Conclusions Even though OXA-48/181 producers seem to occur infrequently in Poland, their epidemiology has been marked by various phenomena, namely multiple imports, several limited transmissions plus one larger clonal outbreak, and possible plasmid transfers.
Collapse
Affiliation(s)
- R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland
| | - A Baraniak
- Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland
| | - D Zabicka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725 Warsaw, Poland
| | - M Machulska
- Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland
| | - P Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland
| | - J Fiett
- Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland
| | - E Literacka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725 Warsaw, Poland
| | - K Bojarska
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725 Warsaw, Poland
| | - A Kozinska
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725 Warsaw, Poland
| | - B Zieniuk
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725 Warsaw, Poland
| | - W Hryniewicz
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725 Warsaw, Poland
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland
| | | |
Collapse
|
31
|
Lepuschitz S, Schill S, Stoeger A, Pekard-Amenitsch S, Huhulescu S, Inreiter N, Hartl R, Kerschner H, Sorschag S, Springer B, Brisse S, Allerberger F, Mach RL, Ruppitsch W. Whole genome sequencing reveals resemblance between ESBL-producing and carbapenem resistant Klebsiella pneumoniae isolates from Austrian rivers and clinical isolates from hospitals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:227-235. [PMID: 30690357 DOI: 10.1016/j.scitotenv.2019.01.179] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
In 2016, the Austrian Agency for Health and Food Safety started a pilot project to investigate antimicrobial resistance in surface water. Here we report on the characterisation of carbapenem resistant and ESBL-producing K. pneumoniae isolates from Austrian river water samples compared to 95 clinical isolates recently obtained in Austrian hospitals. Ten water samples were taken from four main rivers, collected upstream and downstream of major cities in 2016. For subtyping and comparison, public core genome multi locus sequence typing (cgMLST) schemes were used. The presence of AMR genes, virulence genes and plasmids was extracted from whole genome sequence (WGS) data. In total three ESBL-producing strains and two carbapenem resistant strains were isolated. WGS based comparison of these five water isolates to 95 clinical isolates identified three clusters. Cluster 1 (ST11) and cluster 2 (ST985) consisted of doublets of carbapenem resistant strains (one water and one clinical isolate each). Cluster 3 (ST405) consisted of three ESBL-producing strains isolated from one water sample and two clinical specimens. The cities, in which patient isolates of cluster 2 and 3 were collected, were in concordance with the water sampling locations downstream from these cities. The genetic concordance between isolates from river water samples and patient isolates raises concerns regarding the release of wastewater treatment plant effluents into surface water. From a public health perspective these findings demand attention and strategies are required to minimize the spread of multiresistant strains to the environment.
Collapse
Affiliation(s)
- Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria; TU Wien, Research Area of Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, Vienna, Austria.
| | - Simone Schill
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Anna Stoeger
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Shiva Pekard-Amenitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Steliana Huhulescu
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Norbert Inreiter
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Rainer Hartl
- Ordensklinikum Linz Elisabethinen, Institute of Hygiene, Microbiology and Tropical Medicine, National Reference Centre for Nosocomial Infections and Antimicrobial Resistance, Linz, Austria
| | - Heidrun Kerschner
- Ordensklinikum Linz Elisabethinen, Institute of Hygiene, Microbiology and Tropical Medicine, National Reference Centre for Nosocomial Infections and Antimicrobial Resistance, Linz, Austria
| | - Sieglinde Sorschag
- Department of Hospital Hygiene and Infectious Diseases, Community-Hospital Klagenfurt am Wörthersee, Klagenfurt, Austria
| | - Burkhard Springer
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Franz Allerberger
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Robert L Mach
- TU Wien, Research Area of Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, Vienna, Austria
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria; University of Natural Resources and Life Sciences, Department of Biotechnology, Vienna, Austria
| |
Collapse
|
32
|
In Vivo Efficacy of Novel Monobactam LYS228 in Murine Models of Carbapenemase-Producing Klebsiella pneumoniae Infection. Antimicrob Agents Chemother 2019; 63:AAC.02214-18. [PMID: 30642927 DOI: 10.1128/aac.02214-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/04/2019] [Indexed: 11/20/2022] Open
Abstract
LYS228 has potent antibacterial activity against carbapenem-resistant strains of Enterobacteriaceae LYS228 was efficacious in neutropenic thigh models established with Klebsiella pneumoniae producing KPC-2 or NDM-1; pretreatment with uranyl nitrate considerably shifted calculated static doses of LYS228. In murine ascending pyelonephritis, LYS228 reduced bacterial burden in kidney, urine, and bladder. The successful treatment of murine infection models established with carbapenem-resistant K. pneumoniae further supports the clinical development of LYS228.
Collapse
|
33
|
Bourrel AS, Poirel L, Royer G, Darty M, Vuillemin X, Kieffer N, Clermont O, Denamur E, Nordmann P, Decousser JW, LAFAURIE M, BERCOT B, WALEWSKI V, LESCAT M, CARBONNELLE E, OUSSER F, IDRI N, RICARD JD, LANDRAUD L, LE DORZE M, JACQUIER H, CAMBAU E, LEPEULE R, GOMART C. Colistin resistance in Parisian inpatient faecal Escherichia coli as the result of two distinct evolutionary pathways. J Antimicrob Chemother 2019; 74:1521-1530. [DOI: 10.1093/jac/dkz090] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 01/04/2023] Open
Affiliation(s)
- Anne Sophie Bourrel
- Laboratoire de Bactériologie et d’Hygiène Hospitalière, CHU Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Laurent Poirel
- Laboratoire Européen Associé INSERM, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- National Reference Centre for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Guilhem Royer
- Laboratoire de Bactériologie et d’Hygiène Hospitalière, CHU Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
- IAME, UMR1137 INSERM, Université Paris Diderot, Université Paris Nord, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Paris, France
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Mélanie Darty
- Laboratoire de Bactériologie et d’Hygiène Hospitalière, CHU Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Xavier Vuillemin
- Laboratoire de Bactériologie et d’Hygiène Hospitalière, CHU Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Nicolas Kieffer
- Laboratoire Européen Associé INSERM, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- National Reference Centre for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Olivier Clermont
- IAME, UMR1137 INSERM, Université Paris Diderot, Université Paris Nord, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Paris, France
| | - Erick Denamur
- IAME, UMR1137 INSERM, Université Paris Diderot, Université Paris Nord, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Patrice Nordmann
- Laboratoire Européen Associé INSERM, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- National Reference Centre for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Jean-Winoc Decousser
- Laboratoire de Bactériologie et d’Hygiène Hospitalière, CHU Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
- IAME, UMR1137 INSERM, Université Paris Diderot, Université Paris Nord, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
In Vitro Activity of Ceftazidime-Avibactam and Aztreonam-Avibactam against OXA-48-Carrying Enterobacteriaceae Isolated as Part of the International Network for Optimal Resistance Monitoring (INFORM) Global Surveillance Program from 2012 to 2015. Antimicrob Agents Chemother 2018; 62:AAC.00592-18. [PMID: 30249690 DOI: 10.1128/aac.00592-18] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
Enterobacteriaceae producing the Ambler class D OXA-48 carbapenemase, combined with additional resistance mechanisms, such as permeability defects or cocarriage of class A, B, or C β-lactamases, can become highly resistant to most β-lactams currently in use, including carbapenems. A total of 45,872 Enterobacteriaceae clinical isolates collected in 39 countries as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance study in 2012 to 2015 were tested for susceptibility to β-lactams and comparator agents using the Clinical and Laboratory Standards Institute broth microdilution methodology and screened for the presence of β-lactamases. The bla OXA-48 and bla OXA-48-like genes were detected in 333 isolates across 14 species of Enterobacteriaceae collected in 20 countries across the globe. Few agents tested were effective in vitro against the overall collection of OXA-48-producers (n = 265), with tigecycline (MIC90, 2 µg/ml; 92.5% susceptible), ceftazidime-avibactam (MIC90, 4 µg/ml; 92.5% susceptible), and aztreonam-avibactam (MIC90, 0.5 µg/ml; 99.6% of isolates with MIC ≤8 µg/ml) demonstrating the greatest activity. Similarly, colistin (MIC90, 1 µg/ml; 94.2% susceptible), tigecycline (MIC90, 2 µg/ml; 92.6% susceptible), ceftazidime-avibactam (MIC90, >128 µg/ml; 89.7% susceptible), and aztreonam-avibactam (MIC90, 4 µg/ml; 100% of isolates with MIC ≤8 µg/ml) were most active against OXA-48-like-positive isolates (n = 68). The in vitro activity of ceftazidime-avibactam was improved against the subset of metallo-β-lactamase (MBL)-negative, OXA-48- and OXA-48-like-positive isolates (99.2% and 100% susceptible, respectively). The data reported here support the continued investigation of ceftazidime-avibactam and aztreonam-avibactam for the treatment of infections caused by carbapenem-resistant Enterobacteriaceae carrying OXA-48 and OXA-48-like β-lactamases in combination with serine- or metallo-β-lactamases.
Collapse
|
35
|
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) contribute significantly to the global public health threat of antimicrobial resistance. OXA-48 and its variants are unique carbapenemases with low-level hydrolytic activity toward carbapenems but no intrinsic activity against expanded-spectrum cephalosporins. bla OXA-48 is typically located on a plasmid but may also be integrated chromosomally, and this gene has progressively disseminated throughout Europe and the Middle East. Despite the inability of OXA-48-like carbapenemases to hydrolyze expanded-spectrum cephalosporins, pooled isolates demonstrate high variable resistance to ceftazidime and cefepime, likely representing high rates of extended-spectrum beta-lactamase (ESBL) coproduction. In vitro data from pooled studies suggest that avibactam is the most potent beta-lactamase inhibitor when combined with ceftazidime, cefepime, aztreonam, meropenem, or imipenem. Resistance to novel avibactam combinations such as imipenem-avibactam or aztreonam-avibactam has not yet been reported in OXA-48 producers, although only a few clinical isolates have been tested. Although combination therapy is thought to improve the chances of clinical cure and survival in CPE infection, successful outcomes were seen in ∼70% of patients with infections caused by OXA-48-producing Enterobacteriaceae treated with ceftazidime-avibactam monotherapy. A carbapenem in combination with either amikacin or colistin has achieved treatment success in a few case reports. Uncertainty remains regarding the best treatment options and strategies for managing these infections. Newly available antibiotics such as ceftazidime-avibactam show promise; however, recent reports of resistance are concerning. Newer choices of antimicrobial agents will likely be required to combat this problem.
Collapse
|
36
|
Characterization of vB_Kpn_F48, a Newly Discovered Lytic Bacteriophage for Klebsiella pneumoniae of Sequence Type 101. Viruses 2018; 10:v10090482. [PMID: 30205588 PMCID: PMC6163469 DOI: 10.3390/v10090482] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Abstract
Resistance to carbapenems in Enterobacteriaceae, including Klebsiella pneumoniae, represents a major clinical problem given the lack of effective alternative antibiotics. Bacteriophages could provide a valuable tool to control the dissemination of antibiotic resistant isolates, for the decolonization of colonized individuals and for treatment purposes. In this work, we have characterized a lytic bacteriophage, named vB_Kpn_F48, specific for K. pneumoniae isolates belonging to clonal group 101. Phage vB_Kpn_F48 was classified as a member of Myoviridae, order Caudovirales, on the basis of transmission electron microscopy analysis. Physiological characterization demonstrated that vB_Kpn_F48 showed a narrow host range, a short latent period, a low burst size and it is highly stable to both temperature and pH variations. High throughput sequencing and bioinformatics analysis revealed that the phage is characterized by a 171 Kb dsDNA genome that lacks genes undesirable for a therapeutic perspective such integrases, antibiotic resistance genes and toxin encoding genes. Phylogenetic analysis suggests that vB_Kpn_F48 is a T4-like bacteriophage which belongs to a novel genus within the Tevenvirinae subfamily, which we tentatively named "F48virus". Considering the narrow host range, the genomic features and overall physiological parameters phage vB_Kpn_F48 could be a promising candidate to be used alone or in cocktails for phage therapy applications.
Collapse
|
37
|
Risk Factors for Colistin Resistance among Gram-Negative Rods and Klebsiella pneumoniae Isolates. J Clin Microbiol 2018; 56:JCM.00149-18. [PMID: 29976595 DOI: 10.1128/jcm.00149-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
Infections due to colistin-resistant (Colr) Gram-negative rods (GNRs) and colistin-resistant Klebsiella pneumoniae isolates in particular result in high associated mortality and poor treatment options. To determine the risk factors for recovery on culture of Colr GNRs and ColrK. pneumoniae, analyses were chosen to aid decisions at two separate time points: the first when only Gram stain results are available without any bacterial species information (corresponding to the Colr GNR model) and the second when organism identification is performed but prior to reporting of antimicrobial susceptibility testing results (corresponding to the ColrK. pneumoniae model). Cases were retrospectively analyzed at a major academic hospital system from 2011 to 2016. After excluding bacteria that were intrinsically resistant to colistin, a total of 28,512 GNR isolates (4,557 K. pneumoniae isolates) were analyzed, 128 of which were Colr (i.e., MIC > 2 μg/ml), including 68 of which that were ColrK. pneumoniae In multivariate analysis, risk factors for Colr GNRs were neurologic disease, residence in a skilled nursing facility prior to admission, receipt of carbapenems in the last 90 days, prior infection with a carbapenem-resistant organism, and receipt of ventilatory support (c-statistic = 0.81). Risk factors for ColrK. pneumoniae specifically were neurologic disease, residence in a skilled nursing facility prior to admission, receipt of carbapenems in the last 90 days, receipt of an anti-methicillin-resistant Staphylococcus aureus antimicrobial in the last 90 days, and prior infection with a carbapenem-resistant organism (c-statistic = 0.89). A scoring system derived from these models can be applied by providers to guide empirical antimicrobial therapy in patients with infections with suspected Colr GNR and ColrK. pneumoniae isolates.
Collapse
|
38
|
Arana DM, Ortega A, González-Barberá E, Lara N, Bautista V, Gómez-Ruíz D, Sáez D, Fernández-Romero S, Aracil B, Pérez-Vázquez M, Campos J, Oteo J. Carbapenem-resistant Citrobacter spp. isolated in Spain from 2013 to 2015 produced a variety of carbapenemases including VIM-1, OXA-48, KPC-2, NDM-1 and VIM-2. J Antimicrob Chemother 2018; 72:3283-3287. [PMID: 29029114 DOI: 10.1093/jac/dkx325] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/04/2017] [Indexed: 11/12/2022] Open
Abstract
Objectives There is little information about carbapenemase-producing (CP) Citrobacter spp. We studied the molecular epidemiology and microbiological features of CP Citrobacter spp. isolates collected in Spain (2013-15). Methods In total, 119 isolates suspected of being CP by the EUCAST screening cut-off values were analysed. Carbapenemases and ESBLs were characterized using PCR and sequencing. The genetic relationship among Citrobacter freundii isolates was studied by PFGE. Results Of the 119 isolates, 63 (52.9%) produced carbapenemases, of which 37 (58.7%) produced VIM-1, 20 (31.7%) produced OXA-48, 12 (19%) produced KPC-2, 2 (3.2%) produced NDM-1 and 1 (1.6%) produced VIM-2; 9 C. freundii isolates co-produced VIM-1 plus OXA-48. Fourteen isolates (22.2%) also carried ESBLs: 8 CTX-M-9 plus SHV-12, 2 CTX-M-9, 2 SHV-12 and 2 CTX-M-15. Fifty-seven isolates (90.5%) were C. freundii, 4 (6.3%) were Citrobacter koseri, 1 (1.6%) was Citrobacter amalonaticus and 1 (1.6%) was Citrobacter braakii. By EUCAST breakpoints, eight (12.7%) of the CP isolates were susceptible to the four carbapenems tested. In the 53 CP C. freundii analysed by PFGE, a total of 44 different band patterns were observed. Four PFGE clusters were identified: cluster 1 included eight isolates co-producing VIM-1 and OXA-48; blaVIM-1 was carried in a class 1 integron (intI-blaVIM-1-aacA4-dfrB1-aadA1-catB2-qacEΔ1/sul1) and blaOXA-48 was carried in a Tn1999.2 transposon. Conclusions We observed the clonal and polyclonal spread of CP Citrobacter spp. across several Spanish geographical areas. Four species of Citrobacter spp. produced up to five carbapenemase types, including co-production of VIM-1 plus OXA-48. Some CP Citrobacter spp. isolates were susceptible to the four carbapenems tested, a finding with potential clinical implications.
Collapse
Affiliation(s)
- David M Arana
- Servicio de Microbiología del Hospital Universitario de Getafe, Getafe, Madrid, Spain.,Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain
| | - Adriana Ortega
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva González-Barberá
- Servicio de Microbiología del Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Noelia Lara
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Verónica Bautista
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores Gómez-Ruíz
- Servicio de Microbiología del Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - David Sáez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Fernández-Romero
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Aracil
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - José Campos
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
39
|
Pulss S, Stolle I, Stamm I, Leidner U, Heydel C, Semmler T, Prenger-Berninghoff E, Ewers C. Multispecies and Clonal Dissemination of OXA-48 Carbapenemase in Enterobacteriaceae From Companion Animals in Germany, 2009-2016. Front Microbiol 2018; 9:1265. [PMID: 29963026 PMCID: PMC6010547 DOI: 10.3389/fmicb.2018.01265] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/24/2018] [Indexed: 12/23/2022] Open
Abstract
The increasing spread of carbapenemase-producing Enterobacteriaceae (CPE) poses a serious threat to public health. Recent studies suggested animals as a putative source of such bacteria. We investigated 19,025 Escherichia coli, 1607 Klebsiella spp. and 570 Enterobacter spp. isolated from livestock, companion animal, horse, and pet samples between 2009 and 2016 in our routine diagnostic laboratory for reduced susceptibility to carbapenems (CP) by using meropenem-containing media. Actively screened CP non-susceptible strains as well as 367 archived ESBL/AmpC-β-lactamase-producing Enterobacteriaceae were then tested for the presence of CP genes by PCRs. Among 21,569 isolates, OXA-48 could be identified as the sole carbapenemase type in 137 (0.64%) strains. The blaOXA-48 gene was located on an ∼60-kb IncL plasmid and sequence analysis revealed high similarity to reference plasmid pOXA-48a, which has been involved in the global spread of the blaOXA-48 gene in humans for many years. Klebsiella pneumoniae was the predominant OXA-48 producer (n = 86; 6.6% of all K. pneumoniae isolates), followed by E. cloacae (n = 28; 5.0%), Klebsiella oxytoca (n = 1; 0.3%), and E. coli (n = 22, 0.1%). OXA-48 was not found in livestock, but in dogs (120/3182; 3.8%), cats (13/792; 1.6%), guinea pig (1/43; 2.3%), rat (1/23; 4.3%), mouse (1/180; 0.6%), and one rabbit (1/144; 0.7%). Genotyping identified few major clones among the different enterobacteria species, including sequence types ST11 and ST15 for K. pneumoniae, ST1196 for E. coli, and ST506 and ST78 for E. cloacae, most of which were previously involved in the dissemination of multidrug-resistant strains in humans. The majority of OXA-48 isolates (n = 112) originated from a university veterinary clinic (UVC), while animals from further 16 veterinary institutions were positive. Clonal analyses suggested nosocomial events related to different species and STs in two veterinary clinics and horizontal transfer of the pOXA-48-like plasmid between bacterial species and animals. A systematic monitoring is urgently needed to assess the dissemination of CPE not only in livestock but also in companion animals and veterinary clinics.
Collapse
Affiliation(s)
- Sandra Pulss
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Inka Stolle
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany.,Institute of Microbiology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Ivonne Stamm
- Vet Med Labor GmbH, Division of IDEXX Laboratories, Ludwigsburg, Germany
| | - Ursula Leidner
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Carsten Heydel
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Torsten Semmler
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Ellen Prenger-Berninghoff
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
40
|
Sherry N, Howden B. Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam – epidemiology, laboratory detection and treatment implications. Expert Rev Anti Infect Ther 2018. [DOI: 10.1080/14787210.2018.1453807] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Norelle Sherry
- Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, Australia
| | - Benjamin Howden
- Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, Australia
| |
Collapse
|
41
|
Seifert H, Körber-Irrgang B, Kresken M, Göbel U, Swidsinski S, Rath PM, Steinmann J, MacKenzie C, Mutters R, Peters G, Becker K, Podbielski A, Weise M, Siegel E, Glöckle B, Kniehl E, Becker A, Wichelhaus TA, Schubert S. In-vitro activity of ceftolozane/tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae isolates recovered from hospitalized patients in Germany. Int J Antimicrob Agents 2018; 51:227-234. [DOI: 10.1016/j.ijantimicag.2017.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/11/2017] [Accepted: 06/24/2017] [Indexed: 11/28/2022]
|
42
|
Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin Microbiol Rev 2017; 30:557-596. [PMID: 28275006 DOI: 10.1128/cmr.00064-16] [Citation(s) in RCA: 969] [Impact Index Per Article: 121.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Polymyxins are well-established antibiotics that have recently regained significant interest as a consequence of the increasing incidence of infections due to multidrug-resistant Gram-negative bacteria. Colistin and polymyxin B are being seriously reconsidered as last-resort antibiotics in many areas where multidrug resistance is observed in clinical medicine. In parallel, the heavy use of polymyxins in veterinary medicine is currently being reconsidered due to increased reports of polymyxin-resistant bacteria. Susceptibility testing is challenging with polymyxins, and currently available techniques are presented here. Genotypic and phenotypic methods that provide relevant information for diagnostic laboratories are presented. This review also presents recent works in relation to recently identified mechanisms of polymyxin resistance, including chromosomally encoded resistance traits as well as the recently identified plasmid-encoded polymyxin resistance determinant MCR-1. Epidemiological features summarizing the current knowledge in that field are presented.
Collapse
|
43
|
Repurposing Zidovudine in combination with Tigecycline for treating carbapenem-resistant Enterobacteriaceae infections. Eur J Clin Microbiol Infect Dis 2017; 37:141-148. [DOI: 10.1007/s10096-017-3114-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022]
|
44
|
Outbreak of colistin-resistant carbapenemase-producing Klebsiella pneumoniae in Tunisia. J Glob Antimicrob Resist 2017; 10:88-94. [DOI: 10.1016/j.jgar.2017.03.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022] Open
|
45
|
Wang H, Drake SK, Youn JH, Rosenberg AZ, Chen Y, Gucek M, Suffredini AF, Dekker JP. Peptide Markers for Rapid Detection of KPC Carbapenemase by LC-MS/MS. Sci Rep 2017; 7:2531. [PMID: 28566732 PMCID: PMC5451396 DOI: 10.1038/s41598-017-02749-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/19/2017] [Indexed: 12/18/2022] Open
Abstract
Carbapenemase producing organisms (CPOs) represent an urgent public health threat, and the need for new rapid methods to detect these organisms has been widely recognized. CPOs carrying the Klebsiella pneumoniae carbapenemase (blaKPC) gene have caused outbreaks globally with substantial attributable mortality. Here we describe the validation of a rapid MS method for the direct detection of unique tryptic peptides of the KPC protein in clinical bacterial isolates with an isolate-to-result time of less than 90 minutes. Using a genoproteomic discovery approach that combines theoretical peptidome analysis and liquid chromatography-tandem MS (LC-MS/MS), we selected three high abundance peptide markers of the KPC protein that can be robustly detected following rapid tryptic digestion. Protein BLAST analysis confirmed that the chosen peptide markers were unique to KPC. A blinded validation set containing 20 KPC-positive and 80 KPC-negative clinical isolates, performed in triplicate (300 runs) demonstrated 100% sensitivity and 100% specificity (60/60 positive identifications, 240/240 negative identifications) using defined rules for positive calls. The most robust tryptic peptide marker in the validation was LTLGSALAAPQR. The peptide discovery and detection methods validated here are general and should be broadly applicable to allow the direct and rapid detection of other resistance determinants.
Collapse
Affiliation(s)
- Honghui Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven K Drake
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jung-Ho Youn
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Avi Z Rosenberg
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yong Chen
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marjan Gucek
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony F Suffredini
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - John P Dekker
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
46
|
Molecular Epidemiology of Colistin-Resistant, Carbapenemase-Producing Klebsiella pneumoniae in Serbia from 2013 to 2016. Antimicrob Agents Chemother 2017; 61:AAC.02550-16. [PMID: 28242665 DOI: 10.1128/aac.02550-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/13/2017] [Indexed: 11/20/2022] Open
Abstract
Twenty-seven colistin-resistant, carbapenemase-producing Klebsiella pneumoniae isolates were identified from hospitals in Serbia. All isolates were blaCTX-M-15 positive; ST101, ST888, ST437, ST336, and ST307 were blaOXA-48 positive; and ST340 was blaNDM-1 positive. ST307 had an insertion, and ST336 had a premature stop codon in the mgrB gene. Amino acid substitutions were detected in PmrAB of isolates ST101, ST888, ST336, and ST307. The mcr-1 and mcr-2 were not detected. An increase in phoP, phoQ, and pmrK gene transcription was detected for all sequence types.
Collapse
|
47
|
Jiang X, Poirel L, Nordmann P. Lack of polymyxin resistance among carbapenemase-producing Enterobacteriaceae in a university hospital in China. Infect Dis (Lond) 2017; 49:556-557. [DOI: 10.1080/23744235.2017.1292543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Xiaofei Jiang
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland
- National Reference Center for Emerging Antibiotic Resistance, Switzerland
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland
- National Reference Center for Emerging Antibiotic Resistance, Switzerland
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland
- National Reference Center for Emerging Antibiotic Resistance, Switzerland
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- University of Lausanne and University Hospital Center, Lausanne, Switzerland
| |
Collapse
|
48
|
Plasmid-mediated or chromosomally mediated colistin resistance in Klebsiella pneumoniae ? THE LANCET. INFECTIOUS DISEASES 2017; 17:26-27. [DOI: 10.1016/s1473-3099(16)30552-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 11/21/2022]
|
49
|
Caniaux I, van Belkum A, Zambardi G, Poirel L, Gros MF. MCR: modern colistin resistance. Eur J Clin Microbiol Infect Dis 2016; 36:415-420. [DOI: 10.1007/s10096-016-2846-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/24/2022]
|