1
|
Casacuberta J, Barro F, Braeuning A, Cubas P, de Maagd R, Epstein MM, Frenzel T, Gallois J, Koning F, Messéan A, Moreno FJ, Nogué F, Savoini G, Schulman AH, Tebbe C, Veromann E, Ardizzone M, Dumont AF, Ferrari A, Gonzalez ABG, Gómez Ruiz JÁ, Goumperis T. Statement complementing the EFSA Scientific Opinion on application (EFSA-GMO-NL-2015-126) for authorisation of food and feed containing, consisting of and produced from genetically modified soybean MON 87705 × MON 87708 × MON 89788. EFSA J 2024; 22:e9061. [PMID: 39469434 PMCID: PMC11513605 DOI: 10.2903/j.efsa.2024.9061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Following a request from the European Commission, the GMO Panel assessed additional information related to the application for authorisation of food and feed containing, consisting of and produced from genetically modified soybean MON × MON 87708 × MON 89788 (EFSA-GMO-NL-2015-126). The applicant conducted a 90-day feeding study on GM soybean MON 87705 and provided a proposal for post-market monitoring considering the altered fatty acid profile of GM soybean MON 87705 × MON 87708 × MON 89788, to fulfil the deficiencies identified by EFSA GMO Panel, addressing elements that remained inconclusive from a previous EFSA scientific opinion issued in 2020. The GMO Panel concludes that the 90-day feeding study on GM soybean MON 87705 is in line with the requirements of Regulation (EU) No 503/2013 and that no treatment-related adverse effects were observed in rats after feeding diets containing soybean MON 87705 meals at 30% or 15% for 90 days. The GMO Panel reiterates the recommendation for a PMM for food in accordance with Regulation (EC) No 1829/2003 and Regulation (EU) No 503/2013 and concludes that the proposal provided by the applicant is in line with the recommendations described for the PMM plan of soybean MON 87705 × MON 87708 × MON 89788 in the adopted scientific opinion. Taking into account the previous assessment and the new information, the GMO Panel concludes that soybean MON 87705 × MON 87708 × MON 89788, as assessed in the scientific opinion on application EFSA-GMO-NL-2015-126 and in the supplementary toxicity study, is as safe as its non-GM comparator and the non-GM reference varieties tested and does not represent a nutritional concern in humans and animals, within the scope of this application.
Collapse
|
2
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Naegeli H, Moreno FJ, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, De Sanctis G, Silvia F, Dumont AF, Gennaro A, Gómez Ruiz JÁ, Grammatikou P, Goumperis T, Kagkli DM, Lenzi P, Lewandowska A, Camargo AM, Neri FM, Piffanelli P, Raffaello T, Xiftou K. Assessment of genetically modified maize MON 95275 (application GMFF-2022-5890). EFSA J 2024; 22:e8886. [PMID: 39099613 PMCID: PMC11292213 DOI: 10.2903/j.efsa.2024.8886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Genetically modified maize MON 95275 was developed to confer protection to certain coleopteran species. These properties were achieved by introducing the mpp75Aa1.1, vpb4Da2 and DvSnf7 expression cassettes. The molecular characterisation data and bioinformatic analyses reveal similarity to known toxins, which was further assessed. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MON 95275 and its conventional counterpart needs further assessment. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Mpp75Aa1.1 and Vpb4Da2 proteins and the DvSnf7 dsRNA and derived siRNAs as expressed in maize MON 95275 and finds no evidence that the genetic modification would change the overall allergenicity of maize MON 95275. In the context of this application, the consumption of food and feed from maize MON 95275 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 95275 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of maize MON 95275 material into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 95275. The GMO Panel concludes that maize MON 95275 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
3
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Naegeli H, Moreno FJ, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, De Sanctis G, Dumont AF, Gennaro A, Gómez Ruiz JÁ, Grammatikou P, Goumperis T, Lenzi P, Lewandowska A, Camargo AM, Neri FM, Piffanelli P, Raffaello T, Xiftou K. Assessment of genetically modified maize DP910521 (application GMFF-2021-2473). EFSA J 2024; 22:e8887. [PMID: 39099615 PMCID: PMC11292214 DOI: 10.2903/j.efsa.2024.8887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Genetically modified (GM) maize DP910521 was developed to confer resistance against certain lepidopteran insect pests as well as tolerance to glufosinate herbicide; these properties were achieved by introducing the mo-pat, pmi and cry1B.34 expression cassettes. The molecular characterisation data and bioinformatic analyses did not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP910521 and its conventional counterpart needs further assessment except for the levels of iron in grain, which do not raise safety and nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Cry1B.34, PAT and PMI proteins as expressed in maize DP910521. The GMO panel finds no evidence that the genetic modification impacts the overall safety of maize DP910521. In the context of this application, the consumption of food and feed from maize DP910521 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize DP910521 is as safe as its conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of maize DP910521 material into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP910521. The GMO Panel concludes that maize DP910521 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
4
|
Smith BL, Carlson AB, Fallers MN, Crumplar SS, Zimmermann CS, Mathesius CA, Mukerji P, McNaughton JL, Herman RA. Rodent and broiler feeding studies with maize containing genetically modified event DP-915635-4 show no adverse effects on health or performance. Food Chem Toxicol 2024; 189:114716. [PMID: 38735358 DOI: 10.1016/j.fct.2024.114716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Several regulatory agencies continue to require animal feeding studies to approve new genetically modified crops despite such studies providing little value in the safety assessment. Feeding studies with maize grain containing event DP-915635-4 (DP915635), a new corn rootworm management trait, were conducted to fulfill that requirement. Diets fed to Crl:CD®(SD) rats for 90 days contained up to 50% ground maize grain from DP915635, non-transgenic control, or non-transgenic reference hybrids (P1197, 6158, and 6365). Ross 708 broilers received phase diets containing up to 67% maize grain from each source for 42 days. Growth performance was compared between animals fed DP915635 and control diets; rats were further evaluated for clinical and neurobehavioral measures, ophthalmology, clinical pathology, organ weights, and gross and microscopic pathology, whereas carcass parts and select organ yields were determined for broilers. Reference group inclusion assisted in determining natural variation influence on observed significant differences between DP915635 and control groups. DP915635 maize grain diet consumption did not affect any measure evaluated in either feeding study. Results demonstrated DP-915635-4 maize grain safety and nutritional equivalency when fed in nutritionally adequate diets, adding to the existing literature confirming the lack of significant effects of feeding grain from genetically modified plants.
Collapse
|
5
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Naegeli H, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, De Sanctis G, Gennaro A, Gómez Ruiz JÁ, Grammatikou P, Goumperis T, Jacchia S, Lenzi P, Lewandowska A, Camargo AM, Neri FM, Piffanelli P, Raffaello T, Xiftou K. Assessment of genetically modified maize MON 94804 (application GMFF-2022-10651). EFSA J 2024; 22:e8714. [PMID: 38681741 PMCID: PMC11046408 DOI: 10.2903/j.efsa.2024.8714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Genetically modified (GM) maize MON 94804 was developed to achieve a reduction in plant height by introducing the GA20ox_SUP suppression cassette. The molecular characterisation and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the agronomic/phenotypic and compositional differences identified between maize MON 94804 and its conventional counterpart needs further assessment, except for ear height, plant height and levels of carbohydrates in forage, which do not raise safety or nutritional concerns. The Panel on Genetically Modified Organisms (GMO Panel) does not identify safety concerns regarding the toxicity and allergenicity of the GA20ox_SUP precursor-miRNA and derived mature miRNA as expressed in maize MON 94804 and finds no evidence that the genetic modification would change the overall allergenicity of maize MON 94804. In the context of this application, the consumption of food and feed from maize MON 94804 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 94804 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 94804 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 94804. The GMO Panel concludes that maize MON 94804 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
6
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Naegeli H, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, Camargo AM, De Sanctis G, Federici S, Fernandez A, Gennaro A, Gómez Ruiz JÁ, Goumperis T, Grammatikou P, Kagkli DM, Lenzi P, Neri FM, Papadopoulou N, Raffaello T. Assessment of genetically modified maize DP202216 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2019-159). EFSA J 2024; 22:e8655. [PMID: 38510324 PMCID: PMC10952026 DOI: 10.2903/j.efsa.2024.8655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Genetically modified maize DP202216 was developed to confer tolerance to glufosinate-ammonium-containing herbicides and to provide an opportunity for yield enhancement under field conditions. These properties were achieved by introducing the mo-pat and zmm28 expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP202216 and its comparator needs further assessment, except for the levels of stearic acid (C18:0), which do not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the PAT and ZMM28 proteins as expressed in maize DP202216, and finds no evidence that the genetic modification would change the overall allergenicity of maize DP202216. In the context of this application, the consumption of food and feed from maize DP202216 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize DP202216 is as safe as the comparator and non-GM reference varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP202216 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP202216. The GMO Panel concludes that maize DP202216 is as safe as its comparator and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
7
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Naegeli H, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, Camargo AM, De Sanctis G, Federici S, Fernández A, Gennaro A, Gómez Ruiz JÁ, Goumperis T, Kagkli DM, Lenzi P, Lewandowska A, Neri FM, Papadopoulou N, Raffaello T. Assessment of genetically modified maize DP23211 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2019-163). EFSA J 2024; 22:e8483. [PMID: 38239495 PMCID: PMC10794937 DOI: 10.2903/j.efsa.2024.8483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
Genetically modified maize DP23211 was developed to confer control of certain coleopteran pests and tolerance to glufosinate-containing herbicide. These properties were achieved by introducing the pmi, mo-pat, ipd072Aa and DvSSJ1 expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP23211 and its conventional counterpart needs further assessment, except for those in levels of histidine, phenylalanine, magnesium, phosphorus and folic acid in grain, which do not raise safety and nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the IPD072Aa, PAT and PMI proteins and the DvSSJ1 dsRNA and derived siRNAs newly expressed in maize DP23211, and finds no evidence that the genetic modification impacts the overall safety of maize DP23211. In the context of this application, the consumption of food and feed from maize DP23211 does not represent a nutritional concern in humans and animals. Therefore, no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP23211 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP23211. The GMO Panel concludes that maize DP23211 is as safe as its conventional counterpart and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
8
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Naegeli H, Nogue F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, Camargo AM, De Sanctis G, Federici S, Fernandez Dumont A, Gennaro A, Gomez Ruiz JA, Goumperis T, Kagkli DM, Lenzi P, Lewandowska A, Neri FM, Papadopoulou N, Raffaello T. Assessment of genetically modified maize DP915635 for food and feed uses, under regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2020-172). EFSA J 2024; 22:e8490. [PMID: 38235311 PMCID: PMC10792476 DOI: 10.2903/j.efsa.2024.8490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Genetically modified maize DP915635 was developed to confer tolerance to glufosinate herbicide and resistance to corn rootworm pests. These properties were achieved by introducing the ipd079Ea, mo-pat and pmi expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP915635 and its conventional counterpart needs further assessment, except for the levels of crude protein in forage, which does not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the IPD079Ea, PAT and PMI proteins expressed in maize DP915635. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize DP915635. In the context of this application, the consumption of food and feed from maize DP915635 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize DP915635 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP915635 grains into the environment, this would not raise environmental safety concerns. The post market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP915635. The GMO Panel concludes that maize DP915635 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
9
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Naegeli H, Moreno FJ, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, De Sanctis G, Fernández A, Gennaro A, Gómez Ruiz JÁ, Goumperis T, Kagli DM, Lenzi P, Lewandowska A, Camargo AM, Neri FM, Papadopoulou N, Raffaello T. Assessment of genetically modified cotton COT102 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-DE-2017-141). EFSA J 2023; 21:e08031. [PMID: 37377664 PMCID: PMC10291446 DOI: 10.2903/j.efsa.2023.8031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Genetically modified cotton COT102 was developed to confer resistance against several lepidopteran species. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the differences in the agronomic-phenotypic and compositional characteristics between cotton COT102 and its non-GM comparator needs further assessment, except for levels of acid detergent fibre, which do not raise safety or nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Vip3Aa19 and APH4 proteins as expressed in cotton COT102 and finds no evidence that the genetic modification would change the overall allergenicity of cotton COT102. In the context of this application, the consumption of food and feed from cotton COT102 does not represent a nutritional concern for humans and animals. The GMO Panel concludes that cotton COT102 is as safe as the non-GM comparator and non-GM cotton varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable cotton COT102 seeds into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of cotton COT102. The GMO Panel concludes that cotton COT102 is as safe as its non-GM comparator and the tested non-GM cotton varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
10
|
Mullins E, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Naegeli H, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, De Sanctis G, Federici S, Fernandez A, Gennaro A, Gómez Ruiz JÁ, Goumperis T, Kagkli DM, Lenzi P, Camargo AM, Neri FM, Raffaello T. Assessment of genetically modified maize Bt11 × MIR162 × MIR604 × MON 89034 × 5307 × GA21 and 30 subcombinations, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-DE-2018-149). EFSA J 2023; 21:e08011. [PMID: 37284025 PMCID: PMC10240405 DOI: 10.2903/j.efsa.2023.8011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Genetically modified maize Bt11 × MIR162 × MIR604 × MON 89034 × 5307 × GA21 was developed by crossing to combine six single events: Bt11, MIR162, MIR604, MON 89034, 5307 and GA21, the GMO Panel previously assessed the 6 single maize events and 27 out of the 56 possible subcombinations and did not identify safety concerns. No new data on the single maize events or the assessed subcombinations were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the six-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that six-event stack maize, as described in this application, is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable six-event stack maize grains into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in 29 of the maize subcombinations not previously assessed and covered by the scope of this application and concludes that these are expected to be as safe as the single events, the previously assessed subcombinations and the six-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize Bt11 × MIR162 × MIR604 × MON 89034 × 5307 × GA21. The GMO Panel concludes that six-event stack maize and the 30 subcombinations covered by the scope of the application are as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
11
|
Mullins E, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Naegeli H, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, Camargo AM, Fernandez A, Goumperis T, Lenzi P, Lewandowska A, Raffaello T, Streissl F. Assessment of genetically modified oilseed rape MS8, RF3 and MS8 × RF3 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA-GMO-RX-024). EFSA J 2023; 21:e07934. [PMID: 37122285 PMCID: PMC10131089 DOI: 10.2903/j.efsa.2023.7934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Following the submission of application EFSA-GMO-RX-024 under Regulation (EC) No 1829/2003 from BASF Agricultural Solutions Seed US LLC, the Panel on Genetically Modified Organisms of EFSA was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide tolerant genetically modified oilseed rape MS8, RF3 and MS8 × RF3, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in oilseed rape MS8, RF3 and MS8 × RF3 considered for renewal are identical to the sequences of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-024 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on oilseed rape MS8, RF3 and MS8 × RF3.
Collapse
|
12
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Naegeli H, Nogué F, Rostoks N, Serrano JJS, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, De Sanctis G, Devos Y, Federici S, Fernandez Dumont A, Gennaro A, Gómez Ruiz JÁ, Goumperis T, Kagkli DM, Lanzoni A, Lenzi P, Camargo AM, Neri FM, Papadopoulou N, Paraskevopoulos K, Raffaello T, Streissl F. Assessment of genetically modified maize GA21 × T25 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-DE-2016-137). EFSA J 2023; 21:e07729. [PMID: 36721864 PMCID: PMC9880721 DOI: 10.2903/j.efsa.2023.7729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Genetically modified maize GA21 × T25 was developed by crossing to combine two single events: GA21 and T25. The GMO Panel previously assessed the two single maize events and did not identify safety concerns. No new data on the single maize events were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in maize GA21 × T25 does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that maize GA21 × T25, as described in this application, is as safe as its conventional counterpart and the non-GM reference varieties tested, and no post-market monitoring of food and feed is considered necessary. In the case of accidental release of viable maize GA21 × T25 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize GA21 × T25. Post-market monitoring of food and feed is not considered necessary. The GMO Panel concludes that maize GA21 × T25 is as safe as its conventional counterpart and the non-GM reference varieties tested, with respect to potential effects on human and animal health and the environment.
Collapse
|
13
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Naegeli H, Nogué F, Rostoks N, Serrano JJS, Savoini G, Veromann E, Veronesi F, Ardizzone M, De Sanctis G, Federici S, Fernandez Dumont A, Gennaro A, Gómez Ruiz JÁ, Goumperis T, Lanzoni A, Lenzi P, Lewandowska A, Camargo AM, Neri FM, Papadopoulou N, Paraskevopoulos K, Raffaello T. Assessment of genetically modified maize MON 87419 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2017-140). EFSA J 2023; 21:e07730. [PMID: 36698492 PMCID: PMC9853084 DOI: 10.2903/j.efsa.2023.7730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Genetically modified maize MON 87419 was developed to confer tolerance to dicamba- and glufosinate-based herbicides. These properties were achieved by introducing the dmo and pat expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MON 87419 and its conventional counterpart needed further assessment, except for the levels of arginine and protein in grains which did not raise safety and nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the dicamba mono-oxygenase (DMO) and phosphinothricin N-acetyltransferase (PAT) proteins as expressed in maize MON 87419. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize MON 87419. In the context of this application, the consumption of food and feed from maize MON 87419 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 87419 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 87419 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 87419. The GMO Panel concludes that maize MON 87419 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
14
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Naegeli H, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, Martin Camargo A, De Sanctis G, Fernandez Dumont A, Gennaro A, Gómez Ruiz JÁ, Goumperis T, Kagkli DM, Neri FM, Papadopoulou N, Raffaello T, Streissl F. Assessment of genetically modified maize DP4114 × MON 89034 × MON 87411 × DAS-40278-9 and subcombinations, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA GMO-NL-2020-171). EFSA J 2022; 20:e07619. [PMID: 36381120 PMCID: PMC9644921 DOI: 10.2903/j.efsa.2022.7619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Genetically modified maize DP4114 × MON 89034 × MON 87411 × DAS-40278-9 was developed by crossing to combine four single events: DP4114, MON 89034, MON 87411 and DAS-40278-9. The GMO Panel previously assessed the four single maize events and two of the subcombinations and did not identify safety concerns. No new data on the single maize events or the assessed subcombinations were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the four-event stack maize does not give rise to food and feed safety and nutritional concerns. Therefore, no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable four-event stack maize grains into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in eight of the maize subcombinations not previously assessed and concludes that these are expected to be as safe as the single events, the previously assessed subcombinations and the four-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP4114 × MON 89034 × MON 87411 × DAS-40278-9. Post-market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the four-event stack maize and its subcombinations are as safe as its non-GM comparator and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
15
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Naegeli H, Moreno FJ, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, De Sanctis G, Dumont AF, Federici S, Gennaro A, Gomez Ruiz JA, Goumperis T, Kagkli DM, Lanzoni A, Lenzi P, Lewandowska A, Neri FM, Paraskevopoulos K, Raffaello T, Streissl F. Assessment of genetically modified maize MON 89034 × 1507 × MIR162 × NK603 × DAS-40278-9 for food and feed uses, under regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2018-151). EFSA J 2022; 20:e07451. [PMID: 35978615 PMCID: PMC9373840 DOI: 10.2903/j.efsa.2022.7451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Genetically modified maize MON 89034 × 1507 × MIR162 × NK603 × DAS-40278-9 was developed by crossing to combine five single events: MON 89034, 1507, MIR162, NK603 and DAS-40278-9. The GMO Panel previously assessed the five single maize events and 16 of the subcombinations and did not identify safety concerns. No new data on the single maize events or the assessed subcombinations were identified that could lead to the modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the five-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that five-event stack maize, as described in this application, is as safe as the non-GM comparator and non-GM maize varieties tested. In the case of accidental release of viable five-event stack maize grains into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in nine of the maize subcombinations not previously assessed and concludes that these are expected to be as safe as the single events, the previously assessed subcombinations and the five-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 89034 × 1507 × MIR162 × NK603 × DAS-40278-9. Post-market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the five-event stack maize and its subcombinations are as safe as its non-GM comparator and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
16
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Naegeli H, Moreno FJ, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, Dumont AF, Federici S, Gennaro A, Gómez Ruiz JÁ, Goumperis T, Kagkli DM, Lanzoni A, Lenzi P, Neri FM, Papadopoulou N, Paraskevopoulos K, Raffaello T, Streissl F, De Sanctis G. Assessment of genetically modified maize DP4114 × MON 810 × MIR604 × NK603 and subcombinations, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2018-150). EFSA J 2022; 20:e07134. [PMID: 35281656 PMCID: PMC8900121 DOI: 10.2903/j.efsa.2022.7134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Maize DP4114 × MON 810 × MIR604 × NK603 (four-event stack maize) was produced by conventional crossing to combine four single events: DP4114, MON 810, MIR604 and NK603. The GMO Panel previously assessed the four single maize events and one of the subcombinations and did not identify safety concerns. No new data on the single maize events or the assessed subcombination were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the four-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that the four-event stack maize, is as safe as the comparator and the selected non-GM reference varieties. In the case of accidental release of viable grains of the four-event stack maize into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in nine of the maize subcombinations not previously assessed and concludes that these are expected to be as safe as the single events, the previously assessed subcombination and the four-event stack maize. Post-market monitoring of food/feed is not considered necessary. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of the four-event stack maize. The GMO Panel concludes that the four-event stack maize and its subcombinations are as safe as the non-GM comparator and the selected non-GM reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
17
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Naegeli H, Moreno FJ, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, De Sanctis G, Fernandez Dumont A, Federici S, Gennaro A, Gomez Ruiz JA, Kagkli DM, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K, Raffaello T. Assessment of genetically modified maize NK603 × T25 × DAS-40278-9 and subcombinations, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2019-164). EFSA J 2021; 19:e06942. [PMID: 34938370 PMCID: PMC8666937 DOI: 10.2903/j.efsa.2021.6942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Maize NK603 × T25 × DAS-40278-9 (three-event stack maize) was produced by conventional crossing to combine three single events: NK603, T25 and DAS-40278-9. The GMO Panel previously assessed the three single maize events and two of the subcombinations and did not identify safety concerns. No new data on the single maize events or the two subcombinations were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the three-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that the three-event stack maize, as described in this application, is as safe as the non-GM comparator and the selected non-GM reference varieties. In the case of accidental release of viable grains of the three-event stack maize into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in one of the maize subcombinations not previously assessed and concludes that these are expected to be as safe as the single events, the previously assessed subcombinations and the three-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of the three-event stack maize. Post-market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the three-event stack maize and its subcombinations are as safe as the non-GM comparator and the selected non-GM reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
18
|
Naegeli H, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, De Sanctis G, Fernandez A, Federici S, Gennaro A, Gómez Ruiz JÁ, Lanzoni A, Neri FM, Paraskevopoulos K, Raffaello T. Assessment of genetically modified cotton GHB811 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-ES-2018-154). EFSA J 2021; 19:e06781. [PMID: 34429778 PMCID: PMC8365404 DOI: 10.2903/j.efsa.2021.6781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cotton GHB811 was developed to confer tolerance to glyphosate and HPPD inhibitor herbicides. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between cotton GHB811 and its conventional counterpart needs further assessment, except for % lint, lint length and dihydrosterculic acid, which do not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the 2mEPSPS and HPPD W336 proteins as expressed in cotton GHB811 and finds no evidence that the genetic modification would change the overall allergenicity of cotton GHB811. In the context of this application, the consumption of food and feed from cotton GHB811 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that cotton GHB811 is as safe as the conventional counterpart and non-GM cotton reference varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable cotton GHB811 seeds into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of cotton GHB811. The GMO Panel concludes that cotton GHB811 is as safe as its conventional counterpart and the tested non-GM cotton reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
19
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, Devos Y, Federici S, Dumont AF, Gennaro A, Gómez Ruiz JÁ, Neri FM, Papadopoulou N, Paraskevopoulos K, Lanzoni A. Assessment of genetically modified oilseed rape 73496 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2012-109). EFSA J 2021; 19:e06610. [PMID: 34178155 PMCID: PMC8209597 DOI: 10.2903/j.efsa.2021.6610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oilseed rape 73496 was developed to confer tolerance to the herbicidal active substance glyphosate through the expression of the glyphosate acetyltransferase protein GAT4621. The molecular characterisation data and bioinformatic analyses identify no issues requiring food/feed safety assessment. None of the identified differences between oilseed rape 73496 and its conventional counterpart in the agronomic/phenotypic endpoints tested needs further assessment. Differences identified in seed composition of oilseed rape 73496 as compared to its conventional counterpart raise no safety and nutritional concerns in the context of the scope of this application. No safety concerns are identified regarding toxicity and allergenicity of the GAT4621 protein as expressed in oilseed rape 73496. No evidence is found that the genetic modification would change the overall allergenicity of oilseed rape 73496. Based on the outcome of the comparative and nutritional assessments, the consumption of oilseed rape 73496 does not represent any nutritional concern, in the context of the scope of this application. The implementation of a post-market monitoring plan is recommended to confirm the predicted consumption data and to verify that the conditions of use are those considered during the pre-market risk assessment. In the case of accidental release of viable oilseed rape 73496 seeds into the environment, oilseed rape 73496 would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of oilseed rape 73496. The GMO Panel concludes that oilseed rape 73496, as described in this application, is as safe as its conventional counterpart and the non-genetically modified oilseed rape reference varieties tested with respect to potential effects on human and animal health and the environment.
Collapse
|
20
|
Naegeli H, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, Fernandez A, Gennaro A, Gómez Ruiz JÁ, Kagkli DM, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K, Raffaello T, Streissl F, De Sanctis G. Assessment of genetically modified soybean GMB151 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2018-153). EFSA J 2021; 19:e06424. [PMID: 33897857 PMCID: PMC8054566 DOI: 10.2903/j.efsa.2021.6424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Soybean GMB151 was developed to confer tolerance to 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicides and resistance to nematodes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between soybean GMB151 and its conventional counterpart needs further assessment, except for palmitic acid and heptadecenoic acid in seeds and carbohydrate and crude protein in forage, which does not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the HPPD-4 and Cry14Ab-1 proteins as expressed in soybean GMB151, and finds no evidence that the genetic modification would change the overall allergenicity of soybean GMB151. In the context of this application, the consumption of food and feed from soybean GMB151 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that soybean GMB151 is as safe as the conventional counterpart and non-GM soybean reference varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable soybean GMB151 seeds into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of soybean GMB151. The GMO Panel concludes that soybean GMB151 is as safe as its conventional counterpart and the tested non-GM soybean reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
21
|
Akinbo O, Obukosia S, Ouedraogo J, Sinebo W, Savadogo M, Timpo S, Mbabazi R, Maredia K, Makinde D, Ambali A. Commercial Release of Genetically Modified Crops in Africa: Interface Between Biosafety Regulatory Systems and Varietal Release Systems. FRONTIERS IN PLANT SCIENCE 2021; 12:605937. [PMID: 33828569 PMCID: PMC8020716 DOI: 10.3389/fpls.2021.605937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/09/2021] [Indexed: 05/30/2023]
Abstract
African countries face key challenges in the deployment of GM crops due to incongruities in the processes for effective and efficient commercial release while simultaneously ensuring food and environmental safety. Against the backdrop of the preceding scenario, and for the effective and efficient commercial release of GM crops for cultivation by farmers, while simultaneously ensuring food and environmental safety, there is a need for the close collaboration of and the interplay between the biosafety competent authorities and the variety release authorities. The commercial release of genetically modified (GM) crops for cultivation requires the approval of biosafety regulatory packages. The evaluation and approval of lead events fall under the jurisdiction of competent national authorities for biosafety (which may be ministries, autonomous authorities, or agencies). The evaluation of lead events fundamentally comprises a review of environmental, food, and feed safety data as provided for in the Biosafety Acts, implementing regulations, and, in some cases, the involvement of other relevant legal instruments. Although the lead GM event may be commercially released for farmers to cultivate, it is often introgressed into locally adapted and farmer preferred non-GM cultivars that are already released and grown by the farmers. The introduction of new biotechnology products to farmers is a process that includes comprehensive testing in the laboratory, greenhouse, and field over some time. The process provides answers to questions about the safety of the products before being introduced into the environment and marketplace. This is the first step in regulatory approvals. The output of the research and development phase of the product development cycle is the identification of a safe and best performing event for advancement to regulatory testing, likely commercialization, and general release. The process of the commercial release of new crop varieties in countries with established formal seed systems is guided by well-defined procedures and approval systems and regulated by the Seed Acts and implemented regulations. In countries with seed laws, no crop varieties are approved for commercial cultivation prior to the fulfillment of the national performance trials and the distinctness, uniformity, and stability tests, as well as prior to the approval by the National Variety Release Committee. This review outlines key challenges faced by African countries in the deployment of GM crops and cites lessons learned as well as best practices from countries that have successfully commercialized genetically engineered crops.
Collapse
Affiliation(s)
- Olalekan Akinbo
- Centre of Excellence for Rural Resources and Food Systems, Diran Makinde Center, African Union Development Agency-NEPAD, Ouagadougou, Burkina Faso
| | - Silas Obukosia
- Centre of Excellence for Human Capital Institutions Development, African Union Development Agency-NEPAD, Nairobi, Kenya
| | - Jeremy Ouedraogo
- Centre of Excellence for Rural Resources and Food Systems, African Union Development Agency-NEPAD, Dakar, Senegal
| | - Woldeyesus Sinebo
- Centre of Excellence for Human Capital Institutions Development, African Union Development Agency-NEPAD, Nairobi, Kenya
| | - Moussa Savadogo
- Centre of Excellence for Rural Resources and Food Systems, Diran Makinde Center, African Union Development Agency-NEPAD, Ouagadougou, Burkina Faso
| | - Samuel Timpo
- Centre of Excellence for Rural Resources and Food Systems, African Union Development Agency-NEPAD, Dakar, Senegal
| | - Ruth Mbabazi
- College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Karim Maredia
- College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Diran Makinde
- African Union Development Agency-NEPAD, Midrand, South Africa
| | - Aggrey Ambali
- African Union Development Agency-NEPAD, Midrand, South Africa
| |
Collapse
|
22
|
Smith BL, Zimmermann CS, Carlson AB, Mathesius CA, Mukerji P, McNaughton JL, Walker CA, Roper JM. Evaluation of the safety and nutritional equivalency of maize grain with genetically modified event DP-Ø23211-2. GM CROPS & FOOD 2021; 12:396-408. [PMID: 34459369 PMCID: PMC8409786 DOI: 10.1080/21645698.2021.1963614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/01/2022]
Abstract
Feeding studies were conducted with rats and broiler chickens to assess the safety and nutrition of maize grain containing event DP-Ø23211-2 (DP23211), a newly developed trait-pyramid product for corn rootworm management. Diets containing 50% ground maize grain from DP23211, non-transgenic control, or non-transgenic reference hybrids (P0928, P0993, and P1105) were fed to Crl:CD®(SD) rats for 90 days. Ross 708 broilers were fed phase diets containing up to 67% maize grain from each source for 42 days. Body weight, gain, and feed conversion were determined for comparisons between animals fed DP23211 and control diets in each study. Additional measures included clinical and neurobehavioral evaluations, ophthalmology, clinical pathology, organ weights, and gross and microscopic pathology for rats, and carcass parts and select organ yields for broilers. Reference groups were included to determine if any observed significant differences between DP23211 and control groups were likely due to natural variation. No diet-related effects on mortality or evaluation measures were observed between animal fed diets produced with DP23211 maize grain and animal fed diets produced with control maize grain. These studies show that maize grain containing event DP-Ø23211-2 is as safe and nutritious as non-transgenic maize grains when fed in nutritionally adequate diets. The results are consistent with previously published studies, providing further demonstration of the absence of hazards from edible-fraction consumption of genetically modified plants.
Collapse
Affiliation(s)
- Brenda L. Smith
- Regulatory & Stewardship, Corteva Agriscience, Johnston, IA, USA
| | | | - Anne B. Carlson
- Regulatory & Stewardship, Corteva Agriscience, Johnston, IA, USA
| | | | - Pushkor Mukerji
- Regulatory & Stewardship, Corteva Agriscience, Newark, DE, USA
| | | | - Carl A. Walker
- Regulatory & Stewardship, Corteva Agriscience, Johnston, IA, USA
| | - Jason M. Roper
- Regulatory & Stewardship, Corteva Agriscience, Newark, DE, USA
| |
Collapse
|
23
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, Raffaello T. Assessment of genetically modified maize Bt11 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA-GMO-RX-016). EFSA J 2021; 19:e06347. [PMID: 33488810 PMCID: PMC7804996 DOI: 10.2903/j.efsa.2021.6347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Following the submission of application EFSA-GMO-RX-016 under Regulation (EC) No 1829/2003 from Syngenta the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect-resistant and herbicide-tolerant genetically modified maize Bt11, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the event in maize Bt11 considered for renewal is identical to the sequence of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-016 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize Bt11.
Collapse
|
24
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, De Sanctis G, Devos Y, Fernandez A, Gennaro A, Gómez Ruiz JÁ, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K, Raffaello T. Assessment of genetically modified maize 1507 × MIR162 × MON810 × NK603 and subcombinations, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2015-127). EFSA J 2021; 19:e06348. [PMID: 33488811 PMCID: PMC7805002 DOI: 10.2903/j.efsa.2021.6348] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maize 1507 × MIR162 × MON810 × NK603 (four-event stack maize) was produced by conventional crossing to combine four single events: 1507, MIR162, MON810 and NK603. The GMO Panel previously assessed the four single events and six of the subcombinations and did not identify safety concerns. No new data on the single events or the six subcombinations that could lead to modification of the original conclusions on their safety were identified. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the four-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that the four-event stack maize, as described in this application, is as safe as its non-GM comparator and the non-GM reference varieties tested. In the case of accidental release of viable seeds of the four-event stack maize into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in the four maize subcombinations not previously assessed and concludes that these are expected to be as safe as the single events, the previously assessed subcombinations and the four-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of the four-event stack maize. Post-market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the four-event stack maize and its subcombinations are as safe as the non-GM comparator and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
25
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, De Sanctis G, Fernandez A, Gennaro A, Gómez Ruiz JÁ, Kagkli DM, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K, Raffaello T. Assessment of genetically modified maize MON 87427 × MON 87460 × MON 89034 × 1507 × MON 87411 × 59122 and subcombinations, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2017-139). EFSA J 2021; 19:e06351. [PMID: 33505528 PMCID: PMC7814765 DOI: 10.2903/j.efsa.2021.6351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Maize MON 87427 × MON 87460 × MON 89034 × 1507 × MON 87411 × 59122 (six-event stack maize) was produced by conventional crossing to combine six single events: MON 87427, MON 87460, MON 89034, 1507, MON 87411 and 59122. The GMO Panel previously assessed the six single maize events and 17 of the subcombinations and did not identify safety concerns. No new data on the single maize events or the 17 subcombinations were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins and dsRNA in the six-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that the six-event stack maize, as described in this application, is as safe as its non-GM comparator and the selected non-GM reference varieties. In the case of accidental release of viable grains of the six-event stack maize into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in the 39 maize subcombinations not previously assessed and concludes that these are expected to be as safe as the single events, the previously assessed subcombinations and the six-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of the six-event stack maize. Post-market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the six-event stack maize and its subcombinations are as safe as the non-GM comparator and the selected non-GM reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
26
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, De Sanctis G, Devos Y, Dumont AF, Federici S, Gennaro A, Gómez Ruiz JÁ, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K, Raffaello T. Scientific Opinion on application EFSA-GMO-NL-2016-132 for authorisation of genetically modified of insect-resistant and herbicide-tolerant soybean DAS-81419-2 × DAS-44406-6 for food and feed uses, import and processing submitted in accordance with Regulation (EC) No 1829/2003 by Dow Agrosciences LCC. EFSA J 2020; 18:e06302. [PMID: 33250936 PMCID: PMC7677967 DOI: 10.2903/j.efsa.2020.6302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Soybean DAS-8419-2 × DAS-44406-6 was developed to provide protection against certain lepidopteran pests and tolerance to 2,4-dichlorophenoxyacetic acid and other related phenoxy herbicides, and glyphosate- and glufosinate ammonium-containing herbicides. The Genetically Modified Organisms (GMO) Panel previously assessed the two single soybean events and did not identify safety concerns. No new data on the single soybean events, leading to modification of the original conclusions on their safety have been identified. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single soybean events and of the newly expressed proteins in the two-event stack soybean does not give rise to food and feed safety and nutritional concerns. In the case of accidental release of viable DAS-8419-2 × DAS-44406-6 seeds into the environment, soybean DAS-8419-2 × DAS-44406-6 would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of soybean DAS-8419-2 × DAS-44406-6. In conclusion, the GMO Panel considers that soybean DAS-8419-2 × DAS-44406-6, as described in this application, is as safe as its conventional counterpart and the non-genetically modified soybean reference varieties tested with respect to potential effects on human and animal health and the environment.
Collapse
|
27
|
Analysis and reflection on the role of the 90-day oral toxicity study in European chemical risk assessment. Regul Toxicol Pharmacol 2020; 117:104786. [DOI: 10.1016/j.yrtph.2020.104786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
|
28
|
Carlson AB, Mukerji P, Mathesius CA, Huang E, Herman RA, Hoban D, Thurman JD, Roper JM. DP-2Ø2216-6 maize does not adversely affect rats in a 90-day feeding study. Regul Toxicol Pharmacol 2020; 117:104779. [PMID: 32888975 DOI: 10.1016/j.yrtph.2020.104779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
Maize plants containing event DP-2Ø2216-6 (DP202216), which confers herbicide tolerance through expression of phosphinothricin acetyltransferase and enhanced grain yield potential via temporal modulation of the native ZMM28 protein, were developed for commercialization. To address current regulatory expectations, a mandatory 90-day rodent feeding study was conducted to support the safety assessment. Diets containing 50% by weight of ground maize grain from DP202216, non-transgenic control, and 3 non-transgenic reference varieties, were fully characterized, along with the grain, and diets were fed to Crl:CD®(SD) rats for at least 90 days. As anticipated, no biologically-relevant effects or toxicologically-significant differences were observed on survival, body weight/gain, food consumption/efficiency, clinical and neurobehavioral evaluations, ophthalmology, clinical pathology (hematology, coagulation, clinical chemistry, urinalysis), organ weights, or gross and microscopic pathology parameters in rats fed a diet containing up to 50% DP202216 maize grain when compared with rats fed diets containing control or reference maize grains. The results of this study support the conclusion that maize grain from plants containing event DP-2Ø2216-6 is as safe and nutritious as maize grain not containing the event and add to the significant existing database of rodent subchronic studies demonstrating the absence of hazards from consumption of edible fractions of genetically modified plants.
Collapse
Affiliation(s)
- Anne B Carlson
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Pushkor Mukerji
- Corteva Agriscience, Haskell R&D Center, P.O. Box 20, Newark, DE, 19714, USA
| | | | - Emily Huang
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Rod A Herman
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Denise Hoban
- Corteva Agriscience, Haskell R&D Center, P.O. Box 20, Newark, DE, 19714, USA
| | - J Dale Thurman
- Corteva Agriscience, Haskell R&D Center, P.O. Box 20, Newark, DE, 19714, USA
| | - Jason M Roper
- Corteva Agriscience, Haskell R&D Center, P.O. Box 20, Newark, DE, 19714, USA.
| |
Collapse
|
29
|
Naegeli H, Bresson JL, Dalmay T, Dewhurst IC, Epstein M, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Fernandez Dumont A, Papadopoulou N, Ardizzone M, Devos Y, Gennaro A, Ruiz Gómez JÁ, Lanzoni A, Neri FM, Paraskevopoulos K, Raffaello T, De Sanctis G. Assessment of genetically modified soybean MON 87708 × MON 89788 × A5547-127, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2016-135). EFSA J 2020; 17:e05733. [PMID: 32626364 PMCID: PMC7009197 DOI: 10.2903/j.efsa.2019.5733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Soybean MON 87708 × MON 89788 × A5547‐127 (three‐event stack soybean) was produced by conventional crossing to combine three single events: MON 87708, MON 89788 and A5547‐127. The GMO Panel previously assessed the three single events and did not identify safety concerns. No new data on the single events, leading to modification of the original conclusions on their safety have been identified. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single soybean events and of the newly expressed proteins in the three‐event stack soybean does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that the three‐event stack soybean, as described in this application, is as safe as and nutritionally equivalent to its conventional counterpart and the non‐GM reference varieties tested. The nutritional impact of food/feed derived from the three‐event stack soybean is expected to be the same as that of food/feed derived from the conventional counterpart and non‐GM reference varieties. In the case of accidental release of viable seeds of the three‐event stack soybean into the environment, this would not raise environmental safety concerns. The post‐market environmental monitoring plan and reporting intervals are in line with the intended uses of the three‐event stack soybean. Post‐market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the three‐event stack soybean is as safe as its conventional counterpart and the tested non‐GM reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
30
|
Safety evaluation of E12, W8, X17, and Y9 potatoes: Nutritional evaluation and 90-day subchronic feeding study in rats. Regul Toxicol Pharmacol 2020; 115:104712. [PMID: 32540328 DOI: 10.1016/j.yrtph.2020.104712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 11/22/2022]
Abstract
The nutritional and health effects of four biotech potato events, E12, W8, X17, and Y9, were evaluated in a subchronic rodent feeding study. E12 contains pSIM1278 insert DNA derived from potato and designed to down regulate potato genes through RNAi. These changes result in reduced black spot and reduced acrylamide. W8, X17, and Y9 contain the DNA inserts from pSIM1278 and pSIM1678 to further reduce acrylamide and express a gene from wild potato that protects against late blight. Rats were fed diets containing 20% cooked, dried potatoes from these four events and three conventional potato varieties. Compositional analyses of the processed potatoes and the rodent diets demonstrated comparability between the four events and their respective conventional varieties. Rats consumed the diets for 90 days and were evaluated for body weight, dietary intake, clinical signs, ophthalmology, neurobehavioral parameters, clinical pathology, organ weights, gross pathology, and histopathology. No adverse effects were observed as a result of test diet consumption. These results support the conclusion that foods containing E12, W8, X17, or Y9 potatoes are as safe, wholesome and nutritious as foods from conventional potato varieties.
Collapse
|
31
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, De Sanctis G, Devos Y, Dumont AF, Gennaro A, Gómez Ruiz JÁ, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K, Raffaello T. Assessment of genetically modified maize MZIR098 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-DE-2017-142). EFSA J 2020; 18:e06171. [PMID: 32874344 PMCID: PMC7448020 DOI: 10.2903/j.efsa.2020.6171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Maize MZIR098 was developed to confer tolerance to glufosinate-ammonium-containing herbicides and resistance to certain coleopteran pests. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MZIR098 and its conventional counterpart needs further assessment, except for neutral detergent fibre (NDF) in grains, which does not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the eCry3.1Ab, mCry3A and PAT proteins as expressed in maize MZIR098, and finds no evidence that the genetic modification would change the overall allergenicity of maize MZIR098. In the context of this application, the consumption of food and feed from maize MZIR098 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MZIR098 is as safe as the conventional counterpart and non-GM maize reference varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MZIR098 grains into the environment, maize MZIR098 would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MZIR098. In conclusion, the GMO Panel considers that maize MZIR098, as described in this application, is as safe as its conventional counterpart and the non-GM maize reference varieties tested with respect to potential effects on human and animal health and the environment.
Collapse
|
32
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, De Sanctis G, Devos Y, Fernandez‐Dumont A, Gennaro A, Gómez Ruiz JÁ, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K. Assessment of genetically modified oilseed rape MS11 for food and feed uses, import and processing, under Regulation (EC) No 1829/2003 (application EFSA-GMO-BE-2016-138). EFSA J 2020; 18:e06112. [PMID: 37649511 PMCID: PMC10464701 DOI: 10.2903/j.efsa.2020.6112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Oilseed rape MS11 has been developed to confer male sterility and tolerance to glufosinate-ammonium-containing herbicides. Based on the information provided in the application and in line with the scope of application EFSA-GMO-BE-2016-138, the genetically modified organism (GMO) Panel concludes that the molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic characteristics tested between oilseed rape MS11 and its conventional counterpart needs further assessment. No conclusions can be drawn for the compositional analysis due to the lack of an appropriate compositional data set. No toxicological or allergenicity concerns are identified for the Barnase, Barstar and PAT/bar proteins expressed in oilseed rape MS11. Owing to the incompleteness of the compositional analysis, the toxicological, allergenicity and nutritional assessment of oilseed rape MS11 cannot be completed. In the case of accidental release of viable oilseed rape MS11 seeds into the environment, oilseed rape MS11 would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the scope of the application. Since oilseed rape MS11 is designed to be used only for the production of hybrid seed, it is not expected to be commercialised as a stand-alone product for food/feed uses. Thus, seeds harvested from oilseed rape MS11 are not expected to enter the food/feed chain, except accidentally. In this context, the GMO Panel notes that, oilseed rape MS11 would not pose risk to humans and animals, while the scale of environmental exposure will be substantially reduced compared to a stand-alone product.
Collapse
|
33
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, De Sanctis G, Dumont A, Devos Y, Gennaro A, Gómez Ruiz JÁ, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K, Raffaello T. Assessment of genetically modified soybean MON 87705 × MON 87708 × MON 89788, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2015-126). EFSA J 2020; 18:e06111. [PMID: 37649527 PMCID: PMC10464710 DOI: 10.2903/j.efsa.2020.6111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Soybean MON 87705 × MON 87708 × MON 89788 (three-event stack soybean) was produced by conventional crossing to combine three single soybean events: MON 87705, MON 87708 and MON 89788. This combination is intended to alter the fatty acid profile in the seed (in particular increasing the levels of oleic acid) and tolerance to glyphosate-based and dicamba herbicides. The Genetically Modified Organisms Panel previously assessed the three single soybean events and did not identify safety concerns. No new data on the single soybean events, leading to modification of the original conclusions on their safety have been identified. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single soybean events and of the newly expressed proteins in the three-event stack soybean does not give rise to food and feed safety and nutritional concerns. In the case of accidental release of viable three-event stack soybean seeds into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and the reporting intervals are in line with the intended uses of soybean MON 87705 × MON 87708 × MON 89788. Considering the altered fatty acid profile of the three-event stack soybean, a proposal for post-market monitoring needs to be provided by the applicant. The GMO Panel notes that in the context of this application EFSA-GMO-NL-2015-126 the applicant did not provide a 90-day study on MON 87705 soybean in line with the applicable legal requirements. Therefore, the GMO Panel is not in the position to finalise the risk assessment of soybean MON 87705 × MON 87708 × MON 89788 under the current regulatory frame.
Collapse
|
34
|
Coumoul X, Servien R, Juricek L, Kaddouch-Amar Y, Lippi Y, Berthelot L, Naylies C, Morvan ML, Antignac JP, Desdoits-Lethimonier C, Jegou B, Tremblay-Franco M, Canlet C, Debrauwer L, Le Gall C, Laurent J, Gouraud PA, Cravedi JP, Jeunesse E, Savy N, Dandere-Abdoulkarim K, Arnich N, Fourès F, Cotton J, Broudin S, Corman B, Moing A, Laporte B, Richard-Forget F, Barouki R, Rogowsky P, Salles B. The GMO90+ Project: Absence of Evidence for Biologically Meaningful Effects of Genetically Modified Maize-based Diets on Wistar Rats After 6-Months Feeding Comparative Trial. Toxicol Sci 2020; 168:315-338. [PMID: 30535037 PMCID: PMC6432862 DOI: 10.1093/toxsci/kfy298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The GMO90+ project was designed to identify biomarkers of exposure or health effects in Wistar Han RCC rats exposed in their diet to 2 genetically modified plants (GMP) and assess additional information with the use of metabolomic and transcriptomic techniques. Rats were fed for 6-months with 8 maize-based diets at 33% that comprised either MON810 (11% and 33%) or NK603 grains (11% and 33% with or without glyphosate treatment) or their corresponding near-isogenic controls. Extensive chemical and targeted analyses undertaken to assess each diet demonstrated that they could be used for the feeding trial. Rats were necropsied after 3 and 6 months. Based on the Organization for Economic Cooperation and Development test guideline 408, the parameters tested showed a limited number of significant differences in pairwise comparisons, very few concerning GMP versus non-GMP. In such cases, no biological relevance could be established owing to the absence of difference in biologically linked variables, dose-response effects, or clinical disorders. No alteration of the reproduction function and kidney physiology was found. Metabolomics analyses on fluids (blood, urine) were performed after 3, 4.5, and 6 months. Transcriptomics analyses on organs (liver, kidney) were performed after 3 and 6 months. Again, among the significant differences in pairwise comparisons, no GMP effect was observed in contrast to that of maize variety and culture site. Indeed, based on transcriptomic and metabolomic data, we could differentiate MON- to NK-based diets. In conclusion, using this experimental design, no biomarkers of adverse health effect could be attributed to the consumption of GMP diets in comparison with the consumption of their near-isogenic non-GMP controls.
Collapse
Affiliation(s)
- Xavier Coumoul
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation Cellulaire, Université Paris Descartes, USPC, Paris, France
| | - Rémi Servien
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Ludmila Juricek
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation Cellulaire, Université Paris Descartes, USPC, Paris, France
| | - Yael Kaddouch-Amar
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation Cellulaire, Université Paris Descartes, USPC, Paris, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laureline Berthelot
- Centre de Recherche sur l'Inflammation (CRI), INSERM UMRS 1149, Paris, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | | | | - Bernard Jegou
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Université de Rennes, Rennes, France
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | | | | - Jean-Pierre Cravedi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Elisabeth Jeunesse
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nicolas Savy
- Institut de Mathématiques de Toulouse, UMR5219-Université de Toulouse, CNRS-UPS IMT, Toulouse, France
| | | | | | | | | | | | | | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Villenave d'Ornon, France
| | - Bérengère Laporte
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Robert Barouki
- INSERM UMR-S1124, Toxicologie Pharmacologie et Signalisation Cellulaire, Université Paris Descartes, USPC, Paris, France
| | - Peter Rogowsky
- Laboratoire Reproduction et Développement des Plantes, CNRS, INRA, University Lyon, Lyon, France
| | - Bernard Salles
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
35
|
Schultze AE, Bennet B, Rae JC, Chiang AY, Frazier K, Katavolos P, McKinney L, Patrick DJ, Tripathi N. Scientific Regulatory Policy Committee Points to Consider*: Nuisance Factors, Block Effects, and Batch Effects in Nonclinical Safety Assessment Studies. Toxicol Pathol 2020; 48:537-548. [PMID: 32122253 DOI: 10.1177/0192623320906385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Detection of test article-related effects and the determination of the adversity of those changes are the primary goals of nonclinical safety assessment studies for drugs and chemicals in development. During these studies, variables that are not of primary interest to investigators may change and influence data interpretation. These variables, often referred to as "nuisance factors," may influence other groups of data and result in "block or batch effects" that complicate data interpretation. Definitions of the terms "nuisance factors," "block effects," and "batch effects," as they apply to nonclinical safety assessment studies, are reviewed. Multiple case examples of block and batch effects in safety assessment studies are provided, and the challenges these bring to pathology data interpretation are discussed. Methods to mitigate the occurrence of block and batch effects in safety assessment studies, including statistical blocking and utilization of study designs that minimize potential confounding variables, incorporation of adequate randomization, and use of an appropriate number of animals or repeated measurement of specific parameters for increased precision, are reviewed. [Box: see text].
Collapse
|
36
|
Naegeli H, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, De Sanctis G, Devos Y, Dumont AF, Gennaro A, Gómez Ruiz JÁ, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K, Raffaello T. Assessment of genetically modified soybean MON 87751 × MON 87701 × MON 87708 × MON 89788 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2016-128). EFSA J 2019; 17:e05847. [PMID: 32626154 PMCID: PMC7008788 DOI: 10.2903/j.efsa.2019.5847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Soybean MON 87751 × MON 87701 × MON 87708 × MON 89788 (four-event stack soybean) was produced by conventional crossing to combine four single events: MON 87751, MON 87701, MON 87708 and MON 89788. The GMO Panel previously assessed the four single events and did not identify safety concerns. No new data on the single events have been identified that would lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological and allergenicity assessment indicate that the combination of the single soybean events and of the newly expressed proteins in the four-event stack soybean does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that the four-event stack soybean, as described in this application, is as safe as and nutritionally equivalent to the non-GM comparator and the non-GM reference varieties tested. In the case of accidental release of viable seeds of the four-event stack soybean into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of the four-event stack soybean. Post-market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the four-event stack soybean is as safe as the non-GM comparator and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
37
|
Naegeli H, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, De Sanctis G, Fernandez Dumont A, Gennaro A, Gómez Ruiz JÁ, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K. Assessment of genetically modified maize MON 87427 × MON 89034 × MIR162 × MON 87411 and subcombinations, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2017-144). EFSA J 2019; 17:e05848. [PMID: 32626155 PMCID: PMC7008898 DOI: 10.2903/j.efsa.2019.5848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Maize MON 87427 × MON 89034 × MIR162 × MON 87411 (four-event stack maize) was produced by conventional crossing to combine four single events: MON 87427, MON 89034, MIR162 and MON 87411. The genetically modified organism (GMO) Panel previously assessed the four single maize events and four of the subcombinations and did not identify safety concerns. No new data on the single maize events or the four subcombinations that could lead to modification of the original conclusions on their safety were identified. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins and dsRNA in the four-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that the four-event stack maize, as described in this application, is as safe as and nutritionally equivalent to its non-GM comparator and the non-GM reference varieties tested. In the case of accidental release of viable grains of the four-event stack maize into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in the six maize subcombinations not previously assessed and concludes that these are expected to be as safe as and nutritionally equivalent to the single events, the previously assessed subcombinations and the four-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of the four-event stack maize. Post-market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the four-event stack maize and its subcombinations are as safe as its non-GM comparator and tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
38
|
Naegeli H, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, De Sanctis G, Fernandez Dumont A, Gennaro A, Gómez Ruiz JÁ, Lanzoni A, Papadopoulou N, Paraskevopoulos K. Assessment of genetically modified maize MON 87427 × MON 87460 × MON 89034 × MIR162 × NK603 and subcombinations, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2016-134). EFSA J 2019; 17:e05774. [PMID: 32626404 PMCID: PMC7009260 DOI: 10.2903/j.efsa.2019.5774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Maize MON 87427 ×MON 87460 × MON 89034 × MIR162 × NK603 (five-event stack maize) was produced by conventional crossing to combine five single events: MON 87427, MON 87460, MON 89034, MIR162 and NK603. The GMO Panel previously assessed the five single maize events and eleven of the subcombinations and did not identify safety concerns. No new data on the single maize events or the 11 subcombinations that could lead to modification of the original conclusions on their safety were identified. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the five-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that the five-event stack maize, as described in this application, is as safe as and nutritionally equivalent to its non-GM comparator and the non-GM reference varieties tested. In the case of accidental release of viable grains of the five-event stack maize into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in the 14 maize subcombinations not previously assessed and concludes that these are expected to be as safe as and nutritionally equivalent to the single events, the previously assessed subcombinations and the five-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of the five-event stack maize. Post-market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the five-event stack maize and its subcombinations are as safe as its non-GM comparator and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
39
|
Lanzoni A, Castoldi AF, Kass GE, Terron A, De Seze G, Bal-Price A, Bois FY, Delclos KB, Doerge DR, Fritsche E, Halldorsson T, Kolossa-Gehring M, Hougaard Bennekou S, Koning F, Lampen A, Leist M, Mantus E, Rousselle C, Siegrist M, Steinberg P, Tritscher A, Van de Water B, Vineis P, Walker N, Wallace H, Whelan M, Younes M. Advancing human health risk assessment. EFSA J 2019; 17:e170712. [PMID: 32626449 PMCID: PMC7015480 DOI: 10.2903/j.efsa.2019.e170712] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The current/traditional human health risk assessment paradigm is challenged by recent scientific and technical advances, and ethical demands. The current approach is considered too resource intensive, is not always reliable, can raise issues of reproducibility, is mostly animal based and does not necessarily provide an understanding of the underlying mechanisms of toxicity. From an ethical and scientific viewpoint, a paradigm shift is required to deliver testing strategies that enable reliable, animal-free hazard and risk assessments, which are based on a mechanistic understanding of chemical toxicity and make use of exposure science and epidemiological data. This shift will require a new philosophy, new data, multidisciplinary expertise and more flexible regulations. Re-engineering of available data is also deemed necessary as data should be accessible, readable, interpretable and usable. Dedicated training to build the capacity in terms of expertise is necessary, together with practical resources allocated to education. The dialogue between risk assessors, risk managers, academia and stakeholders should be promoted further to understand scientific and societal needs. Genuine interest in taking risk assessment forward should drive the change and should be supported by flexible funding. This publication builds upon presentations made and discussions held during the break-out session 'Advancing risk assessment science - Human health' at EFSA's third Scientific Conference 'Science, Food and Society' (Parma, Italy, 18-21 September 2018).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frédéric Y Bois
- French National Institute for Industrial Environment and Risks FR
| | - K Barry Delclos
- National Center for Toxicological Research US Food and Drug Administration USA
| | - Daniel R Doerge
- National Center for Toxicological Research US Food and Drug Administration USA
| | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine DE
| | | | | | | | | | | | | | - Ellen Mantus
- The National Academies of Sciences, Engineering, and Medicine USA
| | | | | | | | | | - Bob Van de Water
- Drug Discovery and Safety Leiden Academic Centre for Drug Research Leiden University NL
| | | | - Nigel Walker
- National Toxicology Program/National Institute of Environmental Health Sciences USA
| | - Heather Wallace
- Institute of Medical Sciences University of Aberdeen Scotland UK
| | | | | |
Collapse
|
40
|
Naegeli H, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Álvarez F, Ardizzone M, De Sanctis G, Fernandez Dumont A, Gennaro A, Gómez Ruiz JÁ, Lanzoni A, Neri FM, Paraskevopoulos K, Raffaello T. Assessment of genetically modified maize MON 87427 × MON 89034 × MIR162 × NK603 and subcombinations, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2016-131). EFSA J 2019; 17:e05734. [PMID: 32626365 PMCID: PMC7009141 DOI: 10.2903/j.efsa.2019.5734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Maize MON 87427 × MON 89034 × MIR162 × NK603 (four-event stack maize) was produced by conventional crossing to combine four single events: MON 87427, MON 89034, MIR162 and NK603. The GMO Panel previously assessed the four single maize events and four of the subcombinations did not identify safety concerns. No new data on the single maize events or the four subcombinations that could lead to modification of the original conclusions on their safety were identified. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the four-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that the four-event stack maize, as described in this application, is as safe as and nutritionally equivalent to its non-GM comparator and the non-GM reference varieties tested. In the case of accidental release of viable grains of the four-event stack maize into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in the six maize subcombinations not previously assessed and concludes that these are expected to be as safe as and nutritionally equivalent to the single events, the previously assessed subcombinations and the four-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of the four-event stack maize. Post-market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the four-event stack maize and its subcombinations are as safe as its non-GM comparator and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
41
|
Schiemann J, Dietz-Pfeilstetter A, Hartung F, Kohl C, Romeis J, Sprink T. Risk Assessment and Regulation of Plants Modified by Modern Biotechniques: Current Status and Future Challenges. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:699-726. [PMID: 30822113 DOI: 10.1146/annurev-arplant-050718-100025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This review describes the current status and future challenges of risk assessment and regulation of plants modified by modern biotechniques, namely genetic engineering and genome editing. It provides a general overview of the biosafety and regulation of genetically modified plants and details different regulatory frameworks with a focus on the European situation. The environmental risk and safety assessment of genetically modified plants is explained, and aspects of toxicological assessments are discussed, especially the controversial debate in Europe on the added scientific value of untargeted animal feeding studies. Because RNA interference (RNAi) is increasingly explored for commercial applications, the risk and safety assessment of RNAi-based genetically modified plants is also elucidated. The production, detection, and identification of genome-edited plants are described. Recent applications of modern biotechniques, namely synthetic biology and gene drives, are discussed, and a short outlook on the future follows.
Collapse
Affiliation(s)
- Joachim Schiemann
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Antje Dietz-Pfeilstetter
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Frank Hartung
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Christian Kohl
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland
| | - Thorben Sprink
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| |
Collapse
|
42
|
Steinberg P, van der Voet H, Goedhart PW, Kleter G, Kok EJ, Pla M, Nadal A, Zeljenková D, Aláčová R, Babincová J, Rollerová E, Jaďuďová S, Kebis A, Szabova E, Tulinská J, Líšková A, Takácsová M, Mikušová ML, Krivošíková Z, Spök A, Racovita M, de Vriend H, Alison R, Alison C, Baumgärtner W, Becker K, Lempp C, Schmicke M, Schrenk D, Pöting A, Schiemann J, Wilhelm R. Lack of adverse effects in subchronic and chronic toxicity/carcinogenicity studies on the glyphosate-resistant genetically modified maize NK603 in Wistar Han RCC rats. Arch Toxicol 2019; 93:1095-1139. [PMID: 30756133 PMCID: PMC7261740 DOI: 10.1007/s00204-019-02400-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
In 2012, a controversial study on the long-term toxicity of a Roundup herbicide and the glyphosate-tolerant genetically modified (GM) maize NK603 was published. The EC-funded G-TwYST research consortium tested the potential subchronic and chronic toxicity as well as the carcinogenicity of the glyphosate-resistant genetically modified maize NK603 by performing two 90-day feeding trials, one with GM maize inclusion rates of 11 and 33% and one with inclusion rates of up to 50%, as well as a 2-year feeding trial with inclusion rates of 11 and 33% in male and female Wistar Han RCC rats by taking into account OECD Guidelines for the testing of chemicals and EFSA recommendations on the safety testing of whole-food/feed in laboratory animals. In all three trials, the NK603 maize, untreated and treated once with Roundup during its cultivation, and the conventional counterpart were tested. Differences between each test group and the control group were evaluated. Equivalence was assessed by comparing the observed difference to differences between non-GM reference groups in previous studies. In case of significant differences, whether the effects were dose-related and/or accompanied by changes in related parameters including histopathological findings was evaluated. It is concluded that no adverse effects related to the feeding of the NK603 maize cultivated with or without Roundup for up to 2 years were observed. Based on the outcome of the subchronic and combined chronic toxicity/carcinogenicity studies, recommendations on the scientific justification and added value of long-term feeding trials in the GM plant risk assessment process are presented.
Collapse
Affiliation(s)
- Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany.
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany.
| | - Hilko van der Voet
- Wageningen University and Research, Biometris, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Paul W Goedhart
- Wageningen University and Research, Biometris, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Gijs Kleter
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Esther J Kok
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Maria Pla
- Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, 17003, Girona, Spain
- CRAG-CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193, Cerdanyola, Spain
| | - Anna Nadal
- Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Dagmar Zeljenková
- Slovak Medical University, Faculty of Public Health, Limbová 12, 83303, Bratislava, Slovakia
| | - Radka Aláčová
- Slovak Medical University, Faculty of Public Health, Limbová 12, 83303, Bratislava, Slovakia
| | - Júlia Babincová
- Slovak Medical University, Faculty of Public Health, Limbová 12, 83303, Bratislava, Slovakia
| | - Eva Rollerová
- Slovak Medical University, Faculty of Public Health, Limbová 12, 83303, Bratislava, Slovakia
| | - Soňa Jaďuďová
- Slovak Medical University, Faculty of Public Health, Limbová 12, 83303, Bratislava, Slovakia
| | - Anton Kebis
- Slovak Medical University, Faculty of Public Health, Limbová 12, 83303, Bratislava, Slovakia
| | - Elena Szabova
- Slovak Medical University, Faculty of Public Health, Limbová 12, 83303, Bratislava, Slovakia
| | - Jana Tulinská
- Slovak Medical University, Faculty of Medicine, Limbová 12, 83303, Bratislava, Slovakia
| | - Aurélia Líšková
- Slovak Medical University, Faculty of Medicine, Limbová 12, 83303, Bratislava, Slovakia
| | - Melinda Takácsová
- Slovak Medical University, Faculty of Medicine, Limbová 12, 83303, Bratislava, Slovakia
| | | | - Zora Krivošíková
- Slovak Medical University, Faculty of Medicine, Limbová 12, 83303, Bratislava, Slovakia
| | - Armin Spök
- Graz University of Technology, Schlögelgasse 2, 8010, Graz, Austria
- Alpen-Adria Universität Klagenfurt, Schlögelgasse 2, 8010, Graz, Austria
| | - Monica Racovita
- Alpen-Adria Universität Klagenfurt, Schlögelgasse 2, 8010, Graz, Austria
- Global Sustainability Institute, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| | - Huib de Vriend
- LIS Consult, Hogesteeg 9, 3972 JS, Driebergen, The Netherlands
| | | | | | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Charlotte Lempp
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Marion Schmicke
- Clinic for Cattle, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Annette Pöting
- Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Joachim Schiemann
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Ralf Wilhelm
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| |
Collapse
|
43
|
Naegeli H, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Devos Y, Ardizzone M, Neri FM, Papadopoulou N, De Sanctis G, Dumont AF, Gennaro A, Gomez Ruiz JA, Paraskevopoulos K. Assessment of genetically modified maize MZHG0JG for food and feed uses, import and processing under Regulation (EC) No 1829/2003 (application EFSA-GMO-DE-2016-133). EFSA J 2018; 16:e05469. [PMID: 32625751 PMCID: PMC7009398 DOI: 10.2903/j.efsa.2018.5469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The scope of application EFSA-GMO-DE-2016-133 is for food and feed uses, import and processing of genetically modified (GM) maize MZHG0JG in the European Union. Maize MZHG0JG was developed to confer tolerance to the herbicidal active substances glyphosate and glufosinate-ammonium. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MZHG0JG and its conventional counterpart needs further assessment, except for early stand count (pre-thinning). The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the mEPSPS and PAT proteins as expressed in maize MZHG0JG, and finds no evidence that the genetic modification would change the overall allergenicity of maize MZHG0JG. The nutritional impact of food/feed derived from maize MZHG0JG is expected to be the same as that of food/feed derived from the conventional counterpart and commercial non-GM maize reference varieties. The GMO Panel concludes that maize MZHG0JG is nutritionally equivalent to and as safe as the conventional counterpart and non-GM maize reference varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MZHG0JG grains into the environment, maize MZHG0JG would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MZHG0JG. In conclusion, the GMO Panel considers that maize MZHG0JG, as described in this application, is as safe as its conventional counterpart and the tested non-GM maize reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
44
|
Naegeli H, Birch AN, Casacuberta J, De Schrijver A, Gralak MA, Jones H, Manachini B, Messéan A, Nielsen EE, Nogué F, Robaglia C, Rostoks N, Sweet J, Tebbe C, Visioli F, Wal JM, Álvarez F, Ardizzone M, Fernandez Dumont A, Gómez Ruiz JÁ, Papadopoulou N, Paraskevopoulos K. Assessment of genetically modified soybean MON 87751 for food and feed uses under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2014-121). EFSA J 2018; 16:e05346. [PMID: 32626010 PMCID: PMC7009513 DOI: 10.2903/j.efsa.2018.5346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Soybean MON 87751 was developed through Agrobacterium tumefaciens-mediated transformation to provide protection certain specific lepidopteran pests by the expression of the Cry1A.105 and Cry2Ab2 proteins derived from Bacillus thuringiensis. The molecular characterisation data and bioinformatic analyses did not identify issues requiring assessment for food and feed safety. None of the compositional, agronomic and phenotypic differences identified between soybean MON 87751 and the conventional counterpart required further assessment. The GMO Panel did not identify safety concerns regarding the toxicity and allergenicity of the Cry1A.105 and Cry2Ab2 proteins as expressed in soybean MON 87751, and found no evidence that the genetic modification might significantly change the overall allergenicity of soybean MON 87751. The nutritional impact of soybean MON 87751-derived food and feed is expected to be the same as those derived from the conventional counterpart and non-GM commercial reference varieties. The GMO Panel concludes that soybean MON 87751, as described in this application, is nutritionally equivalent to and as safe as the conventional counterpart and the non-GM soybean reference varieties tested, and no post-market monitoring of food and feed is considered necessary. In the case of accidental release of viable soybean MON 87751 seeds into the environment, soybean MON 87751 would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of soybean MON 87751. In conclusion, soybean MON 87751, as described in this application, is as safe as its conventional counterpart and the tested non-GM soybean reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
45
|
Naegeli H, Birch AN, Casacuberta J, De Schrijver A, Gralak MA, Guerche P, Jones H, Manachini B, Messéan A, Nielsen EE, Nogué F, Robaglia C, Rostoks N, Sweet J, Tebbe C, Visioli F, Wal J, Ardizzone M, Fernandez‐Dumont A, Gennaro A, Gómez Ruiz JÁ, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K. Assessment of genetically modified cotton GHB614 × T304‐40 × GHB119 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐NL‐2014‐122). EFSA J 2018; 16:e05349. [PMID: 32625984 PMCID: PMC7009458 DOI: 10.2903/j.efsa.2018.5349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
46
|
Naegeli H, Birch AN, Casacuberta J, De Schrijver A, Gralak MA, Guerche P, Jones H, Manachini B, Messéan A, Nielsen EE, Nogué F, Robaglia C, Rostoks N, Sweet J, Tebbe C, Visioli F, Wal JM, Ardizzone M, De Sanctis G, Fernandez Dumont A, Gennaro A, Gómez Ruiz JA, Lanzoni A, Neri FM, Papadopoulou N, Paraskevopoulos K, Ramon M. Assessment of genetically modified maize MON 87411 for food and feed uses, import and processing, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2015-124). EFSA J 2018; 16:e05310. [PMID: 32625943 PMCID: PMC7009500 DOI: 10.2903/j.efsa.2018.5310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Maize MON 87411 was developed to confer resistance to corn rootworms (Diabrotica spp.) by the expression of a modified version of the Bacillus thuringiensis cry3Bb1 gene and a DvSnf7 dsRNA expression cassette, and tolerance to glyphosate‐containing herbicides by the expression of a CP4 5‐enolpyruvylshikimate‐3‐phosphate synthase (cp4 epsps) gene. The molecular characterisation data and bioinformatics analyses did not identify issues requiring assessment for food and feed safety. No statistically significant differences in the agronomic and phenotypic characteristics tested between maize MON 87411 and its conventional counterpart were identified. The compositional analysis of maize MON 87411 did not identify differences that required further assessment except for palmitic acid levels in grains from not treated maize MON 87411. The GMO Panel did not identify safety concerns regarding the toxicity and allergenicity of the Cry3Bb1 and CP4 EPSPS proteins, as expressed in maize MON 87411 and found no evidence that the genetic modification might significantly change the overall allergenicity of maize MON 87411. The nutritional impact of maize MON 87411‐derived food and feed is expected to be the same as those derived from the conventional counterpart and non‐GM commercial reference varieties. The GMO Panel concludes that maize MON 87411, as described in this application, is nutritionally equivalent to and as safe as the conventional counterpart and the non‐GM maize reference varieties tested, and no post‐market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 87411 grains into the environment, maize MON 87411 would not raise environmental safety concerns. The post‐market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 87411. The GMO Panel concludes that maize MON 87411, as described in this application, is as safe as its conventional counterpart and the tested non‐GM maize reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
47
|
Naegeli H, Birch AN, Casacuberta J, De Schrijver A, Gralak MA, Guerche P, Jones H, Manachini B, Messéan A, Nielsen EE, Nogué F, Robaglia C, Rostoks N, Sweet J, Tebbe C, Visioli F, Wal JM, Àlvarez F, Ardizzone M, Paraskevopoulos K, Broll H, Devos Y, Fernandez Dumont A, Gómez Ruiz JÁ, Lanzoni A, Neri FM, Olaru I, Papadopoulou N. Assessment of genetically modified maize 4114 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2014-123). EFSA J 2018; 16:e05280. [PMID: 32625917 PMCID: PMC7009370 DOI: 10.2903/j.efsa.2018.5280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Maize 4114 was developed through Agrobacterium tumefaciens-mediated transformation to provide protection against certain lepidopteran and coleopteran pests by expression of the Cry1F, Cry34Ab1 and Cry35Ab1 proteins derived from Bacillus thuringiensis, and tolerance to the herbicidal active ingredient glufosinate-ammonium by expression of the PAT protein derived from Streptomyces viridochromogenes. The molecular characterisation data did not identify issues requiring assessment for food/feed safety. None of the compositional, agronomic and phenotypic differences identified between maize 4114 and the non-genetically modified (GM) comparator(s) required further assessment. There were no concerns regarding the potential toxicity and allergenicity of the newly expressed proteins Cry1F, Cry34Ab1, Cry35Ab1 and PAT, and no evidence that the genetic modification might significantly change the overall allergenicity of maize 4114. The nutritional value of food/feed derived from maize 4114 is not expected to differ from that derived from non-GM maize varieties and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize 4114 grains into the environment, maize 4114 would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize 4114. The genetically modified organism (GMO) Panel concludes that maize 4114 is as safe as the non-GM comparator(s) and non-GM reference varieties with respect to potential effects on human and animal health and the environment in the context of the scope of this application.
Collapse
|
48
|
Papineni S, Passage JK, Ekmay RD, Thomas J. Evaluation of 30% DAS-444Ø6-6 soybean meal in a subchronic rat toxicity study. Regul Toxicol Pharmacol 2018; 94:57-69. [PMID: 29317244 DOI: 10.1016/j.yrtph.2018.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 11/23/2022]
Abstract
Event DAS-444Ø6-6 soybean is genetically modified (GM) to provide tolerance to 2,4-diclorophenoxyacetic acid (2,4-D), glyphosate, and glufosinate herbicides through expression of the AAD-12, 2mEPSPS, and PAT proteins, respectively. DAS-444Ø6-6 soybeans were evaluated for safety in subchronic rat feeding studies. The results from two previous subchronic rat feeding studies evaluating diets formulated with 20% inclusion of DAS-444Ø6-6 soybean meal (the latter also containing DAS-444Ø6-6 derived hulls and oil) did not show any treatment-related adverse effects. In 2017, to comply with recent guidance from EFSA, a third 90-day rat feeding study was conducted with Sprague-Dawley rats (16/sex/group) with diets formulated either with 15% or 30% w/w of toasted DAS-444Ø6-6 soybean meal. DAS-444Ø6-6 soybean hulls and oil were also added to the transgenic test diets at 1% or 2% w/w and 1.35% or 2.7%, respectively, for the low- and high-dose groups. No toxicologically significant effects were observed under the conditions of this study.
Collapse
Affiliation(s)
| | - Julie K Passage
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674, USA
| | | | - Johnson Thomas
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674, USA
| |
Collapse
|
49
|
Naegeli H, Birch AN, Casacuberta J, De Schrijver A, Gralak MA, Guerche P, Jones H, Manachini B, Messéan A, Nielsen EE, Nogué F, Robaglia C, Rostoks N, Sweet J, Tebbe C, Visioli F, Wal JM, Devos Y, Broll H, Ramon M. Assessment of genetically modified maize MON 87403 for food and feed uses, import and processing, under Regulation (EC) No 1829/2003 (application EFSA-GMO-BE-2015-125). EFSA J 2018; 16:e05225. [PMID: 32625854 PMCID: PMC7009425 DOI: 10.2903/j.efsa.2018.5225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Maize MON 87403 was developed to increase ear biomass at early reproductive phase through the expression of a modified AtHB17 gene from Arabidopsis thaliana, encoding a plant transcription factor of the HD-Zip II family. The molecular characterisation data and bioinformatic analyses did not identify issues requiring assessment for food and feed safety. No statistically significant differences in the agronomic and phenotypic characteristics tested between maize MON 87403 and its conventional counterpart were identified. The compositional analysis of maize MON 87403 did not identify differences that require further assessment. The GMO Panel did not identify safety concerns regarding the toxicity and allergenicity of the AtHB17∆113 protein, as expressed in maize MON 87403. The nutritional value of food and feed derived from maize MON 87403 is not expected to differ from that of food and feed derived from non-genetically modified (GM) maize varieties. Based on the outcome of the studies considered in the comparative analysis and molecular characterisation, the GMO Panel concludes that maize MON 87403 is as safe and nutritious as the conventional counterpart and the non-GM maize reference varieties tested. In the case of accidental release of viable maize MON 87403 grains into the environment, maize MON 87403 would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 87403. In conclusion, the GMO Panel considers that maize MON 87403, as described in this application, is as safe as its conventional counterpart and the tested non-GM maize reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
50
|
Hong B, Du Y, Mukerji P, Roper JM, Appenzeller LM. Safety Assessment of Food and Feed from GM Crops in Europe: Evaluating EFSA's Alternative Framework for the Rat 90-day Feeding Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5545-5560. [PMID: 28573861 DOI: 10.1021/acs.jafc.7b01492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Regulatory-compliant rodent subchronic feeding studies are compulsory regardless of a hypothesis to test, according to recent EU legislation for the safety assessment of whole food/feed produced from genetically modified (GM) crops containing a single genetic transformation event (European Union Commission Implementing Regulation No. 503/2013). The Implementing Regulation refers to guidelines set forth by the European Food Safety Authority (EFSA) for the design, conduct, and analysis of rodent subchronic feeding studies. The set of EFSA recommendations was rigorously applied to a 90-day feeding study in Sprague-Dawley rats. After study completion, the appropriateness and applicability of these recommendations were assessed using a battery of statistical analysis approaches including both retrospective and prospective statistical power analyses as well as variance-covariance decomposition. In the interest of animal welfare considerations, alternative experimental designs were investigated and evaluated in the context of informing the health risk assessment of food/feed from GM crops.
Collapse
Affiliation(s)
- Bonnie Hong
- Pioneer Hi-Bred International, Inc. , Johnston, Iowa 50131, United States
| | - Yingzhou Du
- Pioneer Hi-Bred International, Inc. , Johnston, Iowa 50131, United States
- Iowa State University , Snedecor Hall, Ames, Iowa 50011, United States
| | - Pushkor Mukerji
- DuPont Haskell Global Centers for Health and Environmental Sciences , Newark, Delaware 19711, United States
| | - Jason M Roper
- DuPont Haskell Global Centers for Health and Environmental Sciences , Newark, Delaware 19711, United States
| | | |
Collapse
|