1
|
Chen Y, De Schutter K. Biosafety aspects of RNAi-based pests control. PEST MANAGEMENT SCIENCE 2024; 80:3697-3706. [PMID: 38520331 DOI: 10.1002/ps.8098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 03/25/2024]
Abstract
While the overuse of classical chemical pesticides has had a detrimental impact on the environment and human health, the discovery of RNA interference (RNAi) offered the opportunity to develop new and sustainable approaches for pest management. RNAi is a naturally occurring regulation and defense mechanism that can be exploited to effectively protect crops by silencing key genes affecting the growth, development, behavior or fecundity of pests. However, as with all technologies, there is a range of potential risks and challenges associated with the application of RNAi, such as dsRNA stability, the potential for off-target effects, the safety of non-target organisms, and other application challenges. A better understanding of the molecular mechanisms involved in RNAi and in-depth discussion and analysis of these associated safety risks, is required to limit or mitigate potential adverse effects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yimeng Chen
- Molecular Entomology Lab, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Molecular Entomology Lab, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Achar J, Cronin MTD, Firman JW, Öberg G. A problem formulation framework for the application of in silico toxicology methods in chemical risk assessment. Arch Toxicol 2024; 98:1727-1740. [PMID: 38555325 PMCID: PMC11106140 DOI: 10.1007/s00204-024-03721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
The first step in the hazard or risk assessment of chemicals should be to formulate the problem through a systematic and iterative process aimed at identifying and defining factors critical to the assessment. However, no general agreement exists on what components an in silico toxicology problem formulation (PF) should include. The present work aims to develop a PF framework relevant to the application of in silico models for chemical toxicity prediction. We modified and applied a PF framework from the general risk assessment literature to peer reviewed papers describing PFs associated with in silico toxicology models. Important gaps between the general risk assessment literature and the analyzed PF literature associated with in silico toxicology methods were identified. While the former emphasizes the need for PFs to address higher-level conceptual questions, the latter does not. There is also little consistency in the latter regarding the PF components addressed, reinforcing the need for a PF framework that enable users of in silico toxicology models to answer the central conceptual questions aimed at defining components critical to the model application. Using the developed framework, we highlight potential areas of uncertainty manifestation in in silico toxicology PF in instances where particular components are missing or implicitly described. The framework represents the next step in standardizing in silico toxicology PF component. The framework can also be used to improve the understanding of how uncertainty is apparent in an in silico toxicology PF, thus facilitating ways to address uncertainty.
Collapse
Affiliation(s)
- Jerry Achar
- Institute for Resources Environment, and Sustainability, The University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - James W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Gunilla Öberg
- Institute for Resources Environment, and Sustainability, The University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
3
|
Kormos A, Dimopoulos G, Bier E, Lanzaro GC, Marshall JM, James AA. Conceptual risk assessment of mosquito population modification gene-drive systems to control malaria transmission: preliminary hazards list workshops. Front Bioeng Biotechnol 2023; 11:1261123. [PMID: 37965050 PMCID: PMC10641379 DOI: 10.3389/fbioe.2023.1261123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The field-testing and eventual adoption of genetically-engineered mosquitoes (GEMs) to control vector-borne pathogen transmission will require them meeting safety criteria specified by regulatory authorities in regions where the technology is being considered for use and other locales that might be impacted. Preliminary risk considerations by researchers and developers may be useful for planning the baseline data collection and field research used to address the anticipated safety concerns. Part of this process is to identify potential hazards (defined as the inherent ability of an entity to cause harm) and their harms, and then chart the pathways to harm and evaluate their probability as part of a risk assessment. The University of California Malaria Initiative (UCMI) participated in a series of workshops held to identify potential hazards specific to mosquito population modification strains carrying gene-drive systems coupled to anti-parasite effector genes and their use in a hypothetical island field trial. The hazards identified were placed within the broader context of previous efforts discussed in the scientific literature. Five risk areas were considered i) pathogens, infections and diseases, and the impacts of GEMs on human and animal health, ii) invasiveness and persistence of GEMs, and interactions of GEMs with target organisms, iii) interactions of GEMs with non-target organisms including horizontal gene transfer, iv) impacts of techniques used for the management of GEMs and v) evolutionary and stability considerations. A preliminary hazards list (PHL) was developed and is made available here. This PHL is useful for internal project risk evaluation and is available to regulators at prospective field sites. UCMI project scientists affirm that the subsequent processes associated with the comprehensive risk assessment for the application of this technology should be driven by the stakeholders at the proposed field site and areas that could be affected by this intervention strategy.
Collapse
Affiliation(s)
- Ana Kormos
- Vector Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, United States
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Anthony A. James
- Departments of Microbiology and Molecular Genetics and Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Wolf S, Collatz J, Enkerli J, Widmer F, Romeis J. Assessing potential hybridization between a hypothetical gene drive-modified Drosophila suzukii and nontarget Drosophila species. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:1921-1932. [PMID: 36693350 DOI: 10.1111/risa.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Genetically engineered gene drives (geGD) are potentially powerful tools for suppressing or even eradicating populations of pest insects. Before living geGD insects can be released into the environment, they must pass an environmental risk assessment to ensure that their release will not cause unacceptable harm to non-targeted entities of the environment. A key research question concerns the likelihood that nontarget species will acquire the functional GD elements; such acquisition could lead to reduced abundance or loss of those species and to a disruption of the ecosystem services they provide. The main route for gene flow is through hybridization between the geGD insect strain and closely related species that co-occur in the area of release and its expected dispersal. Using the invasive spotted-wing drosophila, Drosophila suzukii, as a case study, we provide a generally applicable strategy on how a combination of interspecific hybridization experiments, behavioral observations, and molecular genetic analyses can be used to assess the potential for hybridization.
Collapse
Affiliation(s)
- Sarah Wolf
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
- Institute for Plant Sciences, University of Bern, Bern, Switzerland
| | - Jana Collatz
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| | - Jürg Enkerli
- Molecular Ecology, Agroscope, Zürich, Switzerland
| | | | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| |
Collapse
|
5
|
Connolly JB, Mumford JD, Glandorf DCM, Hartley S, Lewis OT, Evans SW, Turner G, Beech C, Sykes N, Coulibaly MB, Romeis J, Teem JL, Tonui W, Lovett B, Mankad A, Mnzava A, Fuchs S, Hackett TD, Landis WG, Marshall JM, Aboagye-Antwi F. Recommendations for environmental risk assessment of gene drive applications for malaria vector control. Malar J 2022; 21:152. [PMID: 35614489 PMCID: PMC9131534 DOI: 10.1186/s12936-022-04183-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022] Open
Abstract
Building on an exercise that identified potential harms from simulated investigational releases of a population suppression gene drive for malaria vector control, a series of online workshops identified nine recommendations to advance future environmental risk assessment of gene drive applications.
Collapse
Affiliation(s)
- John B Connolly
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK.
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, Silwood Park, Sunninghill, Ascot, UK
| | | | | | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, UK
| | - Sam Weiss Evans
- Program On Science, Technology & Society, John F. Kennedy School of Government, Harvard University, Cambridge, MA, USA
| | - Geoff Turner
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK
| | | | - Naima Sykes
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK
| | - Mamadou B Coulibaly
- Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| | - John L Teem
- Genetic Biocontrols LLC, Tallahassee, FL, USA
| | - Willy Tonui
- Environmental Health and Safety (EHS Consultancy) Ltd, Nairobi, Kenya
| | - Brian Lovett
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, USA
| | - Aditi Mankad
- CSIRO Synthetic Biology Future Science Platform, CSIRO Land & Water, Brisbane, Australia
| | - Abraham Mnzava
- African Leaders Malaria Alliance, Dar es Salaam, Tanzania
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK
| | | | - Wayne G Landis
- Institute of Environmental Toxicology and Chemistry, College of the Environment, Western Washington University, Bellingham, WA, USA
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, USA
| | - Fred Aboagye-Antwi
- Department of Animal Biology and Conservation Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
6
|
Brock TCM, Elliott KC, Gladbach A, Moermond C, Romeis J, Seiler T, Solomon K, Peter Dohmen G. Open Science in regulatory environmental risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:1229-1242. [PMID: 33913617 PMCID: PMC8596791 DOI: 10.1002/ieam.4433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/22/2021] [Accepted: 04/16/2021] [Indexed: 05/14/2023]
Abstract
A possible way to alleviate the public skepticism toward regulatory science is to increase transparency by making all data and value judgments used in regulatory decision making accessible for public interpretation, ideally early on in the process, and following the concepts of Open Science. This paper discusses the opportunities and challenges in strengthening Open Science initiatives in regulatory environmental risk assessment (ERA). In this discussion paper, we argue that the benefits associated with Open Science in regulatory ERA far outweigh its perceived risks. All stakeholders involved in regulatory ERA (e.g., governmental regulatory authorities, private sector, academia, and nongovernmental organizations), as well as professional organizations like the Society of Environmental Toxicology and Chemistry, can play a key role in supporting the Open Science initiative, by promoting the use of recommended reporting criteria for reliability and relevance of data and tools used in ERA, and by developing a communication strategy for both professionals and nonprofessionals to transparently explain the socioeconomic value judgments and scientific principles underlying regulatory ERA. Integr Environ Assess Manag 2021;17:1229-1242. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Kevin C. Elliott
- Department of Fisheries and WildlifeLyman Briggs College Department of PhilosophyMichigan State UniversityEast LansingMichiganUSA
- Department of PhilosophyLyman Briggs CollegeMichigan State UniversityEast LansingMichiganUSA
| | | | - Caroline Moermond
- National Institute for Public Health and the Environment (RIVM)UtrechtThe Netherlands
| | - Jörg Romeis
- Research Division Agroecology and EnvironmentAgroscopeZurichSwitzerland
| | - Thomas‐Benjamin Seiler
- Hygiene‐Institut des RuhrgebietsGelsenkirchenGermany
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | | | | |
Collapse
|
7
|
Tarazona D, Tarazona G, Tarazona JV. A Simplified Population-Level Landscape Model Identifying Ecological Risk Drivers of Pesticide Applications, Part One: Case Study for Large Herbivorous Mammals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7720. [PMID: 34360014 PMCID: PMC8345457 DOI: 10.3390/ijerph18157720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Environmental risk assessment is a key process for the authorization of pesticides, and is subjected to continuous challenges and updates. Current approaches are based on standard scenarios and independent substance-crop assessments. This arrangement does not address the complexity of agricultural ecosystems with mammals feeding on different crops. This work presents a simplified model for regulatory use addressing landscape variability, co-exposure to several pesticides, and predicting the effect on population abundance. The focus is on terrestrial vertebrates and the aim is the identification of the key risk drivers impacting on mid-term population dynamics. The model is parameterized for EU assessments according to the European Food Safety Authority (EFSA) Guidance Document, but can be adapted to other regulatory schemes. The conceptual approach includes two modules: (a) the species population dynamics, and (b) the population impact of pesticide exposure. Population dynamics is modelled through daily survival and seasonal reproductions rates; which are modified in case of pesticide exposure. All variables, parameters, and functions can be modified. The model has been calibrated with ecological data for wild rabbits and brown hares and tested for two herbicides, glyphosate and bromoxynil, using validated toxicity data extracted from EFSA assessments. Results demonstrate that the information available for a regulatory assessment, according to current EU information requirements, is sufficient for predicting the impact and possible consequences at population dynamic levels. The model confirms that agroecological parameters play a key role when assessing the effect of pesticide exposure on population abundance. The integration of laboratory toxicity studies with this simplified landscape model allows for the identification of conditions leading to population vulnerability or resilience. An Annex includes a detailed assessment of the model characteristics according to the EFSA scheme on Good Modelling Practice.
Collapse
Affiliation(s)
| | | | - Jose V. Tarazona
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority, 43126 Parma, Italy
| |
Collapse
|
8
|
Connolly JB, Mumford JD, Fuchs S, Turner G, Beech C, North AR, Burt A. Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa. Malar J 2021; 20:170. [PMID: 33781254 PMCID: PMC8006393 DOI: 10.1186/s12936-021-03674-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Population suppression gene drive has been proposed as a strategy for malaria vector control. A CRISPR-Cas9-based transgene homing at the doublesex locus (dsxFCRISPRh) has recently been shown to increase rapidly in frequency in, and suppress, caged laboratory populations of the malaria mosquito vector Anopheles gambiae. Here, problem formulation, an initial step in environmental risk assessment (ERA), was performed for simulated field releases of the dsxFCRISPRh transgene in West Africa. METHODS Building on consultative workshops in Africa that previously identified relevant environmental and health protection goals for ERA of gene drive in malaria vector control, 8 potentially harmful effects from these simulated releases were identified. These were stratified into 46 plausible pathways describing the causal chain of events that would be required for potential harms to occur. Risk hypotheses to interrogate critical steps in each pathway, and an analysis plan involving experiments, modelling and literature review to test each of those risk hypotheses, were developed. RESULTS Most potential harms involved increased human (n = 13) or animal (n = 13) disease transmission, emphasizing the importance to subsequent stages of ERA of data on vectorial capacity comparing transgenics to non-transgenics. Although some of the pathways (n = 14) were based on known anatomical alterations in dsxFCRISPRh homozygotes, many could also be applicable to field releases of a range of other transgenic strains of mosquito (n = 18). In addition to population suppression of target organisms being an accepted outcome for existing vector control programmes, these investigations also revealed that the efficacy of population suppression caused by the dsxFCRISPRh transgene should itself directly affect most pathways (n = 35). CONCLUSIONS Modelling will play an essential role in subsequent stages of ERA by clarifying the dynamics of this relationship between population suppression and reduction in exposure to specific potential harms. This analysis represents a comprehensive identification of plausible pathways to potential harm using problem formulation for a specific gene drive transgene and organism, and a transparent communication tool that could inform future regulatory studies, guide subsequent stages of ERA, and stimulate further, broader engagement on the use of population suppression gene drive to control malaria vectors in West Africa.
Collapse
Affiliation(s)
- John B Connolly
- Department of Life Sciences, Imperial College London, London, UK.
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, London, UK
| | - Geoff Turner
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Ace R North
- Department of Zoology, University of Oxford, Oxford, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
9
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Bonsall MB, Mumford J, Wimmer EA, Devos Y, Paraskevopoulos K, Firbank LG. Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives. EFSA J 2020; 18:e06297. [PMID: 33209154 PMCID: PMC7658669 DOI: 10.2903/j.efsa.2020.6297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in molecular and synthetic biology are enabling the engineering of gene drives in insects for disease vector/pest control. Engineered gene drives (that bias their own inheritance) can be designed either to suppress interbreeding target populations or modify them with a new genotype. Depending on the engineered gene drive system, theoretically, a genetic modification of interest could spread through target populations and persist indefinitely, or be restricted in its spread or persistence. While research on engineered gene drives and their applications in insects is advancing at a fast pace, it will take several years for technological developments to move to practical applications for deliberate release into the environment. Some gene drive modified insects (GDMIs) have been tested experimentally in the laboratory, but none has been assessed in small-scale confined field trials or in open release trials as yet. There is concern that the deliberate release of GDMIs in the environment may have possible irreversible and unintended consequences. As a proactive measure, the European Food Safety Authority (EFSA) has been requested by the European Commission to review whether its previously published guidelines for the risk assessment of genetically modified animals (EFSA, 2012 and 2013), including insects (GMIs), are adequate and sufficient for GDMIs, primarily disease vectors, agricultural pests and invasive species, for deliberate release into the environment. Under this mandate, EFSA was not requested to develop risk assessment guidelines for GDMIs. In this Scientific Opinion, the Panel on Genetically Modified Organisms (GMO) concludes that EFSA's guidelines are adequate, but insufficient for the molecular characterisation (MC), environmental risk assessment (ERA) and post-market environmental monitoring (PMEM) of GDMIs. While the MC,ERA and PMEM of GDMIs can build on the existing risk assessment framework for GMIs that do not contain engineered gene drives, there are specific areas where further guidance is needed for GDMIs.
Collapse
|
10
|
Then C, Kawall K, Valenzuela N. Spatiotemporal Controllability and Environmental Risk Assessment of Genetically Engineered Gene Drive Organisms from the Perspective of European Union Genetically Modified Organism Regulation. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:555-568. [PMID: 32250054 PMCID: PMC7496464 DOI: 10.1002/ieam.4278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 03/30/2020] [Indexed: 05/12/2023]
Abstract
Gene drive organisms are a recent development created by using methods of genetic engineering; they inherit genetic constructs that are passed on to future generations with a higher probability than with Mendelian inheritance. There are some specific challenges inherent to the environmental risk assessment (ERA) of genetically engineered (GE) gene drive organisms because subsequent generations of these GE organisms might show effects that were not observed or intended in the former generations. Unintended effects can emerge from interaction of the gene drive construct with the heterogeneous genetic background of natural populations and/or be triggered by changing environmental conditions. This is especially relevant in the case of gene drives with invasive characteristics and typically takes dozens of generations to render the desired effect. Under these circumstances, "next generation effects" can substantially increase the spatial and temporal complexity associated with a high level of uncertainty in ERA. To deal with these problems, we suggest the introduction of a new additional step in the ERA of GE gene drive organisms that takes 3 criteria into account: the biology of the target organisms, their naturally occurring interactions with the environment (biotic and abiotic), and their intended biological characteristics introduced by genetic engineering. These 3 criteria are merged to form an additional step in ERA, combining specific "knowns" and integrating areas of "known unknowns" and uncertainties, with the aim of assessing the spatiotemporal controllability of GE gene drive organisms. The establishment of assessing spatiotemporal controllability can be used to define so-called "cut-off criteria" in the risk analysis of GE gene drive organisms: If it is likely that GE gene drive organisms escape spatiotemporal controllability, the risk assessment cannot be sufficiently reliable because it is not conclusive. Under such circumstances, the environmental release of the GE gene drive organisms would not be compatible with the precautionary principle (PP). Integr Environ Assess Manag 2020;16:555-568. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Christoph Then
- Testbiotech e.V., Institute for Independent Impact Assessment of BiotechnologyMunichGermany
| | | | - Nina Valenzuela
- Testbiotech e.V., Institute for Independent Impact Assessment of BiotechnologyMunichGermany
| |
Collapse
|
11
|
Romeis J, Widmer F. Assessing the Risks of Topically Applied dsRNA-Based Products to Non-target Arthropods. FRONTIERS IN PLANT SCIENCE 2020; 11:679. [PMID: 32582240 PMCID: PMC7289159 DOI: 10.3389/fpls.2020.00679] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
RNA interference (RNAi) is a powerful technology that offers new opportunities for pest control through silencing of genes that are essential for the survival of arthropod pests. The approach relies on sequence-specificity of applied double-stranded (ds) RNA that can be designed to have a very narrow spectrum of both the target gene product (RNA) as well as the target organism, and thus allowing highly targeted pest control. Successful RNAi has been reported from a number of arthropod species belonging to various orders. Pest control may be achieved by applying dsRNA as foliar sprays. One of the main concerns related to the use of dsRNA is adverse environmental effects particularly on valued non-target species. Arthropods form an important part of the biodiversity in agricultural landscapes and contribute important ecosystem services. Consequently, environmental risk assessment (ERA) for potential impacts that plant protection products may have on valued non-target arthropods is legally required prior to their placement on the market. We describe how problem formulation can be used to set the context and to develop plausible pathways on how the application of dsRNA-based products could harm valued non-target arthropod species, such as those contributing to biological pest control. The current knowledge regarding the exposure to and the hazard posed by dsRNA in spray products for non-target arthropods is reviewed and suggestions are provided on how to select the most suitable test species and to conduct laboratory-based toxicity studies that provide robust, reliable and interpretable results to support the ERA.
Collapse
Affiliation(s)
- Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Franco Widmer
- Competence Division Method Development and Analytics, Agroscope, Zurich, Switzerland
| |
Collapse
|
12
|
Dolezel M, Lüthi C, Gaugitsch H. Beyond limits – the pitfalls of global gene drives for environmental risk assessment in the European Union. ACTA ACUST UNITED AC 2020. [DOI: 10.3897/biorisk.15.49297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gene drive organisms (GDOs) have been suggested as approaches to combat some of the most pressing environmental and public health issues. No such organisms have so far been released into the environment, but it remains unclear whether the relevant regulatory provisions will be fit for purpose to cover their potential environmental, human and animal health risks if environmental releases of GDOs are envisaged. We evaluate the novel features of GDOs and outline the resulting challenges for the environmental risk assessment. These are related to the definition of the receiving environment, the use of the comparative approach, the definition of potential harm, the stepwise testing approach, the assessment of long-term and large-scale risks at population and ecosystem level and the post-release monitoring of adverse effects. Fundamental adaptations as well as the development of adequate risk assessment methodologies are needed in order to enable an operational risk assessment for globally spreading GDOs before these organisms are released into environments in the EU.
Collapse
|
13
|
Papadopoulou N, Devos Y, Álvarez-Alfageme F, Lanzoni A, Waigmann E. Risk Assessment Considerations for Genetically Modified RNAi Plants: EFSA's Activities and Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:445. [PMID: 32373145 PMCID: PMC7186845 DOI: 10.3389/fpls.2020.00445] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/25/2020] [Indexed: 05/18/2023]
Abstract
Genetically modified plants (GMPs) intended for market release can be designed to induce "gene silencing" through RNA interference (RNAi). The European Food Safety Authority (EFSA) and other international risk assessment bodies/regulatory agencies have taken several actions to determine whether the existing risk assessment approaches for GMPs are appropriate for the risk assessment of RNAi-based GMPs or require complementary or alternative approaches. To our knowledge, at the international level, no dedicated guidelines have been developed for the risk assessment and regulation of RNAi-based GMPs, confirming that existing science-based risk assessment approaches for GMPs are generally considered suitable for RNAi-based GMPs. However, some specificities have been identified for the risk assessment of RNAi-based GMPs. Here, we report on some of these specificities as identified and addressed by the EFSA GMO Panel for the molecular characterisation, food/feed safety assessment and environmental risk assessment of RNAi-based GMPs, using the DvSnf7 dsRNA-expressing maize MON87411 as a case study.
Collapse
Affiliation(s)
- Nikoletta Papadopoulou
- Genetically Modified Organisms Unit, Department of Scientific Evaluation of Regulated Products Development, European Food Safety Authority, Parma, Italy
| | | | | | | | | |
Collapse
|
14
|
Devos Y, Elliott KC, Macdonald P, McComas K, Parrino L, Vrbos D, Robinson T, Spiegelhalter D, Gallani B. Conducting fit-for-purpose food safety risk assessments. EFSA J 2019; 17:e170707. [PMID: 32626444 PMCID: PMC7015513 DOI: 10.2903/j.efsa.2019.e170707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interplay between science, risk assessment and risk management has always been complex, and even more so in a world increasingly characterised by rapid technical innovation, new modes of communication, suspicion about authorities and experts, and demands for people to have a say in decisions that are made on their behalf. In this challenging era where scientific advice on food safety has never been in greater demand, risk managers should effectively navigate the interplay between facts and values and be able to rely on robust and fit‐for‐purpose risk assessments to aid them. The fact that societal resistance is often encountered when scientific advice on food safety operates at a distance from social values and fails to actively engage with citizens, has led to increasing emphasis on the need to advance forms of risk assessment that are more contextual, and socially sound and accountable. EFSA's third Scientific Conference explored how risk assessments could be constructed to most usefully meet society's needs and thus connect science with society, while remaining scientifically robust. Contributors to the conference highlighted the need to: (1) frame risk assessments by clear policy goals and decision‐making criteria; (2) begin risk assessments with an explicit problem formulation to identify relevant information; (3) make use of reliable risk assessment studies; (4) be explicit about value judgements; (5) address and communicate scientific uncertainty; (6) follow trustworthy processes; (7) publish the evidence and data, and report the way in which they are used in a transparent manner; (8) ensure effective communication throughout the risk analysis process; (9) involve society, as appropriate; and (10) weigh risks and benefits on request. Implementation of these recommendations would contribute to increased credibility and trustworthiness of food safety risk assessments.
Collapse
Affiliation(s)
- Yann Devos
- GMO Unit European Food Safety Authority (EFSA) Italy
| | - Kevin C Elliott
- Lyman Briggs College Department of Fisheries and Wildlife, and Department of Philosophy Michigan State University United States of America
| | | | - Katherine McComas
- Department of Communication Cornell University United States of America
| | - Lucia Parrino
- Corporate Services (CORSER) Unit, European Food Safety Authority (EFSA) Italy
| | - Domagoj Vrbos
- Communication Engagement and Cooperation (COMCO) Department European Food Safety Authority (EFSA) Italy
| | - Tobin Robinson
- Scientific Committee and Emerging Risks (SCER) Unit European Food Safety Authority (EFSA) Italy
| | | | - Barbara Gallani
- Communication Engagement and Cooperation (COMCO) Department European Food Safety Authority (EFSA) Italy
| |
Collapse
|
15
|
Cavalli E, Gilsenan M, Van Doren J, Grahek-Ogden D, Richardson J, Abbinante F, Cascio C, Devalier P, Brun N, Linkov I, Marchal K, Meek B, Pagliari C, Pasquetto I, Pirolli P, Sloman S, Tossounidis L, Waigmann E, Schünemann H, Verhagen H. Managing evidence in food safety and nutrition. EFSA J 2019; 17:e170704. [PMID: 32626441 PMCID: PMC7015488 DOI: 10.2903/j.efsa.2019.e170704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Evidence (‘data’) is at the heart of EFSA's 2020 Strategy and is addressed in three of its operational objectives: (1) adopt an open data approach, (2) improve data interoperability to facilitate data exchange, and (3) migrate towards structured scientific data. As the generation and availability of data have increased exponentially in the last decade, potentially providing a much larger evidence base for risk assessments, it is envisaged that the acquisition and management of evidence to support future food safety risk assessments will be a dominant feature of EFSA's future strategy. During the breakout session on ‘Managing evidence’ of EFSA's third Scientific Conference ‘Science, Food, Society’, current challenges and future developments were discussed in evidence management applied to food safety risk assessment, accounting for the increased volume of evidence available as well as the increased IT capabilities to access and analyse it. This paper reports on presentations given and discussions held during the session, which were centred around the following three main topics: (1) (big) data availability and (big) data connection, (2) problem formulation and (3) evidence integration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nikolai Brun
- Medical Evaluation and Biostatistics Division Danish Medicine Agency (DMA) DK
| | | | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics University of Leuven BE
| | | | | | | | - Peter Pirolli
- Florida Institute for Human and Machine Cognition USA
| | - Steven Sloman
- Cognitive, Linguistic, & Psychological Sciences Brown University CDN
| | | | | | | | | |
Collapse
|
16
|
Verhagen H, Robinson T, Gallani B, Hugas M, Kleiner J, Hardy A, Devos Y. EFSA's third Scientific Conference 'Science, Food, Society': concluding remarks. EFSA J 2019; 17:e170723. [PMID: 32626459 PMCID: PMC7015482 DOI: 10.2903/j.efsa.2019.e170723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
From 18-21 September 2018, EFSA hosted its third Scientific Conference on Science, Food and Society in Parma, Italy. This paper summarises the overall recommendations on future actions and research priorities of the conference and complements the earlier multi-authored papers in this issue. The conference started and closed with the plenary sessions 'where science meets society: putting risk assessment in context' and 'staying relevant in a changing world', respectively. In between, there were seven breakout sessions five of which aimed at advancing risk assessment science in the areas of human health, the environment, biological hazards, nutrition and managing evidence, and two of which were dedicated to the societal aspects of risk assessment: engaging with society and envisioning the expertise of the future. During the 4 days of the event, participants addressed the complex interplay between science, risk assessment, policy and society, and explored how to advance food safety risk assessment to address the challenges of a changing world and ensure preparedness. Acknowledging that good science alone is no longer sufficient to ensure fit-for-purpose food safety risk assessments, EFSA must further build on its current five Strategic Objectives. To ensure that its risk assessments remain scientifically robust and sound, EFSA should strive for robust and fit-for-purpose risk assessments; consider food in the context of safety, nutrition and sustainability; and explore further how EFSA can work with other organisations to achieve the One Health/One Environment goals. In addition, EFSA should base scientific risk assessments on reliable science while capitalising on scientific advances; address scientific uncertainties; and fully publish the evidence and data used. In line with societal expectations, EFSA, in coordination with risk managers, should frame risk assessments through clear policy goals and problem formulation; be explicit about value judgements; communicate clearly and consistently and in coordination with risk assessors and risk managers; involve society; avoid conflicts of interest; and follow trustworthy processes.
Collapse
Affiliation(s)
| | | | | | - Marta Hugas
- European Food Safety Authority (EFSA) Parma Italy
| | | | | | - Yann Devos
- European Food Safety Authority (EFSA) Parma Italy
| |
Collapse
|
17
|
Devos Y, Elliott KC, Hardy A. Editorial: Special Issue on EFSA's third Scientific Conference 'Science, Food, Society'. EFSA J 2019; 17:e170706. [PMID: 32626443 PMCID: PMC7015510 DOI: 10.2903/j.efsa.2019.e170706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yann Devos
- GMO Unit European Food Safety Authority (EFSA) Italy
| | - Kevin C Elliott
- Lyman Briggs College Department of Fisheries and Wildlife Department of Philosophy Michigan State University United States
| | | |
Collapse
|