1
|
Bordes L, Gonzales JL, Vreman S, Venema S, Portier N, Germeraad EA, van der Poel WHM, Beerens N. In Ovo Models to Predict Virulence of Highly Pathogenic Avian Influenza H5-Viruses for Chickens and Ducks. Viruses 2024; 16:563. [PMID: 38675905 PMCID: PMC11053719 DOI: 10.3390/v16040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5-viruses are circulating in wild birds and are repeatedly introduced to poultry causing outbreaks in the Netherlands since 2014. The largest epizootic ever recorded in Europe was caused by HPAI H5N1 clade 2.3.4.4b viruses in the period 2021-2022. The recent H5-clade 2.3.4.4 viruses were found to differ in their virulence for chickens and ducks. Viruses causing only mild disease may remain undetected, increasing the risk of virus spread to other farms, wild birds and mammals. We developed in ovo models to determine the virulence of HPAI viruses for chickens and ducks, which are fast and have low costs. The virulence of five contemporary H5-viruses was compared studying replication rate, average time to death and virus spread in the embryo. Remarkable differences in virulence were observed between H5-viruses and between poultry species. The H5N1-2021 virus was found to have a fast replication rate in both the chicken and duck in ovo models, but a slower systemic virus dissemination compared to three other H5-clade 2.3.4.4b viruses. The results show the potential of in ovo models to quickly determine the virulence of novel HPAI viruses, and study potential virulence factors which can help to better guide the surveillance in poultry.
Collapse
Affiliation(s)
- Luca Bordes
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (S.V.); (S.V.); (N.P.); (N.B.)
| | - José L. Gonzales
- Department of Epidemiology, Bioinformatics & Animal Models, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands;
| | - Sandra Vreman
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (S.V.); (S.V.); (N.P.); (N.B.)
| | - Sandra Venema
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (S.V.); (S.V.); (N.P.); (N.B.)
| | - Nadia Portier
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (S.V.); (S.V.); (N.P.); (N.B.)
| | - Evelien A. Germeraad
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (S.V.); (S.V.); (N.P.); (N.B.)
| | - Wim H. M. van der Poel
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (S.V.); (S.V.); (N.P.); (N.B.)
| | - Nancy Beerens
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (S.V.); (S.V.); (N.P.); (N.B.)
| |
Collapse
|
2
|
Molecular Detection and Characterization of Coronaviruses in Migratory Ducks from Portugal Show the Circulation of Gammacoronavirus and Deltacoronavirus. Animals (Basel) 2022; 12:ani12233283. [PMID: 36496804 PMCID: PMC9736399 DOI: 10.3390/ani12233283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Coronaviruses (CoVs) are part of the Coronaviridae family, and the genera Gamma (γ) and Delta (δ) are found mostly in birds. Migratory birds have an enormous potential for dispersing pathogenic microorganisms. Ducks (order Anseriformes) can host CoVs from birds, with pathogenic expression and high economic impact. This study aimed to identify and characterize the diversity of CoVs in migratory ducks from Portugal. Duck stool samples were collected using cloacal swabs from 72 individuals (Anas platyrhynchos, Anas acuta, and Anas crecca). Among the 72 samples tested, 24 showed amplicons of the expected size. Twenty-three were characterized as Gammacoronavirus and one as Deltacoronavirus (accession numbers ON368935-ON368954; ON721380-ON721383). The Gammacoronaviruses sequences showed greater similarities to those obtained in ducks (Anas platyrhynchos) from Finland and Poland, Anas crecca duck from the USA, and mute swans from Poland. Birds can occupy many habitats and therefore play diverse ecological roles in various ecosystems, especially given their ability to migrate exceptional distances, facilitating the dispersal of microorganisms with animal and/or human impact. There are a considerable number of studies that have detected CoVs in ducks, but none in Portugal. The present study assessed the circulation of CoVs in wild ducks from Portugal, being the first description of CoVs for these animals in Portugal.
Collapse
|
3
|
de Bruin ACM, Funk M, Spronken MI, Gultyaev AP, Fouchier RAM, Richard M. Hemagglutinin Subtype Specificity and Mechanisms of Highly Pathogenic Avian Influenza Virus Genesis. Viruses 2022; 14:1566. [PMID: 35891546 PMCID: PMC9321182 DOI: 10.3390/v14071566] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Highly Pathogenic Avian Influenza Viruses (HPAIVs) arise from low pathogenic precursors following spillover from wild waterfowl into poultry populations. The main virulence determinant of HPAIVs is the presence of a multi-basic cleavage site (MBCS) in the hemagglutinin (HA) glycoprotein. The MBCS allows for HA cleavage and, consequently, activation by ubiquitous proteases, which results in systemic dissemination in terrestrial poultry. Since 1959, 51 independent MBCS acquisition events have been documented, virtually all in HA from the H5 and H7 subtypes. In the present article, data from natural LPAIV to HPAIV conversions and experimental in vitro and in vivo studies were reviewed in order to compile recent advances in understanding HA cleavage efficiency, protease usage, and MBCS acquisition mechanisms. Finally, recent hypotheses that might explain the unique predisposition of the H5 and H7 HA sequences to obtain an MBCS in nature are discussed.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Alexander P. Gultyaev
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
- Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2300 RA Leiden, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| |
Collapse
|
4
|
Bessière P, Figueroa T, Coggon A, Foret-Lucas C, Houffschmitt A, Fusade-Boyer M, Dupré G, Guérin JL, Delverdier M, Volmer R. Opposite Outcomes of the Within-Host Competition between High- and Low-Pathogenic H5N8 Avian Influenza Viruses in Chickens Compared to Ducks. J Virol 2022; 96:e0136621. [PMID: 34613804 PMCID: PMC8754203 DOI: 10.1128/jvi.01366-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIV) emerge from low-pathogenic avian influenza viruses (LPAIV) through the introduction of basic amino acids at the hemagglutinin (HA) cleavage site. Following viral evolution, the newly formed HPAIV likely represents a minority variant within the index host, predominantly infected with the LPAIV precursor. Using reverse genetics-engineered H5N8 viruses differing solely at the HA cleavage, we tested the hypothesis that the interaction between the minority HPAIV and the majority LPAIV could modulate the risk of HPAIV emergence and that the nature of the interaction could depend on the host species. In chickens, we observed that the H5N8LP increased H5N8HP replication and pathogenesis. In contrast, the H5N8LP antagonized H5N8HP replication and pathogenesis in ducks. Ducks mounted a more potent antiviral innate immune response than chickens against the H5N8LP, which correlated with H5N8HP inhibition. These data provide experimental evidence that HPAIV may be more likely to emerge in chickens than in ducks and underscore the importance of within-host viral variant interactions in viral evolution. IMPORTANCE Highly pathogenic avian influenza viruses represent a threat to poultry production systems and to human health because of their impact on food security and because of their zoonotic potential. It is therefore crucial to better understand how these viruses emerge. Using a within-host competition model between high- and low-pathogenic avian influenza viruses, we provide evidence that highly pathogenic avian influenza viruses could be more likely to emerge in chickens than in ducks. These results have important implications for highly pathogenic avian influenza virus emergence prevention, and they underscore the importance of within-host viral variant interactions in virus evolution.
Collapse
Affiliation(s)
- Pierre Bessière
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Thomas Figueroa
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Amelia Coggon
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Charlotte Foret-Lucas
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Alexandre Houffschmitt
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxime Fusade-Boyer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Gabriel Dupré
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Jean-Luc Guérin
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxence Delverdier
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Romain Volmer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| |
Collapse
|
5
|
Zamperin G, Bianco A, Smith J, Bortolami A, Vervelde L, Schivo A, Fortin A, Marciano S, Panzarin V, Mazzetto E, Milani A, Berhane Y, Digard P, Bonfante F, Monne I. Heterogeneity of Early Host Response to Infection with Four Low-Pathogenic H7 Viruses with a Different Evolutionary History in the Field. Viruses 2021; 13:2323. [PMID: 34835129 PMCID: PMC8620788 DOI: 10.3390/v13112323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Once low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes from wild birds enter into poultry species, there is the possibility of them mutating into highly pathogenic avian influenza viruses (HPAIVs), resulting in severe epizootics with up to 100% mortality. This mutation from a LPAIV to HPAIV strain is the main cause of an AIV's major economic impact on poultry production. Although AIVs are inextricably linked to their hosts in their evolutionary history, the contribution of host-related factors in the emergence of HPAI viruses has only been marginally explored so far. In this study, transcriptomic sequencing of tracheal tissue from chickens infected with four distinct LP H7 viruses, characterized by a different history of pathogenicity evolution in the field, was implemented. Despite the inoculation of a normalized infectious dose of viruses belonging to the same subtype (H7) and pathotype (LPAI), the use of animals of the same age, sex and species as well as the identification of a comparable viral load in the target samples, the analyses revealed a heterogeneity in the gene expression profile in response to infection with each of the H7 viruses administered.
Collapse
Affiliation(s)
- Gianpiero Zamperin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Alice Bianco
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Jacqueline Smith
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Lonneke Vervelde
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Alessia Schivo
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Andrea Fortin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Sabrina Marciano
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Valentina Panzarin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Eva Mazzetto
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Adelaide Milani
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington, Winnipeg, MB R3E 3M4, Canada;
| | - Paul Digard
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Francesco Bonfante
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| |
Collapse
|
6
|
Inhibitory effects of aprotinin on influenza A and B viruses in vitro and in vivo. Sci Rep 2021; 11:9427. [PMID: 33941825 PMCID: PMC8093218 DOI: 10.1038/s41598-021-88886-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/16/2021] [Indexed: 11/26/2022] Open
Abstract
Influenza viruses cause significant morbidity and mortality worldwide. Long-term or frequent use of approved anti-influenza agents has resulted in drug-resistant strains, thereby necessitating the discovery of new drugs. In this study, we found aprotinin, a serine protease inhibitor, as an anti-influenza candidate through screening of compound libraries. Aprotinin has been previously reported to show inhibitory effects on a few influenza A virus (IAV) subtypes (e.g., seasonal H1N1 and H3N2). However, because there were no reports of its inhibitory effects on the other types of influenza viruses, we investigated the inhibitory effects of aprotinin in vitro on a wide range of influenza viruses, including avian and oseltamivir-resistant influenza virus strains. Our cell-based assay showed that aprotinin had inhibitory effects on seasonal human IAVs (H1N1 and H3N2 subtypes), avian IAVs (H5N2, H6N5, and H9N2 subtypes), an oseltamivir-resistant IAV, and a currently circulating influenza B virus. We have also confirmed its activity in mice infected with a lethal dose of influenza virus, showing a significant increase in survival rate. Our findings suggest that aprotinin has the capacity to inhibit a wide range of influenza virus subtypes and should be considered for development as a therapeutic agent against influenza.
Collapse
|
7
|
Fosse JH, Haraldsen G, Falk K, Edelmann R. Endothelial Cells in Emerging Viral Infections. Front Cardiovasc Med 2021; 8:619690. [PMID: 33718448 PMCID: PMC7943456 DOI: 10.3389/fcvm.2021.619690] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
There are several reasons to consider the role of endothelial cells in COVID-19 and other emerging viral infections. First, severe cases of COVID-19 show a common breakdown of central vascular functions. Second, SARS-CoV-2 replicates in endothelial cells. Third, prior deterioration of vascular function exacerbates disease, as the most common comorbidities of COVID-19 (obesity, hypertension, and diabetes) are all associated with endothelial dysfunction. Importantly, SARS-CoV-2's ability to infect endothelium is shared by many emerging viruses, including henipaviruses, hantavirus, and highly pathogenic avian influenza virus, all specifically targeting endothelial cells. The ability to infect endothelium appears to support generalised dissemination of infection and facilitate the access to certain tissues. The disturbed vascular function observed in severe COVID-19 is also a prominent feature of many other life-threatening viral diseases, underscoring the need to understand how viruses modulate endothelial function. We here review the role of vascular endothelial cells in emerging viral infections, starting with a summary of endothelial cells as key mediators and regulators of vascular and immune responses in health and infection. Next, we discuss endotheliotropism as a possible virulence factor and detail features that regulate viruses' ability to attach to and enter endothelial cells. We move on to review how endothelial cells detect invading viruses and respond to infection, with particular focus on pathways that may influence vascular function and the host immune system. Finally, we discuss how endothelial cell function can be dysregulated in viral disease, either by viral components or as bystander victims of overshooting or detrimental inflammatory and immune responses. Many aspects of how viruses interact with the endothelium remain poorly understood. Considering the diversity of such mechanisms among different emerging viruses allows us to highlight common features that may be of general validity and point out important challenges.
Collapse
Affiliation(s)
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Department of Pathology, University of Oslo, Oslo, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway.,AquaMed Consulting AS, Oslo, Norway
| | - Reidunn Edelmann
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Schmidt CG, Herskin M, Michel V, Miranda Chueca MÁ, Pasquali P, Roberts HC, Sihvonen LH, Spoolder H, Stahl K, Calvo AV, Viltrop A, Winckler C, De Clercq K, Klement E, Stegeman JA, Gubbins S, Antoniou S, Broglia A, Van der Stede Y, Zancanaro G, Aznar I. Scientific Opinion on the assessment of the control measures of the category A diseases of Animal Health Law: Highly Pathogenic Avian Influenza. EFSA J 2021; 19:e06372. [PMID: 33488812 PMCID: PMC7812451 DOI: 10.2903/j.efsa.2021.6372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for Highly Pathogenic Avian Influenza (HPAI). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radius of the protection and surveillance zone, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, specific details of the model used for the assessment of the laboratory sampling procedures for HPAI are presented here. Here, also, the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. In summary, sampling procedures as described in the diagnostic manual for HPAI were considered efficient for gallinaceous poultry, whereas additional sampling is advised for Anseriformes. The monitoring period was assessed as effective, and it was demonstrated that the surveillance zone comprises 95% of the infections from an affected establishment. Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to HPAI.
Collapse
|
9
|
Anggita M, Herawati O, Artanto S. Molecular Screening of Salmonella sp. from fecal sample of Sparrows (Passer domesticus) in Yogyakarta, Indonesia. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213307003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Wild birds is one of the reservoir agent of some of various zoonotic diseases. The study was aim to see the potential of sparrow as the reservoir agent of Salmonella sp. using polymerase chain reaction (PCR) method. We detected the invA gene of Salmonella sp. from faecal sample of sparrows (Passer domesticus) in local area of Yogyakarta, Indonesia. A total of 30 faecal dropping samples were collected from sparrows. DNA was extracted from the faecal samples, then amplified by PCR for the target genes. The amplicons were electrophorized to see the visualization of DNA on the agarose gel. The result showed the prevalence of the positive result of Salmonella sp. was 3,3%. The study indicated that sparrows can spread zoonotic pathogens and this necessitates monitoring for the epidemiologic status of these pathogens among birds, also applying the appropriate intervention measures to prevent the transmission of zoonotic diseasesfrom birds to humans.
Collapse
|
10
|
Germeraad EA, Elbers ARW, de Bruijn ND, Heutink R, van Voorst W, Hakze-van der Honing R, Bergervoet SA, Engelsma MY, van der Poel WHM, Beerens N. Detection of Low Pathogenic Avian Influenza Virus Subtype H10N7 in Poultry and Environmental Water Samples During a Clinical Outbreak in Commercial Free-Range Layers, Netherlands 2017. Front Vet Sci 2020; 7:237. [PMID: 32478107 PMCID: PMC7232570 DOI: 10.3389/fvets.2020.00237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/07/2020] [Indexed: 11/23/2022] Open
Abstract
Wild birds are the natural reservoir of the avian influenza virus (AIV) and may transmit AIV to poultry via direct contact or indirectly through the environment. In the Netherlands, a clinically suspected free-range layer flock was reported to the veterinary authorities by the farmer. Increased mortality, a decreased feed intake, and a drop in egg production were observed. Subsequently, an infection with low pathogenic avian influenza virus was detected. This study describes the diagnostic procedures used for detection and subtyping of the virus. In addition to routine diagnostics, the potential of two different environmental diagnostic methods was investigated for detecting AIV in surface water. AIV was first detected using rRT-PCR and isolated from tracheal and cloacal swabs collected from the hens. The virus was subtyped as H10N7. Antibodies against the virus were detected in 28 of the 31 sera tested. An intravenous pathogenicity index (IVPI) experiment was performed, but no clinical signs (IVPI = 0) were observed. Post-mortem examination and histology confirmed the AIV infection. Multiple water samples were collected longitudinally from the free-range area and waterway near the farm. Both environmental diagnostic methods allowed the detection of the H10N7 virus, demonstrating the potential of these methods in detection of AIV. The described methods could be a useful additional procedure for AIV surveillance in water-rich areas with large concentrations of wild birds or in areas around poultry farms. In addition, these methods could be used as a tool to test if the environment or free-range area is virus-free again, at the end of an AIV epidemic.
Collapse
Affiliation(s)
- Evelien A. Germeraad
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, Netherlands
| | - Armin R. W. Elbers
- Wageningen Bioveterinary Research, Department of Bacteriology and Epidemiology, Lelystad, Netherlands
| | | | - Rene Heutink
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, Netherlands
| | - Wendy van Voorst
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, Netherlands
- Poultry Department, GD-Animal Health, Deventer, Netherlands
| | | | - Saskia A. Bergervoet
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, Netherlands
| | - Marc Y. Engelsma
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, Netherlands
| | | | - Nancy Beerens
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, Netherlands
| |
Collapse
|
11
|
La Sala LF, Burgos JM, Blanco DE, Stevens KB, Fernández AR, Capobianco G, Tohmé F, Pérez AM. Spatial modelling for low pathogenicity avian influenza virus at the interface of wild birds and backyard poultry. Transbound Emerg Dis 2019; 66:1493-1505. [PMID: 30698918 DOI: 10.1111/tbed.13136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 11/28/2022]
Abstract
Low pathogenicity avian influenza virus (LPAIV) is endemic in wild birds and poultry in Argentina, and active surveillance has been in place to prevent any eventual virus mutation into a highly pathogenic avian influenza virus (HPAIV), which is exotic in this country. Risk mapping can contribute effectively to disease surveillance and control systems, but it has proven a very challenging task in the absence of disease data. We used a combination of expert opinion elicitation, multicriteria decision analysis (MCDA) and ecological niche modelling (ENM) to identify the most suitable areas for the occurrence of LPAIV at the interface between backyard domestic poultry and wild birds in Argentina. This was achieved by calculating a spatially explicit risk index. As evidenced by the validation and sensitivity analyses, our model was successful in identifying high-risk areas for LPAIV occurrence. Also, we show that the risk for virus occurrence is significantly higher in areas closer to commercial poultry farms. Although the active surveillance systems have been successful in detecting LPAIV-positive backyard farms and wild birds in Argentina, our predictions suggest that surveillance efforts in those compartments could be improved by including high-risk areas identified by our model. Our research provides a tool to guide surveillance activities in the future, and presents a mixed methodological approach which could be implemented in areas where the disease is exotic or rare and a knowledge-driven modelling method is necessary.
Collapse
Affiliation(s)
- Luciano F La Sala
- Instituto de Ciencias Biológicas y Biomédicas del Sur (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina
| | - Julián M Burgos
- Marine and Freshwater Research Institute, Reykjavík, Iceland
| | - Daniel E Blanco
- Wetlands International/Fundación Humedales, Buenos Aires, Argentina
| | - Kim B Stevens
- Veterinary Epidemiology and Public Health Group, Department of Veterinary Clinical Sciences, Royal Veterinary College, London, UK
| | - Andrea R Fernández
- Departamento de Ciencias de la Administración, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Guillermo Capobianco
- Instituto de Matemática de Bahía Blanca (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina.,Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Fernando Tohmé
- Instituto de Matemática de Bahía Blanca (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina
| | - Andrés M Pérez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
12
|
Scott AB, Toribio JA, Singh M, Groves P, Barnes B, Glass K, Moloney B, Black A, Hernandez-Jover M. Low Pathogenic Avian Influenza Exposure Risk Assessment in Australian Commercial Chicken Farms. Front Vet Sci 2018; 5:68. [PMID: 29755987 PMCID: PMC5932326 DOI: 10.3389/fvets.2018.00068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
This study investigated the pathways of exposure to low pathogenic avian influenza (LPAI) virus among Australian commercial chicken farms and estimated the likelihood of this exposure occurring using scenario trees and a stochastic modeling approach following the World Organization for Animal Health methodology for risk assessment. Input values for the models were sourced from scientific literature and an on-farm survey conducted during 2015 and 2016 among Australian commercial chicken farms located in New South Wales and Queensland. Outputs from the models revealed that the probability of a first LPAI virus exposure to a chicken in an Australian commercial chicken farms from one wild bird at any point in time is extremely low. A comparative assessment revealed that across the five farm types (non-free-range meat chicken, free-range meat chicken, cage layer, barn layer, and free range layer farms), free-range layer farms had the highest probability of exposure (7.5 × 10-4; 5% and 95%, 5.7 × 10-4-0.001). The results indicate that the presence of a large number of wild birds on farm is required for exposure to occur across all farm types. The median probability of direct exposure was highest in free-range farm types (5.6 × 10-4 and 1.6 × 10-4 for free-range layer and free-range meat chicken farms, respectively) and indirect exposure was highest in non-free-range farm types (2.7 × 10-4, 2.0 × 10-4, and 1.9 × 10-4 for non-free-range meat chicken, cage layer, and barn layer farms, respectively). The probability of exposure was found to be lowest in summer for all farm types. Sensitivity analysis revealed that the proportion of waterfowl among wild birds on the farm, the presence of waterfowl in the range and feed storage areas, and the prevalence of LPAI in wild birds are the most influential parameters for the probability of Australian commercial chicken farms being exposed to avian influenza (AI) virus. These results highlight the importance of ensuring good biosecurity on farms to minimize the risk of exposure to AI virus and the importance of continuous surveillance of LPAI prevalence including subtypes in wild bird populations.
Collapse
Affiliation(s)
- Angela Bullanday Scott
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Jenny-Ann Toribio
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Mini Singh
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Peter Groves
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Belinda Barnes
- Quantitative Sciences, Department of Agriculture and Water Resources, Canberra, ACT, Australia
| | - Kathryn Glass
- College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, Australia
| | - Barbara Moloney
- New South Wales Department of Primary Industries, Orange, NSW, Australia
| | - Amanda Black
- New South Wales Department of Primary Industries, Orange, NSW, Australia
| | - Marta Hernandez-Jover
- Graham Centre for Agricultural Innovation, School of Animal and Veterinary Sciences, Charles Sturt University and New South Wales Department of Primary Industries, Wagga Wagga, NSW, Australia.,School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|