1
|
Hermann KM, Grünberger A, Patel AV. Unraveling the interaction of co-encapsulated Saccharomyces cerevisiae and Metarhizium brunneum in calcium alginate-based attract-and-kill beads. PEST MANAGEMENT SCIENCE 2024; 80:5131-5140. [PMID: 38864543 DOI: 10.1002/ps.8238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/12/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Attract-and-kill (AK) beads are biological, microbial insecticides developed as an alternative to synthetic soil insecticides. For wireworm control, beads are based on calcium alginate/starch co-encapsulating the carbon dioxide (CO2) producing yeast Saccharomyces cerevisiae H205 as the attract component, and the entomopathogenic fungus Metarhizium brunneum CB15-III as the kill component. However, the physicochemical processes inside beads during co-cultivation are still unclear. Here we reveal for the first time the spatiotemporal conditions of oxygen and pH inside AK beads measured with microelectrodes and describe the impact of S. cerevisiae on CO2 and conidia formation. RESULTS Measurements revealed a steep oxygen gradient already 2 days after co-encapsulation, with an internal hypoxic zone. Encapsulating either S. cerevisiae or M. brunneum already decreased the average pH from 5.5 to 4.7 and 4.6, respectively. However, on day 3, co-cultivation lead to temporal strong acidification of beads down to pH 3.6 which followed the maximum CO2 productivity and coincided with the maximum conidiation rate. Decreasing the yeast load decreased the total CO2 productivity to half, and the conidial production by 93%, while specific productivities normalized to 1% yeast load increased eight-fold and three-fold, respectively, with day 3 being an exception. CONCLUSION Our findings indicate a general beneficial interaction between M. brunneum and S. cerevisiae, but also suggest competition for resources. These findings will contribute to develop innovative co-formulations with maximum efficiency to save application rates and costs. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Katharina M Hermann
- Faculty of Engineering and Mathematics, Fermentation and Formulation of Biologicals and Chemicals, Bielefeld Institute for Applied Materials Research, Hochschule Bielefeld - Bielefeld University of Applied Sciences and Arts, Bielefeld, Germany
- Faculty of Technology, Multiscale Bioengineering, Bielefeld University, Bielefeld, Germany
| | - Alexander Grünberger
- Faculty of Technology, Multiscale Bioengineering, Bielefeld University, Bielefeld, Germany
| | - Anant V Patel
- Faculty of Engineering and Mathematics, Fermentation and Formulation of Biologicals and Chemicals, Bielefeld Institute for Applied Materials Research, Hochschule Bielefeld - Bielefeld University of Applied Sciences and Arts, Bielefeld, Germany
| |
Collapse
|
2
|
Adriaanse P, Arce A, Focks A, Ingels B, Jölli D, Lambin S, Rundlöf M, Süßenbach D, Del Aguila M, Ercolano V, Ferilli F, Ippolito A, Szentes C, Neri FM, Padovani L, Rortais A, Wassenberg J, Auteri D. Revised guidance on the risk assessment of plant protection products on bees ( Apis mellifera, Bombus spp. and solitary bees). EFSA J 2023; 21:e07989. [PMID: 37179655 PMCID: PMC10173852 DOI: 10.2903/j.efsa.2023.7989] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
The European Commission asked EFSA to revise the risk assessment for honey bees, bumble bees and solitary bees. This guidance document describes how to perform risk assessment for bees from plant protection products, in accordance with Regulation (EU) 1107/2009. It is a review of EFSA's existing guidance document, which was published in 2013. The guidance document outlines a tiered approach for exposure estimation in different scenarios and tiers. It includes hazard characterisation and provides risk assessment methodology covering dietary and contact exposure. The document also provides recommendations for higher tier studies, risk from metabolites and plant protection products as mixture.
Collapse
|
3
|
Sinčić Modrić G, Petković Didović M, Dubrović I, Žurga P, Broznić D. Those That Remain: Sorption/Desorption Behaviour and Kinetics of the Neonicotinoids Still in Use. Int J Mol Sci 2023; 24:ijms24076548. [PMID: 37047521 PMCID: PMC10095529 DOI: 10.3390/ijms24076548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
In January 2023, the derogation loophole was closed on “emergency authorisations” for the use of three out of five neonicotinoids in all EU states. In this study, we analysed the sorption/desorption behaviour and kinetic parameters of acetamiprid and thiacloprid, the two neonicotinoids that are still approved for use, either regularly or under emergency authorisations in the EU, and widely used worldwide. Sorption and desorption curves in four soils with different organic matter content were analysed using four kinetic models, namely, Lagergren’s pseudo first-order model, two-site model (TSM), Weber–Morris intraparticle diffusion model and Elovich’s model. Kinetic parameters were correlated to soil physico-chemical characteristics. To determine the mutual influence of soil characteristics and sorption/desorption parameters in the analysed soils, a factor analysis based on principal component analysis (PCA) was performed. Even though the two insecticides are very similar in size and chemical structure, the results showed different sorption/desorption kinetics. The model that best fits the experimental data was TSM. Thiacloprid showed a more rapid sorption compared to acetamiprid, and, in all soils, a higher proportion sorbed at equilibrium. Intra-particle diffusion seemed to be a relevant process in acetamiprid sorption, but not for thiacloprid. Desorption results showed that acetamiprid is more easily and more thoroughly desorbed than thiacloprid, in all soils. The kinetic behaviour differences stem from variations in molecular structure, causing disparate water solubility, lipophilicity, and acid–base properties.
Collapse
|
4
|
Kablau A, Erler S, Eckert JH, Pistorius J, Sharbati S, Einspanier R. Effects of Flupyradifurone and Two Reference Insecticides Commonly Used in Toxicological Studies on the Larval Proteome of the Honey bee Apis mellifera. INSECTS 2023; 14:77. [PMID: 36662005 PMCID: PMC9862931 DOI: 10.3390/insects14010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The western honey bee Apis mellifera is globally distributed due to its beekeeping advantages and plays an important role in the global ecology and economy. In recent decades, several studies have raised concerns about bee decline. Discussed are multiple reasons such as increased pathogen pressure, malnutrition or pesticide use. Insecticides are considered to be one of the major factors. In 2013, the use of three neonicotinoids in the field was prohibited in the EU. Flupyradifurone was introduced as a potential successor; it has a comparable mode of action as the banned neonicotinoids. However, there is a limited number of studies on the effects of sublethal concentrations of flupyradifurone on honey bees. Particularly, the larval physiological response by means of protein expression has not yet been studied. Hence, the larval protein expression was investigated via 2D gel electrophoresis after following a standardised protocol to apply sublethal concentrations of the active substance (flupyradifurone 10 mg/kg diet) to larval food. The treated larvae did not show increased mortality or an aberrant development. Proteome comparisons showed clear differences concerning the larval metabolism, immune response and energy supply. Further field studies are needed to validate the in vitro results at a colony level.
Collapse
Affiliation(s)
- Arne Kablau
- Institute of Veterinary Biochemistry, Freie Universität Berlin, 14163 Berlin, Germany
- LABOKLIN GmbH and Co. KG, 97688 Bad Kissingen, Germany
| | - Silvio Erler
- Institute for Bee Protection, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
- Zoological Institute, Technische Universität Braunschweig, 38106 Brauschweig, Germany
| | - Jakob H. Eckert
- Institute for Bee Protection, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
- Institute for Microbiology, Technische Universität Braunschweig, 38106 Brauschweig, Germany
| | - Jens Pistorius
- Institute for Bee Protection, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, 14163 Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
5
|
Hirai A, Sugio S, Nimako C, Nakayama SMM, Kato K, Takahashi K, Arizono K, Hirano T, Hoshi N, Fujioka K, Taira K, Ishizuka M, Wake H, Ikenaka Y. Ca 2+ imaging with two-photon microscopy to detect the disruption of brain function in mice administered neonicotinoid insecticides. Sci Rep 2022; 12:5114. [PMID: 35332220 PMCID: PMC8948258 DOI: 10.1038/s41598-022-09038-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Neonicotinoid pesticides are a class of insecticides that reportedly have harmful effects on bees and dragonflies, causing a reduction in their numbers. Neonicotinoids act as neuroreceptor modulators, and some studies have reported their association with neurodevelopmental disorders. However, the precise effect of neonicotinoids on the central nervous system has not yet been identified. Herein, we conducted in vivo Ca2+ imaging using a two-photon microscope to detect the abnormal activity of neuronal circuits in the brain after neonicotinoid application. The oral administration of acetamiprid (ACE) (20 mg/kg body weight (BW) in mature mice with a quantity less than the no-observed-adverse-effect level (NOAEL) and a tenth or half of the median lethal dose (LD50) of nicotine (0.33 or 1.65 mg/kg BW, respectively), as a typical nicotinic acetylcholine receptor (nAChR) agonist, increased anxiety-like behavior associated with altered activities of the neuronal population in the somatosensory cortex. Furthermore, we detected ACE and its metabolites in the brain, 1 h after ACE administration. The results suggested that in vivo Ca2+ imaging using a two-photon microscope enabled the highly sensitive detection of neurotoxicant-mediated brain disturbance of nerves.
Collapse
Affiliation(s)
- Anri Hirai
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Shouta Sugio
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumi-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Collins Nimako
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Keisuke Kato
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Keisuke Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-ku, Kumamoto, 862-8502, Japan
| | - Tetsushi Hirano
- Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Nobuhiko Hoshi
- Student Affairs Section, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Kazutoshi Fujioka
- Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, USA
| | - Kumiko Taira
- Department of Anesthesiology, Medical Center East, Tokyo Women's Medical University, Tokyo, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumi-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan. .,Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom, 2531, South Africa. .,One Health Research Center, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan. .,Translational Research Unit, Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.
| |
Collapse
|
6
|
Efficiency and Persistence of Movento® Treatment against Myzus persicae and the Transmission of Aphid-Borne Viruses. PLANTS 2021; 10:plants10122747. [PMID: 34961217 PMCID: PMC8708080 DOI: 10.3390/plants10122747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
Neonicotinoids are widely used to protect fields against aphid-borne viral diseases. The recent ban of these chemical compounds in the European Union has strongly impacted rapeseed and sugar beet growing practices. The poor sustainability of other insecticide families and the low efficiency of prophylactic methods to control aphid populations and pathogen introduction strengthen the need to characterize the efficiency of new plant protection products targeting aphids. In this study, the impact of Movento® (Bayer S.A.S., Leverkusen, Germany), a tetrameric acid derivative of spirotetramat, on Myzus persicae and on viral transmission was analyzed under different growing temperatures. The results show (i) the high efficiency of Movento® to protect rapeseed and sugar beet plants against the establishment of aphid colonies, (ii) the impact of temperature on the persistence of the Movento® aphicid properties and (iii) a decrease of approximately 10% of the viral transmission on treated plants. These observations suggest a beneficial effect of Movento® on the sanitary quality of treated crops by directly reducing primary infections and indirectly altering, through aphid mortality, secondary infections on which the spread of disease within field depends. These data constitute important elements for the future development of management strategies to protect crops against aphid-transmitted viruses.
Collapse
|
7
|
Mc Namara L, Gauthier K, Walsh L, Thébaud G, Gaffney M, Jacquot E. Management of yellow dwarf disease in Europe in a post-neonicotinoid agriculture. PEST MANAGEMENT SCIENCE 2020; 76:2276-2285. [PMID: 32243081 DOI: 10.1002/ps.5835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/13/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Barley/cereal yellow dwarf viruses (YDVs) cause yellow dwarf disease (YDD), which is a continuous risk to cereals production worldwide. These viruses cause leaf yellowing and stunting, resulting in yield reductions of up to 80%. YDVs have been a consistent but low-level problem in European cereal cultivation for the last three decades, mostly due to the availability of several effective insecticides (largely pyrethroids and more recently neonicotinoids) against aphid vectors. However, this has changed recently, with many insecticides being lost, culminating in a recent European Union (EU) regulation prohibiting outdoor use of the neonicotinoid-insecticide compounds. This change is coupled with the growing challenge of insecticide-resistant aphids, the lack of genetic resources against YDVs, and a knowledge deficit around the parameters responsible for the emergence and spread of YDD. This means that economic sustainability of cereal cultivation in several European countries including France and United Kingdom is now again threatened by this aphid-vectored viral disease. In this review, we summarize the current knowledge on the YDV pathosystem, describe management options against YDD, analyse the impacts of the neonicotinoid ban in Europe, and consider future strategies to control YDV. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Louise Mc Namara
- Teagasc, Crop Science Department, Crops, Environment and Land Use Programme, Carlow, Ireland
| | - Kevin Gauthier
- BGPI, INRAE, Cirad, Institut Agro, Univ Montpellier, Montpellier, France
- Bayer CropScience, Lyon, France
| | - Lael Walsh
- Teagasc, Horticultural Development Department, Crops, Environment and Land Use Programme, Dublin, Ireland
- Pentland Centre for Sustainability in Business, Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Gaël Thébaud
- BGPI, INRAE, Cirad, Institut Agro, Univ Montpellier, Montpellier, France
| | - Michael Gaffney
- Teagasc, Horticultural Development Department, Crops, Environment and Land Use Programme, Dublin, Ireland
| | - Emmanuel Jacquot
- BGPI, INRAE, Cirad, Institut Agro, Univ Montpellier, Montpellier, France
| |
Collapse
|
8
|
Magal P, Webb GF, Wu Y. A spatial model of honey bee colony collapse due to pesticide contamination of foraging bees. J Math Biol 2020; 80:2363-2393. [PMID: 32415373 DOI: 10.1007/s00285-020-01498-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 03/16/2020] [Indexed: 10/24/2022]
Abstract
We develop a model of honey bee colony collapse based on contamination of forager bees in pesticide contaminated spatial environments. The model consists of differential and difference equations for the spatial distributions of the uncontaminated and contaminated forager bees. A key feature of the model is incorporation of the return to the hive each day of forager bees. The model quantifies colony collapse in terms of two significant properties of honey bee colonies: (1) the fraction of contaminated forager bees that fail to return home due to pesticide contamination, and (2) the fraction of forager bees in the total forager bee population that return to the sites visited on the previous day. If the fraction of contaminated foragers failing to return home is high, then the total population falls below a critical threshold and colony collapse ensues. If the fraction of all foragers that return to previous foraging sites is high, then foragers who visit contaminated sites multiple times have a higher probability of becoming contaminated, and colony collapse ensues. This quantification of colony collapse provides guidance for implementing measures for its avoidance.
Collapse
Affiliation(s)
- P Magal
- Université de Bordeaux, Bordeaux, France
| | - G F Webb
- Vanderbilt University, Nashville, TN, USA.
| | - Yixiang Wu
- Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
9
|
Monitoring the Field-Realistic Exposure of Honeybee Colonies to Neonicotinoids by An Integrative Approach: A Case Study in Romania. DIVERSITY 2020. [DOI: 10.3390/d12010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Honeybees (Apis mellifera L.) are excellent biosensors that can be managed to collect valuable information about environmental contamination. The main objective of the present study was to design and apply an integrative protocol to monitor honeybee colony activity and sample collection by using electronic technologies combined with classical methods in order to evaluate the exposure of honeybees to the neonicotinoids that are used in melliferous intensive crops. The monitored honeybee colonies were especially prepared and equipped to maximize their chances to collect representative samples in order to express, as well as possible, the pesticide residues that existed in the targeted crops. The samples of honey, pollen and honeybees were collected, preserved and prepared to fulfill the required quality and quantity criteria of the accredited laboratories. In total, a set of fifty samples was collected from fields, located in different areas of intensive agriculture in Romania, and was analyzed for five neonicotinoids. The obtained results show that 48% of the total analyzed samples (n = 50) contained one or more detected or quantified neonicotinoid residues. The main conclusion is that the proposed approach for sample collection and preparation could improve the evaluation methodologies for analyzing honeybees’ exposure to pesticides.
Collapse
|
10
|
Magal P, Webb GF, Wu Y. An Environmental Model of Honey Bee Colony Collapse Due to Pesticide Contamination. Bull Math Biol 2019; 81:4908-4931. [DOI: 10.1007/s11538-019-00662-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
|
11
|
Devos Y, Craig W, Devlin RH, Ippolito A, Leggatt RA, Romeis J, Shaw R, Svendsen C, Topping CJ. Using problem formulation for fit-for-purpose pre-market environmental risk assessments of regulated stressors. EFSA J 2019; 17:e170708. [PMID: 32626445 PMCID: PMC7055725 DOI: 10.2903/j.efsa.2019.e170708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Pre-market/prospective environmental risk assessments (ERAs) contribute to risk analyses performed to facilitate decisions about the market introduction of regulated stressors. Robust ERAs begin with an explicit problem formulation, which involves among other steps: (1) formally devising plausible pathways to harm that describe how the deployment of a regulated stressor could be harmful; (2) formulating risk hypotheses about the likelihood and severity of such events; (3) identifying the information that will be useful to test the risk hypotheses; and (4) developing a plan to acquire new data for hypothesis testing should tests with existing information be insufficient for decision-making. Here, we apply problem formulation to the assessment of possible adverse effects of RNA interference-based insecticidal genetically modified (GM) plants, GM growth hormone coho salmon, gene drive-modified mosquitoes and classical biological weed control agents on non-target organisms in a prospective manner, and of neonicotinoid insecticides on bees in a retrospective manner. In addition, specific considerations for the problem formulation for the ERA of nanomaterials and for landscape-scale population-level ERAs are given. We argue that applying problem formulation to ERA maximises the usefulness of ERA studies for decision-making, through an iterative process, because: (1) harm is defined explicitly from the start; (2) the construction of risk hypotheses is guided by policy rather than an exhaustive attempt to address any possible differences; (3) existing information is used effectively; (4) new data are collected with a clear purpose; (5) risk is characterised against well-defined criteria of hypothesis corroboration or falsification; and (6) risk assessment conclusions can be communicated clearly. However, problem formulation is still often hindered by the absence of clear policy goals and decision-making criteria (e.g. definition of protection goals and what constitutes harm) that are needed to guide the interpretation of scientific information. We therefore advocate further dialogue between risk assessors and risk managers to clarify how ERAs can address policy goals and decision-making criteria. Ideally, this dialogue should take place for all classes of regulated stressors, as this can promote alignment and consistency on the desired level of protection and maximum tolerable impacts across regulated stressors.
Collapse
Affiliation(s)
- Yann Devos
- GMO Unit European Food Safety Authority (EFSA) Italy
| | - Wendy Craig
- Biosafety Group International Centre for Genetic Engineering & Biotechnology (ICGEB) Italy
| | | | | | | | - Jörg Romeis
- Research Division Agroecology and Environment Agroscope Switzerland
| | - Richard Shaw
- Centre for Agriculture and Biosciences International (CABI) United Kingdom
| | - Claus Svendsen
- Ecotoxicology and Chemical Risk Group United Kingdom Research and Innovation Centre for Ecology and Hydrology (CEH) United Kingdom
| | | |
Collapse
|
12
|
Kyrkou I, Pusa T, Ellegaard-Jensen L, Sagot MF, Hansen LH. Pierce's Disease of Grapevines: A Review of Control Strategies and an Outline of an Epidemiological Model. Front Microbiol 2018; 9:2141. [PMID: 30258423 PMCID: PMC6143690 DOI: 10.3389/fmicb.2018.02141] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/21/2018] [Indexed: 11/13/2022] Open
Abstract
Xylella fastidiosa is a notorious plant pathogenic bacterium that represents a threat to crops worldwide. Its subspecies, Xylella fastidiosa subsp. fastidiosa is the causal agent of Pierce's disease of grapevines. Pierce's disease has presented a serious challenge for the grapevine industry in the United States and turned into an epidemic in Southern California due to the invasion of the insect vector Homalodisca vitripennis. In an attempt to minimize the effects of Xylella fastidiosa subsp. fastidiosa in vineyards, various studies have been developing and testing strategies to prevent the occurrence of Pierce's disease, i.e., prophylactic strategies. Research has also been undertaken to investigate therapeutic strategies to cure vines infected by Xylella fastidiosa subsp. fastidiosa. This report explicitly reviews all the strategies published to date and specifies their current status. Furthermore, an epidemiological model of Xylella fastidiosa subsp. fastidiosa is proposed and key parameters for the spread of Pierce's disease deciphered in a sensitivity analysis of all model parameters. Based on these results, it is concluded that future studies should prioritize therapeutic strategies, while investments should only be made in prophylactic strategies that have demonstrated promising results in vineyards.
Collapse
Affiliation(s)
- Ifigeneia Kyrkou
- Laboratory of Environmental Microbiology and Biotechnology, Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Taneli Pusa
- INRIA Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
- Department of Computer, Automatic and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Lea Ellegaard-Jensen
- Laboratory of Environmental Microbiology and Biotechnology, Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Marie-France Sagot
- INRIA Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Lars Hestbjerg Hansen
- Laboratory of Environmental Microbiology and Biotechnology, Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
13
|
Peer review of the pesticide risk assessment for bees for the active substance thiamethoxam considering the uses as seed treatments and granules. EFSA J 2018; 16:e05179. [PMID: 32625814 PMCID: PMC7009545 DOI: 10.2903/j.efsa.2018.5179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The EFSA was asked by the European Commission to perform an updated risk assessment of neonicotinoids, including thiamethoxam, as regards the risk to bees, as a follow-up of previous mandates received from the European Commission on neonicotinoids. The context of the evaluation was that required by the European Commission in accordance with Article 21 of Regulation (EC) No 1107/2009 to review the approval of active substances in light of new scientific and technical knowledge and monitoring data. In this context and in accordance with Article 31 of Regulation (EC) No 178/2002, EFSA has been previously asked by European Commission to organise an open call for data in order to collect new scientific information as regards the risk to bees from the neonicotinoid pesticide active substances clothianidin, thiamethoxam and imidacloprid applied as seed treatments and granules in the EU. The conclusions were reached on the basis of the evaluation of the supported uses as an insecticide of thiamethoxam applied as seed treatments and granules, on the new relevant data collected in the framework of the open call organised by EFSA and on the updated literature search performed by EFSA. The reliable endpoints, appropriate for use in regulatory risk assessment derived from the submitted studies and literature data as well as any other relevant data available at national level and made available to EFSA, are presented. Concerns are identified.
Collapse
|
14
|
Peer review of the pesticide risk assessment for bees for the active substance clothianidin considering the uses as seed treatments and granules. EFSA J 2018; 16:e05177. [PMID: 32625812 PMCID: PMC7009451 DOI: 10.2903/j.efsa.2018.5177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
EFSA was asked by the European Commission to perform an updated risk assessment of neonicotinoids, including clothianidin, as regards the risk to bees, as a follow up of previous mandates received from the European Commission on neonicotinoids. The context of the evaluation was that required by the European Commission in accordance with Article 21 of Regulation (EC) No 1107/2009 to review the approval of active substances in light of new scientific and technical knowledge and monitoring data. In this context and in accordance with Article 31 of Regulation (EC) No 178/2002, EFSA has been previously asked by European Commission to organise an open call for data in order to collect new scientific information as regards the risk to bees from the neonicotinoid pesticide active substances clothianidin, thiamethoxam and imidacloprid applied as seed treatments and granules in the EU. The conclusions were reached on the basis of the evaluation of the supported uses as an insecticide of clothianidin applied as seed treatments and granules, on the new relevant data collected in the framework of the open call organised by EFSA and on the updated literature search performed by EFSA. The reliable endpoints, appropriate for use in regulatory risk assessment derived from the submitted studies and literature data as well as any other relevant data available at national level and made available to EFSA, are presented. Concerns are identified.
Collapse
|