1
|
Barik D, Anilkumar A, Porel M. Solid-State Fluorescent Organic Polymers for Visual Detection and Elimination of Heavy Metals in Water. ACS POLYMERS AU 2024; 4:428-437. [PMID: 39399891 PMCID: PMC11468486 DOI: 10.1021/acspolymersau.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 10/15/2024]
Abstract
Selective sensing and removal of toxic heavy metals from water are highly essential since their presence poses significant health and environmental hazards. Herein, we designed and synthesized a novel fluorescent nonconjugated organic polymer by strategically incorporating two key functional groups, namely, a dansyl fluorophore and dithiocarbamate (DTC). Different characterization techniques, including 1H nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR), and fluorescence spectroscopy, were performed to understand its structure and material properties. The quantum yield of 4.72% and its solid-state fluorescence indicate that it has potential for various applications in several technological and scientific domains. In this study, we investigated a specific application involving the detection and elimination of heavy metals from water. Interestingly, the presence of dansyl and DTC moieties demonstrated remarkable selectivity toward Cu2+, Co2+, Ni2+, Fe3+, and Fe2+ sensing, displaying distinct color changes specific to each metal. Cu2+ resulted in a yellow color, Co2+ showed a green color, Ni2+ displayed a pale yellowish-green color, and Fe2+/Fe3+ exhibited a brown color. The LOD (limit of detection) for each metal was obtained in the nanomolar range by using a fluorescence spectrometer and the micromolar range from UV-visible spectra: 13.27 nM and 0.518 μM for Cu2+, 8.27 nM and 0.581 μM for Co2+, 14.36 nM and 0.140 μM for Ni2+, 14.95 nM and 0.174 μM for Fe2+, and 15.54 nM and 0.33 μM for Fe3+. Moreover, the DTC functionality on its backbone facilitates effective interaction with the aforementioned heavy metals, subsequently removing them from water (except Fe2+ and Fe3+), validating its dual functionality as both an indicator and a purifier for heavy metals in water. The polymer exhibited a maximum adsorption capacity of 192.30 mg/g for Cu2+, 159.74 mg/g for Co2+, and 181.81 mg/g for Ni2+. Furthermore, this approach exhibits versatility in crafting fluorescent polymers with adjustable attributes that are suitable for a wide range of applications.
Collapse
Affiliation(s)
- Debashis Barik
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad 678623, India
| | - Abhirami Anilkumar
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad 678623, India
| | - Mintu Porel
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad 678623, India
- Environmental
Sciences and Sustainable Engineering Center, Indian Institute of Technology Palakkad, Palakkad 678623, India
| |
Collapse
|
2
|
Chen Y, Liu X, Zhou R, Qiao J, Liu J, Cai R, Liu J, Rong J, Chen Y. Porous sodium alginate/cellulose nanofiber composite hydrogel microspheres for heavy metal removal in wastewater. Int J Biol Macromol 2024; 278:135000. [PMID: 39181348 DOI: 10.1016/j.ijbiomac.2024.135000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
High adsorption capacity, high adsorption rate and reusable adsorbents are urgent needed for removing heavy metals from wastewater. In this study, porous sodium alginate/cellulose nanofiber (SA/CNF) composite hydrogel microspheres were prepared by combining sodium alginate with cellulose nanofibers by microfluidics technology and adding polyethylene glycol (PEG) as pore making agent. The SA/CNF composite hydrogel microspheres could efficiently adsorb heavy metals (Pb2+, Cu2+ and Cd2+) in wastewater. The influencing factors of adsorption process, including pH, temperature, initial concentration, coexisting ions and aquatic environments, were systematically discussed. The adsorption process was more consistent with Langmuir isotherm model and pseudo-second-order model in batch system, indicating the adsorption process was mainly chemical adsorption. The adsorption capacity to Pb2+ obtained by Langmuir model was as high as 544.66 mg/g at 20 °C. Fixed-bed column adsorption experiments demonstrated the excellent performance of the as-prepared SA/CNF microspheres for treatment of the flowing wastewater in a column system. Overall, a highly practical adsorption process based on hydrogel adsorbents was developed for the removal of heavy metals from actual wastewater.
Collapse
Affiliation(s)
- Ying Chen
- College of Civil Engineering, Hunan University of Technology, Zhuzhou, Hunan 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Xin Liu
- College of Civil Engineering, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Rui Zhou
- College of Civil Engineering, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Jiaxian Qiao
- College of Civil Engineering, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Jiating Liu
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, Hunan 412007, China; Hunan Provincial Key Laboratory of Biomass Fiber Functional Materials, Hunan University of Technology, Zhuzhou, Hunan 412007, China; Hunan Automotive Engineering Vocational College, Zhuzhou, Hunan 412001, China
| | - Rong Cai
- Hunan Automotive Engineering Vocational College, Zhuzhou, Hunan 412001, China
| | - Jiaxian Liu
- Foshan (Southern China) Institute for New Materials, Foshan, Guangdong 528247, China
| | - Jingjing Rong
- Department of Cardiology, Hunan Provincial People's Hospital (The Frist Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410000, China
| | - Yi Chen
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, Hunan 412007, China; Hunan Provincial Key Laboratory of Biomass Fiber Functional Materials, Hunan University of Technology, Zhuzhou, Hunan 412007, China.
| |
Collapse
|
3
|
Singh R, Gulliver JS. Understanding the role of biofilms and estimation of life-span of a tire derived aggregates-based underground stormwater treatment system. WATER RESEARCH 2024; 257:121716. [PMID: 38759611 DOI: 10.1016/j.watres.2024.121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
The importance of biofilm in tire derived aggregates (TDA) based underground systems has been investigated in this paper, to assess the utilization of tire waste as a cost-effective and sustainable resource for stormwater treatment. The primary objective of this study is to look into the role of biofilms in preventing metal leaching from a TDA based stormwater treatment system and to estimate the life span of a TDA based stormwater treatment system. TDA subjected to different influents to promote or limit the growth of biofilms were analyzed for their leaching and adsorption potential for fifteen different metals through 72 flushes, which is representative of roughly 9 years of TDA exposure to storm events in the upper Midwest USA. Biofilm growth on a manufacturing byproduct (wire exposed-TDA) was higher than on the traditional TDA. The presence of biofilm on TDA had a minor impact on orthophosphate adsorption as observed in a previous study conducted by the authors. However, metals such as iron, zinc and copper, which were previously a concern, had substantially lower leaching into the stored runoff. In addition, the orthophosphate removal from runoff by TDA with a biofilm through 72 flushes indicates that TDA based underground systems can have orthophosphate removal life span beyond 8-9 years. Thus, TDA with biofilms in an underground storage/infiltration chamber has the potential to establish itself as a sustainable, cost-effective, and long life-span alternative for stormwater remediation of orthophosphate pollution without leaching of metals.
Collapse
Affiliation(s)
- Rajneesh Singh
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, USA; Department of Hydrology, Indian Institute of Technology Roorkee, Uttarakhand, India.
| | - John S Gulliver
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, USA; Department of Civil, Environmental and Geo- Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Ishaq S, Nadim AH, Amer SM, Elbalkiny HT. Optimization of graphene polypyrrole for enhanced adsorption of moxifloxacin antibiotic: an experimental design approach and isotherm investigation. BMC Chem 2024; 18:113. [PMID: 38872197 DOI: 10.1186/s13065-024-01208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
The presence of antibiotics in water systems had raised a concern about their potential harm to the aquatic environment and human health as well as the possible development of antibiotic resistance. Herein, this study investigates the power of adsorption using graphene-polypyrrole (GRP-PPY) nanoparticles as a promising approach for the removal of Moxifloxacin HCl (MXF) as a model antibiotic drug. GRP-PPY nanoparticles synthesis was performed with a simple and profitable method, leading to the formation of high surface area particles with excellent adsorption properties. Characterization was assessed with various techniques, including Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET). Box-Behnken experimental design was developed to optimize the adsorption process. Critical parameters such as initial antibiotic concentration, nanoparticle concentration, and pH were investigated. The Freundlich isotherm model provided a good fit to the experimental data, indicating multilayer adsorption of MXF onto the GRP-PPY-NP. As a result, a high adsorption capacity of MXF (92%) was obtained in an optimum condition of preparing 30 μg/mL of the drug to be adsorbed by 1 mg/mL of GRP-PPY-NP in pH 9 within 1 h in a room temperature. Moreover, the regeneration and reusability of GRP-PPY-NP were investigated. They could be effectively regenerated for 3 cycles using appropriate desorption agents without significant loss in adsorption capacity. Overall, this study highlights the power of GRP-PPY-NP as a highly efficient adsorbent for the removal of MXF from wastewater as it is the first time to use this NP for a pharmaceutical product which shows the study's novelty, and the findings provide valuable insights into the development of sustainable and effective wastewater treatment technologies for combating antibiotic contamination in aquatic environments.
Collapse
Affiliation(s)
- Sara Ishaq
- Analytical Chemistry Department, Faculty of Pharmacy, MSA University: October University for Modern Sciences and Arts, Cairo, Egypt.
| | - Ahmed H Nadim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sawsan M Amer
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba T Elbalkiny
- Analytical Chemistry Department, Faculty of Pharmacy, MSA University: October University for Modern Sciences and Arts, Cairo, Egypt
| |
Collapse
|
5
|
Raucci A, Metitiero M, Cuzzi C, Kalligosfyri PM, Messina M, Spinelli M, Amoresano A, Woo SL, Cacciotti I, Cinti S. Remediate and sense: alginate beads empowered by portable electrochemical strips for copper ion removal and detection at environmental sites. Analyst 2024; 149:3302-3308. [PMID: 38747517 DOI: 10.1039/d4an00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The contamination of environmental sites due to the presence of persistent species represents an important issue to be tackled. In particular, the presence of high levels of metals in soil and surface water is more frequent. One of the metals that sometimes exceeds the permissible limit set by regulatory authorities is copper. For instance, copper-based fungicides are widely used in viticulture. However, copper ions remain in soil and can enter the food chain, posing threats to human health and environmental safety. Although the rapid detection of copper ions using portable sensors is effective in enhancing early warning, it sometimes solves only half of the problem as remediation is not considered. In this paper, we present a novel integrated/portable approach that merges the remediation and sensing of metals by proposing a remediate-and-sense concept. In order to realize this concept, alginate beads were coupled with printed electrochemical strips for on-site copper detection. Within the same architecture, alginate beads were used to remove copper ions from the soil, and printed electrochemical strips were used to evaluate the efficacy of remediation at the point of need. The concept was applied towards soil containing copper ions at the parts per billion level; with few alginate beads and in the absence of additional species, copper ions were quantitatively removed from the matrix; and 3D printing allowed us to combine the printed strips and spheres within a unique tool. The architecture was optimized and the results were compared to inductively coupled plasma-mass spectrometry (ICP-MS) measurements with a recovery percentage of 90%-110%. It should be noted that this novel portable approach may be applied to other pollutants, opening new possibilities for integrated remediation and sensing.
Collapse
Affiliation(s)
- Ada Raucci
- Department of Pharmacy, University Naples Federico II, 80055, Naples, Italy.
| | - Mayla Metitiero
- Department of Pharmacy, University Naples Federico II, 80055, Naples, Italy.
| | - Chiara Cuzzi
- Department of Pharmacy, University Naples Federico II, 80055, Naples, Italy.
| | | | - Marianna Messina
- Engineering Department, University of Rome "Niccolò Cusano", INSTM RU, 00166, Rome, Italy.
| | - Michele Spinelli
- Department of Chemical Sciences, University of Naples Federico II, 8055, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, 8055, Naples, Italy
| | - Sheridan L Woo
- Department of Pharmacy, University Naples Federico II, 80055, Naples, Italy.
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055, Naples, Italy
| | - Ilaria Cacciotti
- Engineering Department, University of Rome "Niccolò Cusano", INSTM RU, 00166, Rome, Italy.
| | - Stefano Cinti
- Department of Pharmacy, University Naples Federico II, 80055, Naples, Italy.
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055, Naples, Italy
| |
Collapse
|
6
|
Ahmed S, Choudhury TR, Alam MZ, Nurnabi M. Characterization and application of synthesized calcium alginate-graphene oxide for the removal of Cr 3+, Cu 2+ and Cd 2+ ions from tannery effluents. CLEANER WATER 2024; 1:None. [PMID: 38948691 PMCID: PMC11212350 DOI: 10.1016/j.clwat.2024.100016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 07/02/2024]
Abstract
Environmental sustainability has gained acceptance to achieving the goal of a secure ecosystem with a reliable management system. Heavy metal remediation of aqueous streams is of special concern due to the intractability and persistence in the environment. Adsorption is a potential alternative to the existing inefficient conventional technologies for the removal and recovery of metal ions from aqueous solutions and becomes vital to align with the Sustainable Development Goals (SDGs) and mitigate the adverse environmental and social impacts. Calcium Alginate-Graphene oxide (CA-GO) composite has been synthesized for the adsorption of heavy metals including Cr3+, Cu2+, and Cd2+ ions from tannery effluents. Graphene oxide is prepared from commercial graphite powder and reacted with sodium alginate and calcium chloride to form the beads of CA-GO composite. The developed composite was characterized by FTIR, elemental analysis, SEM, XRD analysis, and Raman spectroscopy. Moreover, the effect of pH, adsorbent dosage, contact time, and initial concentration of metal ions on the adsorption capacity were investigated through batch experiments. At a pH>3.0 (pHzpc), the carboxyl group of CA-GO was deprotonated to make the surface negatively charged and facilitate metal adsorption. The optimum pH and maximum adsorption capacity of CA-GO for removal of Cr(III), Cu(II), and Cd(II) were 4.5, 6.0, and 7.0, and 90.58, 108.57, and 134.77 mg g-1, respectively. The kinetics, adsorption isotherms, and thermodynamics were studied to determine the adsorption mechanism. The kinetic of adsorption adopted the second-order model. Thermodynamic parameter were calculated and the adsorption process was determined to be exothermic and spontaneous at room temperature. The developed composite has been efficaciously applied for the removal of metal ions and pollution from real tannery effluents.
Collapse
Affiliation(s)
- Sobur Ahmed
- Institute of Leather Engineering and Technology, University of Dhaka, Hazaribagh, Dhaka 1209, Bangladesh
| | - Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Atomic Energy Centre, Atomic Energy Commission, Dhaka, Bangladesh
| | - Md. Zahangir Alam
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad Nurnabi
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
7
|
Sellak S, Bensalah J, Ouaddari H, Safi Z, Berisha A, Draoui K, Barrak I, Guedira T, Bourhia M, Ibenmoussa S, Okla M, Dauelbait M, Habsaoui A, Harcharras M. Adsorption of Methylene Blue Dye and Analysis of Two Clays: A Study of Kinetics, Thermodynamics, and Modeling with DFT, MD, and MC Simulations. ACS OMEGA 2024; 9:15175-15190. [PMID: 38585065 PMCID: PMC10993278 DOI: 10.1021/acsomega.3c09536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
The purpose of this research was to learn more about the primary and secondary properties of Moroccan natural clay in an effort to better investigate innovative adsorbents and gain access to an ideal adsorption system. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis (SEM-EDX) and X-ray fluorescence were employed for identification. SEM revealed clay grains, including tiny particles and unevenly shaped sticks. First- and second-order rate laws, representing two distinct kinetic models, were applied in the kinetic approach. Adsorption of dye MB onto natural clay was studied, and the results agreed with the 2 s order model. The significant correlation coefficients support the inference that the adsorption process was governed by the Langmuir model. Subsequent DFT analyses demonstrated that the methylene blue dye's HOMO and LUMO surfaces are dispersed across most of the dye's components, pointing to a strong interaction with the clay. To determine how the dye might be adsorbed onto the clay, we employed quantum descriptors to locate its most nucleophilic and electrophilic centers. Endothermic reactions are evident during the MB adsorption process on clay, as indicated by the positive values of ΔH0 and ΔS0 (70.49 kJ mol-1of RC and 84.19 kJ mol-1 of OC and 10.45 J mol-1 K-1 of RC and 12.68 mol-1 K-1 of OC, respectively). Additionally dye molecules on the adsorbent exhibit a higher order of distribution than in the solution, indicating that the adsorption process is spontaneous.
Collapse
Affiliation(s)
- Sarra Sellak
- Laboratory
of Advanced Materials and Process Engineering (LAMPE), Department
of Chemistry, Faculty of Sciences, Ibn Tofaïl
University, B.P. 133, 14000 Kenitra, Morocco
| | - Jaouad Bensalah
- Laboratory
of Advanced Materials and Process Engineering (LAMPE), Department
of Chemistry, Faculty of Sciences, Ibn Tofaïl
University, B.P. 133, 14000 Kenitra, Morocco
| | - Hanae Ouaddari
- Laboratory
of Advanced Materials and Process Engineering (LAMPE), Department
of Chemistry, Faculty of Sciences, Ibn Tofaïl
University, B.P. 133, 14000 Kenitra, Morocco
- Chemistry
platform, UATRS, National Center for Scientific
and Technical Research (CNRST), Rabat 10500, Morocco
| | - Zaki Safi
- Chemistry
Department, Faculty of Science, Al Azhar
University-Gaza, P.O Box 1277 Gaza, Palestine
| | - Avni Berisha
- Department
of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, 10000 Prishtina, Kosovo
| | - Khalid Draoui
- Laboratory
MSI, Faculty of Sciences, Abdelmalek Essaadi
University, Tetouan 93030, Morocco
| | - Ilias Barrak
- Hydrogen
Solutions - INNOVX, University Mohammed
VI Polytechnic, Ben Guerir 43150, Morocco
| | - Taoufiq Guedira
- Laboratory
of Organic Chemistry, Catalysis, and Environment. University of Ibn Tofail, Faculty of Science, Po Box 133, Kenitra 14000, Morocco
| | - Mohammed Bourhia
- Department
of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
- Laboratory
of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty
of Medicine and Pharmacy, University Hassan
II, B. P. 5696, Casablanca, Morocco
| | - Samir Ibenmoussa
- Laboratory
of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier 34000 France
| | - Mohammad Okla
- Botany
and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Musaab Dauelbait
- Department of Scientific Translation, University
of Bahri, Bahri 11111, Sudan
| | - Amar Habsaoui
- Laboratory
of Advanced Materials and Process Engineering (LAMPE), Department
of Chemistry, Faculty of Sciences, Ibn Tofaïl
University, B.P. 133, 14000 Kenitra, Morocco
| | - Mohamed Harcharras
- Laboratory
of Advanced Materials and Process Engineering (LAMPE), Department
of Chemistry, Faculty of Sciences, Ibn Tofaïl
University, B.P. 133, 14000 Kenitra, Morocco
| |
Collapse
|
8
|
Khan S, Rahman NU, Alam S, Zahoor M, Shah LA, Umar MN, Ullah R. Synthesis of Poly(GG- co-AAm- co-MAA), a Terpolymer Hydrogel for the Removal of Methyl Violet and Fuchsin Basic Dyes from Aqueous Solution. ACS OMEGA 2024; 9:7692-7704. [PMID: 38405485 PMCID: PMC10882686 DOI: 10.1021/acsomega.3c07118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
A novel adsorbent designated as terpolymer hydrogel (gellan gum-co-acrylamide-co-methacrylic acid) was prepared by free radical polymerization of gellan gum (GG), methacrylic acid (MAA), and acrylamide (AAm) using N,N-methylene bis-acrylamide (MBA) as cross-linker and ammonium per sulfate (APS) as the initiator of the reaction. The synthesized gel was characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and thermogravimetric analysis (TGA) and was used for the adsorptive removal of methyl violet (MV) and Fuchsin Basic (FB) dyes from aqueous solution. The effect of temperature, contact time, pH, and concentration on them under the study adsorption process was evaluated. Freundlich isotherm and pseudo-second-order kinetic models were found to be best in fitting the isothermal and kinetics data. The water diffusion and % swelling of hydrogel were studied at various pH in distilled water and at neutral pH in tap water. The diffusion was found to be of Fickian type with a maximum swelling of 5132%. The maximum adsorption capacity was 233 mg/g against MV and 200 mg/g against FB dyes. The swelling and adsorption were pH dependent and increased with increase in pH. The enthalpy, Gibbs free energy, and entropy changes of adsorption for both the dyes indicated the adsorption process to be exothermic, feasible, and spontaneous. The hydrogel was successfully regenerated using acetone and distilled water for five cycles and still, its dye removal efficiency was 80% of its original value. The poly(GG-co-AAm-co-MAA) hydrogel successfully removed the selected dyes from water and could thus be used as an efficient alternative sorbent for cationic dye removal from aqueous solutions.
Collapse
Affiliation(s)
- Shahid Khan
- Department
of Biochemistry, University of Malakand, Chakdara Dir Lower, KPK 18800, Pakistan
- Department
of Biochemistry, University of Malakand, Chakdara Dir Lower, KPK 18800, Pakistan
| | - Najeeb Ur Rahman
- Department
of Biochemistry, University of Malakand, Chakdara Dir Lower, KPK 18800, Pakistan
- Department
of Biochemistry, University of Malakand, Chakdara Dir Lower, KPK 18800, Pakistan
| | - Sultan Alam
- Department
of Biochemistry, University of Malakand, Chakdara Dir Lower, KPK 18800, Pakistan
- Department
of Biochemistry, University of Malakand, Chakdara Dir Lower, KPK 18800, Pakistan
| | - Muhammad Zahoor
- Department
of Biochemistry, University of Malakand, Chakdara Dir Lower, KPK 18800, Pakistan
- Department
of Biochemistry, University of Malakand, Chakdara Dir Lower, KPK 18800, Pakistan
| | - Luqman Ali Shah
- National
Center of Excellence in Physical Chemistry (NCE), University of Peshawar, Nowshera 25120, Pakistan
| | | | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Radoor S, Kandel DR, Park K, Jayakumar A, Karayil J, Lee J. Low-cost and eco-friendly PVA/carrageenan membrane to efficiently remove cationic dyes from water: Isotherms, kinetics, thermodynamics, and regeneration study. CHEMOSPHERE 2024; 350:140990. [PMID: 38141681 DOI: 10.1016/j.chemosphere.2023.140990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Methylene blue (MB), a common dye in the textile industry, has a multitude of detrimental consequences on humans and the environment. Accordingly, it is necessary to remove dyes from water to guarantee our health and sustainable ecosystem. In this study, we developed polyvinyl alcohol (PVA)-based hydrogel adsorbents with high adsorption capacity by adding three types of carrageenan (kappa, iota, and lambda) to remove MB from water. Thanks to the functional groups, the PVA/carrageenan membranes dramatically increased the removal efficiency (kappa, 98.8%; iota, 97.0%; lambda, 95.4%) compared to the pure PVA membrane (6.3%). Among the three types of PVA/carrageenan membranes, the PVA/kappa-carrageenan membrane exhibited the best adsorption capacity of 147.8 mg/g. This result implies that steric hindrance was considerably significant, given that kappa carrageenan has only one sulfate group in the repeating unit, whereas iota and lambda carrageenan composite PVA membranes possess two and three sulfate groups. Apart from the maximum adsorption capacity, this study addressed a variety of characteristics of PVA/carrageenan membranes such as the effects of initial MB concentration, kappa carrageenan weight percentage, contact time, adsorbent dosage, and temperature on the adsorption performance. In addition, the kinetic and thermodynamic studies were also carried out. Lastly, the reusability of the PVA/carrageenan membrane was verified by the 98% removal efficiency maintained after five adsorption-desorption cycles.
Collapse
Affiliation(s)
- Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Kyeongyeon Park
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jasila Karayil
- Department of Applied Science, Government Engineering College West Hill, Kozhikode, Kerala, India
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
10
|
Pal D, Sen S. Optimal synthesis of dolochar derived faujasite zeolite X for highly effective Cd(II) removal. ENVIRONMENTAL RESEARCH 2024; 240:117494. [PMID: 37884075 DOI: 10.1016/j.envres.2023.117494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Cadmium-induced water pollution is a major environmental issue because of its persistent nature and adverse ecological impacts. Adsorption is a highly favored method due to its versatility and high efficacy in cadmium removal. Hence, the present work aims to develop a low-cost, highly effective adsorbent-dolochar-derived nanoporous zeolite to easily and effectively purify Cd(II) polluted water. The work focuses on the Cd(II) batch adsorption study using the optimal hydrothermal synthesis of a crystalline faujasite Zeolite X (ZX) from dolochar. The synthesis parameters were optimized using Response Surface Methodology, specifically Box Behnken Design (RSM-BBD), to maximize the crystallinity percentage. Variables such as initial Cd(II) concentration, solution pH, dosage, time, and temperature were studied for the Cd(II) batch adsorption study. The optimum conditions for synthesizing ZX include NaOH/Dolochar, crystallization temperature, and crystallization time of 1.375, 100 °C, and 11 h, respectively. The resultant XRD structure exhibited an average crystal size and crystallinity of 0.79 μm and 87.231 %, respectively. The average pore size, micropore volume, micropore area, and total surface area were 3.316 nm, 0.311 cc. g-1, 567.226 m2 g-1, and 583.117 m2 g-1, respectively. The maximum removal was accomplished with optimum conditions of 0.25 g.L-1 dosage, 80 min, at 313.15 K, and 6.5 pH. Adsorption isotherm results agreed with those hypothesized by Freundlich isotherm, with a maximum adsorption capacity of 714.285 mg g-1, and the pseudo-second-order kinetic model describes the adsorption kinetics well. The relevance of the results highlights the importance of using this dolochar-derived nanoporous zeolite as an adsorbent to effectively treat Cd(II) containing wastewater.
Collapse
Affiliation(s)
- Deeptimayee Pal
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Sujit Sen
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India.
| |
Collapse
|
11
|
Adabi S, Yazdanbakhsh A, Shahsavani A, Sheikhmohammadi A, Hadi M. Removal of heavy metals from the aqueous solution by nanomaterials: a review with analysing and categorizing the studies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:305-318. [PMID: 37869595 PMCID: PMC10584792 DOI: 10.1007/s40201-023-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/18/2023] [Indexed: 10/24/2023]
Abstract
With the development of nanotechnology and its application in various sciences, scientists have investigated the use of nanoparticles as adsorbents to remove heavy metals from aqueous solutions all over the world. So far, the results of many of these studies have been published in reputable journals. Obviously, reviewing these articles and summarizing the results of these studies from different aspects will provide new perspectives for the development of this technology for heavy metals removal from water. So the current study was performed to review the results of the published studies between 1/January/1980 to 1/January/2022. The focus of the study is on the analysis of these studies and their classification. In addition, a more detailed investigation was carried out. Among the 5155 articles, 576 articles were included based on Cochrane protocols. Results show that most of the studies (90.8%) were conducted on a laboratory scale and used synthetic solutions. Most studies were performed for Pb, Cd and Cu, removal respectively. Compared to other countries, authors with affiliation from China and Iran have published more articles. The ranking of the use of various nanomaterials were: nanocomposites > metal oxide nanomaterials > metal-based nanomaterials > carbon-based nanomaterials > dendrimers, with the wide range of sizes from less than 10 nm to several hundreds of nanometers. The required amount of carbon-based nanoparticles to remove many heavy metals were lower than other nanoparticles. In most studies, pH ≤ 7 has been reported as optimal. Most studies have been followed pseudo second-order and pseudo first-order reactions and have been more agreement with Langmuir and Freundlich adsorption isotherms respectively. The results of studies show that the synthesis and optimization of new nanomaterials can be considered as a new and competitive technology. However, more studies are needed to investigate the removal of heavy metals in real samples and to overcome some challenges in the full-scale application.
Collapse
Affiliation(s)
- Shervin Adabi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Yazdanbakhsh
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sheikhmohammadi
- Department of Environmental Health Engineering, School of Public Health, Khoy University of Medical Sciences, Khoy, Iran
| | - Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Levy-Ontman O, Yanay C, Alfi Y, Paz-Tal O, Wolfson A. Selective Sorption of Heavy Metals by Renewable Polysaccharides. Polymers (Basel) 2023; 15:4457. [PMID: 38006181 PMCID: PMC10674856 DOI: 10.3390/polym15224457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Renewable and biodegradable polysaccharides have attracted interest for their wide applicability, among them their use as sorbents for heavy metal ions. Their high sorption capacity is due mainly to the acidic groups that populate the polysaccharide backbone, for example, carboxylic groups in alginate and sulfate ester groups in the iota and lambda carrageenans. In this study, these three polysaccharides were employed, alone or in different mixtures, to recover different heavy metal ions from aqueous solutions. All three polysaccharides were capable of adsorbing Eu3+, Sm3+, Er3+, or UO22+ and their mixtures, findings that were also confirmed using XPS, TGA, and FTIR analyses. In addition, the highest sorption yields of all the metal ions were obtained using alginate, alone or in mixtures. While the alginate with carboxylic and hydroxyl groups adsorbed different ions with the same selectivity, carrageenans with sulfate ester and hydroxyl groups exhibited higher adsorption selectivity for lanthanides than for uranyl, indicating that the activity of the sulfate ester groups toward trivalent and smaller ions was higher.
Collapse
Affiliation(s)
- Oshrat Levy-Ontman
- Department of Chemical and Green Engineering, Shamoon College of Engineering, Beer-Sheva 8434231, Israel; (C.Y.); (A.W.)
| | - Chanan Yanay
- Department of Chemical and Green Engineering, Shamoon College of Engineering, Beer-Sheva 8434231, Israel; (C.Y.); (A.W.)
| | - Yaron Alfi
- Nuclear Research Center, Negev, Beer-Sheva 8419001, Israel; (Y.A.); (O.P.-T.)
| | - Ofra Paz-Tal
- Nuclear Research Center, Negev, Beer-Sheva 8419001, Israel; (Y.A.); (O.P.-T.)
| | - Adi Wolfson
- Department of Chemical and Green Engineering, Shamoon College of Engineering, Beer-Sheva 8434231, Israel; (C.Y.); (A.W.)
| |
Collapse
|
13
|
Zhang X, Saravanakumar K, Sathiyaseelan A, Lu Y, Wang MH. Adsorption of methyl orange dye by SiO 2 mesoporous nanoparticles: adsorption kinetics and eco-toxicity assessment in Zea mays sprout and Artemia salina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117000-117010. [PMID: 36884180 DOI: 10.1007/s11356-023-26173-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Herein, we prepared the silica nanoparticles (SiO2 NPs) by a modified Stober's method for methyl orange (MO) removal. The SiO2 NPs were found to be spherical with a zeta size of 152.5 d. nm, a PDI of 0.377, and a zeta potential of -5.59 mV. The effect of different parameters (initial dye concentration, reaction time, temperature, and pH) on the adsorption of MO by SiO2 NPs was determined. The adsorption pattern of SiO2 NPs was highly fitted with the Langmuir, Freundlich, Redlich-Peteroen, and Temkin isotherm models. The highest adsorption rate was recorded at 69.40 mg/g of SiO2 NPs. Furthermore, the toxic effect of before and after removal of MO in aqueous solution was tested in terms of phytotoxicity and acute toxicity. The SiO2 NPs treated MO dye solution were not exhibited significant toxicity to corn seeds and Artemia salina. These results indicated that SiO2 NPs can be used for the adsorption of MO.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
- College of Bioscience and Biotechnology, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
14
|
Tofan L. Insights into the Applications of Natural Fibers to Metal Separation from Aqueous Solutions. Polymers (Basel) 2023; 15:polym15092178. [PMID: 37177324 PMCID: PMC10181014 DOI: 10.3390/polym15092178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
There is a wide range of renewable materials with attractive prospects for the development of green technologies for the removal and recovery of metals from aqueous streams. A special category among them are natural fibers of biological origin, which combine remarkable biosorption properties with the adaptability of useful forms for cleanup and recycling purposes. To support the efficient exploitation of these advantages, this article reviews the current state of research on the potential and real applications of natural cellulosic and protein fibers as biosorbents for the sequestration of metals from aqueous solutions. The discussion on the scientific literature reports is made in sections that consider the classification and characterization of natural fibers and the analysis of performances of lignocellulosic biofibers and wool, silk, and human hair waste fibers to the metal uptake from diluted aqueous solutions. Finally, future research directions are recommended. Compared to other reviews, this work debates, systematizes, and correlates the available data on the metal biosorption on plant and protein biofibers, under non-competitive and competitive conditions, from synthetic, simulated, and real solutions, providing a deep insight into the biosorbents based on both types of eco-friendly fibers.
Collapse
Affiliation(s)
- Lavinia Tofan
- Department of Environmental Engineering and Management, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 Prof.Dr. D. Mangeron Blvd., 700050 Iasi, Romania
| |
Collapse
|
15
|
Rafie SF, Abdollahi H, Sayahi H, Ardejani FD, Aghapoor K, Karimi Darvanjooghi MH, Kaur Brar S, Magdouli S. Genetic algorithm-assisted artificial neural network modelling for remediation and recovery of Pb (II) and Cr(VI) by manganese and cobalt spinel ferrite super nanoadsorbent. CHEMOSPHERE 2023; 321:138162. [PMID: 36804494 DOI: 10.1016/j.chemosphere.2023.138162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
MnFe2O4 and CoFe2O4 nanoparticles were hydrothermally synthesized to examine their capability in adsorption of Pb (II) and Cr (VI). The adsorbents exhibited a high rate of adsorption, reaching 90% of their adsorption capacity in less than 30 min. Furthermore, the adsorption capability of the Magnetic Nanoparticles (MNPs) was noticeably greater at initial pollutant concentrations smaller than 40 mg/L. Maximum adsorption capacity on MnFe2O4 and CoFe2O4 nanoparticles were 40 and 25.38 mg/g for Cr (VI) and 523.32 and 476.19 mg/g for Pb (II), respectively. A data-driven model of Artificial Neural Network was used for prediction of adsorption capacity at both equilibrium and non-equilibrium condition. The model parameters including the numbers of neuron (n = 7) and data portioning for training (49.5%), validation (40.5%), and testing (10%) were obtained using Genetic Algorithm. The results indicated that the model could predict the data with high accuracy (R2 = 0.998). The input parameters were initial concentration, time, pH, temperature, adsorbent dosage, and other parameters that is dependent to the physico-chemical properties of ions and adsorbents' surface (ε, α1, α2). The mechanism involved in Cr(VI) and Pb(II) adsorption are electrostatic physisorption and a combination of ion exchange chemisorption and electrostatic physisorption, respectively. Desorption capability and adsorbent reuse capability were also examined.
Collapse
Affiliation(s)
- Seyed Faridedin Rafie
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, 1439957131, Iran
| | - Hadi Abdollahi
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, 1439957131, Iran
| | - Hani Sayahi
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, 1496813151, Iran
| | - Faramarz Doulati Ardejani
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, 1439957131, Iran
| | - Kioumars Aghapoor
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, 1496813151, Iran
| | | | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada.
| | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
16
|
Khedr RF. Radiation-Grafting on Polypropylene Copolymer Membranes for Using in Cadmium Adsorption. Polymers (Basel) 2023; 15:686. [PMID: 36771989 PMCID: PMC9919292 DOI: 10.3390/polym15030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Graft copolymerization has been a popular technique in recent years for adding different functional groups to polymers. In our research, polypropylene (PP) films are grafted with acrylonitrile (An) and acrylic acid (AAc) monomers to make them hydrophilic while retaining their mechanical qualities. Gamma radiation is used in this approach to establish active spots on an inert polymer that are appropriate for adding monomers radicals to form grafts, a procedure that is extremely difficult to perform using normal chemical processes. The graft parameters are investigated in order to acquire the highest percentage of graft. FTIR (Fourier transform infrared spectroscopy) spectra are used to analyze the grafting of AAc and An. SEM (scanning electron microscopy) and XRD (X-ray diffraction) micrographs are used to validate them. The specimens' tensile strength and hardness are measured and contrasted with blank PP films. Measurements are made of the effects of grafting on the tensile strength and elongation of the films, and a crucial grafting degree is established in order to preserve these properties. Water uptake is measured to adapt the copolymer to water treatment, and thermal behavior TGA (thermal gravimetric analysis) and DSC (diffraction scanning calorimeter) of the produced copolymer were performed. The elimination of cadmium was verified by an atomic absorption spectrophotometer (AAS) under different conditions of pH, time, and degree of grafting.
Collapse
Affiliation(s)
- Rania F Khedr
- Chemistry Department Al Leith, University College, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| |
Collapse
|
17
|
Sarmiento V, Lockett M, Sumbarda-Ramos EG, Vázquez-Mena O. Effective Removal of Metal ion and Organic Compounds by Non-Functionalized rGO. Molecules 2023; 28:649. [PMID: 36677707 PMCID: PMC9864598 DOI: 10.3390/molecules28020649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Effective removal of heavy metals from water is critical for environmental safety and public health. This work presents a reduced graphene oxide (rGO) obtained simply by using gallic acid and sodium ascorbate, without any high thermal process or complex functionalization, for effective removal of heavy metals. FTIR and Raman analysis show the effective conversion of graphene oxide (GO) into rGO and a large presence of defects in rGO. Nitrogen adsorption isotherms show a specific surface area of 83.5 m2/g. We also measure the zeta-potential of the material showing a value of -52 mV, which is lower compared to the -32 mV of GO. We use our rGO to test adsorption of several ion metals (Ag (I), Cu (II), Fe (II), Mn (II), and Pb(II)), and two organic contaminants, methylene blue and hydroquinone. In general, our rGO shows strong adsorption capacity of metals and methylene blue, with adsorption capacity of qmax = 243.9 mg/g for Pb(II), which is higher than several previous reports on non-functionalized rGO. Our adsorption capacity is still lower compared to functionalized graphene oxide compounds, such as chitosan, but at the expense of more complex synthesis. To prove the effectiveness of our rGO, we show cleaning of waste water from a paper photography processing operation that contains large residual amounts of hydroquinone, sulfites, and AgBr. We achieve 100% contaminants removal for 20% contaminant concentration and 63% removal for 60% contaminant concentration. Our work shows that our simple synthesis of rGO can be a simple and low-cost route to clean residual waters, especially in disadvantaged communities with low economical resources and limited manufacturing infrastructure.
Collapse
Affiliation(s)
- Viviana Sarmiento
- Facultad de Odontología, Universidad Autónoma de Baja California, Tijuana 22427, BC, Mexico
- Department of NanoEngineering and Center for Memory and Recording Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Malcolm Lockett
- Department of NanoEngineering and Center for Memory and Recording Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Emigdia Guadalupe Sumbarda-Ramos
- Facultad de Ciencias de la Ingeniería y Tecnología (FCITEC), Universidad Autónoma de Baja California, Valle de las Palmas, Tijuana 22427, BC, Mexico
| | - Oscar Vázquez-Mena
- Department of NanoEngineering and Center for Memory and Recording Research, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Khan M, Muhammad M, AlOthman ZA, Cheong WJ, Ali F. Synthesis of monolith silica anchored graphene oxide composite with enhanced adsorption capacities for carbofuran and imidacloprid. Sci Rep 2022; 12:21027. [PMID: 36471158 PMCID: PMC9722712 DOI: 10.1038/s41598-022-25528-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Highly efficient adsorbent was prepared for the removal of carbofuran and imidacloprid pesticides from wastewater. The silica monolith anchored graphene oxide composite was synthesized by the modified Fischer esterification protocol. The composite showed improved adsorption capacity for the removal of pesticides from wastewater. Graphene oxide was synthesized using the modified Hummer's method, while the silica monolith was prepared via sol-gel method. The composite was characterized via X-ray diffraction, Fourier transform infra-red, Brunauer Emmett and Teller (BET/BJH) analysis, zeta potential, and FESEM imaging. Different adsorption parameters such as pH, contact time, adsorbate and adsorbent concentration, and temperature were optimized for the adsorption of pesticides. The equilibrium and kinetic models were applied to the adsorption process of the pesticides. Qe of the composite as found to be 342.46 mg g-1 for imidacloprid and 37.15 mg g-1 for carbofuran. The adsorption process followed the pseudo 2nd order kinetic model for carbofuran (R2~0.9971) and imidacloprid (R2~0.9967). The Freundlich isotherm best fitted to the adsorption data of the pesticides with R2 value of 0.9956 for carbofuran and 0.95 for imidacloprid. The resultant adsorbent/composite material came out with very good results for the removal of pesticides.
Collapse
Affiliation(s)
- Musa Khan
- grid.440567.40000 0004 0607 0608Department of Chemistry, University of Malakand, Chakdara, Lower Dir, 18800 Pakistan
| | - Mian Muhammad
- grid.440567.40000 0004 0607 0608Department of Chemistry, University of Malakand, Chakdara, Lower Dir, 18800 Pakistan
| | - Zeid A. AlOthman
- grid.56302.320000 0004 1773 5396Department of Chemistry, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Won Jo Cheong
- grid.202119.90000 0001 2364 8385Department of Chemistry, Inha University, 100 Inharo, Namku, Incheon, 402-751 South Korea
| | - Faiz Ali
- grid.440567.40000 0004 0607 0608Department of Chemistry, University of Malakand, Chakdara, Lower Dir, 18800 Pakistan
| |
Collapse
|
19
|
Synthesis and application of a thiol functionalized clay for borewell water purification: Microchemical characteristics and adsorption studies. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Prisca Marie Sandrine Kouakou L, Karidioula D, Max Robin Manouan W, Aliou Guillaume Pohan L, Cissé G, Léon Konan K, Jonas Andji-Yapi Y. Use of two clays from Côte d'Ivoire for the adsorption of methyl red from aqueous medium. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Wang J, Sgarzi M, Němečková Z, Henych J, Licciardello N, Cuniberti G. Reusable and Antibacterial Polymer-Based Nanocomposites for the Adsorption of Dyes and the Visible-Light-Driven Photocatalytic Degradation of Antibiotics. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2200076. [PMID: 36381130 PMCID: PMC9638429 DOI: 10.1002/gch2.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Adsorption and advanced oxidation processes, especially photocatalysis, are amongst the most common water treatment methodologies. Unfortunately, using each of these techniques independently does not fully eliminate the pollutants of diverse nature, which are present in wastewater. Here, an avenue for multifunctional materials for water treatment is opened by reporting for the first time the preparation, characterization, and study of the properties of a novel multifunctional nanocomposite with both adsorption and visible-light-driven photocatalysis abilities. These multifunctional nanocomposites, namely iron (II, III) oxide/poly(N-isopropylacrylamide-co-methacrylic acid)/silver-titanium dioxide (Fe3O4/P(NIPAM-co-MAA)/Ag-TiO2), are prepared by combining magnetic polymeric microspheres (Fe3O4/P(NIPAM-co-MAA)) with silver-decorated titanium dioxide nanoparticles (Ag-TiO2 NPs). Cationic dyes, such as basic fuchsin (BF), can be adsorbed by the nanocomposites thanks to the carboxylic groups of Fe3O4/P(NIPAM-co-MAA) microspheres. Concomitantly, the presence of Ag-TiO2 NPs endows the system with the visible-light-driven photocatalytic degradation ability toward antibiotics such as ciprofloxacin (CIP) and norfloxacin (NFX). Furthermore, the proposed nanocomposites show antibacterial activity toward Escherichia coli (E. coli), thanks to the presence of silver nanoparticles (Ag NPs). Due to the superparamagnetic properties of iron (II, III) oxide nanoparticles (Fe3O4 NPs), the nanocomposites can be also recycled and reused, after the cleaning process, by using an external magnetic field.
Collapse
Affiliation(s)
- Jiao Wang
- Institute for Materials ScienceMax Bergmann Center of Biomaterials and Dresden Center for NanoanalysisTU Dresden01062DresdenGermany
| | - Massimo Sgarzi
- Institute for Materials ScienceMax Bergmann Center of Biomaterials and Dresden Center for NanoanalysisTU Dresden01062DresdenGermany
- Present address:
Department of Molecular Sciences and NanosystemsCa’ Foscari University of VeniceVia Torino 15530172Venezia MestreItaly
| | - Zuzana Němečková
- Institute of Inorganic ChemistryCzech Academy of SciencesHusinec‐Řež 1001Řež250 68Czech Republic
| | - Jiří Henych
- Institute of Inorganic ChemistryCzech Academy of SciencesHusinec‐Řež 1001Řež250 68Czech Republic
- Faculty of EnvironmentJan Evangelista Purkyně UniversityPasteurova 3632/15Ústí nad Labem400 96Czech Republic
| | - Nadia Licciardello
- Institute for Materials ScienceMax Bergmann Center of Biomaterials and Dresden Center for NanoanalysisTU Dresden01062DresdenGermany
- Present address:
Department of Drug and Health SciencesUniversity of CataniaViale Andrea Doria 695125CataniaItaly
| | - Gianaurelio Cuniberti
- Institute for Materials ScienceMax Bergmann Center of Biomaterials and Dresden Center for NanoanalysisTU Dresden01062DresdenGermany
| |
Collapse
|
22
|
Exploring the Biosorption of Methylene Blue Dye onto Agricultural Products: A Critical Review. SEPARATIONS 2022. [DOI: 10.3390/separations9090256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Due to their higher specific area and, in most cases, higher adsorption capacity, nanomaterials are noteworthy and attractive adsorbents. Agricultural products that are locally available are the best option for removing methylene blue (MB) dye from aqueous solutions. Because it is self-anionic, FT-IR and SEM investigations of biosorption have confirmed the role of the functional group and its contribution to the formation of pores that bind cationic dye. It is endothermic if the adsorption of MB by an adsorbent is high as the temperature increases; on the other hand, exothermic if it is high as the temperature decreases. A basic medium facilitates adsorption with respect to pH; adsorption is proportional to the initial concentration at a certain level before equilibrium; after equilibrium, adsorption decreases. A pseudo-second-order model applies for certain agricultural products. As per plotted graph for the solid-phase concentration against the liquid-phase concentration, the Langmuir adsorption isotherm model is favored; this model describes a situation in which a number of molecules are adsorbed by an equal number of available surface sites, and there is no interaction between adsorbate molecules once all sites are occupied. In contrast, the Freundlich model depicts non-ideal multi-layer sorption onto heterogeneous surfaces via numerical analysis; with a value of n = 1, the result is a linear isotherm. If the value of n < 1 or n > 1, then it is chemical or physical adsorption, respectively. Based on an EDX analysis, relevant elements are confirmed. BET analysis confirms the surface area. Nanoproducts categorized as agricultural products exhibit the aforementioned tendency. Even though nanoparticles show positive outcomes in terms of higher adsorption, a high specific area for the targeted pollutant is needed in real-world applications. In the relevant sections herein, the behavior of thermodynamic parameters, such as enthalpy, entropy, and Gibbs free energy, are examined. There is some question as to which form of agricultural waste is the most effective adsorption medium. There is no direct answer because every form of agricultural waste has its own distinct chemical and physical characteristics, such as porosity, surface area, and strength.
Collapse
|
23
|
He L, Dai Y, Wang Z, Yang L, Zhang L, Hu P, Tian Y, Mo H, Zhu H, Zhang J. A novel recyclable nano-adsorbent for enhanced oil recovery with efficient removal of Ca2+ and Cr6+ from oilfield wastewater. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Singh A, Chauhan S, Varjani S, Pandey A, Bhargava PC. Integrated approaches to mitigate threats from emerging potentially toxic elements: A way forward for sustainable environmental management. ENVIRONMENTAL RESEARCH 2022; 209:112844. [PMID: 35101398 DOI: 10.1016/j.envres.2022.112844] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Potentially toxic elements (PTEs) such as toxic metal (loid)s and other emerging hazardous contaminants, exist in the environment and poses a serious threat. A large amount of wastewater containing PTEs such as cadmium, chromium, copper, nickel, arsenic, lead, zinc, etc. Release from industries during production process. Besides these, chemical-based fertilizers used in soils during crop production have become one of the crucial sources of PTEs. Various techniques are being employed for the mitigation of PTEs like chemical precipitation, ion exchange, coagulation, activated carbon, adsorption, membrane filtration, and bioremediation. Among these mitigation strategies, biological processes such as bioremediation, phytoremediation etc. Are extensively used, as they are economic have high-efficiency rate and are eco-friendly. This review intends to provide information on PTEs contamination through various sources; along with the toxicity of metal (loid)s with respect to their patterns of transmission and risks in the changing environment. Various remediation methods for the management of these pollutants along with their techno-economic perspective are also summarized in this review.
Collapse
Affiliation(s)
- Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | | | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Center for Energy and Environmental Sustainability, Lucknow, 226029, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007,Uttarakhand, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
25
|
Jo HS, Kim H, Yoon SY. Synthesis and Characterization of Mesoporous Aluminum Silicate and Its Adsorption for Pb (II) Ions and Methylene Blue in Aqueous Solution. MATERIALS 2022; 15:ma15103562. [PMID: 35629587 PMCID: PMC9143537 DOI: 10.3390/ma15103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Aluminum silicate powder was prepared using two different syntheses: (1) co-precipitation and (2) two-step sol-gel method. All synthesized powders were characterized by various techniques including XRD, FE-SEM, FT-IR, BET, porosimeter, and zetasizer. The particle morphology of the synthesized aluminum silicate powder was greatly different depending on the synthesis. The synthesized aluminum silicate powder by co-precipitation had a low specific surface area (158 m2/g) and the particle appeared to have a sharp edge, as though in a glassy state. On the other hand, synthesized aluminum silicate powder by the two-step sol-gel method had a mesoporous structure and a large specific surface area (430 m2/g). The aluminum silicate powders as adsorbents were characterized for their adsorption behavior towards Pb (II) ions and methylene blue in an aqueous solution performed in a batch adsorption experiment. The maximum adsorption capacities of Pb (II) ions and methylene blue onto the two-step sol-gel method powder were over four-times and seven-times higher than that of the co-precipitation powder, respectively. These results show that the aluminum silicate powder synthesized with a two-step sol-gel method using ammonia can be a potential adsorbent for removing heavy metal ions and organic dyes from an aqueous solution.
Collapse
|
26
|
A Review of the Techno-Economic Feasibility of Nanoparticle Application for Wastewater Treatment. WATER 2022. [DOI: 10.3390/w14101550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The increase in heavy metal contamination has led to an increase in studies investigating alternative sustainable ways to treat heavy metals. Nanotechnology has been shown to be an environmentally friendly technology for treating heavy metals and other contaminants from contaminated water. However, this technology is not widely used in wastewater treatment plants (WWTPs) due to high operational costs. The increasing interest in reducing costs by applying nanotechnology in wastewater treatment has resulted in an increase in studies investigating sustainable ways of producing nanoparticles. Certain researchers have suggested that sustainable and cheap raw materials must be used for the production of cheaper nanoparticles. This has led to an increase in studies investigating the production of nanoparticles from plant materials. Additionally, production of nanoparticles through biological methods has also been recognized as a promising, cost-effective method of producing nanoparticles. Some studies have shown that the recycling of nanoparticles can potentially reduce the costs of using freshly produced nanoparticles. This review evaluates the economic impact of these new developments on nanotechnology in wastewater treatment. An in-depth market assessment of nanoparticle application and the economic feasibility of nanoparticle applications in WWTPs is presented. Moreover, the challenges and opportunities of using nanoparticles for heavy metal removal are also discussed.
Collapse
|
27
|
Methacrylate-Based Polymeric Sorbents for Recovery of Metals from Aqueous Solutions. METALS 2022. [DOI: 10.3390/met12050814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The industrialization and urbanization expansion have increased the demand for precious and rare earth elements (REEs). In addition, environmental concerns regarding the toxic effects of heavy metals on living organisms imposed an urgent need for efficient methods for their removal from wastewaters and aqueous solutions. The most efficient technique for metal ions removal from wastewaters is adsorption due to its reversibility and high efficiency. Numerous adsorbents were mentioned as possible metal ions adsorbents in the literature. Chelating polymer ligands (CPLs) with adaptable surface chemistry, high affinity towards targeted metal ions, high capacity, fast kinetics, chemically stable, and reusable are especially attractive. This review is focused on methacrylate-based magnetic and non-magnetic porous sorbents. Special attention was devoted to amino-modified glycidyl methacrylate (GMA) copolymers. Main adsorption parameters, kinetic models, adsorption isotherms, thermodynamics of the adsorption process, as well as regeneration of the polymeric sorbents were discussed.
Collapse
|
28
|
TEKİN B, AÇIKEL U. Adsorption Isotherms for Removal of Heavy Metal Ions (Copper and Nickel) From Aqueous Solutions In Single And Binary Adsorption Processes. GAZI UNIVERSITY JOURNAL OF SCIENCE 2022. [DOI: 10.35378/gujs.1066137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Today, the effluents released by industrial processes contain heavy metal ions in such high concentrations that they could adversely affect human health and the natural habitat that harbors hundreds of millions of living creatures. Therefore, the treatment of wastewater has turned out to be a significant issue. This study discusses the single- and binary-uptake of Copper (II) and Nickel (II) ions onto the Sepiolite in terms of thermodynamic perspective. For mono-component systems, the initial effluent concentration, mixing speed and temperature have been studied as a function of time to determine the conditions where the adsorbents show a great deal of affinity towards the Cu (II) and Ni (II) ions in aqueous solutions. Before the metal adsorption experiments, Physical and Chemical properties of Sepiolite were identified via Brunauer–Emmett–Teller (BET) analysis. The single metal ion uptake studies were performed at 20, 25, 30, and 30 °C. At equilibrium, the sorption data were individually shown to correlate well with the non-competitive Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms. Among the applied isotherm models, the one-component sorption values do fit the Langmuir isotherm best. The simultaneous and competitive uptake of Cu (II) and Ni (II) was assessed by the extended Langmuir and Freundlich isotherms. Both adsorption equations complied with the two-component sorption data perfectly. Single- and binary-sorption results unclose that the effect of Sepiolite to Cu (II) is greater than that of Sepiolite to Ni (II).
Collapse
Affiliation(s)
- Burak TEKİN
- ONDOKUZ MAYIS UNIVERSITY, FACULTY OF ENGINEERING, DEPARTMENT OF CHEMISTRY ENGINEERING, CHEMICAL ENGINEERING PR
| | - Unsal AÇIKEL
- SİVAS CUMHURİYET ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, KİMYA MÜHENDİSLİĞİ BÖLÜMÜ, KİMYA MÜHENDİSLİĞİ PR
| |
Collapse
|
29
|
Porous graphene nanoplatelets encompassed with nitrogen and sulfur group for heavy metal ions removal of adsorption and desorption from single or mixed aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Chemical Modification of Teff Straw Biomass for Adsorptive Removal of Cr (VI) from Aqueous Solution: Characterization, Optimization, Kinetics, and Thermodynamic Aspects. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/5820207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Teff straw, a by-product of Teff, mainly available in Ethiopia, has not been studied much for biosorbent production. The present study has investigated the effects of modification and optimization of process parameters (viz., concentration of modifying agent (H3PO4 and KOH), modifying temperature, and modifying time) on the Cr (VI) removal efficiency of using chemically activated Teff straw biosorbent by RSM followed by BBD. The maximum Cr (VI) removal was obtained using an H3PO4-modified Teff straw biosorbent of 92.5% with 2 M concentration of the modifying agent, 110°C, and 4 h. Similarly, maximum Cr (VI) removal using KOH-modified Teff straw biosorbent of 95.2% was obtained with 1.5 M activating agent concentration, 105°C activation temperature, and 3.5 h activation time. In addition, the effects of adsorption parameters (viz., biosorbent dosage, temperature, initial concentration of Cr (VI), and contact time) were investigated. The maximum removal efficiency was attained at 2 g of biosorbent dosage, 4 h contact, 75 mg/L of initial Cr (VI) concentration, and 25°C sorption temperature. In addition, isotherm, kinetic, and thermodynamic studies for Cr (VI) biosorption were studied. The experimental adsorption data were well fitted with the Langmuir isotherm and pseudo-second-order kinetic model with higher correlation coefficient in both untreated and chemically modified Teff straw biosorbent. The investigated thermodynamic parameters (
,
, and
) confirmed that Cr (VI) metal ions’ adsorption process onto Teff straw biosorbent was spontaneous and endothermic.
Collapse
|
31
|
Zhao M, Ma X, Chen D, Liao Y. Preparation of Honeycomb-Structured Activated Carbon-Zeolite Composites from Modified Fly Ash and the Adsorptive Removal of Pb(II). ACS OMEGA 2022; 7:9684-9689. [PMID: 35350362 PMCID: PMC8945182 DOI: 10.1021/acsomega.1c07192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/02/2022] [Indexed: 05/26/2023]
Abstract
In this paper, fly ash (FA) was successfully prepared into a honeycomb carbon-zeolite composite (CZC) with good adsorption and used for the removal of Pb(II) by a two-step method. Compared with general FA, the honeycomb structure of the CZC resulted in a ∼6× increase in the specific surface area, and the average pore size increased from 3.4 to 12.7 μm. The maximum adsorption capacity of CZCs for Pb(II) reached 185.68 mg/g in 40 min. The experimental data for the adsorption of Pb(II) by CZC showed that the results were in good agreement with the Langmuir adsorption model. The adsorbent prepared in this study has good application prospects in wastewater treatment and provides a new method for the resource recovery of FA.
Collapse
|
32
|
Güçoğlu M, Şatıroğlu N. Adsorption of Pb(II), Cu(II), Cd(II), Ni(II), and Co(II) ions by newly synthesized 2-(2′-Hydroxyphenyl)Benzothiazole-functionalized silica. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Amenaghawon AN, Anyalewechi CL, Darmokoesoemo H, Kusuma HS. Hydroxyapatite-based adsorbents: Applications in sequestering heavy metals and dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113989. [PMID: 34710761 DOI: 10.1016/j.jenvman.2021.113989] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Hydroxyapatite (HAp) is a calcium phosphate material that was used primarily in bone regeneration and repair as a result of its chemical similarity with bone. However, HAp has emerged as a very promising adsorbent for sequestering contaminants like heavy metals, dyes, hydrocarbons as well as other emerging pollutants from wastewater as a result of its versatility and encouraging adsorptive properties. Contaminants like heavy metals and dyes have been a major source of environmental concern. Research studies involving the use of HAp as adsorbents for the adsorptive treatment of heavy metal- and dye-contaminated wastewater have become increasingly popular due to its eco-friendliness, easy synthesis, unique adsorption properties etc. Various methods are available for the synthesis of HAp and its composites with some of these methods used in combination with other methods to obtain more efficient HAp-based adsorbents. In this work, the adsorptive removal of heavy metals and dyes by HAp and its composites was extensively reviewed as well as the parametric effects of process factors like contact time, solution pH, temperature, solute concentration etc on the adsorption process. Kinetic, thermodynamic, and isotherm models for elucidating the adsorption process were also considered. Generally, from the works reviewed, HAp-based adsorbents were found to be very effective for sequestering heavy metals and dyes from solution and thus presents a low-cost option for adsorptive wastewater treatment.
Collapse
Affiliation(s)
- Andrew N Amenaghawon
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, PMB, 1154, Benin City, Edo State, Nigeria.
| | - Chinedu L Anyalewechi
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, PMB, 1154, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Federal Polytechnic Oko, Anambra State, Nigeria
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya, 60115, Indonesia.
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia.
| |
Collapse
|
34
|
El-Maghrabi HH, Hassanein TF, Younes AA. Chelating solid-phase polymeric adsorbent for the removal of Hg2+ ions from aqueous solutions: preparation, characterization and adsorption optimization studies. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2013866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Heba H. El-Maghrabi
- Petroleum Refining Department, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| | - Taha F. Hassanein
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed A. Younes
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
35
|
Rathi BS, Kumar PS, Vo DVN. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149134. [PMID: 34346357 DOI: 10.1016/j.scitotenv.2021.149134] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Water is required for the existence of all living things. Water pollution has grown significantly, over the decades and now it has developed as a serious worldwide problem. The presence and persistence of Hazardous pollutants such as dyes, pharmaceuticals and personal care products, heavy metals, fertilizer and pesticides and their transformed products are the matter of serious environmental and health concerns. A variety of approaches have been tried to clean up water and maintain water quality. The type of pollutants present in the water determines the bulk of technological solutions. The main objective of this article was to review the occurrences and fate of hazardous contaminants (dyes, pharmaceuticals and personal care products, heavy metals, and pesticides) found in wastewater effluents. These effluents mingle with other streams of water and that are utilized for a variety of reasons such as irrigation and other domestic activities that is further complicating the issue. It also discussed traditional treatment approaches as well as current advances in hazardous pollutants removal employing graphite oxides, carbon nanotubes, metal organic structures, magnetic nano composites, and other innovative forms of useable materials. It also discussed the identification and quantification of harmful pollutants using various approaches, as well as current advancements. Finally, a risk assessment of hazardous pollutants in water is provided in terms of the human health and the environment. This data is anticipated to serve as a foundation for future improvements in hazardous pollutant risk assessment. Furthermore, future studies on hazardous pollutants must not only emphasize on the parent chemicals, as well as on their possible breakdown products in various media.
Collapse
Affiliation(s)
- B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
36
|
de Aguiar Filho SQ, Costa AMF, Dos Santos Pereira AK, Cavallini GS, Pereira DH. Interaction of glyphosate in matrices of cellulose and diethylaminoethyl cellulose biopolymers: theoretical viewpoint of the adsorption process. J Mol Model 2021; 27:272. [PMID: 34468918 DOI: 10.1007/s00894-021-04894-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
Glyphosate is an herbicide widely used in agricultural activities causing contamination of soils and bodies of water and damage to the biodiversity of ecosystems. In this context, the present study aimed to theoretically study the adsorption potential of the biopolymer cellulose (CE) and its diethylaminoethyl cellulose derivative (DEAEC) with the herbicide glyphosate (GLY). Theoretical calculations were performed using the density functional theory. Molecular electrostatic potential and frontier molecular orbital analyses were performed, which allowed identifying the possible sites of interaction of biopolymers that were in the functional groups -OH and O- of cellulose and in the groups -O- and -NH+(CH2CH3)2 of the DEAEC. Reactivity indices chemical softness and hardness showed that both adsorbents could interact with adsorbate. Simulated IR indicated that the interactions could be evinced in experimental measurements by changes in the bands of glyphosate (ν(P = O), δ(P-O-H), δ(C-N-H)) or in the bands of CE and DEAEC (ν(C-O), ν(C-H), ν(N-H)). The binding energies showed that the GLY interacts more effectively with CE than DEAEC. The ΔH prove that all processes are exothermic and the CE-GLY1 interaction showed value of ΔG < 0. The topological results showed a greater number of interactions with electrostatic nature. The results found in the study show that the theoretical data provides useful information to support the use of biopolymers as matrices for glyphosate adsorption or other contaminants.
Collapse
Affiliation(s)
- Sílvio Quintino de Aguiar Filho
- Chemistry Collegiate, Federal University of Tocantins, Campus Gurupi - Badejós, P.O. Box 66, Gurupi, Tocantins, 77 402-970, Brazil
| | - Adão Marcos Ferreira Costa
- Chemistry Collegiate, Federal University of Tocantins, Campus Gurupi - Badejós, P.O. Box 66, Gurupi, Tocantins, 77 402-970, Brazil
- Federal Institute of Tocantins, Campus Dianópolis - Rodovia TO - 040 - Km 349, Lote 01 - Loteamento Rio Palmeiras, Dianópolis, Tocantins, 77300-000, Brazil
| | | | - Grasiele Soares Cavallini
- Chemistry Collegiate, Federal University of Tocantins, Campus Gurupi - Badejós, P.O. Box 66, Gurupi, Tocantins, 77 402-970, Brazil
| | - Douglas Henrique Pereira
- Chemistry Collegiate, Federal University of Tocantins, Campus Gurupi - Badejós, P.O. Box 66, Gurupi, Tocantins, 77 402-970, Brazil.
| |
Collapse
|
37
|
Nazarzadeh Zare E, Mudhoo A, Ali Khan M, Otero M, Bundhoo ZMA, Patel M, Srivastava A, Navarathna C, Mlsna T, Mohan D, Pittman CU, Makvandi P, Sillanpää M. Smart Adsorbents for Aquatic Environmental Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007840. [PMID: 33899324 DOI: 10.1002/smll.202007840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/19/2021] [Indexed: 05/25/2023]
Abstract
A noticeable interest and steady rise in research studies reporting the design and assessment of smart adsorbents for sequestering aqueous metal ions and xenobiotics has occurred in the last decade. This motivates compiling and reviewing the characteristics, potentials, and performances of this new adsorbent generation's metal ion and xenobiotics sequestration. Herein, stimuli-responsive adsorbents that respond to its media (as internal triggers; e.g., pH and temperature) or external triggers (e.g., magnetic field and light) are highlighted. Readers are then introduced to selective adsorbents that selectively capture materials of interest. This is followed by a discussion of self-healing and self-cleaning adsorbents. Finally, the review ends with research gaps in material designs.
Collapse
Affiliation(s)
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Moka, 80837, Mauritius
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marta Otero
- CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | | | - Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anju Srivastava
- Chemistry Department, Hindu College, University of Delhi, Delhi, 110007, India
| | - Chanaka Navarathna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, 2050, South Africa
- School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731, P.R. China
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
38
|
Peter A, Chabot B, Loranger E. Enhanced activation of ultrasonic pre-treated softwood biochar for efficient heavy metal removal from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112569. [PMID: 33865155 DOI: 10.1016/j.jenvman.2021.112569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Physical and chemical modification on biochar is an interesting approach to enhance the properties and make them potential candidates in adsorption of heavy metals from water. Studies have shown that ultrasound treatments as well as alkali activations on biochar has positive impact on adsorption behaviour of the material. Base activation on biochar derived from ultrasound pre-treated woodchips were studied to understand the influence of ultrasound pre-treatment on chemical modification of biochar and the adsorption properties emerged from it. 40 and 170 kHz ultrasound pre-treated softwood woodchips were subjected to laboratory scale pyrolysis and the resulted biochars were treated with NaOH. The physicochemical properties were examined, and the adsorption experiments revealed that ultrasound pre-treatment assisted biochars have better adsorption capacity as compared to untreated biochar samples after activation. 170 kHz pre-treated sample exhibited an equilibrium adsorption capacity of 19.99 mg/g which is almost 22 times higher than that of corresponding non-activated sample. The ultrasound pre-treated samples showed improved competitive adsorption behaviour towards copper ions in comparison with nickel or lead. The overall study suggests that ultrasound pre-treated biochars combined with alkali activation enhances the heavy metal removal efficiency and these engineered biochars can be used as an effective adsorbent in the field of wastewater treatment.
Collapse
Affiliation(s)
- Aneeshma Peter
- I2E3 - Institut d'Innovations en Écomatériaux, Écoproduits et Écoénergies, à base de biomasse, Université du Québec à Trois-Rivières, 3351, boul. des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada
| | - Bruno Chabot
- I2E3 - Institut d'Innovations en Écomatériaux, Écoproduits et Écoénergies, à base de biomasse, Université du Québec à Trois-Rivières, 3351, boul. des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada
| | - Eric Loranger
- I2E3 - Institut d'Innovations en Écomatériaux, Écoproduits et Écoénergies, à base de biomasse, Université du Québec à Trois-Rivières, 3351, boul. des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada.
| |
Collapse
|
39
|
Sharma P. Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. BIORESOURCE TECHNOLOGY 2021; 328:124835. [PMID: 33618184 DOI: 10.1016/j.biortech.2021.124835] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 05/12/2023]
Abstract
The aim of this review to address the plant-associated bacteria to enhance the phytoremediation efficiency of the heavy metals from polluted sites and it is also highlighted advances for the application in wastewater treatment. Plant-associated bacteria have potential to encourage the plant growth and resistance under stress conditions. Such bacteria could enhance plant growth by controlling growth hormone, nutrition security, producing siderophore, secondary metabolites, and improving the antioxidant enzymes system. This review also explores the concepts and applications of bacteria assisted phytoremediation, addressing aspects that affect phytoremediation and pathways for restoration. Significant review issues relating to production and application of bacteria for improvement of bioremediation were established and presented for possible future research. Bacteria assisted phytoremediation is cost-effective strategy and metal sequestration mechanism that hold high metal biosorption capacities. This also takes into consideration the current state of technology implementations and proposals for prospective clean-up studies.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Lucknow 226 025, Uttar Pradesh, India
| |
Collapse
|
40
|
Removal of thorium(IV) ions from aqueous solution by polyacrylamide-based monoliths: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07614-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Removal of Metals from Aqueous Solutions Using Sea Buckthorn Waste from Dietary Supplement Technology. SUSTAINABILITY 2021. [DOI: 10.3390/su13031441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to produce additional data for the valorization process of vegetable waste originating from dietary supplement technology. Two types of vegetable waste originating from different technological processes of sea buckthorn oil were used: vegetable waste from organic solvent extraction (P1) and vegetable waste from cold extraction (P2). Batch experiments evaluated the influence of pH, initial metal concentration, contact time, and Langmuir and Freundlich adsorption isotherms. The following pollutants—Cu, Cr, Co, Ni, Pb and Zn—from the wastewater were studied. The removal efficiency of metals from wastewater was evaluated at pH 3, 5 and 7. The highest metals removal efficiency was obtained at pH 5. It was observed that the Langmuir isotherm fits the adsorption process very well. Based on the results obtained, it can be concluded that vegetable waste resulting from the sea buckthorn oil industry could have potential applications for removing toxic metals from wastewater due to its high removal efficiency (>80%).
Collapse
|
42
|
Mahmoud ME, Nabil GM, Elweshahy SM. Novel NTiO2-chitosan@NZrO2-chitosan nanocomposite for effective adsorptive uptake of trivalent gadolinium and samarium ions from water. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.09.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
43
|
El-Nagar DA, Massoud SA, Ismail SH. Removal of some heavy metals and fungicides from aqueous solutions using nano-hydroxyapatite, nano-bentonite and nanocomposite. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
44
|
Efe D. Potential Plant Growth-Promoting Bacteria with Heavy Metal Resistance. Curr Microbiol 2020; 77:3861-3868. [PMID: 32960302 DOI: 10.1007/s00284-020-02208-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022]
Abstract
Plant growth-promoting (PGP) bacteria commonly have many strategies to cope with heavy metal toxicity. Heavy metal-resistant PGP bacteria can be used to improve the growth of plants in heavy metal contaminated soils. In this study, the soil samples were collected from the lead-zinc mineral deposits in Gümüşhane Province, Turkey. Nine bacterial isolates were obtained on the nutrient agar medium supplemented with 100 mg/mL zinc and lead. All of the isolates were screened in terms of plant growth-promoting characteristics including production of indole-3-acetic acid and siderophore, nitrogen fixation and phosphate solubilisation. Nine bacteria were identified as Bacillus cereus, Bacillus atrophaeus, Bacillus pumilus, Bacillus amyloliquefaciens, Bacillus tropicus, Bacillus subtilis, Bacillus halotolerans, Bacillus vallismortis, and Enterococcus mundtii by classical and 16S rDNA-PCR assays. In addition, these isolates were evaluated for their response to three heavy metals (lead, zinc, copper) dominant in the soil samples and minimal inhibitory concentration (MIC) of the heavy metals was determined with plate dilution method. Consequently, the bacterial isolates in this study possess plant growth-promoting traits and can ameliorate heavy metal contaminated soil. E. mundtii was reported to be found in heavy metal contaminated soil for the first time. This study is the first report about PGP characteristics (IAA production and phosphate solubilisation) of B. vallismortis.
Collapse
Affiliation(s)
- Derya Efe
- Department of Medicinal and Aromatic Plants, Espiye Vocational School, Giresun University, 28000, Giresun, Turkey.
| |
Collapse
|
45
|
Şen L, Altiok D, Apaydin E. Improved qualitative properties of pear pekmez by natural zeolite treatment during production process. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Levent Şen
- Faculty of Engineering, Department of Food Engineering Giresun University Giresun Turkey
| | - Duygu Altiok
- Faculty of Engineering, Department of Food Engineering Giresun University Giresun Turkey
| | - Elif Apaydin
- GRUMLAB Central Research Laboratory Giresun University Giresun Turkey
| |
Collapse
|
46
|
Treto-Suárez MA, Prieto-García JO, Mollineda-Trujillo Á, Lamazares E, Hidalgo-Rosa Y, Mena-Ulecia K. Kinetic study of removal heavy metal from aqueous solution using the synthetic aluminum silicate. Sci Rep 2020; 10:10836. [PMID: 32616826 PMCID: PMC7331683 DOI: 10.1038/s41598-020-67720-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/12/2020] [Indexed: 01/31/2023] Open
Abstract
One of the problems that most affect humanity today is the wastewater discharge into different water bodies. It was estimated that more than 7 million tons of wastewater are generated worldwide and are discharged into rivers, lakes, and reservoirs. Among the most dangerous wastewaters are those from inorganic chemistry research laboratories, mainly due to heavy metals. These problems have become a highly relevant topic, and numerous researchers have tried to design wastewater treatment systems that will deal more efficiently with heavy metals elimination. In this work, the synthesis, characterization, and evaluation of hydrated aluminium silicate were performed as alternative wastewater treatment from chemistry research and teaching laboratories. The compound obtained was [Formula: see text], which was characterized by the determination of its physicochemical properties. These revealed a low density, very porous material, with low crystallinity, strong chemical resistance, a large surface area, and a high apparent ionic exchange capacity. Absorption kinetics studies of heavy metals in aqueous solutions, through more widespread models, have demonstrated that [Formula: see text] has excellent properties as absorbents of this material. The amorphous hydrated aluminium silicate achieves a decrease in the concentration of all the metal ions studied, reducing them to discharge levels permissible.
Collapse
Affiliation(s)
| | - Julio Omar Prieto-García
- Departamento de Química y Farmacia, Universidad Central "Marta Abreu" de las Villas, Carretera de Camajuani km 5, 50100, Villa Clara, Cuba
| | - Ángel Mollineda-Trujillo
- Departamento de Química y Farmacia, Universidad Central "Marta Abreu" de las Villas, Carretera de Camajuani km 5, 50100, Villa Clara, Cuba
| | - Emilio Lamazares
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, 4030000, Concepción, Chile
| | - Yoan Hidalgo-Rosa
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Ave. República 275, 8320000, Santiago, Chile
| | - Karel Mena-Ulecia
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Ave. Rudecindo Ortega 02950, 4780000, Temuco, Chile.
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BIOMA), Facultad de Ingeniería, Universidad Católica de Temuco, Ave. Rudecindo Ortega 02950, 4780000, Temuco, Chile.
| |
Collapse
|
47
|
Almojil SF, Othman MA. Screening Different Divalent and Trivalent Metals Containing Binary and Ternary Layered Double Hydroxides for Optimum Phosphate Uptake. Sci Rep 2019; 9:15511. [PMID: 31664181 PMCID: PMC6820524 DOI: 10.1038/s41598-019-52031-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/11/2019] [Indexed: 11/09/2022] Open
Abstract
The elements constituting a layered double hydroxides material provide many alternatives for its optimization. Ten different layered double hydroxides materials with various combinations of Ni, Cu, Zn, Al, Cr, and Fe elements were studied as sorbent materials for phosphate ion. The type of element used in the layered double hydroxides affected the uptake capacity of phosphate. The influence of a specific element alone was not the primary role of enhancing the sorption performance of phosphate ion on the LDHs material. However, using specific two or three elements together is the key to achieve the best result due to synergistic effects. BET surface area of the sorbent showed no correlation with phosphate uptake. From the examined materials, Four layered double hydroxides of Cu-Zn-Cr, Zn-Cr, Ni-Al, and Cu-Ni-Cr showed high phosphate sorption capability. Sorption equilibrium isotherm, reaction kinetics, and desorption of phosphate from the sorbent materials were also investigated.
Collapse
Affiliation(s)
- Sattam Fahad Almojil
- Department of Civil Engineering, King Saud University, PO Box 800, Riyadh, 11421, Saudi Arabia
| | | |
Collapse
|
48
|
Rubin Pedrazzo A, Smarra A, Caldera F, Musso G, Dhakar NK, Cecone C, Hamedi A, Corsi I, Trotta F. Eco-Friendly β-cyclodextrin and Linecaps Polymers for the Removal of Heavy Metals. Polymers (Basel) 2019; 11:polym11101658. [PMID: 31614648 PMCID: PMC6835710 DOI: 10.3390/polym11101658] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 11/25/2022] Open
Abstract
Environment-friendly nanosponges, having a high content of carboxyl groups, were synthesized by crosslinking β-cyclodextrin and linecaps, a highly soluble pea starch derivative, with citric acid in water. Additionally, pyromellitic nanosponges were prepared by reacting β-cyclodextrin and linecaps with pyromellitic dianhydride in dimethyl sulfoxide and used in comparison with the citric nanosponges. After ion-exchange of the carboxyl groups H+ with sodium ions, the ability of the nanosponges to sequester heavy metal cations was investigated. At a metal concentration of 500 ppm, the pyromellitate nanosponges exhibited a higher retention capacity than the citrate nanosponges. At lower metal concentrations (≤50 ppm) both the citrate and the pyromellitate nanosponges showed high retention capacities (up to 94% of the total amount of metal), while, in the presence of interfering sea water salts, the citrate nanosponges were able to selectively adsorb a significantly higher amount of heavy metals than the pyromellitate nanosponges, almost double in the case of Cu2+.
Collapse
Affiliation(s)
| | - Alessandra Smarra
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Fabrizio Caldera
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Giorgia Musso
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Nilesh Kumar Dhakar
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Claudio Cecone
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Asma Hamedi
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
- Department of Physics, Faculty of Science, Yazd University, 89195741 Yazd, Iran.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli 4, 53100 Siena, Italy.
| | - Francesco Trotta
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
49
|
Asim T, Ahmed R, Ansari MS. Study of impact of acids and comparison of adsorption efficiency of Pb(II) from carbon and its modified nano-nickel coated version. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:2337-2344. [PMID: 31411588 DOI: 10.2166/wst.2019.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Acidic content in wastewaters poses greater difficulty in lead removal from most adsorbents as their removal efficiency significantly decreases in acidic media. Nano-nickel coated carbon (Ni/C), compared with uncoated carbon (C), has shown a much enhanced (almost 80% higher) tendency of Pb(II) removal from solutions having different acid concentrations. All of the characterization results show the creation of more active sites and functional groups on Ni/C. The pertinent kinetic models and thermodynamics of Pb(II) adsorption have demonstrated much improved efficiency by Ni/C. Various isotherms subjected to the sorption data revealed significant increase in the sorption capacities for Ni/C. The adsorption (evidently chemisorption) kinetics are best represented by a pseudo-second-order equation. The adsorption rates in acidic solutions were much higher for Ni/C. The temperature-dependent study enabled thermodynamic parameters to be worked out for C and Ni/C; for C the values are ΔH: 19.4 ± 0.5 kJ·mol-1, ΔS: 76.1 ± 2.1 J·mol-1·K-1, ΔG298: -0.37 ± 0.01 kJ·mol-1 while for Ni/C the values are ΔH: 30 ± 1 kJ·mol-1, ΔS: 114 ± 4 J·mol-1·K-1, ΔG298: -4.56 ± 0.02 kJ·mol-1. Both cases indicate endothermic, spontaneous and entropy-driven processes.
Collapse
Affiliation(s)
- Tayyaba Asim
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan E-mail:
| | - Riaz Ahmed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan E-mail: ; Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, (PINSTECH), Islamabad, Pakistan
| | | |
Collapse
|
50
|
Van Lam P, Duong NB, Trang QTT, Tuan VA. Removal of Pb2+
and Cd2+
ions from aqueous solutions using Fe3
O4
/Bentonite nanocomposite. VIETNAM JOURNAL OF CHEMISTRY 2018. [DOI: 10.1002/vjch.201800058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pham Van Lam
- Institute of Chemistry - Vietnam Academy of Sciences and Technology (VAST); Viet Nam
- Graduate University of Sciences and Technology; VAST Viet Nam
| | - Nguyen Binh Duong
- Institute of Chemistry - Vietnam Academy of Sciences and Technology (VAST); Viet Nam
| | - Quan Thi Thu Trang
- Institute of Chemistry - Vietnam Academy of Sciences and Technology (VAST); Viet Nam
| | - Vu Anh Tuan
- Institute of Chemistry - Vietnam Academy of Sciences and Technology (VAST); Viet Nam
| |
Collapse
|