1
|
Heydari R, Khosravifar M, Abiri S, Dashtbin S, Alvandi A, Nedaei SE, Salimi Z, Zarei F, Abiri R. A domestic strain of Lactobacillus rhamnosus attenuates cognitive deficit and pro-inflammatory cytokine expression in an animal model of Alzheimer's disease. Behav Brain Res 2025; 476:115277. [PMID: 39343242 DOI: 10.1016/j.bbr.2024.115277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/30/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Microbiome dysbiosis plays a significant role in neuroinflammation and Alzheimer's disease (AD). Therefore, gut microbiome restoration using appropriate probiotics may be beneficial in alleviating AD features. In this study, we investigated the effects of a domestic strain of Lactobacillus rhamnosus (L. rhamnosus) on spatial memory, and cytokines expression in an inflammation-based AD model. METHOD Male Wistar rats were randomly divided into four groups (six animals per group) of control, L. rhamnosus-only, D-galactose (D-gal)-only, and D-gal + L. rhamnosus. Spatial learning and memory were assessed using the Morris water maze test. IL-1β, IL-6, and TNF-α expression levels were measured using Real-Time qPCR. A significance level of 0.05 was used for statistical analysis. RESULTS In contrast to the D-gal + L. rhamnosus-treated group, D-gal only treated group showed impaired memory in MWM test compared to the control group. Additionally, D-gal treatment resulted in an increase in IL-1β and TNF-α levels and a decrease in IL-6 levels, which was not statistically significant. However, the TNF-α level was significantly decreased in D-gal + L. rhamnosus-treated group compared to D-gal-only treated group (P < 0.05). Also, IL-6 level was significantly lower in D-gal + L. rhamnosus-treated group compared to control group (P < 0.05). CONCLUSION These results suggest that the domestic L. rhamnosus might positively impact cognitive deficit and neuroinflammation. Further studies are suggested to investigate the specific mechanisms mediating the effects of L. rhamnosus on cognitive functions and neuroinflammation in animal models of AD.
Collapse
Affiliation(s)
- Ruhollah Heydari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mina Khosravifar
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shervin Abiri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhoushang Alvandi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Salimi
- Department of Biology, Faculty of Science, University of Qom, Qom, Iran
| | - Fatemeh Zarei
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Fertility and Infertility Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Bi X, Cao N, He J. Recent advances in nanoenzymes for Alzheimer's disease treatment. Colloids Surf B Biointerfaces 2024; 244:114139. [PMID: 39121571 DOI: 10.1016/j.colsurfb.2024.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/14/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Alzheimer's disease (AD) remains one of the most challenging neurodegenerative disorders to treat, with oxidative stress playing a significant role in its pathology. Recent advancements in nanoenzymes technology offer a promising approach to mitigate this oxidative damage. Nanoenzymes, with their unique enzyme-mimicking activities, effectively scavenge reactive oxygen species and reduce oxidative stress, thereby providing neuroprotective effects. This review delves into the underlying mechanisms of AD, focusing on oxidative stress and its impact on disease progression. We explore the latest developments in nanoenzymes applications for AD treatment, highlighting their multifunctional capabilities and potential for targeted delivery to amyloid-beta plaques. Despite the exciting prospects, the clinical translation of nanoenzymes faces several challenges, including difficulties in brain targeting, consistent quality production, and ensuring safety and biocompatibility. We discuss these limitations in detail, emphasizing the need for rigorous evaluation and standardized protocols. This paper aims to provide a comprehensive overview of the current state of nanoenzymes research in AD, shedding light on both the opportunities and obstacles in the path towards effective clinical applications.
Collapse
Affiliation(s)
- Xiaojun Bi
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Ning Cao
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing 400000, China
| | - Jingteng He
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
3
|
Xie L, Wu Q, Li K, Khan MAS, Zhang A, Sinha B, Li S, Chang SL, Brody DL, Grinstaff MW, Zhou S, Alterovitz G, Liu P, Wang X. Tryptophan Metabolism in Alzheimer's Disease with the Involvement of Microglia and Astrocyte Crosstalk and Gut-Brain Axis. Aging Dis 2024; 15:2168-2190. [PMID: 38916729 PMCID: PMC11346405 DOI: 10.14336/ad.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease characterized by extracellular Amyloid Aβ peptide (Aβ) deposition and intracellular Tau protein aggregation. Glia, especially microglia and astrocytes are core participants during the progression of AD and these cells are the mediators of Aβ clearance and degradation. The microbiota-gut-brain axis (MGBA) is a complex interactive network between the gut and brain involved in neurodegeneration. MGBA affects the function of glia in the central nervous system (CNS), and microbial metabolites regulate the communication between astrocytes and microglia; however, whether such communication is part of AD pathophysiology remains unknown. One of the potential links in bilateral gut-brain communication is tryptophan (Trp) metabolism. The microbiota-originated Trp and its metabolites enter the CNS to control microglial activation, and the activated microglia subsequently affect astrocyte functions. The present review highlights the role of MGBA in AD pathology, especially the roles of Trp per se and its metabolism as a part of the gut microbiota and brain communications. We (i) discuss the roles of Trp derivatives in microglia-astrocyte crosstalk from a bioinformatics perspective, (ii) describe the role of glia polarization in the microglia-astrocyte crosstalk and AD pathology, and (iii) summarize the potential of Trp metabolism as a therapeutic target. Finally, we review the role of Trp in AD from the perspective of the gut-brain axis and microglia, as well as astrocyte crosstalk, to inspire the discovery of novel AD therapeutics.
Collapse
Affiliation(s)
- Lushuang Xie
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Kelin Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Mohammed A. S. Khan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Andrew Zhang
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Sulie L. Chang
- Department of Biological Sciences, Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA.
| | - David L. Brody
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | - Shuanhu Zhou
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA.
| | - Gil Alterovitz
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
5
|
Nakhal MM, Yassin LK, Alyaqoubi R, Saeed S, Alderei A, Alhammadi A, Alshehhi M, Almehairbi A, Al Houqani S, BaniYas S, Qanadilo H, Ali BR, Shehab S, Statsenko Y, Meribout S, Sadek B, Akour A, Hamad MIK. The Microbiota-Gut-Brain Axis and Neurological Disorders: A Comprehensive Review. Life (Basel) 2024; 14:1234. [PMID: 39459534 PMCID: PMC11508655 DOI: 10.3390/life14101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Microbes have inhabited the earth for hundreds of millions of years longer than humans. The microbiota-gut-brain axis (MGBA) represents a bidirectional communication pathway. These communications occur between the central nervous system (CNS), the enteric nervous system (ENS), and the emotional and cognitive centres of the brain. The field of research on the gut-brain axis has grown significantly during the past two decades. Signalling occurs between the gut microbiota and the brain through the neural, endocrine, immune, and humoral pathways. A substantial body of evidence indicates that the MGBA plays a pivotal role in various neurological diseases. These include Alzheimer's disease (AD), autism spectrum disorder (ASD), Rett syndrome, attention deficit hyperactivity disorder (ADHD), non-Alzheimer's neurodegeneration and dementias, fronto-temporal lobe dementia (FTLD), Wilson-Konovalov disease (WD), multisystem atrophy (MSA), Huntington's chorea (HC), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), temporal lobe epilepsy (TLE), depression, and schizophrenia (SCZ). Furthermore, the bidirectional correlation between therapeutics and the gut-brain axis will be discussed. Conversely, the mood of delivery, exercise, psychotropic agents, stress, and neurologic drugs can influence the MGBA. By understanding the MGBA, it may be possible to facilitate research into microbial-based interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Rana Alyaqoubi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Sara Saeed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alya Alhammadi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Mirah Alshehhi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shaikha Al Houqani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shamsa BaniYas
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Haia Qanadilo
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Neuroscience Platform, ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sarah Meribout
- Internal Medicine Department, Maimonides Medical Center, New York, NY 11219, USA;
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1551, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| |
Collapse
|
6
|
Lyu Y, Meng Z, Hu Y, Jiang B, Yang J, Chen Y, Zhou J, Li M, Wang H. Mechanisms of mitophagy and oxidative stress in cerebral ischemia-reperfusion, vascular dementia, and Alzheimer's disease. Front Mol Neurosci 2024; 17:1394932. [PMID: 39169952 PMCID: PMC11335644 DOI: 10.3389/fnmol.2024.1394932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Neurological diseases have consistently represented a significant challenge in both clinical treatment and scientific research. As research has progressed, the significance of mitochondria in the pathogenesis and progression of neurological diseases has become increasingly prominent. Mitochondria serve not only as a source of energy, but also as regulators of cellular growth and death. Both oxidative stress and mitophagy are intimately associated with mitochondria, and there is mounting evidence that mitophagy and oxidative stress exert a pivotal regulatory influence on the pathogenesis of neurological diseases. In recent years, there has been a notable rise in the prevalence of cerebral ischemia/reperfusion injury (CI/RI), vascular dementia (VaD), and Alzheimer's disease (AD), which collectively represent a significant public health concern. Reduced levels of mitophagy have been observed in CI/RI, VaD and AD. The improvement of associated pathology has been demonstrated through the increase of mitophagy levels. CI/RI results in cerebral tissue ischemia and hypoxia, which causes oxidative stress, disruption of the blood-brain barrier (BBB) and damage to the cerebral vasculature. The BBB disruption and cerebral vascular injury may induce or exacerbate VaD to some extent. In addition, inadequate cerebral perfusion due to vascular injury or altered function may exacerbate the accumulation of amyloid β (Aβ) thereby contributing to or exacerbating AD pathology. Intravenous tissue plasminogen activator (tPA; alteplase) and endovascular thrombectomy are effective treatments for stroke. However, there is a narrow window of opportunity for the administration of tPA and thrombectomy, which results in a markedly elevated incidence of disability among patients with CI/RI. It is regrettable that there are currently no there are still no specific drugs for VaD and AD. Despite the availability of the U.S. Food and Drug Administration (FDA)-approved clinical first-line drugs for AD, including memantine, donepezil hydrochloride, and galantamine, these agents do not fundamentally block the pathological process of AD. In this paper, we undertake a review of the mechanisms of mitophagy and oxidative stress in neurological disorders, a summary of the clinical trials conducted in recent years, and a proposal for a new strategy for targeted treatment of neurological disorders based on both mitophagy and oxidative stress.
Collapse
Affiliation(s)
- Yujie Lyu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhipeng Meng
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yunyun Hu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Bing Jiang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiao Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yiqin Chen
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun Zhou
- Xichang Hospital of Traditional Chinese Medicine, Xichang, China
| | - Mingcheng Li
- Qujing 69 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Qujing, China
| | - Huping Wang
- Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, China
- Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, China
| |
Collapse
|
7
|
Seddighi NS, Beheshti F, Masoudi M, Tabrizi AMA, Asl AAH, Ahmadi-Soleimani SM, Azizi O. Oral administration of bacterial probiotics improves Helicobacter pylori-induced memory impairment in rats: Insights from behavioral and biochemical investigations. Behav Brain Res 2024; 463:114903. [PMID: 38341103 DOI: 10.1016/j.bbr.2024.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
There are numerous evidence supporting the association between Helicobacter pylori (H. pylori) infection and the occurrence of cognitive deficits in humans. In this regard, treatment of H. pylori infection has been suggested as an effective strategy to decelerate the neurodegenerative processes of memory deficits in AD patients. Numerous studies support the beneficial effects of probiotics on various pathological conditions, particularly cognitive deficits, however, this concern has not been addressed in relation to the memory impairment induced by H. pylori infection. In the present study, we aimed to reveal whether oral administration of two bacterial probiotics (including Lactobacillus rhamnosus and Lactobacillus plantarum), could ameliorate H. pylori-induced memory deficits at behavioral level in rats. Besides, cellular mechanisms were investigated by biochemical methods to find out how probiotic effects are mediated in hippocampal circuitry. Male Wistar rats were infected by H. pylori for 3 consecutive days, then probiotic treatment was done for the next 3 days and after a drug-free period (12 days), animals were assessed by Morris Water Maze and Novel Object Recognition tests. Finally, rats were euthanized by CO2 and hippocampal tissues were excised for biochemical measurements. Results indicated that H. pylori infection markedly impairs memory function in rats which is associated with alterations of oxidative, inflammatory, neurotrophic, and cholinergic markers. Interestingly, treatment with either of the probiotics alone or in combination, significantly improved the H. pylori-induced memory deficits and this was associated with restoration of balance in biochemical factors within the hippocampal neurons.
Collapse
Affiliation(s)
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Maha Masoudi
- Vice Chancellery for Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amir Mohammad Ali Tabrizi
- Imam Hossein Educational Hospital, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | - S Mohammad Ahmadi-Soleimani
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Omid Azizi
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
8
|
Shi R, Ye J, Fan H, Hu X, Wu X, Wang D, Zhao B, Dai X, Liu X. Lactobacillus plantarum LLY-606 Supplementation Ameliorates the Cognitive Impairment of Natural Aging in Mice: The Potential Role of Gut Microbiota Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4049-4062. [PMID: 38373323 DOI: 10.1021/acs.jafc.3c07041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
This work explored the effects of Lactobacillus plantarum LLY-606 (LLY-606) on cognitive function in aging mice. Our findings demonstrated that LLY-606 effectively prolonged the lifespan of mice and improved age-related cognitive impairments. Additionally, our study revealed that supplementation with LLY-606 resulted in the downregulation of inflammatory cytokine levels and the upregulation of antioxidant capacity. Furthermore, probiotic supplementation effectively mitigated the deterioration of the intestinal barrier function in aging mice. Amplicon analysis indicated the successful colonization of probiotics, facilitating the regulation of age-induced gut microbiota dysbiosis. Notably, the functional abundance prediction of microbiota indicated that tryptophan metabolism pathways, glutamatergic synapse pathways, propanoate metabolism pathways, and arginine and proline metabolism pathways were enriched after the LLY-606 intervention. In summary, LLY-606 emerged as a potential functional probiotic capable of influencing cognitive function in aging mice. This effect was achieved through the modulation of gut microbiota, the regulation of synaptic plasticity, and the enhancement of neurotrophic factor levels.
Collapse
Affiliation(s)
- Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xinyun Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaoning Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen 518120, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
9
|
Kheyrollah M, Farhadpour M, Sabouni F, Haghbeen K. Neuroprotective Effect of Lithospermum officinale Callus Extract on Inflamed Primary Microglial Cells. Curr Pharm Biotechnol 2024; 25:637-644. [PMID: 37587806 DOI: 10.2174/1389201024666230816154639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Plants that have therapeutic features for humans or animals are commonly referred to as "medicinal plants". They produce secondary metabolites with antioxidant, antimicrobial and/or anti-cancer effects. Lithospermum officinale, known as European stone seed, is a famous medicinal herb. However, due to the pyrrolizidine alkaloids (PzAl) in the root extract of L.officinal, there are therapeutic limitations to this herb. OBJECTIVE This research was devoted to the evaluation of the anti-inflammatory capacity of methanolic extracts of L. officinale callus (LoE) (fresh cells) on rat microglial cells, the immune cells of the Central Nervous System, which play an essential role in the responses to neuroinflammation. METHODS Primary microglia were obtained from neonatal Wistar rats (1 to 3-days old), and then treated with various concentration of CfA and methanolic extracts of 17 and 31-day-old L. officinale callus before LPS-stimulation. In addition to HPLC analysis of the extracts, viability, nitric oxide production, and evaluation of pro-inflammatory genes and cytokines in the inflamed microglia were investigated by MTT, Griess methos, qrt-PCR, and ELISA. RESULTS Methanolic extract of the 17-day-old callus of L. officinale exhibited anti-inflammatory effects on LPS-stimulated microglial cells much higher than observed for CfA. The data were further supported by the decreased expression of Nos2, Tnf-α, and Cox-2 mRNA and the suppression of TNF-α and IL-1β release in the activated microglial cells pretreated with the effective dose of LoE (0.8 mg mL-1). CONCLUSION It was assumed that the better anti-neuroinflammatory performance of LoE than CfA in LPS-activated primary microglia could be a result of the synergism of the components of the extract and the lipophilic nature of RsA as the main phenolic acid of LoE. Considering that LoE shows a high antioxidant capacity and lacks PzAl, it is anticipated that LoE extract might be considered a reliable substitute to play a key role in the preparation of neuroprotective pharmaceutical formulas, which require in vivo research and further experiments.
Collapse
Affiliation(s)
- Maryam Kheyrollah
- Department of Molecular Medicine, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohsen Farhadpour
- Department of Plant Bioproducts, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farzaneh Sabouni
- Department of Molecular Medicine, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Kamahldin Haghbeen
- Department of Plant Bioproducts, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
10
|
Mishra V, Yadav D, Solanki KS, Koul B, Song M. A Review on the Protective Effects of Probiotics against Alzheimer's Disease. BIOLOGY 2023; 13:8. [PMID: 38248439 PMCID: PMC10813289 DOI: 10.3390/biology13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
This review summarizes the protective effects of probiotics against Alzheimer's disease (AD), one of the most common neurodegenerative disorders affecting older adults. This disease is characterized by the deposition of tau and amyloid β peptide (Aβ) in different parts of the brain. Symptoms observed in patients with AD include struggles with writing, speech, memory, and knowledge. The gut microbiota reportedly plays an important role in brain functioning due to its bidirectional communication with the gut via the gut-brain axis. The emotional and cognitive centers in the brain are linked to the functions of the peripheral intestinal system via this gut-brain axis. Dysbiosis has been linked to neurodegenerative disorders, indicating the significance of gut homeostasis for proper brain function. Probiotics play an important role in protecting against the symptoms of AD as they restore gut-brain homeostasis to a great extent. This review summarizes the characteristics, status of gut-brain axis, and significance of gut microbiota in AD. Review and research articles related to the role of probiotics in the treatment of AD were searched in the PubMed database. Recent studies conducted using animal models were given preference. Recent clinical trials were searched for separately. Several studies conducted on animal and human models clearly explain the benefits of probiotics in improving cognition and memory in experimental subjects. Based on these studies, novel therapeutic approaches can be designed for the treatment of patients with AD.
Collapse
Affiliation(s)
- Vibhuti Mishra
- School of Studies in Biochemistry, Jiwaji University, Gwalior 474003, India;
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kavita Singh Solanki
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA;
| | - Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
11
|
Nejati R, Nematollahi A, Doraghi HK, Sayadi M, Alipanah H. Probiotic bacteria alleviate chlorpyrifos-induced rat testicular and renal toxicity: A possible mechanism based on antioxidant and anti-inflammatory activity. Basic Clin Pharmacol Toxicol 2023; 133:743-756. [PMID: 37732939 DOI: 10.1111/bcpt.13945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Chlorpyrifos (CPF) has caused many potential toxicities in nontarget organisms. Fewer studies have been conducted on the effects of lactic acid bacteria (LAB) in mitigating tissue damage induced by CPF in vivo. Therefore, we investigated CPF renal and testicular toxicity and the alleviating effect of probiotic lactobacilli, based on antioxidant and anti-inflammatory activity, on induced toxicity in an animal model. Biochemical assays showed that CPF induced oxidative stress along with a change in superoxide dismutase (SOD) and catalase (CAT) activity in a tissue-dependent manner. After treatment with CPF, testicular and renal levels of TNF-α were significantly reduced and enhanced, respectively, compared to the control group. The probiotic treatment restored renal and testicular TNF-α levels and modulated and blocked the increasing effect of CPF on renal IL-1β levels. Testicular IL-1β levels in the probiotic-treated and CPF groups demonstrated similar values. Exposure to CPF significantly induced renal histopathological damage that, of course, was completely inhibited by treatment with Lactobacillus casei and the LAB mixture. In summary, CPF showed significant toxicological effects on oxidative stress and the inflammation rate in CPF-exposed rats. Therefore, supplementation with probiotic bacteria may alleviate CPF renal toxicity and mitigate its oxidative stress and inflammation effects.
Collapse
Affiliation(s)
- Roghayeh Nejati
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Mehran Sayadi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
12
|
Basiji K, Sendani AA, Ghavami SB, Farmani M, Kazemifard N, Sadeghi A, Lotfali E, Aghdaei HA. The critical role of gut-brain axis microbiome in mental disorders. Metab Brain Dis 2023; 38:2547-2561. [PMID: 37436588 DOI: 10.1007/s11011-023-01248-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/30/2023] [Indexed: 07/13/2023]
Abstract
The Gut-brain axis is a bidirectional neural and humoral signaling that plays an important role in mental disorders and intestinal health and connects them as well. Over the past decades, the gut microbiota has been explored as an important part of the gastrointestinal tract that plays a crucial role in the regulation of most functions of various human organs. The evidence shows several mediators such as short-chain fatty acids, peptides, and neurotransmitters that are produced by the gut may affect the brain's function directly or indirectly. Thus, dysregulation in this microbiome community can give rise to several diseases such as Parkinson's disease, depression, irritable bowel syndrome, and Alzheimer's disease. So, the interactions between the gut and the brain are significantly considered, and also it provides a prominent subject to investigate the causes of some diseases. In this article, we reviewed and focused on the role of the largest and most repetitive bacterial community and their relevance with some diseases that they have mentioned previously.
Collapse
Affiliation(s)
- Kimia Basiji
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Aghamohammadi Sendani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nesa Kazemifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Walker A, Czyz DM. Oh my gut! Is the microbial origin of neurodegenerative diseases real? Infect Immun 2023; 91:e0043722. [PMID: 37750713 PMCID: PMC10580905 DOI: 10.1128/iai.00437-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
There is no cure or effective treatment for neurodegenerative protein conformational diseases (PCDs), such as Alzheimer's or Parkinson's diseases, mainly because the etiology of these diseases remains elusive. Recent data suggest that unique changes in the gut microbial composition are associated with these ailments; however, our current understanding of the bacterial role in the pathogenesis of PCDs is hindered by the complexity of the microbial communities associated with specific microbiomes, such as the gut, oral, or vaginal microbiota. The composition of these specific microbiomes is regarded as a unique fingerprint affected by factors such as infections, diet, lifestyle, and antibiotics. All of these factors also affect the severity of neurodegenerative diseases. The majority of studies that reveal microbial contribution are correlational, and various models, including worm, fly, and mouse, are being utilized to decipher the role of individual microbes that may affect disease onset and progression. Recent evidence from across model organisms and humans shows a positive correlation between the presence of gram-negative enteropathogenic bacteria and the pathogenesis of PCDs. While these correlational studies do not provide a mechanistic explanation, they do reveal contributing bacterial species and provide an important basis for further investigation. One of the lurking concerns related to the microbial contribution to PCDs is the increasing prevalence of antibiotic resistance and poor antibiotic stewardship, which ultimately select for proteotoxic bacteria, especially the gram-negative species that are known for intrinsic resistance. In this review, we summarize what is known about individual microbial contribution to PCDs and the potential impact of increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Alyssa Walker
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Daniel M. Czyz
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Yadav H, Jaldhi, Bhardwaj R, Anamika, Bakshi A, Gupta S, Maurya SK. Unveiling the role of gut-brain axis in regulating neurodegenerative diseases: A comprehensive review. Life Sci 2023; 330:122022. [PMID: 37579835 DOI: 10.1016/j.lfs.2023.122022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Emerging evidence have shown the importance of gut microbiota in regulating brain functions. The diverse molecular mechanisms involved in cross-talk between gut and brain provide insight into importance of this communication in maintenance of brain homeostasis. It has also been observed that disturbed gut microbiota contributes to neurological diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and aging. Recently, gut microbiome-derived exosomes have also been reported to play an essential role in the development and progression of neurodegenerative diseases and could thereby act as a therapeutic target. Further, pharmacological interventions including antibiotics, prebiotics and probiotics can influence gut microbiome-mediated management of neurological diseases. However, extensive research is warranted to better comprehend this interconnection in maintenance of brain homeostasis and its implication in neurological diseases. Thus, the present review is aimed to provide a detailed understanding of gut-brain axis followed by possibilities to target the gut microbiome for improving neurological health.
Collapse
Affiliation(s)
- Himanshi Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Jaldhi
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Rati Bhardwaj
- Department of Biotechnology, Delhi Technical University, Delhi, India
| | - Anamika
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India.
| |
Collapse
|
15
|
Hamid M, Zahid S. Ameliorative effects of probiotics in AlCl 3-induced mouse model of Alzheimer's disease. Appl Microbiol Biotechnol 2023; 107:5803-5812. [PMID: 37462697 DOI: 10.1007/s00253-023-12686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 08/20/2023]
Abstract
In recent years, gut microbiome alterations have been linked with complex underlying mechanisms of neurodegenerative disorders including Alzheimer's disease (AD). The gut microbiota modulates gut brain axis by facilitating development of hypothalamic-pituitary-adrenal axis and synthesis of neuromodulators. The study was designed to unravel the effect of combined consumption of probiotics; Lactobacillus rhamnosus GG (LGG®) and Bifidobacterium BB-12 (BB-12®) (1 × 109 CFU) on AlCl3-induced AD mouse model in comparison with potent acetylcholine esterase inhibitor drug for AD, donepezil. Mice were randomly allocated to six different study groups (n = 8). Behavioral tests were conducted to assess effect of AlCl3 (300 mg/kg) and probiotics treatment on cognition and anxiety through Morris Water Maze (MWM), Novel Object Recognition (NOR), Elevated Plus Maze (EPM), and Y-maze. The results indicated that the combined probiotic treatment significantly (p < 0.0001) reduced anxiety-like behavior post AlCl3 exposure. The AlCl3 + LGG® and BB-12®-treated group showed significantly improved spatial (p < 0.0001) and recognition memory (p < 0.0001) in comparison to AlCl3-treated group. The expression status of inflammatory cytokines (TNF-α and IL-1β) was also normalized upon treatment with LGG® and BB-12® post AlCl3 exposure. Our findings indicated that the probiotics LGG® and BB-12® have strong potential to overcome neuroinflammatory imbalance, cognitive deficits and anxiety-like behavior, therefore can be considered as a combination therapy for AD through modulation of gut brain axis. KEY POINTS: • Bifidobacterium BB-12 and Lactobacillus rhamnosus GG were fed to AlCl3-induced Alzheimer's disease mice. • This combination of probiotics had remarkable ameliorating effects on anxiety, neuroinflammation and cognitive deficits. • These effects may suggest that combined consumption of these probiotics instigate potential mitigation of AD associated consequences through gut brain axis modulation.
Collapse
Affiliation(s)
- Maryam Hamid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
16
|
Bayat Z, Damirchi A, Hasannejad-Bibalan M, Babaei P. Concurrent high-intensity interval training and probiotic supplementation improve associative memory via increase in insulin sensitivity in ovariectomized rats. BMC Complement Med Ther 2023; 23:262. [PMID: 37488554 PMCID: PMC10364354 DOI: 10.1186/s12906-023-04097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
OBJECTIVES Metabolic syndrome (MetS) is a serious concern among postmenopausal women which predisposes them to cardiovascular and cognitive disorders. Healthful diet and exercise training have been essential strategies to prevent the progress of MetS. The aim of this study was to evaluate the effect of supplementation with a native potential probiotic and high-intensity interval training (HIIT) for 8 weeks on retention of associative memory in rats with ovariectomy- induced metabolic syndrome. METHOD Thirty-two female ovariectomized Wistar rats were divided into four groups (n = 8/group): Control (OVX + Veh), exercise (OVX + Exe), probiotic (OVX + Pro), exercise with probiotic (OVX + Exe + Pro). One sham surgery group was included as a control group. Animals received 8 weeks interventions, and then were tested in a step through passive avoidance learning and memory paradigm, to assess long term memory. Then serum levels of adiponectin, insulin and glucose were measured by ELISA and colorimetry respectively. Data were analyzed by Kruskal-Wallis, Mann-Whitney and also One-way analysis of variance (ANOVA). RESULTS Eight weeks of HIIT and probiotic supplementation caused an increase in step through latency and shortening of total time spent in the dark compartment in OVX + Exe + Pro group compared with OVX + Veh group. Also significant increase in serum adiponectin levels, in parallel with a reduction in glucose, insulin and HOMA-IR were achieved by the group of OVX + Exe + Pro. CONCLUSION The present study indicates that HIIT combined with probiotics supplementation for 8 weeks effectively improves associative memory in MetS model of rats partly via improving insulin sensitivity and adiponectin level.
Collapse
Affiliation(s)
- Zeinab Bayat
- Department of exercise physiology, Faculty of Physical Education &sport sciences, The University of Guilan, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Damirchi
- Department of exercise physiology, Faculty of Physical Education &sport sciences, The University of Guilan, Rasht, Iran
| | | | - Parvin Babaei
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Neuroscience Research center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
17
|
Porras-García E, Fernández-Espada Calderón I, Gavala-González J, Fernández-García JC. Potential neuroprotective effects of fermented foods and beverages in old age: a systematic review. Front Nutr 2023; 10:1170841. [PMID: 37396132 PMCID: PMC10313410 DOI: 10.3389/fnut.2023.1170841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Purpose Numerous articles have recently studied the involvement of the gut microbiota in neurological diseases. Aging is associated with changes in the microbiome, which implies a reduction in microbial biodiversity among other changes. Considering that the consumption of a fermented-food diet improves intestinal permeability and barrier function, it seems of interest to study its participation in the prevention of neurodegenerative diseases. This article reviews existing studies to establish whether the consumption of fermented foods and fermented beverages prevents or ameliorates neurodegenerative decline in old age. Methods The protocol used was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Details of the protocol for this systematic review are registered on PROSPERO (CRD42021250921). Results Out of 465 articles identified in the Pubmed, Scopus, and Cochrane Library databases, a total of 29 that examined the relationship of the consumption of fermented products with cognitive impairment in old people were selected (22 cohort, 4 case-control, and 3 cross-sectional studies). The results suggest that low-to-moderate alcohol consumption and daily intake of coffee, soy products, and fermented-food diets in general are associated with a lower risk of dementia and Alzheimer's disease. Conclusion Daily consumption of fermented foods and beverages, either alone or as part of a diet, has neuroprotective effects and slows cognitive decline in old people. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=250921, identifier: CRD42021250921.
Collapse
Affiliation(s)
- Elena Porras-García
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | | | - Juan Gavala-González
- Department of Physical Education and Sports, University of Seville, Seville, Spain
| | - José Carlos Fernández-García
- Department of Didactics of Languages, Arts and Sport, University of Malaga, Andalucía-Tech, Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| |
Collapse
|
18
|
Abd Mutalib N, Syed Mohamad SA, Jusril NA, Hasbullah NI, Mohd Amin MCI, Ismail NH. Lactic Acid Bacteria (LAB) and Neuroprotection, What Is New? An Up-To-Date Systematic Review. Pharmaceuticals (Basel) 2023; 16:712. [PMID: 37242494 PMCID: PMC10221206 DOI: 10.3390/ph16050712] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND In recent years, the potential role of probiotics has become prominent in the discoveries of neurotherapy against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Lactic acid bacteria (LAB) exhibit neuroprotective properties and exert their effects via various mechanisms of actions. This review aimed to evaluate the effects of LAB on neuroprotection reported in the literature. METHODS A database search on Google Scholar, PubMed, and Science Direct revealed a total of 467 references, of which 25 were included in this review based on inclusion criteria which comprises 7 in vitro, 16 in vivo, and 2 clinical studies. RESULTS From the studies, LAB treatment alone or in probiotics formulations demonstrated significant neuroprotective activities. In animals and humans, LAB probiotics supplementation has improved memory and cognitive performance mainly via antioxidant and anti-inflammatory pathways. CONCLUSIONS Despite promising findings, due to limited studies available in the literature, further studies still need to be explored regarding synergistic effects, efficacy, and optimum dosage of LAB oral bacteriotherapy as treatment or prevention against neurodegenerative diseases.
Collapse
Affiliation(s)
- Nurliana Abd Mutalib
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
| | - Sharifah Aminah Syed Mohamad
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Nor Atiqah Jusril
- Faculty Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
| | - Nur Intan Hasbullah
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, Kuala Pilah 72000, Negeri Sembilan, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Selangor, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| |
Collapse
|
19
|
Aghamohammad S, Hafezi A, Rohani M. Probiotics as functional foods: How probiotics can alleviate the symptoms of neurological disabilities. Biomed Pharmacother 2023; 163:114816. [PMID: 37150033 DOI: 10.1016/j.biopha.2023.114816] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Neurological disorders are diseases of the central nervous system with progressive loss of nervous tissue. One of the most difficult problems associated with neurological disorders is that there is no clear treatment for these diseases. In this review, the physiopathology of some neurodegenerative diseases, etiological causes, drugs used and their side effects, and finally the role of probiotics in controlling the symptoms of these neurodegenerative diseases are presented. Recently, researchers have focused more on the microbiome and the gut-brain axis, which may play a critical role in maintaining brain health. Probiotics are among the most important bacteria that have positive effects on the balance of homeostasis via influencing the microbiome. Other important functions of probiotics in alleviating symptoms of neurological disorders include anti-inflammatory properties, short-chain fatty acid production, and the production of various neurotransmitters. The effects of probiotics on the control of abnormalities seen in neurological disorders led to probiotics being referred to as "psychobiotic. Given the important role of the gut-brain axis and the imbalance of the gut microbiome in the etiology and symptoms of neurological disorders, probiotics could be considered safe agents that positively affect the balance of the microbiome as complementary treatment options for neurological disorders.
Collapse
Affiliation(s)
| | - Asal Hafezi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
20
|
Li J, Zhang F, Zhao L, Dong C. Microbiota-gut-brain axis and related therapeutics in Alzheimer's disease: prospects for multitherapy and inflammation control. Rev Neurosci 2023:revneuro-2023-0006. [PMID: 37076953 DOI: 10.1515/revneuro-2023-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/26/2023] [Indexed: 04/21/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly and causes neurodegeneration, leading to memory loss, behavioral disorder, and psychiatric impairment. One potential mechanism contributing to the pathogenesis of AD may be the imbalance in gut microbiota, local and systemic inflammation, and dysregulation of the microbiota-gut-brain axis (MGBA). Most of the AD drugs approved for clinical use today are symptomatic treatments that do not improve AD pathologic changes. As a result, researchers are exploring novel therapeutic modalities. Treatments involving the MGBA include antibiotics, probiotics, transplantation of fecal microbiota, botanical products, and others. However, single-treatment modalities are not as effective as expected, and a combination therapy is gaining momentum. The purpose of this review is to summarize recent advances in MGBA-related pathological mechanisms and treatment modalities in AD and to propose a new concept of combination therapy. "MGBA-based multitherapy" is an emerging view of treatment in which classic symptomatic treatments and MGBA-based therapeutic modalities are used in combination. Donepezil and memantine are two commonly used drugs in AD treatment. On the basis of the single/combined use of these two drugs, two/more additional drugs and treatment modalities that target the MGBA are chosen based on the characteristics of the patient's condition as an adjuvant treatment, as well as the maintenance of good lifestyle habits. "MGBA-based multitherapy" offers new insights for the treatment of cognitive impairment in AD patients and is expected to show good therapeutic results.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Feng Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Li Zhao
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Chunbo Dong
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| |
Collapse
|
21
|
The Role of Dietary Antioxidants and Their Potential Mechanisms in Alzheimer’s Disease Treatment. Metabolites 2023; 13:metabo13030438. [PMID: 36984879 PMCID: PMC10054164 DOI: 10.3390/metabo13030438] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with cognitive decline and characterized by amyloid-β plaques and neurofibrillary tau tangles. Although AD’s exact pathophysiology remains unclear, oxidative stress is known to play a role in the neurodegenerative process. Since no curative treatment exists, antioxidants represent a potential treatment for AD due to their ability to modulate oxidative stress. Therefore, this review aims to examine the impact of antioxidant supplementation and its potential mechanisms on cognitive function. The review primarily discusses research articles published between 2012 and 2022 reporting the results of clinical trials involving antioxidant supplementation on cognitive function in individuals with AD. Antioxidant supplementation included probiotics, selenium, melatonin, resveratrol, rosmarinic acid, carotenoids, curcumin, vitamin E, and coenzyme Q. While the studies included in this review did not provide much evidence for the beneficial role of antioxidant supplements on cognitive function in AD, the results varied from antioxidant to antioxidant and among trials examining the same antioxidant. Furthermore, many of the studies’ findings face several limitations, including short trial durations, small sample sizes, and a lack of diversity among study participants. As a result, more research is required to examine the impact of antioxidant supplementation on cognitive function in AD.
Collapse
|
22
|
Kumar N, Sahoo NK, Mehan S, Verma B. The importance of gut-brain axis and use of probiotics as a treatment strategy for multiple sclerosis. Mult Scler Relat Disord 2023; 71:104547. [PMID: 36805171 DOI: 10.1016/j.msard.2023.104547] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
It has been shown that the dysbiosis of the gut's microbes substantially impacts CNS illnesses, including Alzheimer's, Parkinson's, autism, and autoimmune diseases like multiple sclerosis (MS). MS is a CNS-affected autoimmune demyelination condition. Through a two-way communication pathway known as the gut-brain axis, gut microbes communicate with the CNS. When there is a disruption in the gut microbiome, cytokines and other immune cells are secreted, which affects the BBB and gastrointestinal permeability. Recent research using animal models has revealed that the gut microbiota may greatly influence the pathophysiology of EAE/MS. Any change in the gut might increase inflammatory cytokinesand affect the quantity of SCFAs, and other metabolites that cause neuroinflammation and demyelination. In- vivo and in-vitro studies have concluded that probiotics affect the immune system and can be utilized to treat gastrointestinal dysbiosis. Any alteration in the gut microbial composition caused by probiotic intake may serve as a preventive and treatment strategy for MS. The major goal of this review is to emphasize an overview of recent research on the function of gut microbiota in the onset of MS and how probiotics have a substantial impact on gastrointestinal disruption in MS and other neuro disorders. It will be easier to develop new therapeutic approaches, particularly probiotic-based supplements, for treating multiple sclerosis (MS) if we know the link between the gut and CNS.
Collapse
Affiliation(s)
- Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India.
| | - Nalini Kanta Sahoo
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, (An Autonomous College), Moga, Punjab 142001, India
| | - Bharti Verma
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| |
Collapse
|
23
|
He X, Ye G, Xu S, Chen X, He X, Gong Z. Effects of three different probiotics of Tibetan sheep origin and their complex probiotics on intestinal damage, immunity, and immune signaling pathways of mice infected with Clostridium perfringens type C. Front Microbiol 2023; 14:1177232. [PMID: 37138630 PMCID: PMC10149710 DOI: 10.3389/fmicb.2023.1177232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Tibetan sheep have unique intestinal microorganisms in their intestines that are adapted to the highland alpine and anoxic environment. To further clarify the probiotic properties of Tibetan sheep-derived probiotics, we selected three Tibetan sheep-derived probiotic isolates (Enterococcus faecalis EF1-mh, Bacillus subtilis BS1-ql, and Lactobacillus sakei LS-ql) to investigate the protective mechanisms of monocultures and their complex strains against Clostridium perfringens type C infection in mice. We established a model of C. perfringens type C infection and used histology and molecular biology to analyze the effects and mechanisms of different probiotic treatments on mice after C. perfringens type C infection. After supplementation with either probiotics or complex probiotics, mice were improved in terms of weight reduction and reduced the levels of cytokines in serum and increased the levels of intestinal sIgA, and supplementation with complex probiotics was effective. In addition, both probiotic and complex probiotic supplementation effectively improved the damage of intestinal mucosa and spleen tissue. The relative expressions of Muc 2, Claudin-1, and Occludin genes were increased in the ileum. The three probiotics and the compound probiotics treatment significantly reduced the relative mRNA expression of toll-like/MyD88/NF-κB/MAPK. The effect of probiotic treatment was similar to the results of engramycin treatment, but the effect of engramycin treatment on intestinal sIgA was not significant. Our results clarify the immunomodulatory effects of the three probiotic isolates and the complex probiotics on C. perfringens infection, and the repair of the intestinal mucosal barrier.
Collapse
|
24
|
Salami M, Soheili M. The microbiota-gut- hippocampus axis. Front Neurosci 2022; 16:1065995. [PMID: 36620458 PMCID: PMC9817109 DOI: 10.3389/fnins.2022.1065995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
Introduction It is well known that the intestinal bacteria substantially affect physiological processes in many body organs. Especially, through a bidirectional communication called as gut-microbiota-brain axis, the gut microbiota deeply influences development and function of the nervous system. Hippocampus, as a part of medial temporal lobe, is known to be involved in cognition, emotion, and anxiety. Growing evidence indicates that the hippocampus is a target of the gut microbiota. We used a broad search linking the hippocampus with the gut microbiota and probiotics. Methods All experimental studies and clinical trials published until end of 2021 were reviewed. Influence of the gut microbiota on the behavioral, electrophysiological, biochemical and histological aspects of the hippocampus were evaluated in this review. Results The effect of disrupted gut microbiota and probiotic supplements on the microbiota-hippocampus link is also considered. Studies show that a healthy gut microbiota is necessary for normal hippocampus dependent learning and memory and synaptic plasticity. The known current mechanisms are production and modulation of neurotrophins, neurotransmitters and receptors, regulation of intracellular molecular processes, normalizing the inflammatory/anti-inflammatory and oxidative/antioxidant factors, and histological stability of the hippocampus. Activity of the hippocampal neuronal circuits as well as behavioral functions of the hippocampus positively respond to different mixtures of probiotic bacteria. Discussion Growing evidence from animal researches indicate a close association between the hippocampus with the gut microbiota and probiotic bacteria as well. However, human studies and clinical trials verifying such a link are scant. Since the most of papers on this topic have been published over the past 3 years, intensive future research awaits.
Collapse
|
25
|
Thangaleela S, Sivamaruthi BS, Kesika P, Chaiyasut C. Role of Probiotics and Diet in the Management of Neurological Diseases and Mood States: A Review. Microorganisms 2022; 10:2268. [PMID: 36422338 PMCID: PMC9696277 DOI: 10.3390/microorganisms10112268] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's (AD) and Parkinson's diseases (PD) are common in older people. Autism spectrum disorders (ASD), anxiety, depression, stress, and cognitive impairment are prevalent among people irrespective of age. The incidence of neurological disorders has been increasing in recent decades. Communication between the gut microbiota and the brain is intrinsically complicated, and it is necessary for the maintenance of the gut, brain, and immune functions of the host. The bidirectional link among the gut, gut microbiota and the brain is designated as the "microbiota-gut-brain axis." Gut microbiota modulates the host immune system and functions of tissue barriers such as gut mucosa and blood-brain barrier (BBB). Gut microbial dysfunction disturbs the gut-brain interplay and may contribute to various gut disorders, neurocognitive and psychiatric disorders. Probiotics could protect intestinal integrity, enhance gut functions, promote intestinal mucosal and BBB functions, and support the synthesis of brain-derived neurotrophic factors, which enhance neuronal survival and differentiation. Probiotics could be considered an adjunct therapy to manage metabolic and psychiatric diseases. Predominantly, Lactobacillus and Bifidobacterium strains are documented as potent probiotics, which help to maintain the bidirectional interactions between the gut and brain. The consumption of probiotics and probiotics containing fermented foods could improve the gut microbiota. The diet impacts gut microbiota, and a balanced diet could maintain the integrity of gut-brain communication by facilitating the production of neurotrophic factors and other neuropeptides. However, the beneficial effects of probiotics and diet might depend upon several factors, including strain, dosage, duration, age, host physiology, etc. This review summarizes the importance and involvement of probiotics and diet in neuroprotection and managing representative neurological disorders, injuries and mood states.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
26
|
Lee D, Lee VMY, Hur SK. Manipulation of the diet-microbiota-brain axis in Alzheimer's disease. Front Neurosci 2022; 16:1042865. [PMID: 36408394 PMCID: PMC9672822 DOI: 10.3389/fnins.2022.1042865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies investigating the pathogenesis of Alzheimer's disease have identified various interdependent constituents contributing to the exacerbation of the disease, including Aβ plaque formation, tau protein hyperphosphorylation, neurofibrillary tangle accumulation, glial inflammation, and the eventual loss of proper neural plasticity. Recently, using various models and human patients, another key factor has been established as an influential determinant in brain homeostasis: the gut-brain axis. The implications of a rapidly aging population and the absence of a definitive cure for Alzheimer's disease have prompted a search for non-pharmaceutical tools, of which gut-modulatory therapies targeting the gut-brain axis have shown promise. Yet multiple recent studies examining changes in human gut flora in response to various probiotics and environmental factors are limited and difficult to generalize; whether the state of the gut microbiota in Alzheimer's disease is a cause of the disease, a result of the disease, or both through numerous feedback loops in the gut-brain axis, remains unclear. However, preliminary findings of longitudinal studies conducted over the past decades have highlighted dietary interventions, especially Mediterranean diets, as preventative measures for Alzheimer's disease by reversing neuroinflammation, modifying the intestinal and blood-brain barrier (BBB), and addressing gut dysbiosis. Conversely, the consumption of Western diets intensifies the progression of Alzheimer's disease through genetic alterations, impaired barrier function, and chronic inflammation. This review aims to support the growing body of experimental and clinical data highlighting specific probiotic strains and particular dietary components in preventing Alzheimer's disease via the gut-brain axis.
Collapse
Affiliation(s)
- Daniel Lee
- Middleton High School, Middleton, WI, United States
| | - Virginia M-Y. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Seong Kwon Hur
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
27
|
Carlessi AS, Botelho MEM, Manosso LM, Borba LA, Maciel LR, Andrade NM, Martinello NS, Padilha APZ, Generoso CM, Bencke CV, de Moura AB, Lodetti BF, Collodel A, Joaquim L, Bonfante S, Biehl E, Generoso JS, Arent CO, Barichello T, Petronilho F, Quevedo J, Réus GZ. Sex differences on the response to antidepressants and psychobiotics following early life stress in rats. Pharmacol Biochem Behav 2022; 220:173468. [PMID: 36174752 DOI: 10.1016/j.pbb.2022.173468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/06/2023]
Abstract
Major depressive disorder (MDD) is the most prevalent mood disorder globally. Most antidepressants available for the treatment of MDD increase the concentration of monoamines in the synaptic cleft. However, such drugs have a high latency time to obtain benefits. Thus, new antidepressants with fast action and robust efficacy are very important. This study evaluated the effects of escitalopram, ketamine, and probiotic Bifidobacterium infantis in rats submitted to the maternal deprivation (MD). MD rats received saline, escitalopram, ketamine, or probiotic for 10, 30, or 50 days, depending on the postnatal day (PND):21, 41, and 61. Following behavior, this study examined the integrity of the blood-brain barrier (BBB) and oxidative stress markers. MD induced depressive-like behavior in females with PND21 and males with PND61. All treatments reversed depressive-like behavior in females and escitalopram and ketamine in males. MD induced an increase in the permeability of the BBB, an imbalance between oxidative stress and antioxidant defenses. Treatments regulated the oxidative damage and the integrity of the BBB induced by MD. The treatment with escitalopram, ketamine, or probiotics may prevent behavioral and neurochemical changes associated with MDD, depending on the developmental period and gender.
Collapse
Affiliation(s)
- Anelise S Carlessi
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Maria Eduarda M Botelho
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Larissa R Maciel
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Natalia M Andrade
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Nicoly S Martinello
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Alex Paulo Z Padilha
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Camille M Generoso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Clara Vitória Bencke
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Airam B de Moura
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Bruna F Lodetti
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Allan Collodel
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - Sandra Bonfante
- Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - Erica Biehl
- Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Camila O Arent
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil.
| |
Collapse
|
28
|
Raj K, Singh S, Chib S, Mallan S. Microbiota- Brain-Gut-Axis Relevance to Parkinson's Disease: Potential Therapeutic Effects of Probiotics. Curr Pharm Des 2022; 28:3049-3067. [PMID: 36200207 DOI: 10.2174/1381612828666221003112300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/02/2022] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is the second most common type of neurogenerative disease among middleaged and older people, characterized by aggregation of alpha-synuclein and dopaminergic neuron loss. The microbiota- gut-brain axis is a dynamic bidirectional communication network and is involved in the pathogenesis of PD. The aggregation of misfolded protein alpha-synuclein is a neuropathological characteristic of PD, originates in the gut and migrates to the central nervous system (CNS) through the vagus nerve and olfactory bulb. The change in the architecture of gut microbiota increases the level short-chain fatty acids (SCFAs) and other metabolites, acting on the neuroendocrine system and modulating the concentrations of gamma-Aminobutyric acid (GABA), serotonin, and other neurotransmitters. It also alters the vagus and intestinal signalling, influencing the brain and behaviour by activating microglia and systemic cytokines. Both experimental and clinical reports indicate the role of intestinal dysbiosis and microbiota host interaction in neurodegeneration. Probiotics are live microorganisms that modify the gut microbiota in the small intestine to avoid neurological diseases. Probiotics have been shown in clinical and preclinical studies to be effective in the treatment of PD by balancing the gut microbiota. In this article, we described the role of gut-microbiota in the pathogenesis of PD. The article aims to explore the mechanistic strategy of the gut-brain axis and its relation with motor impairment and the use of probiotics to maintain gut microbial flora and prevent PD-like symptoms.
Collapse
Affiliation(s)
- Khadga Raj
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shivani Chib
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Sudhanshu Mallan
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|
29
|
Zheng S, Pan L, Hou J, Liao A, Hou Y, Yu G, Li X, Yuan Y, Dong Y, Zhao P, Zhang J, Hu Z, Hui M, Cao J, Huang JH. The role of wheat embryo globulin nutrients in improving cognitive dysfunction in AD rats. Food Funct 2022; 13:9856-9867. [PMID: 36047913 DOI: 10.1039/d2fo00815g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuroinflammation and intestinal microbiota cause pathological progression of Alzheimer's disease (AD), leading to neurodegeneration and cognitive decline. This study investigates the effects of wheat embryo globulin nutrient (WEGN) on depression, neuroinflammation, and intestinal microbial disorder caused by AD and its protective mechanism on cognitive impairment. Results demonstrated that rats in the WEGN group have lower feed intake but higher body weight than those in the control group. Notably, rats in the WEGN group have a higher number of cross grids and uprights and a smaller amount of fecal particles than those in the control group. Biochemical examinations revealed that rats in the WEGN group had lower expression of interleukin-1β, interleukin-6, and tumor necrosis factor α in hippocampus tissue and the expression of genes and proteins related to the TLR4/MyD88/NF-κB signaling pathway in AD rats was down-regulated compared to those in the control group. The 16S rRNA gene sequencing results demonstrated that WEGN treatment inhibits the increase of Erysipelotrichaceae, Erysipelatoclostridium, Erysipelotrichaceae, Corynebacterium, and Frisingicoccus, and the reduction of Lactobacillus in AD rats. WEGN has potential value as a practical food in alleviating neuroinflammation-related diseases such as AD.
Collapse
Affiliation(s)
- Shuainan Zheng
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Jianguang Hou
- Workstation of Zhongyuan Scholars of Henan Province, Henan Yangshao Liquor Co., Ltd., Mianchi Xian, 472400, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Xiaoxiao Li
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Yongjian Yuan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Yuqi Dong
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Penghui Zhao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Jie Zhang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Zheyuan Hu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Ming Hui
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Jian Cao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Ji-Hong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China. .,School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.,State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China.
| |
Collapse
|
30
|
Wang X, Yang C, Yang L, Zhang Y. Modulating the gut microbiota ameliorates spontaneous seizures and cognitive deficits in rats with kainic acid-induced status epilepticus by inhibiting inflammation and oxidative stress. Front Nutr 2022; 9:985841. [PMID: 36105577 PMCID: PMC9465080 DOI: 10.3389/fnut.2022.985841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Epilepsy is a highly prevalent neurological disease whose treatment has always been challenging. Hence, it is crucial to explore the molecular mechanisms underlying epilepsy inhibition. Inflammation and oxidative stress are important pathophysiological changes in epilepsy that contribute to the development of spontaneous seizures and cognitive deficits. In recent years, altered gut microbiota composition was found to be involved in epilepsy, but the underlying mechanism remains unclear. Modulation of the gut microbiota showed a positive impact on the brain by regulating oxidative stress and inflammation. Hence, this study evaluated the effect of modulating gut dysbiosis by treating epileptic rats with prebiotics, probiotics, and synbiotics and investigated the underlying molecular mechanism. Materials and methods Epileptic rat models were established by injecting 1 μl of kainic acid (KA, 0.4 μg/μl) into the right amygdalae. The rats were divided into Sham, KA, KA+prebiotic [inulin:1 g/kg body weight (bw)/day], KA+probiotics (10 × 109cfu of each bacteria/kg, bw/day), and KA+synbiotic groups (1:1 mixture of prebiotics and probiotics). Seizures were monitored, and cognitive function was assessed in all rats. Biochemical indicators, namely, oxidative stress, DNA damage, glutamate levels, and inflammation markers, were also determined. Results The KA-induced status epilepticus (SE) rats exhibited spontaneous seizures and cognitive deficits. This was accompanied by the activation of glial cells, the inflammatory response (IL-1 β, IL-6, and TNF-α), lipid peroxidation (MDA), DNA damage (8-OHdG), the release of glutamate, and a decline in total antioxidant ability (GSH). These changes were alleviated by partial treatment with prebiotics, probiotics, and synbiotics. Conclusion Modulating gut dysbiosis ameliorates spontaneous seizures and cognitive deficits in rats with KA-induced status epilepticus. The underlying mechanism may potentially involve the inhibition of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Xue Wang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunyu Yang
- Department of Neurology, Dehui People's Hospital, Jilin, China
| | - Liu Yang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yongbo Zhang
| |
Collapse
|
31
|
Kayacan Y, Kola AZ, Guandalini S, Yazar H, Söğüt MÜ. The Use of Probiotics Combined with Exercise Affects Thiol/Disulfide Homeostasis, an Oxidative Stress Parameter. Nutrients 2022; 14:nu14173555. [PMID: 36079815 PMCID: PMC9460532 DOI: 10.3390/nu14173555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Intestinal microbiota play a role in the health and performance of athletes, and can be influenced by probiotics. Thus, in this study, we aimed to investigate the effect of the use of probiotics combined with chronic exercise on the thiol/disulfide homeostasis, a novel marker of oxidative stress. Methods: Male Wistar rats were randomly divided into four groups: control (Cn), exercise (Ex), probiotics (P), and probiotics + exercise (PEx). A capsule containing 6 × 108 CFU of L. rhamnosus, L. paracasei, L. acidophilus, and B. lactis was given daily for eight weeks to all the experimental animals. The total thiol (TT, μmol/L) and native thiol (NT, μmol/L) concentrations were measured to determine the oxidative stress parameters. The dynamic disulfide (DD, %), reduced thiol (RT, %), oxidized thiol (OT, %), and thiol oxidation reduction (TOR, %) ratios were analyzed. Results: The TT level was found to be significantly higher in the Ex group (p = 0.047, η2 = 0.259). The DD level, a marker of oxidation, was significantly lower in the PEx group (p = 0.042, η2 = 0.266); the highest value of this parameter was found in the Ex group. The use of probiotics alone had no effect on thiol/disulfide homeostasis. Conclusions: We showed, for the first time, that probiotics administered “with exercise” decreased dynamic disulfide and significantly reduced oxidative damage. Therefore, we speculate that the use of probiotics in sports involving intense exercise might be beneficial to reduce oxidative stress.
Collapse
Affiliation(s)
- Yıldırım Kayacan
- Faculty of Yasar Dogu Sports Sciences, Ondokuz Mayıs University, Samsun 55139, Turkey
| | - Aybike Zeynep Kola
- Faculty of Yasar Dogu Sports Sciences, Ondokuz Mayıs University, Samsun 55139, Turkey
| | - Stefano Guandalini
- Pediatrics-Gastroenterology, University of Chicago Medicine, Chicago, IL 60637, USA
- Correspondence:
| | - Hayrullah Yazar
- Department of Medical Biochemistry, Sakarya University Faculty of Medicine, Sakarya 54050, Turkey
| | - Mehtap Ünlü Söğüt
- Faculty of Health Sciences Department of Nutrition and Dietetics, Ondokuz Mayıs University, Samsun 55139, Turkey
| |
Collapse
|
32
|
Psychobiotics: the Influence of Gut Microbiota on the Gut-Brain Axis in Neurological Disorders. J Mol Neurosci 2022; 72:1952-1964. [PMID: 35849305 PMCID: PMC9289355 DOI: 10.1007/s12031-022-02053-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022]
Abstract
Nervous system disorders are one of the common problems that affect many people around the world every year. Regarding the beneficial effects of the probiotics on the gut and the gut-brain axis, their application along with current medications has been the subject of intense interest. Psychobiotics are a probiotic strain capable to affect the gut-brain axis. The effective role of Psychobiotics in several neurological disorders is documented. Consumption of the Psychobiotics containing nutrients has positive effects on the improvement of microbiota as well as alleviation of some symptoms of central nervous system (CNS) disorders. In the present study, the effects of probiotic strains on some CNS disorders in terms of controlling the disease symptoms were reviewed. Finding suggests that Psychobiotics can efficiently alleviate the symptoms of several CNS disorders such as autism spectrum disorders, Parkinson’s disease, multiple sclerosis, insomnia, depression, diabetic neuropathy, and anorexia nervosa. It can be concluded that functional foods containing psychotropic strains can help to improve mental health.
Collapse
|
33
|
Xavier J, M A, A S F, Ravichandiran V, Kumar N. Intriguing role of Gut-Brain Axis on cognition with emphasis on interaction with Papez circuit. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-124445. [PMID: 35702801 DOI: 10.2174/1871527321666220614124145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The gut microbiome is a complicated ecosystem of around a hundred billion symbiotic bacteria cells. Bidirectional communication between the gut and the brain is facilitated by the immune system, the enteric nervous system, the vagus nerve, and microbial compounds such as tryptophan metabolites and short-chain fatty acids (SCFAs). The current study emphasises the relationship of the gut-brain axis with cognitive performance and elucidates the underlying biological components, with a focus on neurotransmitters such as serotonin, indole derivatives, and catecholamine. These biological components play important roles in both the digestive and brain systems. Recent research has linked the gut microbiome to a variety of cognitive disorders, including Alzheimer's (AD). The review describes the intriguing role of the gut-brain axis in recognition memory depending on local network connections within the hippocampal as well as other additional hippocampal portions of the Papez circuit. The available data from various research papers show how the gut microbiota might alter brain function and hence psychotic and cognitive illnesses. The role of supplementary probiotics is emphasized for the reduction of brain-related dysfunction as a viable strategy in handling cognitive disorders. Further, the study elucidates the mode of action of probiotics with reported adverse effects.
Collapse
Affiliation(s)
- Joyal Xavier
- Department of Pharmacology and Toxicology,National Institute of Pharmaceutical Education and Research
| | - Anu M
- Biotechnology National Institute of Pharmaceutical Education and Research India
| | - Fathima A S
- Pharamcy practice National Institute of Pharmaceutical Education and Research India
| | - V Ravichandiran
- Natural Product sNational Institute of Pharmaceutical Education and Research India
| | - Nitesh Kumar
- Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research India
| |
Collapse
|
34
|
Ruiz-Gonzalez C, Cardona D, Rodriguez-Arrastia M, Ropero-Padilla C, Rueda-Ruzafa L, Carvajal F, Sanchez-Labraca N, Aparicio Mota A, Roman P. Effects of probiotics on cognitive and emotional functions in healthy older adults: Protocol for a double-blind randomized placebo-controlled crossover trial. Res Nurs Health 2022; 45:274-286. [PMID: 35080033 DOI: 10.1002/nur.22209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Aging is a process that includes changes in cognitive and emotional functions, as well as changes in the diversity and integrity of gut microbiota. Probiotic treatments have recently been studied as a potential new therapeutic approach to alleviate a wide range of problems in other populations; however, clinical studies in older adults remain insufficient and limited. Thus, the aim of this project is to evaluate the efficacy of a multispecies probiotic formulation as a therapeutic strategy for attenuating the emotional and cognitive decline associated with aging in adults over the age of 55. This is a double-blind randomized placebo-controlled crossover trial involving at least 32 older adults and comparing two conditions: (a) probiotic, providing a multispecies probiotic for 10 weeks (Lactobacillus rhamnosus and Bifidobacterium lactis); and (b) placebo, receiving a harmless substance (potato starch). Despite the increasing use of probiotics for the treatment of cognitive and emotional problems, no study has yet focused on this group, to the best of our knowledge. Therapeutic strategies of the kind outlined in this protocol will help to shed light on the current state of knowledge about this topic, as well as promote health programs tailored to this population, which would encourage active aging and healthy lifestyles. Not only do we expect improvements in the emotional dimension in terms of anxiety, stress, depression, and sleep quality, we also expect improvements in the cognitive dimension in terms of attention, memory, and decreased impulsivity.
Collapse
Affiliation(s)
- Cristofer Ruiz-Gonzalez
- Department of Nursing Science, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, Almeria, Spain
| | - Diana Cardona
- Department of Nursing Science, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, Almeria, Spain.,Health Research Center CEINSA, University of Almeria, Almeria, Spain
| | - Miguel Rodriguez-Arrastia
- Pre-Department of Nursing, Faculty of Health Sciences, Jaume I University, Castello de la Plana, Spain.,Research Group CYS, Faculty of Health Sciences, Jaume I University, Castello de la Plana, Spain
| | - Carmen Ropero-Padilla
- Pre-Department of Nursing, Faculty of Health Sciences, Jaume I University, Castello de la Plana, Spain.,Research Group CYS, Faculty of Health Sciences, Jaume I University, Castello de la Plana, Spain
| | | | - Francisca Carvajal
- Health Research Center CEINSA, University of Almeria, Almeria, Spain.,Department of Psychology, Faculty of Psychology, University of Almeria, Almeria, Spain
| | - Nuria Sanchez-Labraca
- Department of Nursing Science, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, Almeria, Spain
| | - Adrian Aparicio Mota
- Fundación Pública Andaluza para la Investigación Biosanitaria de Andalucía Oriental (FIBAO), University Hospital Torrecárdenas, Almería, Spain
| | - Pablo Roman
- Department of Nursing Science, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, Almeria, Spain.,Health Research Center CEINSA, University of Almeria, Almeria, Spain.,Research Group CTS-451 Health Sciences, University of Almeria, Almeria, Spain
| |
Collapse
|
35
|
Meng HYH, Mak CCH, Mak WY, Zuo T, Ko H, Chan FKL. Probiotic supplementation demonstrates therapeutic potential in treating gut dysbiosis and improving neurocognitive function in age-related dementia. Eur J Nutr 2022; 61:1701-1734. [PMID: 35001217 DOI: 10.1007/s00394-021-02760-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Probiotics, as live microorganisms that improve intestinal microbial balance, have been implicated in the modulation of neurodegenerative diseases via the microbiome-gut-brain axis by improving gut dysbiosis. This review examines the association between probiotics and neurocognitive function in age-related dementia. METHODS We searched MEDLINE, Embase, Scopus, Web of Science and Cochrane library for in vivo studies using equivalent combinations of "probiotics" and "dementia" as per PRISMA. From the 52 in vivo studies identified, 5 human and 22 animal studies with comparable quantitative outcomes on neurocognitive/behavioural function were meta-analysed by forest plots, subgroup analysis and meta-regression. The analysis of biomarkers, risk of bias and publication bias were also performed. RESULTS In elderly humans, probiotics correlates with a non-significant difference of neurocognitive function in Mini-Mental State Examination, but with significant improvement only in those diagnosed with Alzheimer's disease. In animals, probiotics significantly improved neurocognitive function as measured by Morris Water Maze, Y-Maze, and Passive Avoidance. Further analysis by subgrouping and meta-regression found that the probiotics-neurodegeneration association is age dependent in humans but is neither dose dependent nor duration dependent in animals or humans. Analysis of biomarkers suggested that the neurocognitive effect of probiotics is associated with an altered gut microbiome profile, downregulated proteinopathic, inflammatory and autophagic pathways, and upregulated anti-oxidative, neurotrophic, and cholinergic pathways. CONCLUSION Overall, we report promising results in animal studies but limited evidence of probiotics leading to neurocognitive improvement in humans. More research into probiotics should be conducted, especially on live biotherapeutic products for targeted treatment of gut dysbiosis and age-related dementia.
Collapse
Affiliation(s)
- Henry Yue Hong Meng
- Faculty of Medicine, The Chinese University of Hong Kong, Central Ave, Hong Kong, People's Republic of China.
| | | | - Wing Yan Mak
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Francis Ka Leung Chan
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
36
|
Ebrahimi V, Tarhriz V, Talebi M, Rasouli A, Farjami A, Razi Soofiyani S, Soleimanian A, Forouhandeh H. A new insight on feasibility of pre-, pro-, and synbiotics-based therapies in Alzheimer’s disease. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2022. [DOI: 10.4103/jrptps.jrptps_170_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Dobielska M, Bartosik NK, Zyzik KA, Kowalczyk E, Karbownik MS. Mechanisms of Cognitive Impairment in Depression. May Probiotics Help? Front Psychiatry 2022; 13:904426. [PMID: 35757204 PMCID: PMC9218185 DOI: 10.3389/fpsyt.2022.904426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Depression is the major cause of disability globally. Apart from lowered mood and accompanying symptoms, it leads to cognitive impairment that altogether predicts disadvantaged social functioning. Reduced cognitive function in depression appears a bit neglected in the field of clinical and molecular psychiatry, while it is estimated to occur in two-thirds of depressed patients and persist in at least one third of remitted patients. This problem, therefore, requires elucidation at the biomolecular and system levels and calls for improvement in therapeutic approach. In this review study, we address the above-mentioned issues by discussing putative mechanisms of cognitive decline in depression: (1) increased oxidative stress and (2) inflammation, (3) disturbed hypothalamus-pituitary-adrenals axis, and (4) reduced monoamines functionality. Moreover, we acknowledge additional underpinnings of cognitive impairment in depressed elderly: (5) vascular-originated brain ischemia and (6) amyloid-beta plaque accumulation. Additionally, by reviewing molecular, pre-clinical and clinical evidence, we propose gut microbiota-targeted strategies as potential adjuvant therapeutics. The study provides a consolidated source of knowledge regarding mechanisms of cognitive impairment in depression and may path the way toward improved treatment options.
Collapse
Affiliation(s)
- Maria Dobielska
- Students' Research Club, Department of Pharmacology and Toxicology, Medical University of Łódź, Łódź, Poland
| | - Natalia Karina Bartosik
- Students' Research Club, Department of Pharmacology and Toxicology, Medical University of Łódź, Łódź, Poland
| | - Kamil A Zyzik
- Institute of Sociology, Jagiellonian University, Kraków, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Łódź, Łódź, Poland
| | | |
Collapse
|
38
|
Probiotics for Alzheimer's Disease: A Systematic Review. Nutrients 2021; 14:nu14010020. [PMID: 35010895 PMCID: PMC8746506 DOI: 10.3390/nu14010020] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of neurodegenerative disorders affecting mostly the elderly. It is characterized by the presence of Aβ and neurofibrillary tangles (NFT), resulting in cognitive and memory impairment. Research shows that alteration in gut microbial diversity and defects in gut brain axis are linked to AD. Probiotics are known to be one of the best preventative measures against cognitive decline in AD. Numerous in vivo trials and recent clinical trials have proven the effectiveness of selected bacterial strains in slowing down the progression of AD. It is proven that probiotics modulate the inflammatory process, counteract with oxidative stress, and modify gut microbiota. Thus, this review summarizes the current evidence, diversity of bacterial strains, defects of gut brain axis in AD, harmful bacterial for AD, and the mechanism of action of probiotics in preventing AD. A literature search on selected databases such as PubMed, Semantic Scholar, Nature, and Springer link have identified potentially relevant articles to this topic. However, upon consideration of inclusion criteria and the limitation of publication year, only 22 articles have been selected to be further reviewed. The search query includes few sets of keywords as follows. (1) Probiotics OR gut microbiome OR microbes AND (2) Alzheimer OR cognitive OR aging OR dementia AND (3) clinical trial OR in vivo OR animal study. The results evidenced in this study help to clearly illustrate the relationship between probiotic supplementation and AD. Thus, this systematic review will help identify novel therapeutic strategies in the future as probiotics are free from triggering any adverse effects in human body.
Collapse
|
39
|
Kim J, Kim DW, Lee A, Mason M, Jouroukhin Y, Woo H, Yolken RH, Pletnikov MV. Homeostatic regulation of neuronal excitability by probiotics in male germ-free mice. J Neurosci Res 2021; 100:444-460. [PMID: 34935171 DOI: 10.1002/jnr.24999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/10/2021] [Accepted: 11/27/2021] [Indexed: 11/08/2022]
Abstract
Emerging evidence indicates that probiotics can influence the gut-brain axis to ameliorate somatic and behavioral symptoms associated with brain disorders. However, whether probiotics have effects on the electrophysiological activities of individual neurons in the brain has not been evaluated at a single-neuron resolution, and whether the neuronal effects of probiotics depend on the gut microbiome status have yet to be tested. Thus, we conducted whole-cell patch-clamp recording-assisted electrophysiological characterizations of the neuronal effects of probiotics in male germ-free (GF) mice with and without gut microbiome colonization. Two weeks of treatment with probiotics (Lactobacillus rhamnosus and Bifidobacterium animalis) significantly and selectively increased the intrinsic excitability of hippocampal CA1 pyramidal neurons, whereas reconstituting gut microbiota in GF mice reversed the effects of the probiotics leading to a decreased intrinsic excitability in hippocampal neurons. This bidirectional modulation of neuronal excitability by probiotics was observed in hippocampal neurons with corresponding basal membrane property and action potential waveform changes. However, unlike the hippocampus, the amygdala excitatory neurons did not show any electrophysiological changes to the probiotic treatment in either GF or conventionalized GF mice. Our findings demonstrate for the first time how probiotic treatment can have a significant influence on the electrophysiological properties of neurons, bidirectionally modulating their intrinsic excitability in a gut microbiota and brain area-specific manner.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian Lee
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madisen Mason
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Yan Jouroukhin
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hyewon Woo
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Robert H Yolken
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Physiology and Biophysics, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
40
|
Lekchand Dasriya V, Samtiya M, Dhewa T, Puniya M, Kumar S, Ranveer S, Chaudhary V, Vij S, Behare P, Singh N, Aluko RE, Puniya AK. Etiology and management of Alzheimer's disease: Potential role of gut microbiota modulation with probiotics supplementation. J Food Biochem 2021; 46:e14043. [PMID: 34927261 DOI: 10.1111/jfbc.14043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the leading type of dementia in aging people and is a progressive condition that causes neurodegeneration, resulting in confusion, memory loss, and deterioration of mental functions. AD happens because of abnormal twisting of the microtubule tau protein in neurons into a tangled neurofibrillary structure. Different factors responsible for AD pathogenesis include heavy metals, aging, cardiovascular disease, and environmental and genetic factors. Market available drugs for AD have several side effects that include hepato-toxicity, accelerated cognitive decline, worsened neuropsychiatric symptoms, and triggered suicidal ideation. Therefore, an emerging alternative therapeutic approach is probiotics, which can improve AD by modulating the gut-brain axis. Probiotics modulate different neurochemical pathways by regulating the signalling pathways associated with inflammation, histone deacetylation, and microglial cell activation and maturation. In addition, probiotics-derived metabolites (i.e., short-chain fatty acid, neurotransmitters, and antioxidants) have shown ameliorative effects against AD. Probiotics also modulate gut microbiota, with a beneficial impact on neural signalling and cognitive activity, which can attenuate AD progression. Therefore, the current review describes the etiology and mechanism of AD progression as well as various treatment options with a focus on the use of probiotics. PRACTICAL APPLICATIONS: In an aging population, dementia concerns are quite prevalent globally. AD is one of the most commonly occurring cognition disorders, which is linked to diminished brain functions. Scientific evidence supports the findings that probiotics and gut microbiota can regulate/modulate brain functions, one of the finest strategies to alleviate such disorders through the gut-brain axis. Thus, gut microbiota modulation, especially through probiotic supplementation, could become an effective solution to ameliorate AD.
Collapse
Affiliation(s)
| | - Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Monica Puniya
- Food Safety and Standards Authority of India, FDA Bhawan, New Delhi, India
| | - Sanjeev Kumar
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Soniya Ranveer
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Vishu Chaudhary
- Department of Microbiology, Punjab Agriculture University, Ludhiana, India
| | - Shilpa Vij
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Pradip Behare
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
41
|
Liu J, Ye T, Zhang Y, Zhang R, Kong Y, Zhang Y, Sun J. Protective Effect of Ginkgolide B against Cognitive Impairment in Mice via Regulation of Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12230-12240. [PMID: 34633804 DOI: 10.1021/acs.jafc.1c05038] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ginkgolide B (GB) is one of the main bioactive components of Ginkgo biloba leaf extracts with neuroprotective activity. However, the neuroprotective mechanism link between the anti-Alzheimer's disease (AD) efficiency of GB and gut microbiota have remained elusive. Here, we elucidated the effect and possible mechanism of GB against cognitive impairment in mice. Male mice were induced with d-galactose and aluminum chloride to establish an AD animal model, and then intragastrically treated with GB. Cognitive function was assessed by an object recognition test and an open-field test. Amyloid deposition and neuropathological change were detected. The levels of receptor for advanced glycation end products (RAGE), Bcl-2, and Bax were detected. Moreover, microbial compositions were measured by 16s rRNA sequencing. Our results showed that GB significantly alleviated cognitive dysfunction, neurodegeneration, and neuropathological changes in AD model mice. Moreover, GB treatment remarkably reduced the levels of RAGE and Bax and increased the level of Bcl-2 in AD model mice. GB treatment reversed the decreased abundance of Lactobacillus and the increased abundance of Bacteroidales, Muribaculaceae, and Alloprevotella, which led to reconstruction of gut microbiota. These findings demonstrated the neuroprotective effects of GB in AD mice, which were partly mediated by modulating gut dysbiosis, indicating that GB might be a potentially active supplement to alleviate AD.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tao Ye
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuhe Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Rui Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Kong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yang Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jing Sun
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
42
|
Ji HF, Shen L. Probiotics as potential therapeutic options for Alzheimer's disease. Appl Microbiol Biotechnol 2021; 105:7721-7730. [PMID: 34596721 DOI: 10.1007/s00253-021-11607-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022]
Abstract
The steadily increasing prevalence of Alzheimer's disease (AD) worldwide and the lack of effective therapeutic agent attract novel therapeutic approach in recent years. In view of the close relationships between gut microbiota and AD, probiotics have been suggested as potential therapeutic options for AD in recent years. The present review discussed the research progresses concerning the effects of probiotics administration to combat AD. A total of 35 studies, including 26 animal model studies and 9 human studies, were included herein. Among the 26 animal model studies, 24 used mice model, and 2 used Caenorhabditis elegans and Drosophila melanogaster AD models, respectively. As for probiotics, a total of 13 studies employed single-strain probiotic, and the rest studies used multi-strain probiotics (ranged from 2 to 9 probiotic strains), 4 used probiotic-fermented milk or probiotic-fermented soybean, 2 studies used engineered probiotic strain, and 4 studies focused on the combined effect of probiotics with AD drug memantine, selenium, or exercise. Bifidobacterium and Lactobacillus species were the most frequently used probiotics in the included studies. Overall, currently available studies showed that probiotic administration conferred neuroprotective benefits and could attenuate cognitive deficits and modulate gut microbiota dysbiosis, which may be related to oxidative and inflammatory pathways. Several perspectives on future studies on this topic are proposed. Thus, probiotics seem to be an attractive approach to combat AD, which deserves to be further studied by well-designed large-scale clinical studies. KEY POINTS: •We discussed the recent progresses concerning the effects of probiotics administration to combat AD. •A total of 35 associated studies consisted of 26 animal model studies and 9 human studies were included. •Most studies found that probiotic administration conferred neuroprotective benefits and could attenuate cognitive deficits.
Collapse
Affiliation(s)
- Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| |
Collapse
|
43
|
Chidambaram SB, Essa MM, Rathipriya AG, Bishir M, Ray B, Mahalakshmi AM, Tousif AH, Sakharkar MK, Kashyap RS, Friedland RP, Monaghan TM. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol Ther 2021; 231:107988. [PMID: 34536490 DOI: 10.1016/j.pharmthera.2021.107988] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
The human microbiota comprises trillions of symbiotic microorganisms and is involved in regulating gastrointestinal (GI), immune, nervous system and metabolic homeostasis. Recent observations suggest a bidirectional communication between the gut microbiota and the brain via immune, circulatory and neural pathways, termed the Gut-Brain Axis (GBA). Alterations in gut microbiota composition, such as seen with an increased number of pathobionts and a decreased number of symbionts, termed gut dysbiosis or microbial intestinal dysbiosis, plays a prominent role in the pathogenesis of central nervous system (CNS)-related disorders. Clinical reports confirm that GI symptoms often precede neurological symptoms several years before the development of neurodegenerative diseases (NDDs). Pathologically, gut dysbiosis disrupts the integrity of the intestinal barrier leading to ingress of pathobionts and toxic metabolites into the systemic circulation causing GBA dysregulation. Subsequently, chronic neuroinflammation via dysregulated immune activation triggers the accumulation of neurotoxic misfolded proteins in and around CNS cells resulting in neuronal death. Emerging evidence links gut dysbiosis to the aggravation and/or spread of proteinopathies from the peripheral nervous system to the CNS and defective autophagy-mediated proteinopathies. This review summarizes the current understanding of the role of gut microbiota in NDDs, and highlights a vicious cycle of gut dysbiosis, immune-mediated chronic neuroinflammation, impaired autophagy and proteinopathies, which contributes to the development of neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We also discuss novel therapeutic strategies targeting the modulation of gut dysbiosis through prebiotics, probiotics, synbiotics or dietary interventions, and faecal microbial transplantation (FMT) in the management of NDDs.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India.
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman; Biomedical Sciences Department, University of Pacific, Sacramento, CA, USA.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai 600 094, Tamil Nadu, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - A H Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Meena K Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Rajpal Singh Kashyap
- Research Centre, Dr G. M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Robert P Friedland
- Department of Neurology, University of Louisville, Louisville, KY 40292, USA
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
44
|
Wang J, Zhang XN, Fang JN, Hua FF, Han JY, Yuan ZQ, Xie AM. The mechanism behind activation of the Nod-like receptor family protein 3 inflammasome in Parkinson's disease. Neural Regen Res 2021; 17:898-904. [PMID: 34472491 PMCID: PMC8530148 DOI: 10.4103/1673-5374.323077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous studies have shown that the ATP-P2X4 receptor signaling pathway mediates the activation of the Nod-like receptor family protein 3 (NLRP3) inflammasome. The NLRP3 inflammasome may promote renal interstitial inflammation in diabetic nephropathy. As inflammation also plays an important role in the pathogenesis of Parkinson’s disease, we hypothesized that the ATP-P2X4 receptor signaling pathway may activate the NLRP3 inflammasome in Parkinson’s disease. A male rat model of Parkinson’s disease was induced by stereotactic injection of 6-hydroxydopamine into the pars compacta of the substantia nigra. The P2X4 receptor and the NLRP3 inflammasome (interleukin-1β and interleukin-18) were activated. Intracerebroventricular injection of the selective P2X4 receptor antagonist 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) or knockdown of P2X4 receptor expression by siRNA inhibited the activation of the NLRP3 inflammasome and alleviated dopaminergic neurodegeneration and neuroinflammation. Our results suggest that the ATP-P2X4 receptor signaling pathway mediates NLRP3 inflammasome activation, dopaminergic neurodegeneration, and dopamine levels. These findings reveal a novel role of the ATP-P2X4 axis in the molecular mechanisms underlying Parkinson’s disease, thus providing a new target for treatment. This study was approved by the Animal Ethics Committee of Qingdao University, China, on March 5, 2015 (approval No. QYFYWZLL 26119).
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiao-Na Zhang
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jin-Ni Fang
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fei-Fei Hua
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing-Yang Han
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Zeng-Qiang Yuan
- Brain Science Center, Academy of Military Medical Sciences of PLA, Beijing, China
| | - An-Mu Xie
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
45
|
Yin X, Qiu Y, Zhao C, Zhou Z, Bao J, Qian W. The Role of Amyloid-Beta and Tau in the Early Pathogenesis of Alzheimer's Disease. Med Sci Monit 2021; 27:e933084. [PMID: 34471085 PMCID: PMC8422899 DOI: 10.12659/msm.933084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The abnormal accumulation of amyloid-b (Ab) and neurofibrillary tangles (NFTs) containing phosphorylated tau proteins are the main histopathological feature of Alzheimer's disease (AD). Synaptic damage and loss are earlier events than amyloid plaques and NFTs in AD progress and best correlate with cognitive deficits in AD patients. Soluble oligomeric Aß initiates the progression of AD and tau mediates the subsequent synaptic impairments at an early stage of AD. In this review we discuss how Ab or/and tau causes synaptic dysfunction. Ab oligomers gather at synapses and give rise to synaptic death in a variety of ways such as regulating receptors and receptor tyrosine kinases, unbalancing calcium homeostasis, and activating caspases and calcineurin. A large amount of hyperphosphorylated tau exists in the synapse of the AD brain. Aß-triggered synaptic deficits are dependent on tau. Soluble, hyperphosphorylated tau is much more correlated to cognitive decline in AD patients. Tau-targeted therapies have received more attention because the treatments targeting Aß failed in AD. Here, we also review the therapy strategies used to intervene in the very early stages of AD. Soluble hyperphosphorylated tau forms a complex with cell surface receptors, scaffold proteins, or intracellular signaling molecules to damage synaptic function. Therefore, therapeutic strategies targeting synaptic tau at the early stage of AD may ameliorating pathology in AD. This review aims to provide an update on the role of oligomeric Ab and soluble hyperphosphorylated tau in the early pathogenesis of Alzheimer's disease and to develop a new treatment strategy based on this.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland).,Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China (mainland).,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Yanyan Qiu
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Chenhao Zhao
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Zheng Zhou
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Junze Bao
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Wei Qian
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland).,Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China (mainland).,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China (mainland)
| |
Collapse
|
46
|
Modulatory Effect of Probiotics on Proinflammatory Cytokine Levels in Acrylamide-Treated Rats. Biochem Res Int 2021; 2021:2268770. [PMID: 34336287 PMCID: PMC8318771 DOI: 10.1155/2021/2268770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/15/2021] [Indexed: 01/02/2023] Open
Abstract
The aims of this study are to investigate the effect of acrylamide on the level of proinflammatory cytokines in the blood of acrylamide-treated rats and to find the modulatory impact of probiotics on those cytokines. Thirty-two rats were divided into four groups: rats which received 20 mg acrylamide, acrylamide with 20 mg probiotics, acrylamide with 200 mg probiotics, and standard water and food (groups 1-4, respectively). The serum levels of cytokines were measured on days 0, 15, and 30. Group 1 showed an increased serum level of IL-1β, IL-6, and TNF-α after 15 days, and they decreased in day 30. Serum IL-6 level was significantly decreased on days 15 and 30 in rats in group 2 compared to the controls. TNF-α and IL-1β levels were not statistically different after treated with probiotics. The exposure of rats to acrylamide led to increased systemic inflammation as evidenced by higher levels of proinflammatory cytokines, and probiotics can modulate this inflammation.
Collapse
|
47
|
Schächtle MA, Rosshart SP. The Microbiota-Gut-Brain Axis in Health and Disease and Its Implications for Translational Research. Front Cell Neurosci 2021; 15:698172. [PMID: 34335190 PMCID: PMC8321234 DOI: 10.3389/fncel.2021.698172] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past decades, microbiome research has evolved rapidly and became a hot topic in basic, preclinical and clinical research, for the pharmaceutical industry and for the general public. With the help of new high-throughput sequencing technologies tremendous progress has been made in the characterization of host-microbiota interactions identifying the microbiome as a major factor shaping mammalian physiology. This development also led to the discovery of the gut-brain axis as the crucial connection between gut microbiota and the nervous system. Consequently, a rapidly growing body of evidence emerged suggesting that the commensal gut microbiota plays a vital role in brain physiology. Moreover, it became evident that the communication along this microbiota-gut-brain axis is bidirectional and primarily mediated by biologically active microbial molecules and metabolites. Further, intestinal dysbiosis leading to changes in the bidirectional relationship between gut microbiota and the nervous system was linked to the pathogenesis of several psychiatric and neurological disorders. Here, we discuss the impact of the gut microbiota on the brain in health and disease, specifically as regards to neuronal homeostasis, development and normal aging as well as their role in neurological diseases of the highest socioeconomic burden such as Alzheimer's disease and stroke. Subsequently, we utilize Alzheimer's disease and stroke to examine the translational research value of current mouse models in the spotlight of microbiome research. Finally, we propose future strategies on how we could conduct translational microbiome research in the field of neuroscience that may lead to the identification of novel treatments for human diseases.
Collapse
Affiliation(s)
- Melanie Anna Schächtle
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Patrick Rosshart
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
48
|
Impact of Gut Microbiome Manipulation in 5xFAD Mice on Alzheimer's Disease-Like Pathology. Microorganisms 2021; 9:microorganisms9040815. [PMID: 33924322 PMCID: PMC8069338 DOI: 10.3390/microorganisms9040815] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
The gut brain axis seems to modulate various psychiatric and neurological disorders such as Alzheimer's disease (AD). Growing evidence has led to the assumption that the gut microbiome might contribute to or even present the nucleus of origin for these diseases. In this regard, modifiers of the microbial composition might provide attractive new therapeutics. Aim of our study was to elucidate the effect of a rigorously changed gut microbiome on pathological hallmarks of AD. 5xFAD model mice were treated by antibiotics or probiotics (L. acidophilus and L. rhamnosus) for 14 weeks. Pathogenesis was measured by nest building capability and plaque deposition. The gut microbiome was affected as expected: antibiotics significantly reduced viable commensals, while probiotics transiently increased Lactobacillaceae. Nesting score, however, was only improved in antibiotics-treated mice. These animals additionally displayed reduced plaque load in the hippocampus. While various physiological parameters were not affected, blood sugar was reduced and serum glucagon level significantly elevated in the antibiotics-treated animals together with a reduction in the receptor for advanced glycation end products RAGE-the inward transporter of Aβ peptides of the brain. Assumedly, the beneficial effect of the antibiotics was based on their anti-diabetic potential.
Collapse
|
49
|
The Microbiota-Gut-Brain Axis and Alzheimer's Disease: Neuroinflammation Is to Blame? Nutrients 2020; 13:nu13010037. [PMID: 33374235 PMCID: PMC7824474 DOI: 10.3390/nu13010037] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
For years, it has been reported that Alzheimer’s disease (AD) is the most common cause of dementia. Various external and internal factors may contribute to the early onset of AD. This review highlights a contribution of the disturbances in the microbiota–gut–brain (MGB) axis to the development of AD. Alteration in the gut microbiota composition is determined by increase in the permeability of the gut barrier and immune cell activation, leading to impairment in the blood–brain barrier function that promotes neuroinflammation, neuronal loss, neural injury, and ultimately AD. Numerous studies have shown that the gut microbiota plays a crucial role in brain function and changes in the behavior of individuals and the formation of bacterial amyloids. Lipopolysaccharides and bacterial amyloids synthesized by the gut microbiota can trigger the immune cells residing in the brain and can activate the immune response leading to neuroinflammation. Growing experimental and clinical data indicate the prominent role of gut dysbiosis and microbiota–host interactions in AD. Modulation of the gut microbiota with antibiotics or probiotic supplementation may create new preventive and therapeutic options in AD. Accumulating evidences affirm that research on MGB involvement in AD is necessary for new treatment targets and therapies for AD.
Collapse
|
50
|
Badran M, Mashaqi S, Gozal D. The gut microbiome as a target for adjuvant therapy in obstructive sleep apnea. Expert Opin Ther Targets 2020; 24:1263-1282. [PMID: 33180654 PMCID: PMC9394230 DOI: 10.1080/14728222.2020.1841749] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Gut dysbiosis is assumed to play a role in obstructive sleep apnea (OSA)-associated morbidities. Pre- and probiotics, short chain fatty acids (SCFA) and fecal matter transplantation (FMT) may offer potential as novel therapeutic strategies that target this gut dysbiosis. As more mechanisms of OSA-induced dysbiosis are being elucidated, these novel approaches are being tested in preclinical and clinical development. Areas covered: We examined the evidence linking OSA to gut dysbiosis and discuss the effects of pre- and probiotics on associated cardiometabolic, neurobehavioral and gastrointestinal disorders. The therapeutic potential of SCFA and FMT are also discussed. We reviewed the National Center for Biotechnology Information database, including PubMed and PubMed Central between 2000 - 2020. Expert opinion: To date, there are no clinical trials and only limited evidence from animal studies describing the beneficial effects of pre- and probiotic supplementation on OSA-mediated dysbiosis. Thus, more work is necessary to assess whether prebiotics, probiotics and SCFA are promising future novel strategies for targeting OSA-mediated dysbiosis.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine , Columbia, MO, USA
| | - Saif Mashaqi
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Arizona School of Medicine , Tucson, AZ, USA
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine , Columbia, MO, USA
| |
Collapse
|