1
|
Liu Y, Li J, Parakhonskiy BV, Hoogenboom R, Skirtach A, De Neve S. Labelling of micro- and nanoplastics for environmental studies: state-of-the-art and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132785. [PMID: 37856963 DOI: 10.1016/j.jhazmat.2023.132785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Studying microplastics and nanoplastics (MNP) in environmental matrices is extremely challenging, and recent developments in labelling techniques may hold much promise to further our knowledge in this field. Here, we reviewed MNP labelling techniques and applications to provide the first systematic and in-depth insight into MNP labelling. We classified all labelling techniques for MNP into four main types (fluorescent, metal, stable isotope and radioisotope) and discussed per type the synthesis methods, detection methods, influencing factors, and the current and future applications and challenges. Direct labelling of environmental MNP with fluorescent dyes and metals enables simple visualisation and selective detection of MNP to improve detection efficiency. However, it is still an open question how to avoid co-labelling of non-plastic (i.e. non-target, matrix) materials. Labelling of MNP that are intentionally added in the environment may allow semi-automatic detection of MNP particles with high accuracy and sensitivity during studies on e.g. transport and degradation. The detection limit of labelled MNP largely depends on particle size and the type of matrix. Fluorescent labelling allows efficient detection of microplastics, whereas metal labelling is preferred for nanoplastics research due to a potentially higher sensitivity. A major challenge for fluorescent and metal labelling is to develop techniques that do not alter the inherent MNP properties or only do so minimally, in particular the surface properties. Stable and radioactive isotope labelling (13C and 14C, but also 15N, 2H) of the polymer itself allows to preserve inherent MNP properties, but have been largely ignored. Overall, labelling of MNP holds great promise for advancing our fundamental understanding of the behaviour of plastics, notably the smallest fractions, in the environment.
Collapse
Affiliation(s)
- Yin Liu
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Jie Li
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent Belgium
| | - Bogdan V Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent Belgium
| | - Andre Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent Belgium
| | - Stefaan De Neve
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Bentivoglio V, Varani M, Lauri C, Ranieri D, Signore A. Methods for Radiolabelling Nanoparticles: PET Use (Part 2). Biomolecules 2022; 12:1517. [PMID: 36291726 PMCID: PMC9599877 DOI: 10.3390/biom12101517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 08/27/2023] Open
Abstract
The use of radiolabelled nanoparticles (NPs) is a promising nuclear medicine tool for diagnostic and therapeutic purposes. Thanks to the heterogeneity of their material (organic or inorganic) and their unique physical and chemical characteristics, they are highly versatile for their use in several medical applications. In particular, they have shown interesting results as radiolabelled probes for positron emission tomography (PET) imaging. The high variability of NP types and the possibility to use several isotopes in the radiolabelling process implies different radiolabelling methods that have been applied over the previous years. In this review, we compare and summarize the different methods for NP radiolabelling with the most frequently used PET isotopes.
Collapse
Affiliation(s)
- Valeria Bentivoglio
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Michela Varani
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Danilo Ranieri
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| |
Collapse
|
3
|
Agrohia DK, Wu P, Huynh U, Thayumanavan S, Vachet RW. Multiplexed Analysis of the Cellular Uptake of Polymeric Nanocarriers. Anal Chem 2022; 94:7901-7908. [PMID: 35612963 DOI: 10.1021/acs.analchem.2c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polymeric nanocarriers (PNCs) are versatile drug delivery vehicles capable of delivering a variety of therapeutics. Quantitatively monitoring their uptake in biological systems is essential for realizing their potential as next-generation delivery systems; however, existing quantification strategies are limited due to the challenges of detecting polymeric materials in complex biological samples. Here, we describe a metal-coded mass tagging approach that enables the multiplexed quantification of the PNC uptake in cells using mass spectrometry (MS). In this approach, PNCs are conjugated with ligands that bind strongly to lanthanide ions, allowing the PNCs to be sensitively quantitated by inductively coupled plasma-MS. The metal-coded tags have little effect on the properties or toxicity of the PNCs, making them biocompatible. We demonstrate that the conjugation of different metals to the PNCs enables the multiplexed analysis of cellular uptake of multiple distinct PNCs at the same time. This multiplexing capability should improve the design and optimization of PNCs by minimizing biological variability and reducing analysis time, effort, and cost.
Collapse
Affiliation(s)
- Dheeraj K Agrohia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Peidong Wu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Uyen Huynh
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.,Center for Bioactive Delivery─Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.,Center for Bioactive Delivery─Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Milošević N, Rütter M, David A. Endothelial Cell Adhesion Molecules- (un)Attainable Targets for Nanomedicines. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:846065. [PMID: 35463298 PMCID: PMC9021548 DOI: 10.3389/fmedt.2022.846065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/15/2022] [Indexed: 01/21/2023] Open
Abstract
Endothelial cell adhesion molecules have long been proposed as promising targets in many pathologies. Despite promising preclinical data, several efforts to develop small molecule inhibitors or monoclonal antibodies (mAbs) against cell adhesion molecules (CAMs) ended in clinical-stage failure. In parallel, many well-validated approaches for targeting CAMs with nanomedicine (NM) were reported over the years. A wide range of potential applications has been demonstrated in various preclinical studies, from drug delivery to the tumor vasculature, imaging of the inflamed endothelium, or blocking immune cells infiltration. However, no NM drug candidate emerged further into clinical development. In this review, we will summarize the most advanced examples of CAM-targeted NMs and juxtapose them with known traditional drugs against CAMs, in an attempt to identify important translational hurdles. Most importantly, we will summarize the proposed strategies to enhance endothelial CAM targeting by NMs, in an attempt to offer a catalog of tools for further development.
Collapse
|
5
|
Khursheed R, Paudel KR, Gulati M, Vishwas S, Jha NK, Hansbro PM, Oliver BG, Dua K, Singh SK. Expanding the arsenal against pulmonary diseases using surface-functionalized polymeric micelles: breakthroughs and bottlenecks. Nanomedicine (Lond) 2022; 17:881-911. [PMID: 35332783 DOI: 10.2217/nnm-2021-0451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pulmonary diseases such as lung cancer, asthma and tuberculosis have remained one of the common challenges globally. Polymeric micelles (PMs) have emerged as an effective technique for achieving targeted drug delivery for a local as well as a systemic effect. These PMs encapsulate and protect hydrophobic drugs, increase pulmonary targeting, decrease side effects and enhance drug efficacy through the inhalation route. In the current review, emphasis has been placed on the different barriers encountered by the drugs given via the pulmonary route and the mechanism of PMs in achieving drug targeting. The applications of PMs in different pulmonary diseases have also been discussed in detail.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Keshav R Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, 2007, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
6
|
Ariztia J, Solmont K, Moïse NP, Specklin S, Heck MP, Lamandé-Langle S, Kuhnast B. PET/Fluorescence Imaging: An Overview of the Chemical Strategies to Build Dual Imaging Tools. Bioconjug Chem 2022; 33:24-52. [PMID: 34994545 DOI: 10.1021/acs.bioconjchem.1c00503] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging is a biomedical research discipline that has quickly emerged to afford the observation, characterization, monitoring, and quantification of biomarkers and biological processes in living organism. It covers a large array of imaging techniques, each of which provides anatomical, functional, or metabolic information. Multimodality, as the combination of two or more of these techniques, has proven to be one of the best options to boost their individual properties, hence offering unprecedented tools for human health. In this review, we will focus on the combination of positron emission tomography and fluorescence imaging from the specific perspective of the chemical synthesis of dual imaging agents. Based on a detailed analysis of the literature, this review aims at giving a comprehensive overview of the chemical strategies implemented to build adequate imaging tools considering radiohalogens and radiometals as positron emitters, fluorescent dyes mostly emitting in the NIR window and all types of targeting vectors.
Collapse
Affiliation(s)
- Julen Ariztia
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Kathleen Solmont
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | | | - Simon Specklin
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Marie Pierre Heck
- Université Paris-Saclay, INRAE, Département Médicaments et Technologies pour la santé (DMTS), SCBM, 91191, Gif-sur-Yvette cedex, France
| | | | - Bertrand Kuhnast
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| |
Collapse
|
7
|
Li XG, Velikyan I, Viitanen R, Roivainen A. PET radiopharmaceuticals for imaging inflammatory diseases. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
8
|
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021; 92:241-269. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Positron-emission-tomography (PET) has become an indispensable diagnostic tool in modern nuclear medicine. Its outstanding molecular imaging features allow repetitive studies on one individual and with high sensitivity, though no interference. Rather few positron-emitters with near favourable physical properties, i.e. carbon-11 and fluorine-18, furnished most studies in the beginning, preferably if covalently bound as isotopic label of small molecules. With the advancement of PET-devices the scope of in vivo research in life sciences and especially that of medical applications expanded, and other than "standard" PET-nuclides received increasing significance, like the radiometals copper-64 and gallium-68. Especially during the last decades, positron-emitters of other chemical elements have gotten into the focus of interest, concomitant with the technical advancements in imaging and radionuclide production. With known nuclear imaging properties and main production methods of emerging positron-emitters their usefulness for medical application is promising and even proven for several ones already. Unfortunate decay properties could be corrected for, and β+-emitters, especially with a longer half-life, provided new possibilities for application where slower processes are of importance. Further on, (bio)chemical features of positron-emitters of other elements, among there many metals, not only expanded the field of classical clinical investigations, but also opened up new fields of application. Appropriately labelled peptides, proteins and nanoparticles lend itself as newer probes for PET-imaging, e.g. in theragnostic or PET/MR hybrid imaging. Furthermore, the potential of non-destructive in-vivo imaging with positron-emission-tomography directs the view on further areas of life sciences. Thus, exploiting the excellent methodology for basic research on molecular biochemical functions and processes is increasingly encouraged as well in areas outside of health, such as plant and environmental sciences.
Collapse
Affiliation(s)
- Heinz H Coenen
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
9
|
Martins C, Chauhan VM, Araújo M, Abouselo A, Barrias CC, Aylott JW, Sarmento B. Advanced polymeric nanotechnology to augment therapeutic delivery and disease diagnosis. Nanomedicine (Lond) 2020; 15:2287-2309. [PMID: 32945230 DOI: 10.2217/nnm-2020-0145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Therapeutic and diagnostic payloads are usually associated with properties that compromise their efficacy, such as poor aqueous solubility, short half-life, low bioavailability, nonspecific accumulation and diverse side effects. Nanotechnological solutions have emerged to circumvent some of these drawbacks, augmenting therapeutic and/or diagnostic outcomes. Nanotechnology has benefited from the rise in polymer science research for the development of novel nanosystems for therapeutic and diagnostic purposes. Polymers are a widely used class of biomaterials, with a considerable number of regulatory approvals for application in clinics. In addition to their versatility in production and functionalization, several synthetic and natural polymers demonstrate biocompatible properties that dictate their successful biological performance. This article highlights the physicochemical characteristics of a variety of natural and synthetic biocompatible polymers, as well as their role in the manufacture of nanotechnology-based systems, state-of-art applications in disease treatment and diagnosis, and current challenges in finding a way to clinics.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Ruade Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Veeren M Chauhan
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
| | - Amjad Abouselo
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
| | - Jonathan W Aylott
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| |
Collapse
|
10
|
Li R, Ng TS, Garlin MA, Weissleder R, Miller MA. Understanding the in vivo Fate of Advanced Materials by Imaging. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910369. [PMID: 38545084 PMCID: PMC10972611 DOI: 10.1002/adfm.201910369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 11/13/2024]
Abstract
Engineered materials are ubiquitous in biomedical applications ranging from systemic drug delivery systems to orthopedic implants, and their actions unfold across multiple time- and length-scales. The efficacy and safety of biologics, nanomaterials, and macroscopic implants are all dictated by the same general principles of pharmacology as apply to small molecule drugs, comprising how the body affects materials (pharmacokinetics, PK) and conversely how materials affect the body (pharmacodynamics, PD). Imaging technologies play an increasingly insightful role in monitoring both of these processes, often simultaneously: translational macroscopic imaging modalities such as MRI and PET/CT offer whole-body quantitation of biodistribution and structural or molecular response, while ex vivo approaches and optical imaging via in vivo (intravital) microscopy reveal behaviors at subcellular resolution. In this review, the authors survey developments in imaging the in situ behavior of systemically and locally administered materials, with a particular focus on using microscopy to understand transport, target engagement, and downstream host responses at a single-cell level. The themes of microenvironmental influence, controlled drug release, on-target molecular action, and immune response, especially as mediated by macrophages and other myeloid cells are examined. Finally, the future directions of how new imaging technologies may propel efficient clinical translation of next-generation therapeutics and medical devices are proposed.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Michelle A. Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Department of Systems Biology, Harvard Medical School
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
11
|
Ju Y, Guo H, Edman M, Hamm-Alvarez SF. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv Drug Deliv Rev 2020; 157:118-141. [PMID: 32758615 PMCID: PMC7853512 DOI: 10.1016/j.addr.2020.07.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Multidisciplinary research efforts in the field of drug delivery have led to the development of a variety of drug delivery systems (DDS) designed for site-specific delivery of diagnostic and therapeutic agents. Since efficient uptake of drug carriers into target cells is central to effective drug delivery, a comprehensive understanding of the biological pathways for cellular internalization of DDS can facilitate the development of DDS capable of precise tissue targeting and enhanced therapeutic outcomes. Diverse methods have been applied to study the internalization mechanisms responsible for endocytotic uptake of extracellular materials, which are also the principal pathways exploited by many DDS. Chemical inhibitors remain the most commonly used method to explore endocytotic internalization mechanisms, although genetic methods are increasingly accessible and may constitute more specific approaches. This review highlights the molecular basis of internalization pathways most relevant to internalization of DDS, and the principal methods used to study each route. This review also showcases examples of DDS that are internalized by each route, and reviews the general effects of biophysical properties of DDS on the internalization efficiency. Finally, options for intracellular trafficking and targeting of internalized DDS are briefly reviewed, representing an additional opportunity for multi-level targeting to achieve further specificity and therapeutic efficacy.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Maria Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA.
| |
Collapse
|
12
|
Hsueh PY, Ju Y, Vega A, Edman MC, MacKay JA, Hamm-Alvarez SF. A Multivalent ICAM-1 Binding Nanoparticle which Inhibits ICAM-1 and LFA-1 Interaction Represents a New Tool for the Investigation of Autoimmune-Mediated Dry Eye. Int J Mol Sci 2020; 21:ijms21082758. [PMID: 32326657 PMCID: PMC7216292 DOI: 10.3390/ijms21082758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/31/2022] Open
Abstract
The autoimmune disorder, Sjögren’s syndrome (SS), is characterized by lymphocytic infiltration and loss of function of exocrine glands such as the lacrimal gland (LG) and salivary gland. SS-associated changes in the LG are associated with the development of autoimmune-mediated dry eye disease. We have previously reported the accumulation of intercellular adhesion molecule 1 (ICAM-1) in the LG of Non-Obese Diabetic (NOD) mice, a murine model of autoimmune-mediated dry eye in SS, in both LG acinar cells and infiltrating lymphocytes. ICAM-1 initiates T-cell activation and can trigger T-cell migration through binding to lymphocyte function-associated 1 antigen (LFA). To modulate this interaction, this study introduces a new tool, a multivalent biopolymeric nanoparticle assembled from a diblock elastin-like polypeptide (ELP) using the S48I48 (SI) ELP scaffold fused with a mouse ICAM-1 targeting peptide to form IBP-SI. IBP-SI forms a multivalent, monodisperse nanoparticle with a radius of 21.9 nm. Unlike the parent SI, IBP-SI binds mouse ICAM-1 and is internalized by endocytosis into transfected HeLa cells before it accumulates in lysosomes. In vitro assays measuring lymphocyte adhesion to Tumor Necrosis Factor TNF-α-treated bEnd.3 cells, which express high levels of ICAM-1, show that adhesion is inhibited by IBP-SI but not by SI, with IC50 values of 62.7 μM and 81.2 μM, respectively, in two different assay formats. IBP-SI, but not SI, also blocked T-cell proliferation in a mixed lymphocyte reaction by 74% relative to proliferation in an untreated mixed cell reaction. These data suggest that a biopolymeric nanoparticle with affinity for ICAM-1 can disrupt ICAM-1 and LFA interactions in vitro and may have further utility as an in vivo tool or potential therapeutic.
Collapse
Affiliation(s)
- Pang-Yu Hsueh
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; (P.-Y.H.); (Y.J.); (A.V.)
| | - Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; (P.-Y.H.); (Y.J.); (A.V.)
| | - Adrianna Vega
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; (P.-Y.H.); (Y.J.); (A.V.)
| | - Maria C. Edman
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA;
| | - J. Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; (P.-Y.H.); (Y.J.); (A.V.)
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: (J.A.M.); (S.F.H.-A.)
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; (P.-Y.H.); (Y.J.); (A.V.)
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA;
- Correspondence: (J.A.M.); (S.F.H.-A.)
| |
Collapse
|
13
|
Application of molecular imaging technology in tumor immunotherapy. Cell Immunol 2020; 348:104039. [DOI: 10.1016/j.cellimm.2020.104039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/21/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
|
14
|
Pérez-Medina C, Teunissen AJ, Kluza E, Mulder WJ, van der Meel R. Nuclear imaging approaches facilitating nanomedicine translation. Adv Drug Deliv Rev 2020; 154-155:123-141. [PMID: 32721459 DOI: 10.1016/j.addr.2020.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Nanomedicine approaches can effectively modulate the biodistribution and bioavailability of therapeutic agents, improving their therapeutic index. However, despite the ever-increasing amount of literature reporting on preclinical nanomedicine, the number of nanotherapeutics receiving FDA approval remains relatively low. Several barriers exist that hamper the effective preclinical evaluation and clinical translation of nanotherapeutics. Key barriers include insufficient understanding of nanomedicines' in vivo behavior, inadequate translation from murine models to larger animals, and a lack of patient stratification strategies. Integrating quantitative non-invasive imaging techniques in nanomedicine development offers attractive possibilities to address these issues. Among the available imaging techniques, nuclear imaging by positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are highly attractive in this context owing to their quantitative nature and uncontested sensitivity. In basic and translational research, nuclear imaging techniques can provide critical quantitative information about pharmacokinetic parameters, biodistribution profiles or target site accumulation of nanocarriers and their associated payload. During clinical evaluation, nuclear imaging can be used to select patients amenable to nanomedicine treatment. Here, we review how nuclear imaging-based approaches are increasingly being integrated into nanomedicine development and discuss future developments that will accelerate their clinical translation.
Collapse
|
15
|
Ge J, Zhang Q, Zeng J, Gu Z, Gao M. Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials 2019; 228:119553. [PMID: 31689672 DOI: 10.1016/j.biomaterials.2019.119553] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Abstract
Nuclear medicine imaging has been developed as a powerful diagnostic approach for cancers by detecting gamma rays directly or indirectly from radionuclides to construct images with beneficial characteristics of high sensitivity, infinite penetration depth and quantitative capability. Current nuclear medicine imaging modalities mainly include single-photon emission computed tomography (SPECT) and positron emission tomography (PET) that require administration of radioactive tracers. In recent years, a vast number of radioactive tracers have been designed and constructed to improve nuclear medicine imaging performance toward early and accurate diagnosis of cancers. This review will discuss recent progress of nuclear medicine imaging tracers and associated biomedical imaging applications. Radiolabeling nanomaterials for rational development of tracers will be comprehensively reviewed with highlights on radiolabeling approaches (surface coupling, inner incorporation and interface engineering), providing profound understanding on radiolabeling chemistry and the associated imaging functionalities. The applications of radiolabeled nanomaterials in nuclear medicine imaging-related multimodality imaging will also be summarized with typical paradigms described. Finally, key challenges and new directions for future research will be discussed to guide further advancement and practical use of radiolabeled nanomaterials for imaging of cancers.
Collapse
Affiliation(s)
- Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Qianyi Zhang
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China; Institute of Chemistry, Chinese Academy of Sciences/School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
16
|
Glassman PM, Muzykantov VR. Pharmacokinetic and Pharmacodynamic Properties of Drug Delivery Systems. J Pharmacol Exp Ther 2019; 370:570-580. [PMID: 30837281 PMCID: PMC6806371 DOI: 10.1124/jpet.119.257113] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Abstract
The use of drug delivery systems (DDS) is an attractive approach to facilitate uptake of therapeutic agents at the desired site of action, particularly when free drug has poor pharmacokinetics/biodistribution (PK/BD) or significant off-site toxicities. Successful translation of DDS into the clinic is dependent on a thorough understanding of the in vivo behavior of the carrier, which has, for the most part, been an elusive goal. This is, at least in part, due to significant differences in the mechanisms controlling pharmacokinetics for classic drugs and DDSs. In this review, we summarize the key physiologic mechanisms controlling the in vivo behavior of DDS, compare and contrast this with classic drugs, and describe engineering strategies designed to improve DDS PK/BD. In addition, we describe quantitative approaches that could be useful for describing PK/BD of DDS, as well as critical steps between tissue uptake and pharmacologic effect.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Ju Y, Guo H, Yarber F, Edman MC, Peddi S, Janga SR, MacKay JA, Hamm-Alvarez SF. Molecular Targeting of Immunosuppressants Using a Bifunctional Elastin-Like Polypeptide. Bioconjug Chem 2019; 30:2358-2372. [PMID: 31408605 DOI: 10.1021/acs.bioconjchem.9b00462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Elastin-Like Polypeptides (ELP) are environmentally responsive protein polymers which are easy to engineer and biocompatible, making them ideal candidates as drug carriers. Our team has recently utilized ELPs fused to FKBP12 to carry Rapamycin (Rapa), a potent immunosuppressant. Through high affinity binding to Rapa, FKBP carriers can yield beneficial therapeutic effects and reduce the off-site toxicity of Rapa. Since ICAM-1 is significantly elevated at sites of inflammation in diverse diseases, we hypothesized that a molecularly targeted ELP carrier capable of binding ICAM-1 might have advantageous properties. Here we report on the design, characterization, pharmacokinetics, and biodistribution of a new ICAM-1-targeted ELP Rapa carrier (IBPAF) and its preliminary characterization in a murine model exhibiting elevated ICAM-1. Lacrimal glands (LG) of male NOD mice, a disease model recapitulating the autoimmune dacryoadenitis seen in Sjögren's Syndrome patients, were analyzed to confirm that ICAM-1 was significantly elevated in the LG relative to control male BALB/c mice (3.5-fold, p < 0.05, n = 6). In vitro studies showed that IBPAF had significantly higher binding to TNF-α-stimulated bEnd.3 cells which overexpress surface ICAM-1, relative to nontargeted control ELP (AF)(4.0-fold, p < 0.05). A pharmacokinetics study in male NOD mice showed no significant differences between AF and IBPAF for plasma half-life, clearance, and volume of distribution. However, both constructs maintained a higher level of Rapa in systemic circulation compared to free Rapa. Interestingly, in the male NOD mouse, the accumulation of IBPAF was significantly higher in homogenized LG extracts compared to AF at 2 h (8.6 ± 6.6% versus 1.3 ± 1.3%, respectively, n = 5, p < 0.05). This accumulation was transient with no differences detected at 8 or 24 h. This study describes the first ICAM-1 targeted protein-polymer carrier for Rapa that specifically binds to ICAM-1 in vitro and accumulates in ICAM-1 overexpressing tissue in vivo, which may be useful for molecular targeting in diverse inflammatory diseases where ICAM-1 is elevated.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States.,Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Frances Yarber
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Maria C Edman
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Srikanth Reddy Janga
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States.,Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States.,Department of Biomedical Engineering, Viterbi School of Engineering , University of Southern California , Los Angeles , California 90089 , United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States.,Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
18
|
Mravec B, Horvathova L, Cernackova A. Hypothalamic Inflammation at a Crossroad of Somatic Diseases. Cell Mol Neurobiol 2019; 39:11-29. [PMID: 30377908 DOI: 10.1007/s10571-018-0631-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 02/08/2023]
Abstract
Various hypothalamic nuclei function as central parts of regulators that maintain homeostasis of the organism. Recently, findings have shown that inflammation in the hypothalamus may significantly affect activity of these homeostats and consequently participate in the development of various somatic diseases such as obesity, diabetes, hypertension, and cachexia. In addition, hypothalamic inflammation may also affect aging and lifespan. Identification of the causes and mechanisms involved in the development of hypothalamic inflammation creates not only a basis for better understanding of the etiopathogenesis of somatic diseases, but for the development of new therapeutic approaches for their treatment, as well.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 813 72, Bratislava, Slovakia.
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Lubica Horvathova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alena Cernackova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 813 72, Bratislava, Slovakia
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
19
|
Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. Eur J Med Chem 2018; 157:1406-1425. [DOI: 10.1016/j.ejmech.2018.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
|
20
|
Khoshnejad M, Greineder CF, Pulsipher KW, Villa CH, Altun B, Pan DC, Tsourkas A, Dmochowski IJ, Muzykantov VR. Ferritin Nanocages with Biologically Orthogonal Conjugation for Vascular Targeting and Imaging. Bioconjug Chem 2018; 29:1209-1218. [PMID: 29429330 DOI: 10.1021/acs.bioconjchem.8b00004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Genetic incorporation of biologically orthogonal functional groups into macromolecules has the potential to yield efficient, controlled, reproducible, site-specific conjugation of affinity ligands, contrast agents, or therapeutic cargoes. Here, we applied this approach to ferritin, a ubiquitous iron-storage protein that self-assembles into multimeric nanocages with remarkable stability, size uniformity (12 nm), and endogenous capacity for loading and transport of a variety of inorganic and organic cargoes. The unnatural amino acid, 4-azidophenylalanine (4-AzF), was incorporated at different sites in the human ferritin light chain (hFTL) to allow site-specific conjugation of alkyne-containing small molecules or affinity ligands to the exterior surface of the nanocage. The optimal positioning of the 4-AzF residue was evaluated by screening a library of variants for the efficiency of copper-free click conjugation. One of the engineered ferritins, hFTL-5X, was found to accommodate ∼14 small-molecule fluorophores (AlexaFluor 488) and 3-4 IgG molecules per nanocage. Intravascular injection in mice of radiolabeled hFTL-5X carrying antibody to cell adhesion molecule ICAM-1, but not control IgG, enabled specific targeting to the lung due to high basal expression of ICAM-1 (43.3 ± 6.99 vs 3.48 ± 0.14%ID/g for Ab vs IgG). Treatment of mice with endotoxin known to stimulate inflammatory ICAM-1 overexpression resulted in 2-fold enhancement of pulmonary targeting (84.4 ± 12.89 vs 43.3 ± 6.99%ID/g). Likewise, injection of fluorescent, ICAM-targeted hFTL-5X nanocages revealed the effect of endotoxin by enhancement of near-infrared signal, indicating potential utility of this approach for both vascular targeting and imaging.
Collapse
|
21
|
Mikaeili A, Erfani M, Shafiei M, Kobarfard F, Abdi K, Sabzevari O. Development of a 99mTc-Labeled CXCR4 Antagonist Derivative as a New Tumor Radiotracer. Cancer Biother Radiopharm 2018; 33:17-24. [DOI: 10.1089/cbr.2017.2226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Azadeh Mikaeili
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Mohammad Shafiei
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Farzad Kobarfard
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrou Abdi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Greineder CF, Villa CH, Walsh LR, Kiseleva RY, Hood ED, Khoshnejad M, Warden-Rothman R, Tsourkas A, Muzykantov VR. Site-Specific Modification of Single-Chain Antibody Fragments for Bioconjugation and Vascular Immunotargeting. Bioconjug Chem 2017; 29:56-66. [PMID: 29200285 DOI: 10.1021/acs.bioconjchem.7b00592] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The conjugation of antibodies to drugs and drug carriers improves delivery to target tissues. Widespread implementation and effective translation of this pharmacologic strategy awaits the development of affinity ligands capable of a defined degree of modification and highly efficient bioconjugation without loss of affinity. To date, such ligands are lacking for the targeting of therapeutics to vascular endothelial cells. To enable site-specific, click-chemistry conjugation to therapeutic cargo, we used the bacterial transpeptidase, sortase A, to attach short azidolysine containing peptides to three endothelial-specific single chain antibody fragments (scFv). While direct fusion of a recognition motif (sortag) to the scFv C-terminus generally resulted in low levels of sortase-mediated modification, improved reaction efficiency was observed for one protein, in which two amino acids had been introduced during cloning. This prompted insertion of a short, semi-rigid linker between scFv and sortag. The linker significantly enhanced modification of all three proteins, to the extent that unmodified scFv could no longer be detected. As proof of principle, purified, azide-modified scFv was conjugated to the antioxidant enzyme, catalase, resulting in robust endothelial targeting of functional cargo in vitro and in vivo.
Collapse
Affiliation(s)
- Colin F Greineder
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Carlos H Villa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Landis R Walsh
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Raisa Y Kiseleva
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Elizabeth D Hood
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Makan Khoshnejad
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Robert Warden-Rothman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Andrew Tsourkas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
23
|
Solomon M, Muro S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 2017; 118:109-134. [PMID: 28502768 PMCID: PMC5828774 DOI: 10.1016/j.addr.2017.05.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
Lysosomes and lysosomal enzymes play a central role in numerous cellular processes, including cellular nutrition, recycling, signaling, defense, and cell death. Genetic deficiencies of lysosomal components, most commonly enzymes, are known as "lysosomal storage disorders" or "lysosomal diseases" (LDs) and lead to lysosomal dysfunction. LDs broadly affect peripheral organs and the central nervous system (CNS), debilitating patients and frequently causing fatality. Among other approaches, enzyme replacement therapy (ERT) has advanced to the clinic and represents a beneficial strategy for 8 out of the 50-60 known LDs. However, despite its value, current ERT suffers from several shortcomings, including various side effects, development of "resistance", and suboptimal delivery throughout the body, particularly to the CNS, lowering the therapeutic outcome and precluding the use of this strategy for a majority of LDs. This review offers an overview of the biomedical causes of LDs, their socio-medical relevance, treatment modalities and caveats, experimental alternatives, and future treatment perspectives.
Collapse
Affiliation(s)
- Melani Solomon
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University Maryland, College Park, MD 20742, USA.
| |
Collapse
|
24
|
Holland JP, Ferdani R, Anderson CJ, Lewis JS. Copper-64 Radiopharmaceuticals for Oncologic Imaging. PET Clin 2016; 4:49-67. [PMID: 27156895 DOI: 10.1016/j.cpet.2009.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The positron emitting radionuclide (64)Cu has a radioactive half-life of 12.7 hours. The decay characteristics of (64)Cu allow for PET images that are comparable in quality to those obtained using (18)F. Given the longer radioactive half-life of (64)Cu compared with (18)F and the versatility of copper chemistry, copper is an attractive alternative to the shorter-lived nuclides for PET imaging of peptides, antibodies, and small molecules that may require longer circulation times. This article discusses a number of copper radiopharmaceuticals, such as Cu-ATSM, that have been translated to the clinic and new developments in copper-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Jason P Holland
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Riccardo Ferdani
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, Campus Box 8225, St. Louis, MO 63110, USA
| | - Carolyn J Anderson
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, Campus Box 8225, St. Louis, MO 63110, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
25
|
Hervella P, Parra E, Needham D. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles: Liquid cored nanoparticles show better retention than a solid core formulation. Eur J Pharm Biopharm 2016; 102:64-76. [DOI: 10.1016/j.ejpb.2016.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/26/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
26
|
Vecchione R, Luciani G, Calcagno V, Jakhmola A, Silvestri B, Guarnieri D, Belli V, Costantini A, Netti PA. Multilayered silica-biopolymer nanocapsules with a hydrophobic core and a hydrophilic tunable shell thickness. NANOSCALE 2016; 8:8798-8809. [PMID: 27065306 DOI: 10.1039/c6nr01192f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days. Moreover, the outer silica shell was coated with polyethyleneglycol (PEG) in order to confer antifouling properties to the final nanocapsule. The outer silica layer combined its properties (it is an optimal bio-interface for bio-conjugations and for the embedding of hydrophilic drugs in the porous structure) with the capability to stabilize the oil core for the confinement of high payloads of lipophilic tracers (e.g., CdSe quantum dots, Nile Red) and drugs. In addition, polymer layers--besides conferring stability to the emulsion while building the silica shell--can be independently exploited if suitably functionalized, as demonstrated by conjugating chitosan with fluorescein isothiocyanate. Such numerous features in a single nanocarrier system make it very intriguing as a multifunctional platform for smart diagnosis and therapy.
Collapse
Affiliation(s)
- Raffaele Vecchione
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53 80125 Napoli, Italy. and Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| | - Giuseppina Luciani
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy and Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| | - Vincenzo Calcagno
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53 80125 Napoli, Italy. and Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| | - Anshuman Jakhmola
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53 80125 Napoli, Italy.
| | - Brigida Silvestri
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| | - Daniela Guarnieri
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53 80125 Napoli, Italy. and Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| | - Valentina Belli
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53 80125 Napoli, Italy. and Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| | - Aniello Costantini
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy and Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| | - Paolo A Netti
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53 80125 Napoli, Italy. and Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| |
Collapse
|
27
|
Tang C, Edelstein J, Mikitsh JL, Xiao E, Hemphill AH, Pagels R, Chacko AM, Prud'homme R. Biodistribution and fate of core-labeled 125I polymeric nanocarriers prepared by Flash NanoPrecipitation (FNP). J Mater Chem B 2016; 4:2428-2434. [PMID: 27073688 PMCID: PMC4826598 DOI: 10.1039/c5tb02172c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-invasive medical imaging techniques such as positron emission tomography (PET) imaging are powerful platforms to track the fate of radiolabeled materials for diagnostic or drug delivery applications. Polymer-based nanocarriers tagged with non-standard PET radionuclides with relatively long half-lives (e.g. 64Cu: t1/2 = 12.7 h, 76Br: t1/2 = 16.2h, 89Zr: t1/2 = 3.3 d, 124I: t1/2 = 4.2 d) may greatly expand applications of nanomedicines in molecular imaging and therapy. However, radiolabeling strategies that ensure stable in vivo association of the radiolabel with the nanocarrier remain a significant challenge. In this study, we covalently attach radioiodine to the core of pre-fabricated nanocarriers. First, we encapsulated polyvinyl phenol within a poly(ethylene glycol) coating using Flash NanoPrecipitation (FNP) to produce stable 75 nm and 120 nm nanocarriers. Following FNP, we radiolabeled the encapsulated polyvinyl phenol with 125I via electrophilic aromatic substitution in high radiochemical yields (> 90%). Biodistribution studies reveal low radioactivity in the thyroid, indicating minimal leaching of the radiolabel in vivo. Further, PEGylated [125I]PVPh nanocarriers exhibited relatively long circulation half-lives (t1/2 α = 2.9 h, t1/2 β = 34.9 h) and gradual reticuloendothelial clearance, with 31% of injected dose in blood retained at 24 h post-injection.
Collapse
Affiliation(s)
- Christina Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ United States; Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Jasmine Edelstein
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ United States; Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - John L Mikitsh
- Department of Radiology, Division of Nuclear Medicine and Clinical Molecular Imaging
| | - Edward Xiao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ United States; Department of Radiology, Division of Nuclear Medicine and Clinical Molecular Imaging
| | | | - Robert Pagels
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ United States
| | - Ann-Marie Chacko
- Department of Radiology, Division of Nuclear Medicine and Clinical Molecular Imaging; Department of Radiation Oncology
| | - Robert Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ United States
| |
Collapse
|
28
|
Schottelius M, Konrad M, Osl T, Poschenrieder A, Wester HJ. An optimized strategy for the mild and efficient solution phase iodination of tyrosine residues in bioactive peptides. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Anselmo AC, Kumar S, Gupta V, Pearce AM, Ragusa A, Muzykantov V, Mitragotri S. Exploiting shape, cellular-hitchhiking and antibodies to target nanoparticles to lung endothelium: Synergy between physical, chemical and biological approaches. Biomaterials 2015; 68:1-8. [PMID: 26241497 DOI: 10.1016/j.biomaterials.2015.07.043] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
Abstract
Delivery of nanoparticles to target specific tissues remains a challenge due to their rapid removal from circulation by the reticuloendothelial (RES) system. The majority of past research has addressed this issue via chemical modification of nanoparticles in the form of hydrophilic coatings which reduces adsorption of opsonins that trigger RES clearance. Recently, additional approaches have been developed which leverage the natural mechanisms our own circulatory cells use to avoid immune system clearance. One such method, called 'cellular-hitchhiking', accomplishes this by non-covalent attachment of nanoparticles to the surface of red blood cells. Concomitantly, approaches that make use of modified nanoparticle geometry, that is rod-shaped nanoparticles, have also been used to avoid immune system clearance and improve tissue targeting. Here, we systematically investigate three approaches and their combinations to improve lung targeting while avoiding RES clearance. Our results show that an approach that combines targeting antibodies (anti-ICAM-1), rod-shaped particles and cellular hitchhiking into one delivery system effectively lowered the accumulated concentration of nanoparticles in RES organs by over two-fold as compared to any other combination or single method, while simultaneously increasing the concentration of accumulated nanoparticles in the lungs from 1.2 to 8.9 fold. The strategy described here offers a novel means that combine chemical, physical and biological approaches to maximize tissue targeting.
Collapse
Affiliation(s)
- Aaron C Anselmo
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, CA 93106, USA
| | - Sunny Kumar
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, CA 93106, USA
| | - Vivek Gupta
- School of Pharmacy, Keck Graduate Institute, 535 Watson Dr., Claremont, CA 91711, USA
| | - Austin M Pearce
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, CA 93106, USA
| | - Analisa Ragusa
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, CA 93106, USA
| | - Vladimir Muzykantov
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, USA
| | - Samir Mitragotri
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
30
|
Führmann T, Ghosh M, Otero A, Goss B, Dargaville TR, Pearse DD, Dalton PD. Peptide-functionalized polymeric nanoparticles for active targeting of damaged tissue in animals with experimental autoimmune encephalomyelitis. Neurosci Lett 2015; 602:126-32. [PMID: 26141613 DOI: 10.1016/j.neulet.2015.06.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/28/2022]
Abstract
Increased permeability of blood vessels is an indicator for various injuries and diseases, including multiple sclerosis (MS), of the central nervous system. Nanoparticles have the potential to deliver drugs locally to sites of tissue damage, reducing the drug administered and limiting associated side effects, but efficient accumulation still remains a challenge. We developed peptide-functionalized polymeric nanoparticles to target blood clots and the extracellular matrix molecule nidogen, which are associated with areas of tissue damage. Using the induction of experimental autoimmune encephalomyelitis in rats to provide a model of MS associated with tissue damage and blood vessel lesions, all targeted nanoparticles were delivered systemically. In vivo data demonstrates enhanced accumulation of peptide functionalized nanoparticles at the injury site compared to scrambled and naive controls, particularly for nanoparticles functionalized to target fibrin clots. This suggests that further investigations with drug laden, peptide functionalized nanoparticles might be of particular interest in the development of treatment strategies for MS.
Collapse
Affiliation(s)
- Tobias Führmann
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Anthony Otero
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ben Goss
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Tim R Dargaville
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; The Department of Neurological Surgery, The Neuroscience Program, The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Paul D Dalton
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia; Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| |
Collapse
|
31
|
Muro S. Strategies for delivery of therapeutics into the central nervous system for treatment of lysosomal storage disorders. Drug Deliv Transl Res 2015; 2:169-86. [PMID: 24688886 DOI: 10.1007/s13346-012-0072-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of about fifty life-threatening conditions caused by genetic defects affecting lysosomal components. The underscoring molecular deficiency leads to widespread cellular dysfunction through most tissues in the body, including peripheral organs and the central nervous system (CNS). Efforts during the last few decades have rendered a remarkable advance regarding our knowledge, medical awareness, and early detection of these genetic defects, as well as development of several treatment modalities. Clinical and experimental strategies encompassing enzyme replacement, gene and cell therapies, substrate reduction, and chemical chaperones are showing considerable potential in attenuating the peripheral pathology. However, a major drawback has been encountered regarding the suboptimal impact of these approaches on the CNS pathology. Particular anatomical and biochemical constraints of this tissue pose a major obstacle to the delivery of therapeutics into the CNS. Approaches to overcome these obstacles include modalities of local administration, strategies to enhance the blood-CNS permeability, intranasal delivery, use of exosomes, and those exploiting targeting of transporters and transcytosis pathways in the endothelial lining. The later two approaches are being pursued at the time by coupling therapeutic agents to affinity moieties and drug delivery systems capable of targeting these natural transport routes. This approach is particularly promising, as using paths naturally active at this interface may render safe and effective delivery of LSD therapies into the CNS.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Bioscience and Biotechnology Research University of Maryland, College Park, MD, 20742, USA ; Fischell Dept. of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
32
|
Lux J, White AG, Chan M, Anderson CJ, Almutairi A. Nanogels from metal-chelating crosslinkers as versatile platforms applied to copper-64 PET imaging of tumors and metastases. Am J Cancer Res 2015; 5:277-88. [PMID: 25553115 PMCID: PMC4279191 DOI: 10.7150/thno.10904] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/03/2014] [Indexed: 12/13/2022] Open
Abstract
Metals are essential in medicine for both therapy and diagnosis. We recently created the first metal-chelating nanogel imaging agent, which employed versatile, reproducible chemistry that maximizes chelation stability. Here we demonstrate that our metal chelating crosslinked nanogel technology is a powerful platform by incorporating (64)Cu to obtain PET radiotracers. Polyacrylamide-based nanogels were crosslinked with three different polydentate ligands (DTPA, DOTA, NOTA). NOTA-based nanogels stably retained (64)Cu in mouse serum and accumulated in tumors in vivo as detected by PET/CT imaging. Measurement of radioactivity in major organs ex vivo confirmed this pattern, revealing a high accumulation (12.3% ID/g and 16.6% ID/g) in tumors at 24 and 48 h following administration, with lower accumulation in the liver (8.5% ID/g at 24 h) and spleen (5.5% ID/g). Nanogels accumulated even more efficiently in metastases (29.9% and 30.4% ID/g at 24 and 48 h). These metal-chelating nanogels hold great promise for future application as bimodal PET/MRI agents; chelation of β-emitting radionuclides could enable radiation therapy.
Collapse
|
33
|
Mracsko E, Veltkamp R. Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci 2014; 8:388. [PMID: 25477782 PMCID: PMC4238323 DOI: 10.3389/fncel.2014.00388] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/31/2014] [Indexed: 12/15/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a particularly severe type of stroke for which no specific treatment has been established yet. Although preclinical models of ICH have substantial methodological limitations, important insight into the pathophysiology has been gained. Mounting evidence suggests an important contribution of inflammatory mechanisms to brain damage and potential repair. Neuroinflammation evoked by intracerebral blood involves the activation of resident microglia, the infiltration of systemic immune cells and the production of cytokines, chemokines, extracellular proteases and reactive oxygen species (ROS). Previous studies focused on innate immunity including microglia, monocytes and granulocytes. More recently, the role of adaptive immune cells has received increasing attention. Little is currently known about the interactions among different immune cell populations in the setting of ICH. Nevertheless, immunomodulatory strategies are already being explored in ICH. To improve the chances of translation from preclinical models to patients, a better characterization of the neuroinflammation in patients is desirable.
Collapse
Affiliation(s)
- Eva Mracsko
- Department of Neurology, University Heidelberg Heidelberg, Germany
| | - Roland Veltkamp
- Department of Neurology, University Heidelberg Heidelberg, Germany ; Division of Brain Sciences, Imperial College London, UK
| |
Collapse
|
34
|
Amhaoul H, Staelens S, Dedeurwaerdere S. Imaging brain inflammation in epilepsy. Neuroscience 2014; 279:238-52. [DOI: 10.1016/j.neuroscience.2014.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 01/15/2023]
|
35
|
Chakravarty R, Hong H, Cai W. Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm 2014; 11:3777-97. [PMID: 24865108 PMCID: PMC4218872 DOI: 10.1021/mp500173s] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Positron
emission tomography (PET) is an important modality in
the field of molecular imaging, which is gradually impacting patient
care by providing safe, fast, and reliable techniques that help to
alter the course of patient care by revealing invasive, de facto procedures
to be unnecessary or rendering them obsolete. Also, PET provides a
key connection between the molecular mechanisms involved in the pathophysiology
of disease and the according targeted therapies. Recently, PET imaging
is also gaining ground in the field of drug delivery. Current drug
delivery research is focused on developing novel drug delivery systems
with emphasis on precise targeting, accurate dose delivery, and minimal
toxicity in order to achieve maximum therapeutic efficacy. At the
intersection between PET imaging and controlled drug delivery, interest
has grown in combining both these paradigms into clinically effective
formulations. PET image-guided drug delivery has great potential to
revolutionize patient care by in vivo assessment
of drug biodistribution and accumulation at the target site and real-time
monitoring of the therapeutic outcome. The expected end point of this
approach is to provide fundamental support for the optimization of
innovative diagnostic and therapeutic strategies that could contribute
to emerging concepts in the field of “personalized medicine”.
This review focuses on the recent developments in PET image-guided
drug delivery and discusses intriguing opportunities for future development.
The preclinical data reported to date are quite promising, and it
is evident that such strategies in cancer management hold promise
for clinically translatable advances that can positively impact the
overall diagnostic and therapeutic processes and result in enhanced
quality of life for cancer patients.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705-2275, United States
| | | | | |
Collapse
|
36
|
Enantiopure bifunctional chelators for copper radiopharmaceuticals – Does chirality matter in radiotracer design? Eur J Med Chem 2014; 80:308-15. [DOI: 10.1016/j.ejmech.2014.04.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/10/2023]
|
37
|
Howard M, Zern BJ, Anselmo AC, Shuvaev VV, Mitragotri S, Muzykantov V. Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS NANO 2014; 8:4100-32. [PMID: 24787360 PMCID: PMC4046791 DOI: 10.1021/nn500136z] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/30/2014] [Indexed: 05/18/2023]
Abstract
Targeted nanomedicine holds promise to find clinical use in many medical areas. Endothelial cells that line the luminal surface of blood vessels represent a key target for treatment of inflammation, ischemia, thrombosis, stroke, and other neurological, cardiovascular, pulmonary, and oncological conditions. In other cases, the endothelium is a barrier for tissue penetration or a victim of adverse effects. Several endothelial surface markers including peptidases (e.g., ACE, APP, and APN) and adhesion molecules (e.g., ICAM-1 and PECAM) have been identified as key targets. Binding of nanocarriers to these molecules enables drug targeting and subsequent penetration into or across the endothelium, offering therapeutic effects that are unattainable by their nontargeted counterparts. We analyze diverse aspects of endothelial nanomedicine including (i) circulation and targeting of carriers with diverse geometries, (ii) multivalent interactions of carrier with endothelium, (iii) anchoring to multiple determinants, (iv) accessibility of binding sites and cellular response to their engagement, (v) role of cell phenotype and microenvironment in targeting, (vi) optimization of targeting by lowering carrier avidity, (vii) endocytosis of multivalent carriers via molecules not implicated in internalization of their ligands, and (viii) modulation of cellular uptake and trafficking by selection of specific epitopes on the target determinant, carrier geometry, and hydrodynamic factors. Refinement of these aspects and improving our understanding of vascular biology and pathology is likely to enable the clinical translation of vascular endothelial targeting of nanocarriers.
Collapse
Affiliation(s)
- Melissa Howard
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Blaine J. Zern
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Aaron C. Anselmo
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir V. Shuvaev
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Samir Mitragotri
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir Muzykantov
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
38
|
Hsu J, Bhowmick T, Burks SR, Kao JPY, Muro S. Enhancing biodistribution of therapeutic enzymes in vivo by modulating surface coating and concentration of ICAM-1-targeted nanocarriers. J Biomed Nanotechnol 2014; 10:345-54. [PMID: 24738342 DOI: 10.1166/jbn.2014.1718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Coupling therapeutic proteins to targeted nanocarriers can enhance their biodistribution. This is the case for enzyme replacement therapies where intravenously injected enzymes must avoid prolonged blood exposure while reaching body organs. We have shown enhanced tissue targeting of various lysosomal enzymes by coupling to nanocarriers targeted to intercellular adhesion molecule-1 (ICAM-1). Here, we varied design parameters to modify tissue enzyme levels without affecting specific targeting and relative biodistribution. We coupled a-galactosidase (aGal; affected in Fabry disease) to model polymer nanocarriers and varied enzyme load (50 vs. 500 molecules/particle), anti-ICAM surface density (80 vs. 180 molecules/particle), and nanocarrier concentration (1.6 x 1013 vs. 2.4 x 1013 carriers/kg) to render three formulations (45, 449, 555 microg alphaGal/kg). Naked alpha Gal preferentially distributed in blood vs. organs, while nanocarriers shifted biodistribution from blood to tissues. Accumulation in brain, kidneys, heart, liver, lungs, and spleen did not vary among nanocarrier formulations, with enhanced specific tissue accumulation compared to naked aGal. The highest specificity was associated with lowest antibody density and nanocarrier concentration, but highest enzyme load; possibly because of synergistic enzyme affinity toward cell-surface markers. Variation of these parameters significantly increased absolute enzyme accumulation. This strategy may help optimize delivery of lysosomal enzyme replacement and, likely, other protein delivery approaches.
Collapse
|
39
|
Sinha A, Shaporev A, Nosoudi N, Lei Y, Vertegel A, Lessner S, Vyavahare N. Nanoparticle targeting to diseased vasculature for imaging and therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1003-12. [PMID: 24566276 DOI: 10.1016/j.nano.2014.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/24/2014] [Accepted: 02/04/2014] [Indexed: 12/30/2022]
Abstract
UNLABELLED Significant challenges remain in targeting drugs to diseased vasculature; most important being rapid blood flow with high shear, limited availability of stable targets, and heterogeneity and recycling of cellular markers. We developed nanoparticles (NPs) to target degraded elastic lamina, a consistent pathological feature in vascular diseases. In-vitro organ and cell culture experiments demonstrated that these NPs were not taken up by cells, but instead retained within the extracellular space; NP binding was proportional to the extent of elastic lamina damage. With three well-established rodent models of vascular diseases such as aortic aneurysm (calcium chloride mediated aortic injury in rats), atherosclerosis (fat-fed apoE-/- mice), and vascular calcification (warfarin + vitamin K injections in rats), we show precise NPs spatial targeting to degraded vascular elastic lamina while sparing healthy vasculature when NPs were delivered systemically. Nanoparticle targeting degraded elastic lamina is attractive to deliver therapeutic or imaging agents to the diseased vasculature. FROM THE CLINICAL EDITOR This novel work focuses on nanoparticle targeting of degraded elastic lamina in a variety of diseases, including atherosclerosis, vascular calcification, and aneurysm formation, and demonstrates the feasibility to deliver therapeutic or imaging agents to the diseased vasculature.
Collapse
Affiliation(s)
- Aditi Sinha
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Aleksey Shaporev
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Nasim Nosoudi
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Yang Lei
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Alexey Vertegel
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Susan Lessner
- Cell Biology & Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Naren Vyavahare
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
40
|
Abstract
Endothelial cells represent important targets for therapeutic and diagnostic interventions in many cardiovascular, pulmonary, neurological, inflammatory, and metabolic diseases. Targeted delivery of drugs (especially potent and labile biotherapeutics that require specific subcellular addressing) and imaging probes to endothelium holds promise to improve management of these maladies. In order to achieve this goal, drug cargoes or their carriers including liposomes and polymeric nanoparticles are chemically conjugated or fused using recombinant techniques with affinity ligands of endothelial surface molecules. Cell adhesion molecules, constitutively expressed on the endothelial surface and exposed on the surface of pathologically altered endothelium—selectins, VCAM-1, PECAM-1, and ICAM-1—represent good determinants for such a delivery. In particular, PECAM-1 and ICAM-1 meet criteria of accessibility, safety, and relevance to the (patho)physiological context of treatment of inflammation, ischemia, and thrombosis and offer a unique combination of targeting options including surface anchoring as well as intra- and transcellular targeting, modulated by parameters of the design of drug delivery system and local biological factors including flow and endothelial phenotype. This review includes analysis of these factors and examples of targeting selected classes of therapeutics showing promising results in animal studies, supporting translational potential of these interventions.
Collapse
|
41
|
Wang Y, Xu C, Ow H. Commercial nanoparticles for stem cell labeling and tracking. Theranostics 2013; 3:544-60. [PMID: 23946821 PMCID: PMC3741604 DOI: 10.7150/thno.5634] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/03/2013] [Indexed: 11/05/2022] Open
Abstract
Stem cell therapy provides promising solutions for diseases and injuries that conventional medicines and therapies cannot effectively treat. To achieve its full therapeutic potentials, the homing process, survival, differentiation, and engraftment of stem cells post transplantation must be clearly understood. To address this need, non-invasive imaging technologies based on nanoparticles (NPs) have been developed to track transplanted stem cells. Here we summarize existing commercial NPs which can act as contrast agents of three commonly used imaging modalities, including fluorescence imaging, magnetic resonance imaging and photoacoustic imaging, for stem cell labeling and tracking. Specifically, we go through their technologies, industry distributors, applications and existing concerns in stem cell research. Finally, we provide an industry perspective on the potential challenges and future for the development of new NP products.
Collapse
Affiliation(s)
- Yaqi Wang
- 1. Hybrid Silica Technologies, Cambridge, Massachusetts, USA 02139
| | - Chenjie Xu
- 2. Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Hooisweng Ow
- 1. Hybrid Silica Technologies, Cambridge, Massachusetts, USA 02139
| |
Collapse
|
42
|
Liu A, Zhai S, Zhang B, Yan B. Analytical strategies for real-time, non-invasive tracking of carbon nanomaterials in vivo. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Zern BJ, Chacko AM, Liu J, Greineder CF, Blankemeyer ER, Radhakrishnan R, Muzykantov V. Reduction of nanoparticle avidity enhances the selectivity of vascular targeting and PET detection of pulmonary inflammation. ACS NANO 2013; 7:2461-9. [PMID: 23383962 PMCID: PMC3609928 DOI: 10.1021/nn305773f] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Targeting nanoparticles (NPs) loaded with drugs and probes to precise locations in the body may improve the treatment and detection of many diseases. Generally, to achieve targeting, affinity ligands are introduced on the surface of NPs that can bind to molecules present on the cell of interest. Optimization of ligand density is a critical parameter in controlling NP binding to target cells, and a higher ligand density is not always the most effective. In this study, we investigated how NP avidity affects targeting to the pulmonary vasculature, using NPs targeted to ICAM-1. This cell adhesion molecule is expressed by quiescent endothelium at modest levels and is upregulated in a variety of pathological settings. NP avidity was controlled by ligand density, with the expected result that higher avidity NPs demonstrated greater pulmonary uptake than lower avidity NPs in both naive and pathological mice. However, in comparison with high-avidity NPs, low-avidity NPs exhibited several-fold higher selectivity of targeting to pathological endothelium. This finding was translated into a PET imaging platform that was more effective in detecting pulmonary vascular inflammation using low-avidity NPs. Furthermore, computational modeling revealed that elevated expression of ICAM-1 on the endothelium is critical for multivalent anchoring of NPs with low avidity, while high-avidity NPs anchor effectively to both quiescent and activated endothelium. These results provide a paradigm that can be used to optimize NP targeting by manipulating ligand density and may find biomedical utility for increasing detection of pathological vasculature.
Collapse
Affiliation(s)
- Blaine J. Zern
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Ann-Marie Chacko
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164
| | - Colin F. Greineder
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Vladimir Muzykantov
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
- Address correspondence to:
| |
Collapse
|
44
|
Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. Minimal "Self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013; 339:971-5. [PMID: 23430657 PMCID: PMC3966479 DOI: 10.1126/science.1229568] [Citation(s) in RCA: 722] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Foreign particles and cells are cleared from the body by phagocytes that must also recognize and avoid clearance of "self" cells. The membrane protein CD47 is reportedly a "marker of self" in mice that impedes phagocytosis of self by signaling through the phagocyte receptor CD172a. Minimal "Self" peptides were computationally designed from human CD47 and then synthesized and attached to virus-size particles for intravenous injection into mice that express a CD172a variant compatible with hCD47. Self peptides delay macrophage-mediated clearance of nanoparticles, which promotes persistent circulation that enhances dye and drug delivery to tumors. Self-peptide affinity for CD172a is near the optimum measured for human CD172a variants, and Self peptide also potently inhibits nanoparticle uptake mediated by the contractile cytoskeleton. The reductionist approach reveals the importance of human Self peptides and their utility in enhancing drug delivery and imaging.
Collapse
Affiliation(s)
- Pia L. Rodriguez
- Molecular and Cell Biophysics and NanoBioPolymers Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takamasa Harada
- Molecular and Cell Biophysics and NanoBioPolymers Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A. Christian
- Molecular and Cell Biophysics and NanoBioPolymers Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diego A. Pantano
- Molecular and Cell Biophysics and NanoBioPolymers Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard K. Tsai
- Molecular and Cell Biophysics and NanoBioPolymers Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis E. Discher
- Molecular and Cell Biophysics and NanoBioPolymers Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
- Pharmacological Sciences Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
Jacobs AH, Tavitian B. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 2012; 32:1393-415. [PMID: 22549622 PMCID: PMC3390799 DOI: 10.1038/jcbfm.2012.53] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/05/2012] [Accepted: 03/23/2012] [Indexed: 12/23/2022]
Abstract
Inflammation is a highly dynamic and complex adaptive process to preserve and restore tissue homeostasis. Originally viewed as an immune-privileged organ, the central nervous system (CNS) is now recognized to have a constant interplay with the innate and the adaptive immune systems, where resident microglia and infiltrating immune cells from the periphery have important roles. Common diseases of the CNS, such as stroke, multiple sclerosis (MS), and neurodegeneration, elicit a neuroinflammatory response with the goal to limit the extent of the disease and to support repair and regeneration. However, various disease mechanisms lead to neuroinflammation (NI) contributing to the disease process itself. Molecular imaging is the method of choice to try to decipher key aspects of the dynamic interplay of various inducers, sensors, transducers, and effectors of the orchestrated inflammatory response in vivo in animal models and patients. Here, we review the basic principles of NI with emphasis on microglia and common neurologic disease mechanisms, the molecular targets which are being used and explored for imaging, and molecular imaging of NI in frequent neurologic diseases, such as stroke, MS, neurodegeneration, epilepsy, encephalitis, and gliomas.
Collapse
Affiliation(s)
- Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI) at the Westfalian Wilhelms-University of Münster (WWU), Münster, Germany.
| | | |
Collapse
|
46
|
Ghaffarian R, Bhowmick T, Muro S. Transport of nanocarriers across gastrointestinal epithelial cells by a new transcellular route induced by targeting ICAM-1. J Control Release 2012; 163:25-33. [PMID: 22698938 DOI: 10.1016/j.jconrel.2012.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 05/21/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
Bioavailability of oral drugs, particularly large hydrophilic agents, is often limited by poor adhesion and transport across gastrointestinal (GI) epithelial cells. Drug delivery systems, such as sub-micrometer polymer carriers (nanocarriers, NCs) coupled to affinity moieties that target GI surface markers involved in transport, may improve this aspect. To explore this strategy, we coated 100-nm polymer particles with an antibody to ICAM-1 (a protein expressed on the GI epithelium and other tissues) and evaluated targeting, uptake, and transport in human GI epithelial cells. Fluorescence and electron microscopy, and radioisotope tracing revealed that anti-ICAM NCs specifically bound to cells in culture, were internalized via CAM-mediated endocytosis, trafficked by transcytosis across cell monolayers without disrupting the permeability barrier or cell viability, and enabled transepithelial transport of a model therapeutic enzyme (α-galactosidase, deficient in lysosomal Fabry disease). These results indicate that ICAM-1 targeting may provide delivery of therapeutics, such as enzymes, to and across the GI epithelium.
Collapse
Affiliation(s)
- Rasa Ghaffarian
- Fischell Department of Bioengineering, 2330 Jeong H. Kim Engineering Building, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
47
|
Ordidge K, Duffy B, Wells J, Kalber T, Janes S, Lythgoe M. Imaging the paediatric lung: what does nanotechnology have to offer? Paediatr Respir Rev 2012; 13:84-8. [PMID: 22475253 PMCID: PMC3361008 DOI: 10.1016/j.prrv.2011.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review will provide an overview of current research into lung imaging with nanoparticles, with a focus on the use of nanoparticles as molecular imaging agents to observe pathological processes and to monitor the effectiveness of nanoparticulate drug delivery systems. Various imaging modalities together with their advantages and limitations for lung imaging will be discussed. We will also explore the range of nanoparticles used, as well as active or passive targeting of nanoparticles.
Collapse
Affiliation(s)
- K.L. Ordidge
- The Centre for Respiratory Research, The Department of Medicine, UCL
- UCL Centre for Advanced Biomedical Imaging
| | - B.A. Duffy
- UCL Centre for Advanced Biomedical Imaging
| | - J.A. Wells
- UCL Centre for Advanced Biomedical Imaging
| | - T.L. Kalber
- The Centre for Respiratory Research, The Department of Medicine, UCL
- UCL Centre for Advanced Biomedical Imaging
| | - S.M. Janes
- The Centre for Respiratory Research, The Department of Medicine, UCL
| | | |
Collapse
|
48
|
Endothelial targeting of polymeric nanoparticles stably labeled with the PET imaging radioisotope iodine-124. Biomaterials 2012; 33:5406-13. [PMID: 22560201 DOI: 10.1016/j.biomaterials.2012.04.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/11/2012] [Indexed: 11/23/2022]
Abstract
Targeting of therapeutics or imaging agents to the endothelium has the potential to improve specificity and effectiveness of treatment for many diseases. One strategy to achieve this goal is the use of nanoparticles (NPs) targeted to the endothelium by ligands of protein determinants present on this tissue, including cell adhesion molecules, peptidases, and cell receptors. However, detachment of the radiolabel probes from NPs poses a significant problem. In this study, we devised polymeric NPs directly labeled with radioiodine isotopes including the positron emission tomography (PET) isotope (124)I, and characterized their targeting to specific endothelial determinants. This approach provided sizable, targetable probes for specific detection of endothelial surface determinants non-invasively in live animals. Direct conjugation of radiolabel to NPs allowed for stable longitudinal tracking of tissue distribution without label detachment even in an aggressive proteolytic environment. Further, this approach permits tracking of NP pharmacokinetics in real-time and non-invasive imaging of the lung in mice using micro-PET imaging. The use of this strategy will considerably improve investigation of NP interactions with target cells and PET imaging in small animals, which ultimately can aid in the optimization of targeted drug delivery.
Collapse
|
49
|
Liu Y, Welch MJ. Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug Chem 2012; 23:671-82. [PMID: 22242601 PMCID: PMC3329595 DOI: 10.1021/bc200264c] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past decade, positron emitter labeled nanoparticles have been widely used in and substantially improved for a range of diagnostic biomedical research. However, given growing interest in personalized medicine and translational research, a major challenge in the field will be to develop disease-specific nanoprobes with facile and robust radiolabeling strategies and that provide imaging stability, enhanced sensitivity for disease early stage detection, optimized in vivo pharmacokinetics for reduced nonspecific organ uptake, and improved targeting for elevated efficacy. This review briefly summarizes the major applications of nanoparticles labeled with positron emitters for cardiovascular imaging, lung diagnosis, and tumor theranostics.
Collapse
Affiliation(s)
- Yongjian Liu
- Department of Radiology, Washington University in St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
50
|
Xu C, Mu L, Roes I, Miranda-Nieves D, Nahrendorf M, Ankrum JA, Zhao W, Karp JM. Nanoparticle-based monitoring of cell therapy. NANOTECHNOLOGY 2011; 22:494001. [PMID: 22101191 PMCID: PMC3334527 DOI: 10.1088/0957-4484/22/49/494001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exogenous cell therapy aims to replace/repair diseased or dysfunctional cells and promises to revolutionize medicine by restoring tissue and organ function. To develop effective cell therapy, the location, distribution and long-term persistence of transplanted cells must be evaluated. Nanoparticle (NP) based imaging technologies have the potential to track transplanted cells non-invasively. Here we summarize the most recent advances in NP-based cell tracking with emphasis on (1) the design criteria for cell tracking NPs, (2) protocols for cell labeling, (3) a comparison of available imaging modalities and their corresponding contrast agents, (4) a summary of preclinical studies on NP-based cell tracking and finally (5) perspectives and future directions.
Collapse
Affiliation(s)
- Chenjie Xu
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Luye Mu
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Isaac Roes
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - David Miranda-Nieves
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - James A Ankrum
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Weian Zhao
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Jeffrey M Karp
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| |
Collapse
|