1
|
Maccioni L, Michelle CM, Brusaferri L, Silvestri E, Bertoldo A, Schubert JJ, Nettis MA, Mondelli V, Howes O, Turkheimer FE, Bottlaender M, Bodini B, Stankoff B, Loggia ML, Veronese M. A blood-free modeling approach for the quantification of the blood-to-brain tracer exchange in TSPO PET imaging. Front Neurosci 2024; 18:1395769. [PMID: 39104610 PMCID: PMC11299498 DOI: 10.3389/fnins.2024.1395769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Recent evidence suggests the blood-to-brain influx rate (K1 ) in TSPO PET imaging as a promising biomarker of blood-brain barrier (BBB) permeability alterations commonly associated with peripheral inflammation and heightened immune activity in the brain. However, standard compartmental modeling quantification is limited by the requirement of invasive and laborious procedures for extracting an arterial blood input function. In this study, we validate a simplified blood-free methodologic framework for K1 estimation by fitting the early phase tracer dynamics using a single irreversible compartment model and an image-derived input function (1T1K-IDIF). Methods The method is tested on a multi-site dataset containing 177 PET studies from two TSPO tracers ([11C]PBR28 and [18F]DPA714). Firstly, 1T1K-IDIF K1 estimates were compared in terms of both bias and correlation with standard kinetic methodology. Then, the method was tested on an independent sample of [11C]PBR28 scans before and after inflammatory interferon-α challenge, and on test-retest dataset of [18F]DPA714 scans. Results Comparison with standard kinetic methodology showed good-to-excellent intra-subject correlation for regional 1T1K-IDIF-K1 (ρintra = 0.93 ± 0.08), although the bias was variable depending on IDIF ability to approximate blood input functions (0.03-0.39 mL/cm3/min). 1T1K-IDIF-K1 unveiled a significant reduction of BBB permeability after inflammatory interferon-α challenge, replicating results from standard quantification. High intra-subject correlation (ρ = 0.97 ± 0.01) was reported between K1 estimates of test and retest scans. Discussion This evidence supports 1T1K-IDIF as blood-free alternative to assess TSPO tracers' unidirectional blood brain clearance. K1 investigation could complement more traditional measures in TSPO studies, and even allow further mechanistic insight in the interpretation of TSPO signal.
Collapse
Affiliation(s)
- Lucia Maccioni
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Carranza Mellana Michelle
- Department of Information Engineering, University of Padova, Padova, Italy
- Paris Brain Institute, ICM, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Ludovica Brusaferri
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Computer Science and Informatics, School of Engineering, London South Bank University, London, United Kingdom
| | - Erica Silvestri
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Julia J. Schubert
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Maria A. Nettis
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Oliver Howes
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Federico E. Turkheimer
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Michel Bottlaender
- BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS Inserm, Université Paris-Saclay, Orsay, France
| | - Benedetta Bodini
- Paris Brain Institute, ICM, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Bruno Stankoff
- Paris Brain Institute, ICM, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Mattia Veronese
- Department of Information Engineering, University of Padova, Padova, Italy
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Liu W, Mossel P, Schwach V, Slart RHJA, Luurtsema G. Cardiac PET Imaging of ATP Binding Cassette (ABC) Transporters: Opportunities and Challenges. Pharmaceuticals (Basel) 2023; 16:1715. [PMID: 38139840 PMCID: PMC10748140 DOI: 10.3390/ph16121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Adenosine triphosphate binding cassette (ABC) transporters are a broad family of membrane protein complexes that use energy to transport molecules across cells and/or intracellular organelle lipid membranes. Many drugs used to treat cardiac diseases have an affinity for these transporters. Among others, P-glycoprotein (P-gp) plays an essential role in regulating drug concentrations that reach cardiac tissue and therefore contribute to cardiotoxicity. As a molecular imaging modality, positron emission tomography (PET) has emerged as a viable technique to investigate the function of P-gp in organs and tissues. Using PET imaging to evaluate cardiac P-gp function provides new insights for drug development and improves the precise use of medications. Nevertheless, information in this field is limited. In this review, we aim to examine the current applications of ABC transporter PET imaging and its tracers in the heart, with a specific emphasis on P-gp. Furthermore, the opportunities and challenges in this novel field will be discussed.
Collapse
Affiliation(s)
- Wanling Liu
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| | - Pascalle Mossel
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| | - Verena Schwach
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
- Department of Biomedical Photonic Imaging, University of Twente, 7500 AE Enschede, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| |
Collapse
|
3
|
Jackson IM, Webb EW, Scott PJ, James ML. In Silico Approaches for Addressing Challenges in CNS Radiopharmaceutical Design. ACS Chem Neurosci 2022; 13:1675-1683. [PMID: 35606334 PMCID: PMC9945852 DOI: 10.1021/acschemneuro.2c00269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Positron emission tomography (PET) is a highly sensitive and versatile molecular imaging modality that leverages radiolabeled molecules, known as radiotracers, to interrogate biochemical processes such as metabolism, enzymatic activity, and receptor expression. The ability to probe specific molecular and cellular events longitudinally in a noninvasive manner makes PET imaging a particularly powerful technique for studying the central nervous system (CNS) in both health and disease. Unfortunately, developing and translating a single CNS PET tracer for clinical use is typically an extremely resource-intensive endeavor, often requiring synthesis and evaluation of numerous candidate molecules. While existing in vitro methods are beginning to address the challenge of derisking molecules prior to costly in vivo PET studies, most require a significant investment of resources and possess substantial limitations. In the context of CNS drug development, significant time and resources have been invested into the development and optimization of computational methods, particularly involving machine learning, to streamline the design of better CNS therapeutics. However, analogous efforts developed and validated for CNS radiotracer design are conspicuously limited. In this Perspective, we overview the requirements and challenges of CNS PET tracer design, survey the most promising computational methods for in silico CNS drug design, and bridge these two areas by discussing the potential applications and impact of computational design tools in CNS radiotracer design.
Collapse
Affiliation(s)
- Isaac M. Jackson
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - E. William Webb
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | - Peter J.H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109;,Corresponding Authors: Peter J. H. Scott − Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States; , Michelle L. James − Departments of Radiology, and Neurology & Neurological Sciences, 1201 Welch Rd., P-206, Stanford, CA 94305-5484, United States;
| | - Michelle L. James
- Department of Radiology, Stanford University, Stanford, CA 94305;,Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94304.,Corresponding Authors: Peter J. H. Scott − Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States; , Michelle L. James − Departments of Radiology, and Neurology & Neurological Sciences, 1201 Welch Rd., P-206, Stanford, CA 94305-5484, United States;
| |
Collapse
|
4
|
Storelli F, Anoshchenko O, Unadkat JD. Successful Prediction of Human Steady-State Unbound Brain-to-Plasma Concentration Ratio of P-gp Substrates Using the Proteomics-Informed Relative Expression Factor Approach. Clin Pharmacol Ther 2021; 110:432-442. [PMID: 33675056 PMCID: PMC8360000 DOI: 10.1002/cpt.2227] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/25/2021] [Indexed: 12/31/2022]
Abstract
In order to optimize central nervous system (CNS) drug development, accurate prediction of the drug's human steady-state unbound brain interstitial fluid-to-plasma concentration ratio (Kp,uu,brain ) is critical, especially for drugs that are effluxed by the multiple drug resistance transporters (e.g., P-glycoprotein, P-gp). Due to lack of good in vitro human blood-brain barrier models, we and others have advocated the use of a proteomics-informed relative expressive factor (REF) approach to predict Kp,uu,brain . Therefore, we tested the success of this approach in humans, with a focus on P-gp substrates, using brain positron emission tomography imaging data for verification. To do so, the efflux ratio (ER) of verapamil, N-desmethyl loperamide, and metoclopramide was determined in human P-gp-transfected MDCKII cells using the Transwell assay. Then, using the ER estimate, Kp,uu,brain of the drug was predicted using REF (ER approach). Alternatively, in vitro passive and P-gp-mediated intrinsic clearances (CLs) of these drugs, estimated using a five-compartmental model, were extrapolated to in vivo using REF (active CL) and brain microvascular endothelial cells protein content (passive CL). The ER approach successfully predicted Kp,uu,brain of all three drugs within twofold of observed data and within 95% confidence interval of the observed data for verapamil and N-desmethyl loperamide. Using the in vitro-to-in vivo extrapolated clearance approach, Kp,uu,brain was reasonably well predicted but not the brain unbound interstitial fluid drug concentration-time profile. Therefore, we propose that the ER approach be used to predict Kp,uu,brain of CNS candidate drugs to enhance their success in development.
Collapse
Affiliation(s)
- Flavia Storelli
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Olena Anoshchenko
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Jashvant D. Unadkat
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
5
|
Establishment of an in Vitro Human Blood-Brain Barrier Model Derived from Induced Pluripotent Stem Cells and Comparison to a Porcine Cell-Based System. Cells 2020; 9:cells9040994. [PMID: 32316221 PMCID: PMC7226989 DOI: 10.3390/cells9040994] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
The blood-brain barrier (BBB) is responsible for the homeostasis between the cerebral vasculature and the brain and it has a key role in regulating the influx and efflux of substances, in healthy and diseased states. Stem cell technology offers the opportunity to use human brain-specific cells to establish in vitro BBB models. Here, we describe the establishment of a human BBB model in a two-dimensional monolayer culture, derived from human induced pluripotent stem cells (hiPSCs). This model was characterized by a transendothelial electrical resistance (TEER) higher than 2000 Ω∙cm2 and associated with negligible paracellular transport. The hiPSC-derived BBB model maintained the functionality of major endothelial transporter proteins and receptors. Some proprietary molecules from our central nervous system (CNS) programs were evaluated revealing comparable permeability in the human model and in the model from primary porcine brain endothelial cells (PBECs).
Collapse
|
6
|
Jung KH, Oh SJ, Kang KJ, Han SJ, Nam KR, Park JA, Lee KC, Lee YJ, Choi JY. Effects of P-gp and Bcrp as brain efflux transporters on the uptake of [ 18 F]FPEB in the murine brain. Synapse 2019; 73:e22123. [PMID: 31269310 DOI: 10.1002/syn.22123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/11/2019] [Accepted: 06/28/2019] [Indexed: 01/16/2023]
Abstract
The purpose of this study was to determine whether the brain uptake of [18 F]FPEB is influenced by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) as efflux transporters in rodents. To assess this possible modulation, positron emission tomography studies were performed in animal models of pharmacological or genetic ablation of these transporters. Compared with the control conditions, when P-gp was blocked with tariquidar, there was an 8%-12% increase in the brain uptake of [18 F]FPEB. In P-gp knockout mice, such as Mdr1a/b(-/-) and Mdr1a/b(-/-) Bcrp1(-/-) , genetic ablation models, there was an increment of 8%-53% in [18 F]FPEB uptake compared with that in the wild-type mice. In contrast, Bcrp knockout mice showed a decrement of 5%-12% uptake and P-gp/Bcrp knockout group displayed an increment of 5%-17% compared with wild type. These results indicate that [18 F]FPEB is possibly a weak substrate for P-gp.
Collapse
Affiliation(s)
- Ki-Hye Jung
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Se Jong Oh
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyung Jun Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sang Jin Han
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyung Rok Nam
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Ji Ae Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| |
Collapse
|
7
|
Chaves C, Remiao F, Cisternino S, Decleves X. Opioids and the Blood-Brain Barrier: A Dynamic Interaction with Consequences on Drug Disposition in Brain. Curr Neuropharmacol 2018; 15:1156-1173. [PMID: 28474563 PMCID: PMC5725546 DOI: 10.2174/1570159x15666170504095823] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/04/2017] [Accepted: 04/25/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Opioids are widely used in pain management, acting via opioid receptors and/or Toll-like receptors (TLR) present at the central nervous system (CNS). At the blood-brain barrier (BBB), several influx and efflux transporters, such as the ATP-binding cassette (ABC) P-glycoprotein (P-gp, ABCB1), Breast Cancer Resistance Protein (BCRP, ABCG2) and multidrug resistance-associated proteins (MRP, ABCC) transporters, and solute carrier transporters (SLC), are responsible for the transport of xenobiotics from the brain into the bloodstream or vice versa. Objective: ABC transporters export several clinically employed opioids, altering their neuro- pharmacokinetics and CNS effects. In this review, we explore the interactions between opioids and ABC transporters, and decipher the molecular mechanisms by which opioids can modify their expression at the BBB. Results: P-gp is largely implicated in the brain-to-blood efflux of opioids, namely morphine and oxycodone. Long-term ex-posure to morphine and oxycodone has proven to up-regulate the expression of ABC transporters, such as P-gp, BCRP and MRPs, at the BBB, which may lead to increased tolerance to the antinociceptive effects of such drugs. Recent studies uncov-er two mechanisms by which morphine may up-regulate P-gp and BCRP at the BBB: 1) via a glutamate, NMDA-receptor and COX-2 signaling cascade, and 2) via TLR4 activation, subsequent development of neuro- inflammation, and activation of NF-κB, presumably via glial cells. Conclusion: The BBB-opioid interaction can culminate in bilateral consequences, since ABC transporters condition the brain disposition of opioids, while opioids also affect the expression of ABC transporters at the BBB, which may result in increased CNS drug pharmacoresistance.
Collapse
Affiliation(s)
- Catarina Chaves
- Variabilite de Reponse Aux Psychotropes, INSERM, U1144, 75006 Paris, France.,Universite Paris Descartes, UMR-S 1144, Paris, F-75006, France.,Universite Paris Diderot, UMR-S 1144, Paris, F-75013, France.,REQUIMTE, Laboratorio de Toxicologia, Departamento de Ciencias Biologicas, Faculdade de Farmacia, Universidade do Porto, Porto, Portugal
| | - Fernando Remiao
- REQUIMTE, Laboratorio de Toxicologia, Departamento de Ciencias Biologicas, Faculdade de Farmacia, Universidade do Porto, Porto, Portugal
| | - Salvatore Cisternino
- Variabilite de Reponse Aux Psychotropes, INSERM, U1144, 75006 Paris, France.,Universite Paris Descartes, UMR-S 1144, Paris, F-75006, France.,Universite Paris Diderot, UMR-S 1144, Paris, F-75013, France.,Assistance Publique Hopitaux de Paris, AP-HP, Paris, France
| | - Xavier Decleves
- Variabilite de Reponse Aux Psychotropes, INSERM, U1144, 75006 Paris, France.,Universite Paris Descartes, UMR-S 1144, Paris, F-75006, France.,Universite Paris Diderot, UMR-S 1144, Paris, F-75013, France.,Assistance Publique Hopitaux de Paris, AP-HP, Paris, France
| |
Collapse
|
8
|
Abstract
Transporter systems involved in the permeation of drugs and solutes across biological membranes are recognized as key determinants of pharmacokinetics. Typically, the action of membrane transporters on drug exposure to tissues in living organisms is inferred from invasive procedures, which cannot be applied in humans. In recent years, imaging methods have greatly progressed in terms of instruments, synthesis of novel imaging probes as well as tools for data analysis. Imaging allows pharmacokinetic parameters in different tissues and organs to be obtained in a non-invasive or minimally invasive way. The aim of this overview is to summarize the current status in the field of molecular imaging of drug transporters. The overview is focused on human studies, both for the characterization of transport systems for imaging agents as well as for the determination of drug pharmacokinetics, and makes reference to animal studies where necessary. We conclude that despite certain methodological limitations, imaging has a great potential to study transporters at work in humans and that imaging will become an important tool, not only in drug development but also in medicine. Imaging allows the mechanistic aspects of transport proteins to be studied, as well as elucidating the influence of genetic background, pathophysiological states and drug-drug interactions on the function of transporters involved in the disposition of drugs.
Collapse
Affiliation(s)
- Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Arakawa Y, Nai Y, Shidahara M, Furumoto S, Seki C, Okamura N, Tashiro M, Kudo Y, Yanai K, Gonda K, Watabe H. Prediction of the Clinical SUV Ratio in Amyloid PET Imaging Using a Biomathematic Modeling Approach Toward the Efficient Development of a Radioligand. J Nucl Med 2017; 58:1285-1292. [DOI: 10.2967/jnumed.116.183566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022] Open
|
10
|
Froklage FE, Postnov A, Yaqub MM, Bakker E, Boellaard R, Hendrikse NH, Comans EF, Schuit RC, Schober P, Velis DN, Zwemmer J, Heimans JJ, Lammertsma AA, Voskuyl RA, Reijneveld JC. Altered GABAA receptor density and unaltered blood-brain barrier [11C]flumazenil transport in drug-resistant epilepsy patients with mesial temporal sclerosis. J Cereb Blood Flow Metab 2017; 37:97-105. [PMID: 26661244 PMCID: PMC5167109 DOI: 10.1177/0271678x15618219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/06/2015] [Accepted: 10/06/2015] [Indexed: 01/16/2023]
Abstract
Studies in rodents suggest that flumazenil is a P-glycoprotein substrate at the blood-brain barrier. This study aimed to assess whether [11C]flumazenil is a P-glycoprotein substrate in humans and to what extent increased P-glycoprotein function in epilepsy may confound interpretation of clinical [11C]flumazenil studies used to assess gamma-aminobutyric acid A receptors. Nine drug-resistant patients with epilepsy and mesial temporal sclerosis were scanned twice using [11C]flumazenil before and after partial P-glycoprotein blockade with tariquidar. Volume of distribution, nondisplaceable binding potential, and the ratio of rate constants of [11C]flumazenil transport across the blood-brain barrier (K1/k2) were derived for whole brain and several regions. All parameters were compared between pre- and post-tariquidar scans. Regional results were compared between mesial temporal sclerosis and contralateral sides. Tariquidar significantly increased global K1/k2 (+23%) and volume of distribution (+10%), but not nondisplaceable binding potential. At the mesial temporal sclerosis side volume of distribution and nondisplaceable binding potential were lower in hippocampus (both ∼-19%) and amygdala (both ∼-16%), but K1/k2 did not differ, suggesting that only regional gamma-aminobutyric acid A receptor density is altered in epilepsy. In conclusion, although [11C]flumazenil appears to be a (weak) P-glycoprotein substrate in humans, this does not seem to affect its role as a tracer for assessing gamma-aminobutyric acid A receptor density.
Collapse
Affiliation(s)
- Femke E Froklage
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands .,Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
| | - Andrey Postnov
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Maqsood M Yaqub
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Esther Bakker
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - N Harry Hendrikse
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands.,Department of Clinical Pharmacology & Pharmacy, VU University Medical Center, Amsterdam, the Netherlands
| | - Emile Fi Comans
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Robert C Schuit
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Patrick Schober
- Department of Anesthesiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Demetrios N Velis
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands.,Department of Neurosurgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Jack Zwemmer
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Jan J Heimans
- Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Rob A Voskuyl
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Jaap C Reijneveld
- Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Lever SZ, Fan KH, Lever JR. Tactics for preclinical validation of receptor-binding radiotracers. Nucl Med Biol 2017; 44:4-30. [PMID: 27755986 PMCID: PMC5161541 DOI: 10.1016/j.nucmedbio.2016.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Aspects of radiopharmaceutical development are illustrated through preclinical studies of [125I]-(E)-1-(2-(2,3-dihydrobenzofuran-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-BF-PE-PIPZE), a radioligand for sigma-1 (σ1) receptors, coupled with examples from the recent literature. Findings are compared to those previously observed for [125I]-(E)-1-(2-(2,3-dimethoxy-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-DM-PE-PIPZE). METHODS Syntheses of E-IA-BF-PE-PIPZE and [125I]-E-IA-BF-PE-PIPZE were accomplished by standard methods. In vitro receptor binding studies and autoradiography were performed, and binding potential was predicted. Measurements of lipophilicity and protein binding were obtained. In vivo studies were conducted in mice to evaluate radioligand stability, as well as specific binding to σ1 sites in brain, brain regions and peripheral organs in the presence and absence of potential blockers. RESULTS E-IA-BF-PE-PIPZE exhibited high affinity and selectivity for σ1 receptors (Ki = 0.43 ± 0.03 nM, σ2/σ1 = 173). [125I]-E-IA-BF-PE-PIPZE was prepared in good yield and purity, with high specific activity. Radioligand binding provided dissociation (koff) and association (kon) rate constants, along with a measured Kd of 0.24 ± 0.01 nM and Bmax of 472 ± 13 fmol/mg protein. The radioligand proved suitable for quantitative autoradiography in vitro using brain sections. Moderate lipophilicity, Log D7.4 2.69 ± 0.28, was determined, and protein binding was 71 ± 0.3%. In vivo, high initial whole brain uptake, >6% injected dose/g, cleared slowly over 24 h. Specific binding represented 75% to 93% of total binding from 15 min to 24 h. Findings were confirmed and extended by regional brain biodistribution. Radiometabolites were not observed in brain (1%). CONCLUSIONS Substitution of dihydrobenzofuranylethyl for dimethoxyphenethyl increased radioligand affinity for σ1 receptors by 16-fold. While high specific binding to σ1 receptors was observed for both radioligands in vivo, [125I]-E-IA-BF-PE-PIPZE displayed much slower clearance kinetics than [125I]-E-IA-DM-PE-PIPZE. Thus, minor structural modifications of σ1 receptor radioligands lead to major differences in binding properties in vitro and in vivo.
Collapse
Affiliation(s)
- Susan Z Lever
- Department of Chemistry, University of Missouri, Columbia, MO, USA; University of Missouri Research Reactor Center, Columbia, MO, USA.
| | - Kuo-Hsien Fan
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - John R Lever
- Department of Radiology, University of Missouri, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| |
Collapse
|
12
|
van Vliet EA, Dedeurwaerdere S, Cole AJ, Friedman A, Koepp MJ, Potschka H, Immonen R, Pitkänen A, Federico P. WONOEP appraisal: Imaging biomarkers in epilepsy. Epilepsia 2016; 58:315-330. [PMID: 27883181 DOI: 10.1111/epi.13621] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 01/04/2023]
Abstract
Neuroimaging offers a wide range of opportunities to obtain information about neuronal activity, brain inflammation, blood-brain barrier alterations, and various molecular alterations during epileptogenesis or for the prediction of pharmacoresponsiveness as well as postoperative outcome. Imaging biomarkers were examined during the XIII Workshop on Neurobiology of Epilepsy (XIII WONOEP) organized in 2015 by the Neurobiology Commission of the International League Against Epilepsy (ILAE). Here we present an extended summary of the discussed issues and provide an overview of the current state of knowledge regarding the biomarker potential of different neuroimaging approaches for epilepsy.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Andrew J Cole
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| | - Alon Friedman
- Department of Brain and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilian-University, Munich, Germany
| | - Riikka Immonen
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Paolo Federico
- Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Mukherjee J, Bajwa AK, Wooten DW, Hillmer AT, Pan ML, Pandey SK, Saigal N, Christian BT. Comparative assessment of (18) F-Mefway as a serotonin 5-HT1A receptor PET imaging agent across species: Rodents, nonhuman primates, and humans. J Comp Neurol 2016; 524:1457-71. [PMID: 26509362 PMCID: PMC4783179 DOI: 10.1002/cne.23919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/22/2015] [Accepted: 10/23/2015] [Indexed: 02/02/2023]
Abstract
We have developed (18) F-trans-Mefway ((18) F-Mefway) for positron emission tomography (PET) imaging studies of serotonin 5-HT1A receptors which are implicated in various brain functions. Translation of imaging the 5-HT1A receptor in animal models to humans will facilitate an understanding of the role of the receptor in human brain disorders. We report comparative brain distribution of (18) F-Mefway in normal mice, rats, monkeys, and healthy human volunteers. Mefway was found to be very selective, with subnanomolar affinity for the 5-HT1A receptor. Affinities of >55 nM were found for all other human-cloned receptor subtypes tested. Mefway was found to be a poor substrate (>30 μM) for the multidrug resistance 1 protein, suggesting low likelihood of brain uptake being affected by P-glycoprotein. Cerebellum was used as a reference region in all imaging studies across all species due to the low levels of (18) F-Mefway binding. Consistent binding of (18) F-Mefway in cortical regions, hippocampus, and raphe was observed across all species. (18) F-Mefway in the human brain regions correlated with the known postmortem distribution of 5-HT1A receptors. Quantitation of raphe was affected by the resolution of the PET scanners in rodents, whereas monkeys and humans showed a raphe to cerebellum ratio of approximately 3. (18) F-Mefway appears to be an effective 5-HT1A receptor imaging agent in all models, including humans. (18) F-Mefway therefore may be used to quantify 5-HT1A receptor distribution in brain regions for the study of various CNS disorders. J. Comp. Neurol. 524:1457-1471, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697-5000
| | - Alisha K Bajwa
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697-5000
| | - Dustin W Wooten
- Department of Medical Physics and Waisman Center, University of Wisconsin, Madison, Wisconsin, 53705
| | - Ansel T Hillmer
- Department of Medical Physics and Waisman Center, University of Wisconsin, Madison, Wisconsin, 53705
| | - Min-Liang Pan
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697-5000
| | - Suresh K Pandey
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697-5000
| | - Neil Saigal
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697-5000
| | - Bradley T Christian
- Department of Medical Physics and Waisman Center, University of Wisconsin, Madison, Wisconsin, 53705
| |
Collapse
|
14
|
Chapy H, Saubaméa B, Tournier N, Bourasset F, Behar-Cohen F, Declèves X, Scherrmann JM, Cisternino S. Blood-brain and retinal barriers show dissimilar ABC transporter impacts and concealed effect of P-glycoprotein on a novel verapamil influx carrier. Br J Pharmacol 2016; 173:497-510. [PMID: 26507673 DOI: 10.1111/bph.13376] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The respective impact and interplay between ABC (P-glycoprotein/P-gp/Abcb1a, BCRP/ABCG2, MRP/ABCC) and SLC transporter functions at the blood-brain barrier (BBB) and blood-retinal barriers (BRB) are incompletely understood. EXPERIMENTAL APPROACH We measured the initial cerebral and retinal distribution of selected ABC substrates by in situ carotid perfusion using P-gp/Bcrp knockout mice and chemical ABC/SLC modulation strategies. P-gp, Bcrp, Mrp1 and Mrp4 were studied by confocal retina imaging. KEY RESULTS Chemical or physical disruption of P-gp increased [(3) H]-verapamil transport by ~10-fold at the BBB and ~1.5-fold at the BRB. [(3) H]-Verapamil transport involved influx-mediated by an organic cation clonidine-sensitive/diphenhydramine-sensitive proton antiporter at both barriers; this effect was unmasked when P-gp was partially or fully inhibited/disrupted at the BBB. Studies of [(3) H]-mitoxantrone and [(3) H]-zidovudine transport suggested, respectively, that Bcrp efflux was less involved at the BRB than BBB, whereas Mrps were significantly and similarly involved at both barriers. Confocal imaging showed that P-gp and Bcrp were expressed in intra-retinal vessels (inner BRB/iBRB) but absent from the blood/basal membrane of cells of the retinal pigment epithelium (outer BRB/oBRB/RPE) where, in contrast, Mrp1 and Mrp4 were localized. CONCLUSIONS AND IMPLICATIONS P-gp, Bcrp, Mrp1 and Mrp4 are differentially expressed at the outer and inner BRB, resulting in an altered ability to limit substrate distribution at the retina as compared with the BBB. [(3) H]-Verapamil distribution is not P-gp-specific and involves a proton antiporter at both the BBB and BRB. However, this transport is concealed by P-gp at the BBB, but not at the BRB, where P-gp activity is reduced.
Collapse
Affiliation(s)
- Hélène Chapy
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France
| | - Bruno Saubaméa
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France
| | - Nicolas Tournier
- INSERM, CEA, Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, France
| | - Fanchon Bourasset
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France
| | - Francine Behar-Cohen
- Université Paris Descartes, UMR-S 1138, Paris, France.,Physiopathologies des Maladies Oculaires, INSERM U1138, Paris, France
| | - Xavier Declèves
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France.,Assistance Publique des Hôpitaux de Paris - AP-HP, Paris, France
| | - Jean-Michel Scherrmann
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France.,Assistance Publique des Hôpitaux de Paris - AP-HP, Paris, France
| | - Salvatore Cisternino
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France.,Assistance Publique des Hôpitaux de Paris - AP-HP, Paris, France
| |
Collapse
|
15
|
Pike VW. Considerations in the Development of Reversibly Binding PET Radioligands for Brain Imaging. Curr Med Chem 2016; 23:1818-69. [PMID: 27087244 PMCID: PMC5579844 DOI: 10.2174/0929867323666160418114826] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
The development of reversibly binding radioligands for imaging brain proteins in vivo, such as enzymes, neurotransmitter transporters, receptors and ion channels, with positron emission tomography (PET) is keenly sought for biomedical studies of neuropsychiatric disorders and for drug discovery and development, but is recognized as being highly challenging at the medicinal chemistry level. This article aims to compile and discuss the main considerations to be taken into account by chemists embarking on programs of radioligand development for PET imaging of brain protein targets.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Rm. B3C346A, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Pottier G, Marie S, Goutal S, Auvity S, Peyronneau MA, Stute S, Boisgard R, Dollé F, Buvat I, Caillé F, Tournier N. Imaging the Impact of the P-Glycoprotein (ABCB1) Function on the Brain Kinetics of Metoclopramide. J Nucl Med 2015; 57:309-14. [PMID: 26585058 DOI: 10.2967/jnumed.115.164350] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/02/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED The effects of metoclopramide on the central nervous system (CNS) in patients suggest substantial brain distribution. Previous data suggest that metoclopramide brain kinetics may nonetheless be controlled by ATP-binding cassette (ABC) transporters expressed at the blood-brain barrier. We used (11)C-metoclopramide PET imaging to elucidate the kinetic impact of transporter function on metoclopramide exposure to the brain. METHODS (11)C-metoclopramide transport by P-glycoprotein (P-gp; ABCB1) and the breast cancer resistance protein (BCRP; ABCG2) was tested using uptake assays in cells overexpressing P-gp and BCRP. (11)C-metoclopramide brain kinetics were compared using PET in rats (n = 4-5) in the absence and presence of a pharmacologic dose of metoclopramide (3 mg/kg), with or without P-gp inhibition using intravenous tariquidar (8 mg/kg). The (11)C-metoclopramide brain distribution (VT based on Logan plot analysis) and brain kinetics (2-tissue-compartment model) were characterized with either a measured or an imaged-derived input function. Plasma and brain radiometabolites were studied using radio-high-performance liquid chromatography analysis. RESULTS (11)C-metoclopramide transport was selective for P-gp over BCRP. Pharmacologic dose did not affect baseline (11)C-metoclopramide brain kinetics (VT = 2.28 ± 0.32 and 2.04 ± 0.19 mL⋅cm(-3) using microdose and pharmacologic dose, respectively). Tariquidar significantly enhanced microdose (11)C-metoclopramide VT (7.80 ± 1.43 mL⋅cm(-3)) with a 4.4-fold increase in K1 (influx rate constant) and a 2.3-fold increase in binding potential (k3/k4) in the 2-tissue-compartment model. In the pharmacologic situation, P-gp inhibition significantly increased metoclopramide brain distribution (VT = 6.28 ± 0.48 mL⋅cm(-3)) with a 2.0-fold increase in K1 and a 2.2-fold decrease in k2 (efflux rate), with no significant impact on binding potential. In this situation, only parent (11)C-metoclopramide could be detected in the brains of P-gp-inhibited rats. CONCLUSION (11)C-metoclopramide benefits from favorable pharmacokinetic properties that offer reliable quantification of P-gp function at the blood-brain barrier in a pharmacologic situation. Using metoclopramide as a model of CNS drug, we demonstrated that P-gp function not only reduces influx but also mediates the efflux from the brain back to the blood compartment, with additional impact on brain distribution. This PET-based strategy of P-gp function investigation may provide new insight on the contribution of P-gp to the variability of response to CNS drugs between patients.
Collapse
Affiliation(s)
- Géraldine Pottier
- Inserm/CEA/Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, France; and CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Solène Marie
- Inserm/CEA/Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, France; and CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Sébastien Goutal
- Inserm/CEA/Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, France; and CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Sylvain Auvity
- Inserm/CEA/Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, France; and CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Marie-Anne Peyronneau
- Inserm/CEA/Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, France; and CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Simon Stute
- Inserm/CEA/Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, France; and CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Raphaël Boisgard
- Inserm/CEA/Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, France; and CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Frédéric Dollé
- Inserm/CEA/Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, France; and CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Irène Buvat
- Inserm/CEA/Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, France; and CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Fabien Caillé
- Inserm/CEA/Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, France; and CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Nicolas Tournier
- Inserm/CEA/Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, France; and CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| |
Collapse
|
17
|
Cantore M, Benadiba M, Elsinga PH, Kwizera C, Dierckx RAJO, Colabufo NA, Luurtsema G. 11C- and18F-Labeled Radioligands for P-Glycoprotein Imaging by Positron Emission Tomography. ChemMedChem 2015; 11:108-18. [DOI: 10.1002/cmdc.201500420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/19/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Mariangela Cantore
- Department of Nuclear Medicine and Molecular Imaging; University Medical Center Groningen; University of Groningen; Hanzeplein 1 9713 GZ Groningen The Netherlands
- Biofordrug s.r.l.; Spin-off dell'Università degli Studi di Bari “A. Moro”; via Orabona 4 70125 Bari Italy
| | - Marcel Benadiba
- Department of Nuclear Medicine and Molecular Imaging; University Medical Center Groningen; University of Groningen; Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging; University Medical Center Groningen; University of Groningen; Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Chantal Kwizera
- Department of Nuclear Medicine and Molecular Imaging; University Medical Center Groningen; University of Groningen; Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging; University Medical Center Groningen; University of Groningen; Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Nicola Antonio Colabufo
- Biofordrug s.r.l.; Spin-off dell'Università degli Studi di Bari “A. Moro”; via Orabona 4 70125 Bari Italy
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; via Orabona 4 70125 Bari Italy
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging; University Medical Center Groningen; University of Groningen; Hanzeplein 1 9713 GZ Groningen The Netherlands
| |
Collapse
|
18
|
Isomeric methoxy analogs of nimesulide for development of brain cyclooxygense-2 (COX-2)-targeted imaging agents: Synthesis, in vitro COX-2-inhibitory potency, and cellular transport properties. Bioorg Med Chem 2015; 23:6807-14. [DOI: 10.1016/j.bmc.2015.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022]
|
19
|
Saba W, Goutal S, Kuhnast B, Dollé F, Auvity S, Fontyn Y, Cayla J, Peyronneau MA, Valette H, Tournier N. Differential influence of propofol and isoflurane anesthesia in a non-human primate on the brain kinetics and binding of [(18)F]DPA-714, a positron emission tomography imaging marker of glial activation. Eur J Neurosci 2015; 42:1738-45. [PMID: 25962575 DOI: 10.1111/ejn.12946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 01/19/2023]
Abstract
Translocator protein 18 kDa (TSPO) expression at the mitochondrial membrane of glial cells is related to glial activation. TSPO radioligands such as [(18)F]DPA-714 are useful for the non-invasive study of neuroimmune processes using positron emission tomography (PET). Anesthetic agents were shown to impact mitochondrial function and may influence [(18)F]DPA-714 binding parameters and PET kinetics. [(18) F]DPA-714 PET imaging was performed in Papio anubis baboons anesthetized using either intravenous propofol (n = 3) or inhaled isoflurane (n = 3). Brain kinetics and metabolite-corrected input function were measured to estimate [(18) F]DPA-714 brain distribution (VT). Displacement experiments were performed using PK11195 (1.5 mg/kg). In vitro [(18)F]DPA-714 binding experiments were performed using baboon brain tissue in the absence and presence of tested anesthetics. Brain radioactivity peaked higher in isoflurane-anesthetized animals compared with propofol (SUVmax = 2.7 ± 0.5 vs. 1.3 ± 0.2, respectively) but was not different after 30 min. Brain VT was not different under propofol and isoflurane. Displacement resulted in a 35.8 ± 8.4% decrease of brain radioactivity under propofol but not under isoflurane (0.1 ± 7.0%). In vitro, the presence of propofol increased TSPO density and dramatically reduced its affinity for [(18)F]DPA-714 compared with control. This in vitro effect was not significant with isoflurane. Exposure to propofol and isoflurane differentially influences TSPO interaction with its specific radioligand [(18)F]DPA-714 with subsequent impact on its tissue kinetics and specific binding estimated in vivo using PET. Therefore, the choice of anesthetics and their potential influence on PET data should be considered for the design of imaging studies using TSPO radioligands, especially in a translational research context.
Collapse
Affiliation(s)
- Wadad Saba
- Inserm / CEA / Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, F-91406, France
| | - Sébastien Goutal
- Inserm / CEA / Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, F-91406, France
| | - Bertrand Kuhnast
- Inserm / CEA / Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, F-91406, France
| | - Frédéric Dollé
- Inserm / CEA / Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, F-91406, France
| | - Sylvain Auvity
- Inserm / CEA / Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, F-91406, France
| | - Yoan Fontyn
- Inserm / CEA / Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, F-91406, France
| | - Jérôme Cayla
- Inserm / CEA / Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, F-91406, France
| | - Marie-Anne Peyronneau
- Inserm / CEA / Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, F-91406, France
| | - Héric Valette
- Inserm / CEA / Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, F-91406, France
| | - Nicolas Tournier
- Inserm / CEA / Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, F-91406, France
| |
Collapse
|
20
|
Bannon D, Landau AM, Doudet DJ. How Relevant Are Imaging Findings in Animal Models of Movement Disorders to Human Disease? Curr Neurol Neurosci Rep 2015; 15:53. [DOI: 10.1007/s11910-015-0571-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Trencsényi G, Kertész I, Krasznai ZT, Máté G, Szalóki G, Szabó Judit P, Kárpáti L, Krasznai Z, Márián T, Goda K. 2'[(18)F]-fluoroethylrhodamine B is a promising radiotracer to measure P-glycoprotein function. Eur J Pharm Sci 2015; 74:27-35. [PMID: 25857708 DOI: 10.1016/j.ejps.2015.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/12/2015] [Accepted: 03/31/2015] [Indexed: 12/21/2022]
Abstract
In vivo detection of the emergence of P-glycoprotein (Pgp) mediated multidrug resistance in tumors could be beneficial for patients treated with anticancer drugs. PET technique in combination with appropriate radiotracers could be the most convenient method for detection of Pgp function. Rhodamine derivatives are validated fluorescent probes for measurement of mitochondrial membrane potential and also Pgp function. The aim of this study was to investigate whether 2'[(18)F]-fluoroethylrhodamine B ((18)FRB) a halogenated rhodamine derivative previously synthesized for PET assessment of myocardial perfusion preserved its Pgp substrate character. ATPase assay as well as accumulation experiments carried out using Pgp(+) and Pgp(-) human gynecologic (A2780/A2780(AD) and KB-3-1/KB-V1) and a mouse fibroblast cell pairs (NIH 3T3 and NIH 3T3 MDR1) were applied to study the interaction of (18)FRB with Pgp. ATPase assay proved that (18)FRB is a high affinity substrate of Pgp. Pgp(-) cells accumulated the (18)FRB rapidly in accordance with its lipophilic character. Dissipation of the mitochondrial proton gradient by a proton ionophore CCCP decreased the accumulation of rhodamine 123 (R123) and (18)FRB into Pgp(-) cells. Pgp(+) cells exhibited very low R123 and (18)FRB accumulation (around 1-8% of the Pgp(-) cell lines) which was not sensitive to the mitochondrial proton gradient; rather it was increased by the Pgp inhibitor cyclosporine A (CsA). Based on the above data we conclude that (18)FRB is a high affinity Pgp substrate and consequently a potential PET tracer to detect multidrug resistant tumors as well as the function of physiological barriers expressing Pgp.
Collapse
Affiliation(s)
- György Trencsényi
- Department of Nuclear Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - István Kertész
- Department of Nuclear Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Zoárd T Krasznai
- Department of Obstetrics and Gynecology, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Gábor Máté
- Department of Nuclear Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Gábor Szalóki
- Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - P Szabó Judit
- Department of Nuclear Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Levente Kárpáti
- Department of Nuclear Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Zoltán Krasznai
- Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Teréz Márián
- Department of Nuclear Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| | - Katalin Goda
- Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
22
|
Tóth M, Häggkvist J, Varrone A, Finnema SJ, Doorduin J, Tokunaga M, Higuchi M, Gulyás B, Halldin C. ABC transporter-dependent brain uptake of the 5-HT1B receptor radioligand [ (11)C]AZ10419369: a comparative PET study in mouse, rat, and guinea pig. EJNMMI Res 2014; 4:64. [PMID: 26116125 PMCID: PMC4452686 DOI: 10.1186/s13550-014-0064-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/06/2014] [Indexed: 01/25/2023] Open
Abstract
Background We have explored the possibility that the serotonin 1B receptor radioligand [11C]AZ10419369 is a substrate for adenosine triphosphate (ATP)-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp), Mrp4, and Bcrp, in rodents and whether there is a species difference regarding its blood-brain barrier (BBB) penetration. Methods In a series of preclinical positron emission tomography measurements, we have administered [11C]AZ10419369 to mice, rats, and guinea pigs under baseline conditions and, on separate experimental days, after administration of the ABC transporter inhibitor, cyclosporin A (CsA). Results During baseline conditions, the brain uptake was low in mice and rats, but not in guinea pigs. After CsA pretreatment, the peak whole brain uptake values of [11C]AZ10419369 increased by 207% in mice, 94% in rats, and 157% in guinea pigs. Binding potentials (BPND) could not be estimated during baseline conditions in mice and rats. After CsA pretreatment, the highest BPND values were obtained in the striatum and thalamus (BPND ≈ 0.4) in mice, while in rats, the highest binding areas were the striatum, thalamus, hypothalamus, and periaqueductal gray (BPND ≈ 0.5). In guinea pigs, we did not find any significant changes in BPND between baseline and CsA pretreatment, except in the striatum. Conclusions The results indicate that BBB penetration of [11C]AZ10419369 was hindered by ABC transporter activity in mouse, rat, and guinea pig. This study highlights the importance of ABC transporters in the design of preclinical positron emission tomography (PET) studies. Electronic supplementary material The online version of this article (doi:10.1186/s13550-014-0064-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miklós Tóth
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, 171 76, Stockholm, Sweden,
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Piel M, Vernaleken I, Rösch F. Positron Emission Tomography in CNS Drug Discovery and Drug Monitoring. J Med Chem 2014; 57:9232-58. [DOI: 10.1021/jm5001858] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Markus Piel
- Institute
of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - Ingo Vernaleken
- Department
of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Frank Rösch
- Institute
of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| |
Collapse
|
24
|
Wanek T, Mairinger S, Langer O. Radioligands targeting P-glycoprotein and other drug efflux proteins at the blood-brain barrier. J Labelled Comp Radiopharm 2014; 56:68-77. [PMID: 24285312 DOI: 10.1002/jlcr.2993] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 10/23/2012] [Accepted: 11/06/2012] [Indexed: 02/06/2023]
Abstract
Brain penetration of radiopharmaceuticals or therapeutic drugs may be restricted by adenosine triphosphate-binding cassette (ABC) transporters, such as P-glycoprotein (Pgp), breast cancer resistance protein (BCRP), or the multidrug resistance-associated proteins. These transporters are expressed in the luminal membrane of brain capillary endothelial cells forming the blood-brain barrier (BBB), where they actively efflux a wide range of chemically unrelated compounds from the brain back into the blood. Most efforts to visualize ABC transporters at the BBB with positron emission tomography have concentrated on Pgp. Pgp imaging probes can be classified as radiolabeled substrates or inhibitors. The radiolabeled substrates (R)-[(11) C]verapamil and [(11) C]-N-desmethyl-loperamide have been successfully used to assess Pgp function at the BBB of animals and humans. Radiolabeled Pgp inhibitors, such as [(11) C]tariquidar, [(11) C]elacridar, or [(11) C]laniquidar, were developed to measure Pgp expression levels at the BBB, which has so far remained unsuccessful as these probes were unexpectedly recognized at tracer concentrations by Pgp and BCRP as substrates resulting in low brain uptake. Studies on positron emission tomography tracers for other ABC transporters than Pgp (BCRP and multidrug resistance-associated proteins) are still in their infancy. It is hoped that the experience gained with the imaging of Pgp will be successfully translated to the development of radiotracers to visualize other ABC transporters.
Collapse
Affiliation(s)
- Thomas Wanek
- Health & Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | | | | |
Collapse
|
25
|
Bogdanović RM, Syvänen S, Michler C, Russmann V, Eriksson J, Windhorst AD, Lammertsma AA, de Lange EC, Voskuyl RA, Potschka H. (R)-[11C]PK11195 brain uptake as a biomarker of inflammation and antiepileptic drug resistance: evaluation in a rat epilepsy model. Neuropharmacology 2014; 85:104-12. [PMID: 24880085 DOI: 10.1016/j.neuropharm.2014.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/22/2014] [Accepted: 05/09/2014] [Indexed: 01/02/2023]
Abstract
Neuroinflammation has been suggested as a key determinant of the intrinsic severity of epilepsy. Glial cell activation and associated inflammatory signaling can influence seizure thresholds as well as the pharmacodynamics and pharmacokinetics of antiepileptic drugs. Based on these data, we hypothesized that molecular imaging of microglia activation might serve as a tool to predict drug refractoriness of epilepsy. Brain uptake of (R)-[11C]PK11195, a ligand of the translocator protein 18 kDa and molecular marker of microglia activation, was studied in a chronic model of temporal lobe epilepsy in rats with selection of phenobarbital responders and non-responders. In rats with drug-sensitive epilepsy, (R)-[11C]PK11195 brain uptake values were comparable to those in non-epileptic controls. Analysis in non-responders revealed enhanced brain uptake of up to 39% in different brain regions. The difference might be related to the fact that non-responders exhibited higher baseline seizure frequencies than responders indicating a more pronounced intrinsic disease severity. In hippocampal sections, ED1 immunostaining argued against a general difference in microglia activation between both groups. Our data suggest that TSPO PET imaging might serve as a biomarker for drug resistance in temporal lobe epilepsy. However, it needs to be considered that our findings indicate that the TSPO PET data might merely reflect seizure frequency. Future experimental and clinical studies should further evaluate the validity of TSPO PET data to predict the response to phenobarbital and other antiepileptic drugs in longitudinal studies with scanning before drug exposure and with a focus on the early phase following an epileptogenic brain insult.
Collapse
Affiliation(s)
- Renée Marie Bogdanović
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Christina Michler
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Jonas Eriksson
- Department Medicinal Chemistry, Preclinical PET Platform, Uppsala University, Sweden
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Rob A Voskuyl
- Division of Pharmacology, LACDR, Leiden University, Leiden, The Netherlands; SEIN - Epilepsy Institutes of The Netherlands Foundation, Heemstede, The Netherlands
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
26
|
Schrickx JA, Fink-Gremmels J. Inhibition of P-glycoprotein by psychotherapeutic drugs in a canine cell model. J Vet Pharmacol Ther 2014; 37:515-7. [DOI: 10.1111/jvp.12111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/14/2014] [Indexed: 01/16/2023]
Affiliation(s)
- J. A. Schrickx
- Faculty of Veterinary Medicine; Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| | - J. Fink-Gremmels
- Faculty of Veterinary Medicine; Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| |
Collapse
|
27
|
Piel M, Schmitt U, Bausbacher N, Buchholz HG, Gründer G, Hiemke C, Rösch F. Evaluation of P-glycoprotein (abcb1a/b) modulation of [(18)F]fallypride in MicroPET imaging studies. Neuropharmacology 2013; 84:152-8. [PMID: 23994301 DOI: 10.1016/j.neuropharm.2013.04.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 03/25/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Abstract
[(18)F]Fallypride ([(18)F]FP) is an important and routinely used D2/D3 antagonist for quantitative imaging of dopaminergic neurotransmission in vivo. Recently it was shown that the brain uptake of the structurally related [(11)C]raclopride is modulated by P-glycoprotein (P-gp), an important efflux transporter at the blood-brain barrier. The purpose of this study was to determine whether the brain uptake of [(18)F]FP is influenced by P-gp. For examination of this possible modulation microPET studies were performed in a rat and a mouse model. Hence, [(18)F]FP was applied to Sprague Dawley rats, half of them being treated with the P-gp inhibitor cyclosporine A (CsA). In a second experimental series the tracer was applied to three different groups of FVB/N mice: wild type, P-gp double knockout (abcb1a/1b (-/-)) and CsA-treated mice. In CsA-treated Sprague Dawley rats [(18)F]FP showed an elevated standard uptake value in the striatum compared to the control animals. In FVB/N mice a similar effect was observed, showing an increasing uptake from wild type to CsA-treated and double knockout mice. Since genetically or pharmacologically induced reduction of P-gp activity increased the uptake of [(18)F]FP markedly, we conclude that [(18)F]FP is indeed a substrate of P-gp and that the efflux pump modulates its brain uptake. This effect - if true for humans - may have particular impact on clinical studies using [(18)F]FP for assessment of D2/3 receptor occupancy by antipsychotic drugs. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
Affiliation(s)
- Markus Piel
- Institute of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany.
| | - Ulrich Schmitt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | - Nicole Bausbacher
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | - Hans-Georg Buchholz
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | - Gerhard Gründer
- Department of Psychiatry and Psychotherapy, RWTH Aachen University, Aachen, Germany.
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany.
| |
Collapse
|
28
|
Hosten B, Boisgard R, Jacob A, Goutal S, Saubaméa B, Dollé F, Scherrmann JM, Cisternino S, Tournier N. [¹¹C]befloxatone brain kinetics is not influenced by Bcrp function at the blood-brain barrier: a PET study using Bcrp TGEM knockout rats. Eur J Pharm Sci 2013; 50:520-5. [PMID: 23981334 DOI: 10.1016/j.ejps.2013.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/18/2013] [Accepted: 08/10/2013] [Indexed: 12/22/2022]
Abstract
Knockout (KO) animals are useful tools with which to assess the interplay between P-glycoprotein (P-gp; Abcb1) and the breast cancer resistance protein (Bcrp, Abcg2), two major ABC-transporters expressed at the blood-brain barrier (BBB). However, one major drawback of such deficient models is the possible involvement of compensation between transporters. In the present study, P-gp and Bcrp distribution in the brain as well as P-gp expression levels at the BBB were compared between the Bcrp TGEM KO rat model and the wild-type (WT) strain. Therefore, we used confocal microscopy of brain slices and western blot analysis of the isolated brain microvessels forming the BBB. This deficient rat model was used to assess the influence of Bcrp on the brain and peripheral kinetics of its substrate [(11)C]befloxatone using positron emission tomography (PET). The influence of additional P-gp inhibition was tested using elacridar (GF120918) 2 mg/kg in Bcrp KO rats. The distribution pattern of P-gp in the brain as well as P-gp expression levels at the BBB was similar in Bcrp-deficient and WT rats. Brain and peripheral kinetics of [(11)C]befloxatone were not influenced by the lack of Bcrp. Neither was the brain uptake of [(11)C]befloxatone in Bcrp-deficient rats influenced by the inhibition of P-gp. In conclusion, the Bcrp-deficient rat strain, in which we detected no compensatory mechanism or modification of P-gp expression as compared to WT rats, is a suitable model to study Bcrp function separately from that of P-gp at the BBB. However, although selectively transported by BCRP in vitro, our results suggest that [(11)C]befloxatone PET imaging might not be biased by impaired function of this transporter in vivo.
Collapse
Affiliation(s)
- Benoit Hosten
- INSERM U705, CNRS UMR8206, Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité, Université Paris Diderot, Paris F-75006, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Römermann K, Wanek T, Bankstahl M, Bankstahl JP, Fedrowitz M, Müller M, Löscher W, Kuntner C, Langer O. (R)-[(11)C]verapamil is selectively transported by murine and human P-glycoprotein at the blood-brain barrier, and not by MRP1 and BCRP. Nucl Med Biol 2013; 40:873-8. [PMID: 23845421 PMCID: PMC3775124 DOI: 10.1016/j.nucmedbio.2013.05.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/17/2013] [Accepted: 05/30/2013] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Positron emission tomography (PET) with [(11)C]verapamil, either in racemic form or in form of the (R)-enantiomer, has been used to measure the functional activity of the adenosine triphosphate-binding cassette (ABC) transporter P-glycoprotein (Pgp) at the blood-brain barrier (BBB). There is some evidence in literature that verapamil inhibits two other ABC transporters expressed at the BBB, i.e. multidrug resistance protein 1 (MRP1) and breast cancer resistance protein (BCRP). However, previous data were obtained with micromolar concentrations of verapamil and do not necessarily reflect the transporter selectivity of verapamil at nanomolar concentrations, which are relevant for PET experiments. The aim of this study was to assess the selectivity of verapamil, in nanomolar concentrations, for Pgp over MRP1 and BCRP. METHODS Concentration equilibrium transport assays were performed with [(3)H]verapamil (5 nM) in cell lines expressing murine or human Pgp, human MRP1, and murine Bcrp1 or human BCRP. Paired PET scans were performed with (R)-[(11)C]verapamil in female FVB/N (wild-type), Mrp1((-/-)), Mdr1a/b((-/-)), Bcrp1((-/-)) and Mdr1a/b((-/-))Bcrp1((-/-)) mice, before and after Pgp inhibition with 15 mg/kg tariquidar. RESULTS In vitro transport experiments exclusively showed directed transport of [(3)H]verapamil in Mdr1a- and MDR1-overexpressing cells which could be inhibited by tariquidar (0.5μM). In PET scans acquired before tariquidar administration, brain-to-blood ratio (Kb,brain) of (R)-[(11)C]verapamil was low in wild-type (1.3 ± 0.1), Mrp1((-/-)) (1.4 ± 0.1) and Bcrp1((-/-)) mice (1.8 ± 0.1) and high in Mdr1a/b((-/-)) (6.9 ± 0.8) and Mdr1a/b((-/-))Bcrp1((-/-)) mice (7.9 ± 0.5). In PET scans after tariquidar administration, Kb,brain was significantly increased in Pgp-expressing mice (wild-type: 5.0 ± 0.3-fold, Mrp1((-/-)): 3.2 ± 0.6-fold, Bcrp1((-/-)): 4.3 ± 0.1-fold) but not in Pgp knockout mice (Mdr1a/b((-/-)) and Mdr1a/b((-/-))Bcrp1((-/-))). CONCLUSION Our combined in vitro and in vivo data demonstrate that verapamil, in nanomolar concentrations, is selectively transported by Pgp and not by MRP1 and BCRP at the BBB, which supports the use of (R)-[(11)C]verapamil or racemic [(11)C]verapamil as PET tracers of cerebral Pgp function.
Collapse
Affiliation(s)
- Kerstin Römermann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, and Center for Systems Neuroscience, Hannover, Germany; Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
In Vivo Characterization of Interactions on Transporters. TRANSPORTERS IN DRUG DEVELOPMENT 2013. [DOI: 10.1007/978-1-4614-8229-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Schmidt ME, de Boer P, Andrews R, Neyens M, Rossenu S, William Falteos D, Mannaert E. D₂-receptor occupancy measurement of JNJ-37822681, a novel fast off-rate D₂-receptor antagonist, in healthy subjects using positron emission tomography: single dose versus steady state and dose selection. Psychopharmacology (Berl) 2012; 224:549-57. [PMID: 22773165 DOI: 10.1007/s00213-012-2782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
Abstract
RATIONALE JNJ-37822681 is a highly selective, fast dissociating dopamine D₂-receptor antagonist being developed for the treatment of schizophrenia. A single dose [¹¹C]raclopride positron emission tomography (PET) imaging study had yielded an estimated clinical dose range. Receptor occupancy at steady state was explored to test the validity of the single-dose estimates during chronic treatment. OBJECTIVES The aims of this study are to characterize single and multiple dose pharmacokinetics and obtain striatal D₂-receptor occupancies to predict doses for efficacy studies and assess the safety and tolerability of JNJ-37822681. METHODS An open-label single- and multiple-dose study with 10 mg JNJ-37822681 (twice daily for 13 doses) was performed in 12 healthy men. Twenty [¹¹C]raclopride PET scans (up to 60 h after the last dose) from 11 subjects were used to estimate D₂-receptor occupancy. A direct effect O (max) model was applied to explore the relationship between JNJ-37822681 plasma concentration and striatal D₂-receptor occupancy. RESULTS Steady state was reached after 4-5 days of twice daily dosing. JNJ-37822681 plasma concentrations of 3.17 to 63.0 ng/mL resulted in D₂ occupancies of 0 % to 62 %. The concentration leading to 50 % occupancy was 18.5 ng/mL (coefficient of variation 3.9 %) after single dose and 26.0 ng/mL (8.2 %) at steady state. JNJ-37822681 was well tolerated. CONCLUSIONS Receptor occupancy after single dose and at steady state differed for JNJ-37822681 and the robustness of the estimates at steady state will be tested in phase 2 studies. Dose predictions indicated that 10, 20, and 30 mg JNJ-37822681 twice daily could be suitable for these studies.
Collapse
Affiliation(s)
- Mark E Schmidt
- Experimental Medicine, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | | | | | | | | |
Collapse
|
32
|
PET Tracers for Clinical Imaging of Breast Cancer. JOURNAL OF ONCOLOGY 2012; 2012:710561. [PMID: 22973310 PMCID: PMC3437678 DOI: 10.1155/2012/710561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/13/2012] [Indexed: 11/17/2022]
Abstract
Molecular imaging of breast cancer has undoubtedly permitted a substantial development of the overall diagnostic accuracy of this malignancy in the last years. Accurate tumour staging, design of individually suited therapies, response evaluation, early detection of recurrence and distant lesions have also evolved in parallel with the development of novel molecular imaging approaches. In this context, positron emission tomography (PET) can be probably seen as the most interesting molecular imaging technology with straightforward clinical application for such purposes. Dozens of radiotracers for PET imaging of breast cancer have been tested in laboratory animals. However, in this review we shall focus mainly in the smaller group of PET radiopharmaceuticals that have lead through into the clinical setting. PET imaging can be used to target general metabolic phenomena related to tumoural transformation, including glucose metabolism and cell proliferation, but can also be directed to specific hormone receptors that are characteristic of the breast cancer cell. Many other receptors and transport molecules present in the tumour cells could also be of interest for imaging. Furthermore, molecules related with the tumour microenvironment, tumour induced angiogenesis or even hypoxia could also be used as molecular biomarkers for breast cancer imaging.
Collapse
|
33
|
Discrepancies in the P-glycoprotein-mediated transport of (18)F-MPPF: a pharmacokinetic study in mice and non-human primates. Pharm Res 2012; 29:2468-76. [PMID: 22644589 DOI: 10.1007/s11095-012-0776-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/09/2012] [Indexed: 01/15/2023]
Abstract
PURPOSE Several in vivo studies have found that the 5-HT(1A) PET radioligand (18)F-MPPF is a substrate of rodent P-glycoprotein (P-gp). However, in vitro assays suggest that MPPF is not a substrate of human P-gp. We have now tested the influence of inhibiting P-gp on the brain kinetics of (18)F-MPPF in mice and non-human primates. METHODS We measured the peripheral kinetics (arterial input function, metabolism, free fraction in plasma (f(P))) during (18)F-MPPF brain PET scanning in baboons with or without cyclosporine A (CsA) infusion. We measured (3)H-MPPF transport at the mouse BBB using in situ brain perfusion in P-gp/Bcrp deficient mice and after inhibiting P-gp with PSC833. RESULTS There was an unexpected 1.9-fold increase in brain area under the curve in CsA-treated baboons (n = 4), with no change in radiometabolite-corrected arterial input. However, total volume of distribution corrected for f(P) (V(T)/f(P)) remained unchanged. In situ brain perfusion showed that P-gp restricted the permeability of the mouse BBB to (3)H-MPPF while Bcrp did not. CONCLUSION These and previous in vitro results suggest that P-gp may not influence the permeability of human BBB to (18)F-MPPF. However, CsA treatment increased (18)F-MPPF free fraction, which is responsible for a misleading, P-gp unrelated enhanced brain uptake.
Collapse
|
34
|
Froklage FE, Syvänen S, Hendrikse NH, Huisman MC, Molthoff CF, Tagawa Y, Reijneveld JC, Heimans JJ, Lammertsma AA, Eriksson J, de Lange EC, Voskuyl RA. [11C]Flumazenil brain uptake is influenced by the blood-brain barrier efflux transporter P-glycoprotein. EJNMMI Res 2012; 2:12. [PMID: 22455873 PMCID: PMC3348032 DOI: 10.1186/2191-219x-2-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/28/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND [11C]Flumazenil and positron emission tomography (PET) are used clinically to assess gamma-aminobutyric acid (GABA)-ergic function and to localize epileptic foci prior to resective surgery. Enhanced P-glycoprotein (P-gp) activity has been reported in epilepsy and this may confound interpretation of clinical scans if [11C]flumazenil is a P-gp substrate. The purpose of this study was to investigate whether [11C]flumazenil is a P-gp substrate. METHODS [11C]Flumazenil PET scans were performed in wild type (WT) (n = 9) and Mdr1a/1b, (the genes that encode for P-gp) double knockout (dKO) (n = 10) mice, and in naive rats (n = 10). In parallel to PET scanning, [11C]flumazenil plasma concentrations were measured in rats. For 6 of the WT and 6 of the dKO mice a second, [11C]flumazenil scan was acquired after administration of the P-gp inhibitor tariquidar. Cerebral [11C]flumazenil concentrations in WT and Mdr1a/1b dKO mice were compared (genetic disruption model). Furthermore, pre and post P-gp-blocking cerebral [11C]flumazenil concentrations were compared in all animals (pharmacological inhibition model). RESULTS Mdr1a/1b dKO mice had approximately 70% higher [11C]flumazenil uptake in the brain than WT mice. After administration of tariquidar, cerebral [11C]flumazenil uptake in WT mice increased by about 80% in WT mice, while it remained the same in Mdr1a/1b dKO mice. In rats, cerebral [11C]flumazenil uptake increased by about 60% after tariquidar administration. Tariquidar had only a small effect on plasma clearance of flumazenil. CONCLUSIONS The present study showed that [11C]flumazenil is a P-gp substrate in rodents. Consequently, altered cerebral [11C]flumazenil uptake, as observed in epilepsy, may not reflect solely GABAA receptor density changes but also changes in P-gp activity.
Collapse
Affiliation(s)
- Femke E Froklage
- Division of Pharmacology, LACDR, Leiden University, PO Box 9502, Leiden, 2300 RA, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Schafer KN, Kim S, Matzavinos A, Kuret J. Selectivity requirements for diagnostic imaging of neurofibrillary lesions in Alzheimer's disease: a simulation study. Neuroimage 2012; 60:1724-33. [PMID: 22273569 DOI: 10.1016/j.neuroimage.2012.01.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/23/2011] [Accepted: 01/08/2012] [Indexed: 10/14/2022] Open
Abstract
Whole-brain imaging is a promising strategy for premortem detection of tau-bearing neurofibrillary lesions that accumulate in Alzheimer's disease. However, the approach is complicated by the high concentrations of potentially confounding binding sites presented by beta-amyloid plaques. To predict the contributions of relative binding affinity and binding site density to the imaging-dynamics and selectivity of a hypothetical tau-directed radiotracer, a nonlinear, four-tissue compartment pharmacokinetic model of diffusion-mediated radiotracer uptake and distribution was developed. Initial estimates of nonspecific binding and brain uptake parameters were made by fitting data from a previously published kinetic study of Pittsburgh Compound B, an established amyloid-directed radiotracer. The resulting estimates were then used to guide simulations of tau binding selectivity while assuming early-stage accumulation of disease pathology. The simulations suggest that for tau aggregates to represent at least 80% of specific binding signal, binding affinity or density selectivities for tau over beta-amyloid should be at least 20- or 50-fold, respectively. The simulations also suggest, however, that overcoming nonspecific binding will be an additional challenge for tau-directed radiotracers owing to low concentrations of available binding sites. Overall, nonlinear modeling can provide insight into the performance characteristics needed for tau-directed radiotracers in vivo.
Collapse
Affiliation(s)
- Kelsey N Schafer
- Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
36
|
van Assema DME, Lubberink M, Bauer M, van der Flier WM, Schuit RC, Windhorst AD, Comans EFI, Hoetjes NJ, Tolboom N, Langer O, Müller M, Scheltens P, Lammertsma AA, van Berckel BNM. Blood-brain barrier P-glycoprotein function in Alzheimer's disease. ACTA ACUST UNITED AC 2011; 135:181-9. [PMID: 22120145 DOI: 10.1093/brain/awr298] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A major pathological hallmark of Alzheimer's disease is accumulation of amyloid-β in senile plaques in the brain. Evidence is accumulating that decreased clearance of amyloid-β from the brain may lead to these elevated amyloid-β levels. One of the clearance pathways of amyloid-β is transport across the blood-brain barrier via efflux transporters. P-glycoprotein, an efflux pump highly expressed at the endothelial cells of the blood-brain barrier, has been shown to transport amyloid-β. P-glycoprotein function can be assessed in vivo using (R)-[(11)C]verapamil and positron emission tomography. The aim of this study was to assess blood-brain barrier P-glycoprotein function in patients with Alzheimer's disease compared with age-matched healthy controls using (R)-[(11)C]verapamil and positron emission tomography. In 13 patients with Alzheimer's disease (age 65 ± 7 years, Mini-Mental State Examination 23 ± 3), global (R)-[(11)C]verapamil binding potential values were increased significantly (P = 0.001) compared with 14 healthy controls (aged 62 ± 4 years, Mini-Mental State Examination 30 ± 1). Global (R)-[(11)C]verapamil binding potential values were 2.18 ± 0.25 for patients with Alzheimer's disease and 1.77 ± 0.41 for healthy controls. In patients with Alzheimer's disease, higher (R)-[(11)C]verapamil binding potential values were found for frontal, parietal, temporal and occipital cortices, and posterior and anterior cingulate. No significant differences between groups were found for medial temporal lobe and cerebellum. These data show altered kinetics of (R)-[(11)C]verapamil in Alzheimer's disease, similar to alterations seen in studies where P-glycoprotein is blocked by a pharmacological agent. As such, these data indicate that P-glycoprotein function is decreased in patients with Alzheimer's disease. This is the first direct evidence that the P-glycoprotein transporter at the blood-brain barrier is compromised in sporadic Alzheimer's disease and suggests that decreased P-glycoprotein function may be involved in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Daniëlle M E van Assema
- Department of Nuclear Medicine and PET Research, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hall MD, Pike VW. Avoiding barriers to PET radioligand development: cellular assays of brain efflux transporters. J Nucl Med 2011; 52:338-40. [PMID: 21321273 DOI: 10.2967/jnumed.110.081125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|