1
|
Liang Y, Wang X, Chen Y, Zeng X, Liu J, Zhao Z, Yang H, Zhang Q, Li J, Guo Z, Zhang X. Development and Evaluation of [ 68Ga]Ga-Labeled Riboflavin Derivative for RFVT3-Targeted PET Imaging of Melanoma in Mice. Mol Pharm 2024; 21:4960-4969. [PMID: 39279392 DOI: 10.1021/acs.molpharmaceut.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The limited progress in treatment options and the alarming survival rates in advanced melanoma emphasize the significant research importance of early melanoma diagnosis. RFVT3, a crucial protein at the core of energy metabolism reprogramming in melanoma, might play a pivotal role in early detection. In this study, [68Ga]Ga-NOTA-RF, based on riboflavin (RF), was rationally developed and validated, serving as an innovative tool for positron emission tomography (PET) imaging of RFVT3 expression in melanoma. The in vitro assays of RFVT3 specificity of [68Ga]Ga-NOTA-RF were performed on B16F10 melanoma cells. Then, PET imaging of melanoma was investigated in B16F10 allograft mouse models with varying volumes. Biodistribution studies are used to clarify the behavior of [68Ga]Ga-NOTA-RF in vivo. [68Ga]Ga-NOTA-RF was obtained with high radiochemical purity (>95%). A significant uptake (37.79 ± 6.86%, n = 4) of [68Ga]Ga-NOTA-RF was observed over time in B16F10 melanoma cells, which was significantly inhibited by RFVT3 inhibitors RF or methylene blue (MB), demonstrating the specific binding of [68Ga]Ga-NOTA-RF. At 60 min postinjection, the tumor-to-muscle (T/M) ratio of [68Ga]Ga-NOTA-RF was 4.03 ± 0.34, higher than that of the RF-blocked group (2.63 ± 0.19) and MB-blocked group (2.14 ± 0.20). The T/M ratios for three distinct tumor volumes-small (5 mm), medium (10 mm), and large (15 mm) were observed to be 5.25 ± 0.28, 4.03 ± 0.34, and 3.19 ± 0.55, respectively. The expression of RFVT3 was validated by immunohistochemical staining in various tumor models, with small B16F10 tumors exhibiting the highest expression. [68Ga]Ga-NOTA-RF demonstrates promising properties for the early diagnosis of melanoma and the examination of minute metastatic lesions, indicating its potential to assist in guiding clinical treatment decisions.
Collapse
Affiliation(s)
- Yuanyuan Liang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xueqi Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Yingxi Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xinying Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jia Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Zuoquan Zhao
- Theranostics and Translational Research Center, Institute of Clinical Medicine & Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Hongzhang Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Qinglin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jindian Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine & Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| |
Collapse
|
2
|
Zhang X, Lin Z, Feng Y, Kang F, Wang J, Lan X. Melanin-Targeting Radiotracers and Their Preclinical, Translational, and Clinical Status: From Past to Future. J Nucl Med 2024; 65:19S-28S. [PMID: 38719238 DOI: 10.2967/jnumed.123.266945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Melanin is one of the representative biomarkers of malignant melanoma and a potential target for diagnosis and therapy. With advancements in chemistry and radiolabeling technologies, promising strides have been made to synthesize radiolabeled melanin-binding molecules for various applications. We present an overview of melanin-targeted radiolabeled molecules and compare their features reported in preclinical studies. Clinical practice and trials are also discussed to elaborate on the safety and validity of the probes, and expanded applications beyond melanoma are reviewed. Melanin-targeted imaging holds potential value in the diagnosis, staging, and prognostic assessment of melanoma and other applications. Melanin-targeted radionuclide therapy possesses immense potential but requires more clinical validation. Furthermore, an intriguing avenue for future research involves expanding the application scope of melanin-targeted probes and exploring their value.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Zhaoguo Lin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Yuan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| |
Collapse
|
3
|
Dall'Olmo L, Papa N, Surdo NC, Marigo I, Mocellin S. Alpha-melanocyte stimulating hormone (α-MSH): biology, clinical relevance and implication in melanoma. J Transl Med 2023; 21:562. [PMID: 37608347 PMCID: PMC10463388 DOI: 10.1186/s12967-023-04405-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Alpha-melanocyte stimulating hormone (α-MSH) and its receptor, melanocortin 1 receptor (MC1R), have been proposed as potential target for anti-cancer strategies in melanoma research, due to their tissue specific expression and involvement in melanocyte homeostasis. However, their role in prevention and treatment of melanoma is still debated and controversial. Although a large body of evidence supports α-MSH in preventing melanoma development, some preclinical findings suggest that the α-MSH downstream signalling may promote immune escape and cancer resistance to therapy. Additionally, in metastatic melanoma both MC1R and α-MSH have been reported to be overexpressed at levels much higher than normal cells. Furthermore, targeted therapy (e.g. BRAF inhibition in BRAFV600E mutant tumours) has been shown to enhance this phenomenon. Collectively, these data suggest that targeting MC1R could serve as an approach in the treatment of metastatic melanoma. In this review, we explore the molecular biology of α-MSH with particular emphasis into its tumor-related properties, whilst elaborating the experimental evidence currently available regarding the interplay between α-MSH/MC1R axis, melanoma and antitumor strategies.
Collapse
Affiliation(s)
- Luigi Dall'Olmo
- Department of Surgical Oncological and Gastroenterological Sciences, Padua University, Via Giustiniani 2, 35128, Padua, Italy.
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy.
| | - Nicole Papa
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy
| | - Nicoletta Concetta Surdo
- Neuroscience Institute, National Research Council of Italy (CNR), 35121, Padua, Italy
- Veneto Institute of Molecular Medicine VIMM, Foundation for Advanced Biomedical Research, 35129, Padua, Italy
| | - Ilaria Marigo
- Department of Surgical Oncological and Gastroenterological Sciences, Padua University, Via Giustiniani 2, 35128, Padua, Italy
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy
| | - Simone Mocellin
- Department of Surgical Oncological and Gastroenterological Sciences, Padua University, Via Giustiniani 2, 35128, Padua, Italy
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy
| |
Collapse
|
4
|
Prendergast CM, Capaccione KM, Lopci E, Das JP, Shoushtari AN, Yeh R, Amin D, Dercle L, De Jong D. More than Just Skin-Deep: A Review of Imaging's Role in Guiding CAR T-Cell Therapy for Advanced Melanoma. Diagnostics (Basel) 2023; 13:992. [PMID: 36900136 PMCID: PMC10000712 DOI: 10.3390/diagnostics13050992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Advanced melanoma is one of the deadliest cancers, owing to its invasiveness and its propensity to develop resistance to therapy. Surgery remains the first-line treatment for early-stage tumors but is often not an option for advanced-stage melanoma. Chemotherapy carries a poor prognosis, and despite advances in targeted therapy, the cancer can develop resistance. CAR T-cell therapy has demonstrated great success against hematological cancers, and clinical trials are deploying it against advanced melanoma. Though melanoma remains a challenging disease to treat, radiology will play an increasing role in monitoring both the CAR T-cells and response to therapy. We review the current imaging techniques for advanced melanoma, as well as novel PET tracers and radiomics, in order to guide CAR T-cell therapy and manage potential adverse events.
Collapse
Affiliation(s)
- Conor M. Prendergast
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kathleen M. Capaccione
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Egesta Lopci
- Department of Nuclear Medicine, IRCSS Humanitas Research Hospital, 20089 Milan, Italy
| | - Jeeban P. Das
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Randy Yeh
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel Amin
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Laurent Dercle
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dorine De Jong
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
5
|
Wang Y, Li M, Zhang X, Ji H, Wang W, Han N, Li H, Xu X, Lan X. 18F-5-FPN: A Specific Probe for Monitoring Photothermal Therapy Response in Malignant Melanoma. Mol Pharm 2023; 20:572-581. [PMID: 36382713 DOI: 10.1021/acs.molpharmaceut.2c00742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previously, we successfully synthesized a 18F-labeled positron-emission tomography (PET) tracer, termed 18F-5-fluoro-N-(2-[diethylamino]ethyl)picolinamide (18F-5-FPN), with high specificity for melanin. In this study, we sought to investigate the value of 18F-5-FPN in assessing the response to photothermal therapy (PTT) in melanoma via comparison with 18F-fluorodeoxyglucose (18F-FDG) to reveal an early response, recognize early recurrence, and distinguish the inflammatory response during the treatment. B16F10, inflammatory, and MDA-MB-231 models were subjected to 18F-FDG PET and 18F-5-FPN PET static acquisitions. We compared quantitative data to assess the specificity of different agents for different diseases. B16F10 and MDA-MB-231subcutaneous tumor models were irradiated with an 808 nm laser for PTT. Their survival was documented to observe the efficacy of and response to PTT, using 18F-5-FPN and 18F-FDG PET. 18F-5-FPN accumulated in B16F10 cell xenografts only, whereas 18F-FDG accumulated in all three models. Melanin in B16F10 cell xenografts successfully transformed the optical energy into heat. Hematoxylin and eosin (H&E) staining at 24 h revealed destruction and extensive necrosis of tumor tissue. PTT rapidly inhibited the growth of B16F10 cell xenografts and prolonged the median survival. The mean tumor uptakes of 18F-5-FPN on day 2 (7.52 ± 3.65 %ID/g) and day 6 (10.22 ± 6.00 %ID/g) were much lower than that before treatment (18.33 ± 4.98 %ID/g, p < 0.01). However, a significant difference in 18F-FDG uptakes was not found between day 1 after PTT and before treatment. Compared with 18F-FDG, 18F-5-FPN PET could estimate PTT efficacy in melanoma, monitor minimal recurrence, and distinguish melanoma from inflammation and other carcinoma types, thanks to its high affinity to melanin. 18F-5-FPN may provide a new approach for precise and accurate evaluation of response, timely management of therapeutic regimens, and sensitive follow-up.
Collapse
Affiliation(s)
- Yichun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.,Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.,Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.,Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenxia Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Na Han
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Huiling Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaodong Xu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.,Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| |
Collapse
|
6
|
Shi H, Cheng Z. MC1R and melanin-based molecular probes for theranostic of melanoma and beyond. Acta Pharmacol Sin 2022; 43:3034-3044. [PMID: 36008707 PMCID: PMC9712491 DOI: 10.1038/s41401-022-00970-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma is accounting for most of skin cancer-associated mortality. The incidence of melanoma increased every year worldwide especially in western countries. Treatment efficiency is highly related to the stage of melanoma. Therefore, accurate staging and restaging play a pivotal role in the management of melanoma patients. Though 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET) has been widely used in imaging of tumor metastases, novel radioactive probes for specific targeted imaging of both primary and metastasized melanoma are still desired. Melanocortin receptor 1 (MC1R) and melanin are two promising biomarkers specifically for melanoma, and numerous research groups including us have been actively developing a plethora of radioactive probes based on targeting of MC1R or melanin for over two decades. In this review, some of the MC1R-targeted tracers and melanin-associated molecular imaging probes developed in our research and others have been briefly summarized, and it provides a quick glance of melanoma-targeted probe design and may contribute to further developing novel molecular probes for cancer theranostics.
Collapse
Affiliation(s)
- Hui Shi
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
7
|
Translating Molecules into Imaging—The Development of New PET Tracers for Patients with Melanoma. Diagnostics (Basel) 2022; 12:diagnostics12051116. [PMID: 35626272 PMCID: PMC9139963 DOI: 10.3390/diagnostics12051116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Melanoma is a deadly disease that often exhibits relentless progression and can have both early and late metastases. Recent advances in immunotherapy and targeted therapy have dramatically increased patient survival for patients with melanoma. Similar advances in molecular targeted PET imaging can identify molecular pathways that promote disease progression and therefore offer physiological information. Thus, they can be used to assess prognosis, tumor heterogeneity, and identify instances of treatment failure. Numerous agents tested preclinically and clinically demonstrate promising results with high tumor-to-background ratios in both primary and metastatic melanoma tumors. Here, we detail the development and testing of multiple molecular targeted PET-imaging agents, including agents for general oncological imaging and those specifically for PET imaging of melanoma. Of the numerous radiopharmaceuticals evaluated for this purpose, several have made it to clinical trials and showed promising results. Ultimately, these agents may become the standard of care for melanoma imaging if they are able to demonstrate micrometastatic disease and thus provide more accurate information for staging. Furthermore, these agents provide a more accurate way to monitor response to therapy. Patients will be able to receive treatment based on tumor uptake characteristics and may be able to be treated earlier for lesions that with traditional imaging would be subclinical, overall leading to improved outcomes for patients.
Collapse
|
8
|
Thivat E, Rouanet J, Auzeloux P, Sas N, Jouberton E, Levesque S, Billoux T, Mansard S, Molnar I, Chanchou M, Fois G, Maigne L, Chezal JM, Miot-Noirault E, D’Incan M, Durando X, Cachin F. Phase I study of [131I] ICF01012, a targeted radionuclide therapy, in metastatic melanoma: MELRIV-1 protocol. BMC Cancer 2022; 22:417. [PMID: 35428211 PMCID: PMC9013026 DOI: 10.1186/s12885-022-09495-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
Background Benzamide-based radioligands targeting melanin were first developed for imaging melanoma and then for therapeutic purpose with targeted radionuclide therapy (TRT). [131I]ICF01012 presents a highly favorable pharmacokinetics profile in vivo for therapy. Tumour growth reduction and increase survival have been established in preclinical models of melanoma. According the these preclinical results, we initiate a first-in-human study aimed to determine the recommended dose of [131I]ICF01012 to administer for the treatment of patients with pigmented metastatic melanoma. Methods The MELRIV-1 trial is an open-label, multicentric, dose-escalation phase I trial. The study is divided in 2 steps, a selection part with an IV injection of low activity of [131I]ICF01012 (185 MBq at D0) to select patients who might benefit from [131I]ICF01012 TRT in therapeutic part, i.e. patient presenting at least one tumour lesion with [131I]ICF01012 uptake and an acceptable personalized dosimetry to critical organs (liver, kidney, lung and retina). According to dose escalation scheme driven by a Continual Reassessment Method (CRM) design, a single therapeutic injection of 800 MBq/m2, or 1600 MBq/m2, or 2700 MBq/m2 or 4000 MBq/m2 of [131I]ICF01012 will be administered at D11 (± 4 days). The primary endpoint is the recommended therapeutic dose of [131I]ICF01012, with DLT defined as any grade 3-4 NCI-CT toxicity during the 6 weeks following therapeutic dose. Safety, pharmacokinetic, biodistribution (using planar whole body and SPECT-CT acquisitions), sensitivity / specificity of [131I]ICF01012, and therapeutic efficacy will be assessed as secondary objectives. Patients who received therapeutic injection will be followed until 3 months after TRT. Since 6 to 18 patients are needed for the therapeutic part, up to 36 patients will be enrolled in the selection part. Discussion This study is a first-in-human trial evaluating the [131I]ICF01012 TRT in metastatic malignant melanomas with a diagnostic dose of the [131I]ICF01012 to select the patients who may benefit from a therapeutic dose of [131I]ICF01012, with at least one tumor lesion with [131I]ICF01012 uptake and an acceptable AD to healthy organ. Trial registration Clinicaltrials.gov: NCT03784625. Registered on December 24, 2018. Identifier in French National Agency for the Safety of Medicines and Health Products (ANSM): N°EudraCT 2016-002444-17.
Collapse
|
9
|
Alipour R, Iravani A, Hicks RJ. PET Imaging of Melanoma. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Rouanet J, Quintana M, Auzeloux P, Cachin F, Degoul F. Benzamide derivative radiotracers targeting melanin for melanoma imaging and therapy: Preclinical/clinical development and combination with other treatments. Pharmacol Ther 2021; 224:107829. [PMID: 33662452 DOI: 10.1016/j.pharmthera.2021.107829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
Cutaneous melanoma arises from proliferating melanocytes, cells specialized in the production of melanin. This property means melanin can be considered as a target for monitoring melanoma patients using nuclear imaging or targeted radionuclide therapy (TRT). Since the 1970s, many researchers have shown that specific molecules can interfere with melanin. This paper reviews some such molecules: benzamide structures improved to increase their pharmacokinetics for imaging or TRT. We first describe the characteristics and biosynthesis of melanin, and the main features of melanin tracers. The second part summarizes the preclinical and corresponding clinical studies on imaging. The last section presents TRT results from ongoing protocols and discusses combinations with other therapies as an opportunity for melanoma non-responders or patients resistant to treatments.
Collapse
Affiliation(s)
- Jacques Rouanet
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France; Department of Dermatology and Oncodermatology, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63000 Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand F-63011, France.
| | - Mercedes Quintana
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| | - Philippe Auzeloux
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| | - Florent Cachin
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France; Centre Jean Perrin, Clermont-Ferrand F-63011, France.
| | - Françoise Degoul
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| |
Collapse
|
11
|
Abstract
Melanin exists in the most of melanoma lesions. Melanin plays an important role in melanoma progression, metastasis, therapy response, and the overall survival of patients. Therefore, melanin is a critical target for melanoma diagnosis and therapy. Many melanin targeting probes, such as radioisotope-labeled benzamide analogs, have been developed for melanoma diagnosis using positron emission tomography (PET). The N-(2-(diethylamino)-ethyl)-18F-5-fluoropicolinamide (18F-P3BZA) probe is one of the benzamide analogs and has been preliminarily tested for clinical diagnosis of melanoma in our recent studies. It has shown high specificity and favorable in vivo performance for PET of melanoma. Herein, we describe the detailed synthesis protocol of 18F-P3BZA and PET/CT imaging procedure for animal models and patients.
Collapse
|
12
|
Jokar N, Assadi M, Yordanova A, Ahmadzadehfar H. Bench-to-Bedside Theranostics in Nuclear Medicine. Curr Pharm Des 2020; 26:3804-3811. [PMID: 32067609 DOI: 10.2174/1381612826666200218104313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/11/2019] [Indexed: 11/22/2022]
Abstract
The optimum selection of the appropriate radiolabelled probe for the right target and the right patient is the foundation of theranostics in personalised medicine. In nuclear medicine, this process is realised through the appropriate choice of radiopharmaceuticals based on molecular biomarkers regarding molecular imaging. Theranostics is developing a strategy that can be used to implement accepted tools for individual molecular targeting, including diagnostics, and advances in genomic molecular knowledge, which has led to identifying theranostics biomaterials that have the potency to diagnose and treat malignancies. Today, numerous studies have reported on the discovery and execution of these radiotracers in personalised medicine. In this review, we presented our point of view of the most important theranostics agents that can be used to treat several types of malignancies. Molecular targeted radionuclide treatment methods based on theranostics are excellent paradigms of the relationship between molecular imaging and therapy that has been used to provide individualised or personalised patient care. Toward that end, a precise planned prospective examination of theranostics must be done to compare this approach to more standard therapies.
Collapse
Affiliation(s)
- Narges Jokar
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Anna Yordanova
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
13
|
Perrin J, Capitao M, Mougin-Degraef M, Guérard F, Faivre-Chauvet A, Rbah-Vidal L, Gaschet J, Guilloux Y, Kraeber-Bodéré F, Chérel M, Barbet J. Cell Tracking in Cancer Immunotherapy. Front Med (Lausanne) 2020; 7:34. [PMID: 32118018 PMCID: PMC7033605 DOI: 10.3389/fmed.2020.00034] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
The impressive development of cancer immunotherapy in the last few years originates from a more precise understanding of control mechanisms in the immune system leading to the discovery of new targets and new therapeutic tools. Since different stages of disease progression elicit different local and systemic inflammatory responses, the ability to longitudinally interrogate the migration and expansion of immune cells throughout the whole body will greatly facilitate disease characterization and guide selection of appropriate treatment regiments. While using radiolabeled white blood cells to detect inflammatory lesions has been a classical nuclear medicine technique for years, new non-invasive methods for monitoring the distribution and migration of biologically active cells in living organisms have emerged. They are designed to improve detection sensitivity and allow for a better preservation of cell activity and integrity. These methods include the monitoring of therapeutic cells but also of all cells related to a specific disease or therapeutic approach. Labeling of therapeutic cells for imaging may be performed in vitro, with some limitations on sensitivity and duration of observation. Alternatively, in vivo cell tracking may be performed by genetically engineering cells or mice so that may be revealed through imaging. In addition, SPECT or PET imaging based on monoclonal antibodies has been used to detect tumors in the human body for years. They may be used to detect and quantify the presence of specific cells within cancer lesions. These methods have been the object of several recent reviews that have concentrated on technical aspects, stressing the differences between direct and indirect labeling. They are briefly described here by distinguishing ex vivo (labeling cells with paramagnetic, radioactive, or fluorescent tracers) and in vivo (in vivo capture of injected radioactive, fluorescent or luminescent tracers, or by using labeled antibodies, ligands, or pre-targeted clickable substrates) imaging methods. This review focuses on cell tracking in specific therapeutic applications, namely cell therapy, and particularly CAR (Chimeric Antigen Receptor) T-cell therapy, which is a fast-growing research field with various therapeutic indications. The potential impact of imaging on the progress of these new therapeutic modalities is discussed.
Collapse
Affiliation(s)
- Justine Perrin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marisa Capitao
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marie Mougin-Degraef
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, University Hospital, Nantes, France
| | - François Guérard
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Alain Faivre-Chauvet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, University Hospital, Nantes, France
| | - Latifa Rbah-Vidal
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Joëlle Gaschet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Yannick Guilloux
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Françoise Kraeber-Bodéré
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, University Hospital, Nantes, France.,Nuclear Medicine, ICO Cancer Center, Saint-Herblain, France
| | - Michel Chérel
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, ICO Cancer Center, Saint-Herblain, France
| | | |
Collapse
|
14
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Nuclear Medicine Imaging Techniques in Melanoma. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Akil H, Rouanet J, Viallard C, Besse S, Auzeloux P, Chezal JM, Miot-Noirault E, Quintana M, Degoul F. Targeted Radionuclide Therapy Decreases Melanoma Lung Invasion by Modifying Epithelial-Mesenchymal Transition-Like Mechanisms. Transl Oncol 2019; 12:1442-1452. [PMID: 31421458 PMCID: PMC6704444 DOI: 10.1016/j.tranon.2019.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Melanin-radiolabeled molecules for targeted radionuclide therapy (TRT) provide a promising approach for the treatment of pigmented melanoma. Among these radiolabeled molecules, the iodinated melanin-specific binding molecule ([131I]ICF01012) has shown a significant antitumor effect on metastatic melanoma preclinical models. We report herein that [131I]ICF01012 decreases the epithelial-mesenshymal transition-like (EMT-like) markers in both in vivo and in vitro three-dimensional (3D) melanoma spheroid models. [131I]ICF01012 spheroids irradiation resulted in reduced clonogenic capacity of all pigmented spheroids accompanied by increased protein expression levels of phosphorylated H2A.X, p53 and its downstream target p21. In addition, [131I]ICF01012 treatment leads to a significant increase of cell pigmentation as demonstrated in SK-MEL3 human xenograft model. We also showed that [131I]ICF01012 decreases the size and the number of melanoma lung colonies in the syngeneic murine B16BL6 in vivo model assessing its potentiality to kill circulating tumor cells. Taken together, these results indicate that [131I]ICF01012 reduces metastatic capacity of melanoma cells presumably through EMT-like reduction and cell differentiation induction.
Collapse
Affiliation(s)
- Hussein Akil
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France.
| | - Jacques Rouanet
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France; Department of Dermatology and Oncodermatology, CHU Estaing, Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand, France.
| | - Claire Viallard
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France.
| | - Sophie Besse
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France.
| | - Philippe Auzeloux
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France.
| | - Jean-Michel Chezal
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France.
| | | | - Mercedes Quintana
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France.
| | - Françoise Degoul
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
17
|
Dinnes J, Ferrante di Ruffano L, Takwoingi Y, Cheung ST, Nathan P, Matin RN, Chuchu N, Chan SA, Durack A, Bayliss SE, Gulati A, Patel L, Davenport C, Godfrey K, Subesinghe M, Traill Z, Deeks JJ, Williams HC. Ultrasound, CT, MRI, or PET-CT for staging and re-staging of adults with cutaneous melanoma. Cochrane Database Syst Rev 2019; 7:CD012806. [PMID: 31260100 PMCID: PMC6601698 DOI: 10.1002/14651858.cd012806.pub2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Melanoma is one of the most aggressive forms of skin cancer, with the potential to metastasise to other parts of the body via the lymphatic system and the bloodstream. Melanoma accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. Various imaging tests can be used with the aim of detecting metastatic spread of disease following a primary diagnosis of melanoma (primary staging) or on clinical suspicion of disease recurrence (re-staging). Accurate staging is crucial to ensuring that patients are directed to the most appropriate and effective treatment at different points on the clinical pathway. Establishing the comparative accuracy of ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET)-CT imaging for detection of nodal or distant metastases, or both, is critical to understanding if, how, and where on the pathway these tests might be used. OBJECTIVES Primary objectivesWe estimated accuracy separately according to the point in the clinical pathway at which imaging tests were used. Our objectives were:• to determine the diagnostic accuracy of ultrasound or PET-CT for detection of nodal metastases before sentinel lymph node biopsy in adults with confirmed cutaneous invasive melanoma; and• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for whole body imaging in adults with cutaneous invasive melanoma:○ for detection of any metastasis in adults with a primary diagnosis of melanoma (i.e. primary staging at presentation); and○ for detection of any metastasis in adults undergoing staging of recurrence of melanoma (i.e. re-staging prompted by findings on routine follow-up).We undertook separate analyses according to whether accuracy data were reported per patient or per lesion.Secondary objectivesWe sought to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for whole body imaging (detection of any metastasis) in mixed or not clearly described populations of adults with cutaneous invasive melanoma.For study participants undergoing primary staging or re-staging (for possible recurrence), and for mixed or unclear populations, our objectives were:• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of nodal metastases;• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of distant metastases; and• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of distant metastases according to metastatic site. SEARCH METHODS We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists as well as published systematic review articles. SELECTION CRITERIA We included studies of any design that evaluated ultrasound (with or without the use of fine needle aspiration cytology (FNAC)), CT, MRI, or PET-CT for staging of cutaneous melanoma in adults, compared with a reference standard of histological confirmation or imaging with clinical follow-up of at least three months' duration. We excluded studies reporting multiple applications of the same test in more than 10% of study participants. DATA COLLECTION AND ANALYSIS Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2)). We estimated accuracy using the bivariate hierarchical method to produce summary sensitivities and specificities with 95% confidence and prediction regions. We undertook analysis of studies allowing direct and indirect comparison between tests. We examined heterogeneity between studies by visually inspecting the forest plots of sensitivity and specificity and summary receiver operating characteristic (ROC) plots. Numbers of identified studies were insufficient to allow formal investigation of potential sources of heterogeneity. MAIN RESULTS We included a total of 39 publications reporting on 5204 study participants; 34 studies reporting data per patient included 4980 study participants with 1265 cases of metastatic disease, and seven studies reporting data per lesion included 417 study participants with 1846 potentially metastatic lesions, 1061 of which were confirmed metastases. The risk of bias was low or unclear for all domains apart from participant flow. Concerns regarding applicability of the evidence were high or unclear for almost all domains. Participant selection from mixed or not clearly defined populations and poorly described application and interpretation of index tests were particularly problematic.The accuracy of imaging for detection of regional nodal metastases before sentinel lymph node biopsy (SLNB) was evaluated in 18 studies. In 11 studies (2614 participants; 542 cases), the summary sensitivity of ultrasound alone was 35.4% (95% confidence interval (CI) 17.0% to 59.4%) and specificity was 93.9% (95% CI 86.1% to 97.5%). Combining pre-SLNB ultrasound with FNAC revealed summary sensitivity of 18.0% (95% CI 3.58% to 56.5%) and specificity of 99.8% (95% CI 99.1% to 99.9%) (1164 participants; 259 cases). Four studies demonstrated lower sensitivity (10.2%, 95% CI 4.31% to 22.3%) and specificity (96.5%,95% CI 87.1% to 99.1%) for PET-CT before SLNB (170 participants, 49 cases). When these data are translated to a hypothetical cohort of 1000 people eligible for SLNB, 237 of whom have nodal metastases (median prevalence), the combination of ultrasound with FNAC potentially allows 43 people with nodal metastases to be triaged directly to adjuvant therapy rather than having SLNB first, at a cost of two people with false positive results (who are incorrectly managed). Those with a false negative ultrasound will be identified on subsequent SLNB.Limited test accuracy data were available for whole body imaging via PET-CT for primary staging or re-staging for disease recurrence, and none evaluated MRI. Twenty-four studies evaluated whole body imaging. Six of these studies explored primary staging following a confirmed diagnosis of melanoma (492 participants), three evaluated re-staging of disease following some clinical indication of recurrence (589 participants), and 15 included mixed or not clearly described population groups comprising participants at a number of different points on the clinical pathway and at varying stages of disease (1265 participants). Results for whole body imaging could not be translated to a hypothetical cohort of people due to paucity of data.Most of the studies (6/9) of primary disease or re-staging of disease considered PET-CT, two in comparison to CT alone, and three studies examined the use of ultrasound. No eligible evaluations of MRI in these groups were identified. All studies used histological reference standards combined with follow-up, and two included FNAC for some participants. Observed accuracy for detection of any metastases for PET-CT was higher for re-staging of disease (summary sensitivity from two studies: 92.6%, 95% CI 85.3% to 96.4%; specificity: 89.7%, 95% CI 78.8% to 95.3%; 153 participants; 95 cases) compared to primary staging (sensitivities from individual studies ranged from 30% to 47% and specificities from 73% to 88%), and was more sensitive than CT alone in both population groups, but participant numbers were very small.No conclusions can be drawn regarding routine imaging of the brain via MRI or CT. AUTHORS' CONCLUSIONS Review authors found a disappointing lack of evidence on the accuracy of imaging in people with a diagnosis of melanoma at different points on the clinical pathway. Studies were small and often reported data according to the number of lesions rather than the number of study participants. Imaging with ultrasound combined with FNAC before SLNB may identify around one-fifth of those with nodal disease, but confidence intervals are wide and further work is needed to establish cost-effectiveness. Much of the evidence for whole body imaging for primary staging or re-staging of disease is focused on PET-CT, and comparative data with CT or MRI are lacking. Future studies should go beyond diagnostic accuracy and consider the effects of different imaging tests on disease management. The increasing availability of adjuvant therapies for people with melanoma at high risk of disease spread at presentation will have a considerable impact on imaging services, yet evidence for the relative diagnostic accuracy of available tests is limited.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | | | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Seau Tak Cheung
- Dudley Hospitals Foundation Trust, Corbett HospitalDepartment of DermatologyWicarage RoadStourbridgeUKDY8 4JB
| | - Paul Nathan
- Mount Vernon HospitalMount Vernon Cancer CentreRickmansworth RoadNorthwoodUKHA6 2RN
| | - Rubeta N Matin
- Churchill HospitalDepartment of DermatologyOld RoadHeadingtonOxfordUKOX3 7LE
| | - Naomi Chuchu
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Sue Ann Chan
- City HospitalBirmingham Skin CentreDudley RdBirminghamUKB18 7QH
| | - Alana Durack
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation TrustDermatologyHills RoadCambridgeUKCB2 0QQ
| | - Susan E Bayliss
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Abha Gulati
- Barts Health NHS TrustDepartment of DermatologyWhitechapelLondonUKE11BB
| | - Lopa Patel
- Royal Stoke HospitalPlastic SurgeryStoke‐on‐TrentStaffordshireUKST4 6QG
| | - Clare Davenport
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Kathie Godfrey
- The University of Nottinghamc/o Cochrane Skin GroupNottinghamUK
| | - Manil Subesinghe
- King's College LondonCancer Imaging, School of Biomedical Engineering & Imaging SciencesLondonUK
| | - Zoe Traill
- Oxford University Hospitals NHS TrustChurchill Hospital Radiology DepartmentOxfordUK
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Hywel C Williams
- University of NottinghamCentre of Evidence Based DermatologyQueen's Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | | | |
Collapse
|
18
|
Xu X, Yuan L, Gai Y, Liu Q, Yin L, Jiang Y, Wang Y, Zhang Y, Lan X. Targeted radiotherapy of pigmented melanoma with 131I-5-IPN. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:306. [PMID: 30537980 PMCID: PMC6288928 DOI: 10.1186/s13046-018-0983-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022]
Abstract
Purpose There has been no satisfactory treatment for advanced melanoma until now. Targeted radionuclide therapy (TRNT) may be a promising option for this heretofore lethal disease. Our goal in this study was to synthesize 131I-N-(2-(diethylamino)ethyl)-5-(iodo-131I)picolinamide (131I-5-IPN) and evaluate its therapeutic ability and toxicity as a radioiodinated melanin-targeting therapeutic agent. Methods The trimethylstannyl precursor was synthesized and labeled with 131I to obtain 131I-5-IPN. The pharmacokinetics of 131I-5-IPN was evaluated through SPECT imaging, and its biodistribution was assessed in B16F10 tumor models and in A375 human-to-mouse xenografts. For TRNT, B16F10 melanoma-bearing mice were randomly allocated to receive one of five treatments (n = 10 per group): group A (the control group) received 0.1 mL saline; group B was treated with an equimolar dose of unlabeled precursor; group C received 18.5 MBq of [131I]NaI; group D and E received one or two dose of 18.5 MBq 131I-5-IPN, respectively. TRNT efficacy was evaluated through tumor volume measurement and biology study. The toxic effects of 131I-5-IPN on vital organs were assessed with laboratory tests and histopathological examination. The radiation absorbed dose to vital organs was estimated based on biodistribution data. Results 131I-5-IPN was successfully prepared with a good radiochemistry yield (55% ± 5%, n = 5), and it exhibited a high uptake ratio in melanin-positive B16F10 cells which indicating high specificity. SPECT imaging and biodistribution of 131I-5-IPN showed lasting high tumor uptake in pigmented B16F10 models for 72 h. TRNT with 131I-5-IPN led to a significant anti-tumor effect and Groups D and E displayed an extended median survival compared to groups A, B, and C. The highest absorbed dose to a vital organ was 0.25 mSv/MBq to the liver; no obvious injury to the liver or kidneys was observed during treatment. 131I-5-IPN treatment was associated with reduction of expression of proliferating cell nuclear antigen (PCNA) and Ki67 and cell cycle blockage in G2/M phase in tumor tissues. Decreased vascular endothelial growth factor and CD31 expression, implying reduced tumor growth, was noted after TRNT. Conclusion We successfully synthesized 131I-5-IPN, which presents long-time retention in melanotic melanoma. TRNT with 131I-5-IPN has the potential to be a safe and effective strategy for management of pigmented melanoma.
Collapse
Affiliation(s)
- Xiaodong Xu
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lujie Yuan
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lianglan Yin
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yaqun Jiang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yichun Wang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China. .,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
19
|
Rahbar K, Afshar-Oromieh A, Jadvar H, Ahmadzadehfar H. PSMA Theranostics: Current Status and Future Directions. Mol Imaging 2018; 17:1536012118776068. [PMID: 29873291 PMCID: PMC5992796 DOI: 10.1177/1536012118776068] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a promising target for imaging diagnostics and targeted radionuclide therapy (theranostics) of prostate cancer and its metastases. There is increasing evidence of encouraging response rates and a low toxicity profile of radioligand therapy (RLT) of metastatic castration-resistant prostate cancer using 177Lu-labeled PSMA ligands. In this article, we review the current status of diagnostics and therapy using radiolabeled PSMA ligands. We also suggest protocols for patient selection criteria and conduct of PSMA-based RLT. Challenges and opportunities of PSMA theranostics are discussed.
Collapse
Affiliation(s)
- Kambiz Rahbar
- 1 Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| | | | - Hossein Jadvar
- 3 Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
20
|
Jouberton E, Perrot Y, Dirat B, Billoux T, Auzeloux P, Cachin F, Chezal J, Filaire M, Labarre P, Miot‐Noirault E, Millardet C, Valla C, Vidal A, Degoul F, Maigne L. Radiation dosimetry of [
131
I]ICF01012 in rabbits: Application to targeted radionuclide therapy for human melanoma treatment. Med Phys 2018; 45:5251-5262. [DOI: 10.1002/mp.13165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 01/28/2023] Open
Affiliation(s)
- Elodie Jouberton
- Centre Jean Perrin Clermont‐Ferrand F‐63011 France
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Yann Perrot
- Université Clermont Auvergne CNRS/IN2P3 Laboratoire de Physique de Clermont UMR6533 4 Avenue Blaise Pascal TSA 60026 CS 60026 63178 Aubière Cedex France
| | - Béatrice Dirat
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | | | - Philippe Auzeloux
- Centre Jean Perrin Clermont‐Ferrand F‐63011 France
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Florent Cachin
- Centre Jean Perrin Clermont‐Ferrand F‐63011 France
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Jean‐Michel Chezal
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Marc Filaire
- Centre Jean Perrin Clermont‐Ferrand F‐63011 France
| | - Pierre Labarre
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Elisabeth Miot‐Noirault
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | | | - Clémence Valla
- Centre Jean Perrin Clermont‐Ferrand F‐63011 France
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Aurélien Vidal
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Françoise Degoul
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Lydia Maigne
- Université Clermont Auvergne CNRS/IN2P3 Laboratoire de Physique de Clermont UMR6533 4 Avenue Blaise Pascal TSA 60026 CS 60026 63178 Aubière Cedex France
| |
Collapse
|
21
|
Zhu WJ, Kobayashi M, Yamada K, Nishi K, Takahashi K, Mizutani A, Nishii R, Flores LG, Shikano N, Kunishima M, Kawai K. Development of radioiodine labeled acetaminophen for specific, high-contrast imaging of malignant melanoma. Nucl Med Biol 2018; 59:16-21. [PMID: 29413752 DOI: 10.1016/j.nucmedbio.2017.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Due to its poor prognosis, specific imaging for early detection of malignant melanoma is strongly desired. Although radioiodine labeled 4-hydroxyphenylcysteamine, which we previously developed, has good affinity for tyrosinase, an enzyme in the melanin metabolic pathway, image contrast of the melanoma:organ ratios is not sufficiently high for detection of primary melanoma and metastases at early injection times. In this study, we developed radioiodine labeled acetaminophen (I-AP) for specific, high-contrast imaging of malignant melanoma. METHODS Radioiodine-125-labeled AP (125I-AP) was prepared using the chloramine-T method under no carrier-added conditions. Accumulation of radioactivity and the mechanism were evaluated in vitro using B16 melanoma cells incubated with 125I-AP or 14C(U)-labeled AP (14C-AP) with and without l-tyrosine as a substrate of tyrosinase, phenylthiourea as an inhibitor of tyrosinase, and thymidine as an inhibitor of DNA polymerase. The biological distribution of radioactivity in B16 melanoma-bearing mice was evaluated to determine the accumulation of 125I-AP. The stability of 125I-AP over time was evaluated in mice. RESULTS The labeling efficiency and radiochemical purity of 125I-AP were >80% and 95%, respectively. Accumulation of 125I-AP was higher than that of 14C-AP at 60 min of incubation in vitro. The affinity of 14C-AP for tyrosinase and DNA polymerase was higher than that of 125I-AP, whereas the Vmax of 125I-AP was higher than that of 14C-AP. 125I-AP showed the highest accumulation in the gall bladder, and clearance from the blood and kidney was rapid. Melanoma:muscle and melanoma:normal skin ratios of 125I-AP for imaging contrast were the highest at 15 min after injection, whereas the melanoma:blood and melanoma:bone ratios gradually increased over time. 125I-AP remained stable for 60 min after injection in mice. CONCLUSIONS 125I-AP has affinity for tyrosinase and high image contrast at early time points after injection. Therefore, 123I-AP imaging has great potential for specific, high-contrast detection of malignant melanoma. ADVANCES IN KNOWLEDGE: 123I-AP will provide specific, high-contrast imaging for malignant melanoma at early injection times. IMPLICATIONS FOR PATIENT CARE: 123I-AP has good potential for the diagnosis of malignant melanoma compared with 123I-labeled 4-hydroxyphenylcysteamine, which we previously developed.
Collapse
Affiliation(s)
- Wen Jing Zhu
- Department of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masato Kobayashi
- Wellness Promotion Science Center, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Kohei Yamada
- Department of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kotaro Takahashi
- Department of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Asuka Mizutani
- Graduate School of Medicine, Division of Health Science, Osaka University, Osaka, Japan; Department of Radiology, Kanazawa University Hospital, Kanazawa, Japan
| | - Ryuichi Nishii
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Leo G Flores
- Department of Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Naoto Shikano
- Department of Radiological Sciences, Ibaraki Prefectural Sciences of Health Sciences, Ibaraki, Japan
| | - Munetaka Kunishima
- Department of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Keiichi Kawai
- Department of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| |
Collapse
|
22
|
Bordeianu C, Parat A, Piant S, Walter A, Zbaraszczuk-Affolter C, Meyer F, Begin-Colin S, Boutry S, Muller RN, Jouberton E, Chezal JM, Labeille B, Cinotti E, Perrot JL, Miot-Noirault E, Laurent S, Felder-Flesch D. Evaluation of the Active Targeting of Melanin Granules after Intravenous Injection of Dendronized Nanoparticles. Mol Pharm 2018; 15:536-547. [PMID: 29298480 DOI: 10.1021/acs.molpharmaceut.7b00904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The biodistribution of dendronized iron oxides, NPs10@D1_DOTAGA and melanin-targeting NPs10@D1_ICF_DOTAGA, was studied in vivo using magnetic resonance imaging (MRI) and planar scintigraphy through [177Lu]Lu-radiolabeling. MRI experiments showed high contrast power of both dendronized nanoparticles (DPs) and hepatobiliary and urinary excretions. Little tumor uptake could be highlighted after intravenous injection probably as a consequence of the negatively charged DOTAGA-derivatized shell, which reduces the diffusion across the cells' membrane. Planar scintigraphy images demonstrated a moderate specific tumor uptake of melanoma-targeted [177Lu]Lu-NPs10@D1_ICF_DOTAGA at 2 h post-intravenous injection (pi), and the highest tumor uptake of the control probe [177Lu]Lu-NPs10@D1_DOTAGA at 30 min pi, probably due to the enhanced permeability and retention effect. In addition, ex vivo confocal microscopy studies showed a high specific targeting of human melanoma samples impregnated with NPs10@D1_ICF_Alexa647_ DOTAGA.
Collapse
Affiliation(s)
- C Bordeianu
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - A Parat
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - S Piant
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - A Walter
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - C Zbaraszczuk-Affolter
- Université de Strasbourg , INSERM, UMR 1121 Biomatériaux et Bioingénierie, 11 rue Humann F-67000 Strasbourg, France
| | - F Meyer
- Université de Strasbourg , INSERM, UMR 1121 Biomatériaux et Bioingénierie, 11 rue Humann F-67000 Strasbourg, France
| | - S Begin-Colin
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - S Boutry
- University of Mons , General, Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory, Avenue Maistriau 19, 7000 Mons, Belgium.,CMMI - Center for Microscopy and Molecular Imaging, MRI & Optical Imaging , Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - R N Muller
- University of Mons , General, Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory, Avenue Maistriau 19, 7000 Mons, Belgium.,CMMI - Center for Microscopy and Molecular Imaging, MRI & Optical Imaging , Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - E Jouberton
- Clermont Université, Université d'Auvergne , Laboratoire d'Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,INSERM, U1240 , F-63005 Clermont-Ferrand, France
| | - J-M Chezal
- Clermont Université, Université d'Auvergne , Laboratoire d'Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,INSERM, U1240 , F-63005 Clermont-Ferrand, France
| | - B Labeille
- CHU , Département de Dermatologie, F-42000 St. Etienne, France
| | - E Cinotti
- Department of Medical, Surgical and Neurological Science, Dermatology Section, University of Siena , S. Maria alle Scotte Hospital, F-53100 Siena, Italy
| | - J-L Perrot
- CHU , Département de Dermatologie, F-42000 St. Etienne, France
| | - E Miot-Noirault
- Clermont Université, Université d'Auvergne , Laboratoire d'Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,INSERM, U1240 , F-63005 Clermont-Ferrand, France
| | - S Laurent
- University of Mons , General, Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory, Avenue Maistriau 19, 7000 Mons, Belgium.,CMMI - Center for Microscopy and Molecular Imaging, MRI & Optical Imaging , Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - D Felder-Flesch
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| |
Collapse
|
23
|
Wei W, Ehlerding EB, Lan X, Luo Q, Cai W. PET and SPECT imaging of melanoma: the state of the art. Eur J Nucl Med Mol Imaging 2018; 45:132-150. [PMID: 29085965 PMCID: PMC5700861 DOI: 10.1007/s00259-017-3839-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Melanoma represents the most aggressive form of skin cancer, and its incidence continues to rise worldwide. 18F-FDG PET imaging has transformed diagnostic nuclear medicine and has become an essential component in the management of melanoma, but still has its drawbacks. With the rapid growth in the field of nuclear medicine and molecular imaging, a variety of promising probes that enable early diagnosis and detection of melanoma have been developed. The substantial preclinical success of melanin- and peptide-based probes has recently resulted in the translation of several radiotracers to clinical settings for noninvasive imaging and treatment of melanoma in humans. In this review, we focus on the latest developments in radiolabeled molecular imaging probes for melanoma in preclinical and clinical settings, and discuss the challenges and opportunities for future development.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China.
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|
24
|
Viallard C, Chezal JM, Mishellany F, Ranchon-Cole I, Pereira B, Herbette A, Besse S, Boudhraa Z, Jacquemot N, Cayre A, Miot-Noirault E, Sun JS, Dutreix M, Degoul F. Targeting DNA repair by coDbait enhances melanoma targeted radionuclide therapy. Oncotarget 2017; 7:12927-36. [PMID: 26887045 PMCID: PMC4914332 DOI: 10.18632/oncotarget.7340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/24/2016] [Indexed: 01/15/2023] Open
Abstract
Radiolabelled melanin ligands offer an interesting strategy for the treatment of disseminated pigmented melanoma. One of these molecules, ICF01012 labelled with iodine 131, induced a significant slowing of melanoma growth. Here, we have explored the combination of [131I]ICF01012 with coDbait, a DNA repair inhibitor, to overcome melanoma radioresistance and increase targeted radionuclide therapy (TRT) efficacy. In human SK-Mel 3 melanoma xenograft, the addition of coDbait had a synergistic effect on tumor growth and median survival. The anti-tumor effect was additive in murine syngeneic B16Bl6 model whereas coDbait combination with [131I]ICF01012 did not increase TRT side effects in secondary pigmented tissues (e.g. hair follicles, eyes). Our results confirm that DNA lesions induced by TRT were not enhanced with coDbait association but, the presence of micronuclei and cell cycle blockade in tumor shows that coDbait acts by interrupting or delaying DNA repair. In this study, we demonstrate for the first time, the usefulness of DNA repair traps in the context of targeted radionuclide therapy.
Collapse
Affiliation(s)
- Claire Viallard
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Florence Mishellany
- Anatomopathology Department, Centre Jean Perrin, Comprehensive Cancer Center, 63011 Clermont-Ferrand, France
| | - Isabelle Ranchon-Cole
- Clermont Université, Université d'Auvergne, UFR Pharmacie Laboratoire de Biophysique Neurosensorielle, Inserm U 1107, F-63001 Clermont-Ferrand, France
| | | | - Aurélie Herbette
- CNRS-UMR3347, INSERMU1021, Institut Curie, Université Paris Sud, Bat 110, Centre Universitaire 91405 Orsay, Cedex, France
| | - Sophie Besse
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Zied Boudhraa
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Nathalie Jacquemot
- Clermont Université, Université d'Auvergne, UFR Pharmacie Laboratoire de Biophysique Neurosensorielle, Inserm U 1107, F-63001 Clermont-Ferrand, France
| | - Anne Cayre
- Anatomopathology Department, Centre Jean Perrin, Comprehensive Cancer Center, 63011 Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| | | | - Marie Dutreix
- CNRS-UMR3347, INSERMU1021, Institut Curie, Université Paris Sud, Bat 110, Centre Universitaire 91405 Orsay, Cedex, France
| | - Françoise Degoul
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| |
Collapse
|
25
|
Georgiadis MO, Karoutzou O, Foscolos AS, Papanastasiou I. Sigma Receptor (σR) Ligands with Antiproliferative and Anticancer Activity. Molecules 2017; 22:E1408. [PMID: 28841173 PMCID: PMC6151391 DOI: 10.3390/molecules22091408] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/01/2023] Open
Abstract
Sigma receptor (σR) ligands have proven to be useful as cancer diagnostics and anticancer therapeutics and their ligands have been developed as molecular probes in oncology. Moreover, various σR ligands generate cancer cell death in vitro and in vivo. These σR ligands have exhibited promising results against numerous human and rodent cancers and are investigated under preclinical and clinical study trials, indicating a new category of drugs in cancer therapy.
Collapse
Affiliation(s)
- Markos-Orestis Georgiadis
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece.
| | - Olga Karoutzou
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece.
| | - Angeliki-Sofia Foscolos
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece.
| | - Ioannis Papanastasiou
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece.
| |
Collapse
|
26
|
Dasargyri A, Kümin CD, Leroux JC. Targeting Nanocarriers with Anisamide: Fact or Artifact? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603451. [PMID: 27885719 DOI: 10.1002/adma.201603451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/08/2016] [Indexed: 05/19/2023]
Abstract
Encapsulating chemotherapeutics in nanoparticles can reduce the side effects of intravenous administration and improve their antitumor efficacy. Additionally, surface decoration of the nanocarriers with tumor-targeting ligands may enhance their specificity for cancer cells overexpressing the corresponding ligand-binding counterpart. The focus here is on anisamide, a low-molecular-weight benzamide derivative used as a tumor-directing moiety in functionalized nanosystems, based on its alleged interaction with Sigma receptors. The scintigraphic agents that initially inspired the use of anisamide for tumor targeting are described, and the published anisamide-tethered nanocarrier formulations are reviewed, together with a critical overview of the ligand's tumor-targeting properties. Moreover, anisamide's putative but dubious cellular target, the Sigma-1 receptor, is discussed with regard to its subcellular localization and implications in cancer. Data from in vivo studies reveal that the effect of anisamide on the antitumor efficacy of the decorated nanosystems varies considerably among the published reports. Together with the evidence questioning the interaction of anisamide with the Sigma receptors, the variability of anisamide's effect on the tumor deposition and the antitumor efficacy of the decorated drug carriers calls into question the extent of the ligand's tumor-targeting effect. Further research is necessary to elucidate the ligand's utility in tumor targeting.
Collapse
Affiliation(s)
- Athanasia Dasargyri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, 8093, Switzerland
| | - Carole D Kümin
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, 8093, Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, 8093, Switzerland
| |
Collapse
|
27
|
Rbah-Vidal L, Vidal A, Billaud EMF, Besse S, Ranchon-Cole I, Mishellany F, Perrot Y, Maigne L, Moins N, Guerquin-Kern JL, Degoul F, Chezal JM, Auzeloux P, Miot-Noirault E. Theranostic Approach for Metastatic Pigmented Melanoma Using ICF15002, a Multimodal Radiotracer for Both PET Imaging and Targeted Radionuclide Therapy. Neoplasia 2016; 19:17-27. [PMID: 27987437 PMCID: PMC5157796 DOI: 10.1016/j.neo.2016.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/01/2016] [Indexed: 01/05/2023] Open
Abstract
PURPOSE: This work reports, in melanoma models, the theranostic potential of ICF15002 as a single fluorinated and iodinated melanin-targeting compound. METHODS: Studies were conducted in the murine syngeneic B16BL6 model and in the A375 and SK-MEL-3 human xenografts. ICF15002 was radiolabeled with fluorine-18 for positron emission tomography (PET) imaging and biodistribution, with iodine-125 for metabolism study, and iodine-131 for targeted radionuclide therapy (TRT). TRT efficacy was assessed by tumor volume measurement, with mechanistics and dosimetry parameters being determined in the B16BL6 model. Intracellular localization of ICF15002 was characterized by secondary ion mass spectrometry (SIMS). RESULTS: PET imaging with [18F]ICF15002 evidenced tumoral uptake of 14.33 ± 2.11%ID/g and 4.87 ± 0.93%ID/g in pigmented B16BL6 and SK-MEL-3 models, respectively, at 1 hour post inoculation. No accumulation was observed in the unpigmented A375 melanoma. SIMS demonstrated colocalization of ICF15002 signal with melanin polymers in melanosomes of the B16BL6 tumors. TRT with two doses of 20 MBq [131I]ICF15002 delivered an absorbed dose of 102.3 Gy to B16BL6 tumors, leading to a significant tumor growth inhibition [doubling time (DT) of 2.9 ± 0.5 days in treated vs 1.8 ± 0.3 in controls] and a prolonged median survival (27 days vs 21 in controls). P53S15 phosphorylation and P21 induction were associated with a G2/M blockage, suggesting mitotic catastrophe. In the human SK-MEL-3 model, three doses of 25 MBq led also to a DT increase (26.5 ± 7.8 days vs 11.0 ± 3.8 in controls) and improved median survival (111 days vs 74 in controls). CONCLUSION: Results demonstrate that ICF15002 fulfills suitable properties for bimodal imaging/TRT management of patients with pigmented melanoma.
Collapse
Affiliation(s)
- Latifa Rbah-Vidal
- UMR 990 INSERM/Université d'Auvergne, F-63005 Clermont-Ferrand, France; UMR 892 INSERM/6299 CNRS/Université de Nantes, F-44007 Nantes, France
| | - Aurélien Vidal
- UMR 990 INSERM/Université d'Auvergne, F-63005 Clermont-Ferrand, France; Arronax, CS 10112, F-44817 Saint Herblain Cedex, France
| | | | - Sophie Besse
- UMR 990 INSERM/Université d'Auvergne, F-63005 Clermont-Ferrand, France
| | - Isabelle Ranchon-Cole
- UMR 1107 INSERM/Université d'Auvergne, Equipe Biophysique Neurosensorielle, F-63000 Clermont-Ferrand, France
| | - Florence Mishellany
- Centre Jean Perrin, Laboratoire d'anatomo-pathologie, F-63011 Clermont-Ferrand, France
| | - Yann Perrot
- CNRS/IN2P3/Université Blaise Pascal, Laboratoire de Physique Corpusculaire, F-63000 Clermont-Ferrand, France
| | - Lydia Maigne
- CNRS/IN2P3/Université Blaise Pascal, Laboratoire de Physique Corpusculaire, F-63000 Clermont-Ferrand, France
| | - Nicole Moins
- UMR 990 INSERM/Université d'Auvergne, F-63005 Clermont-Ferrand, France
| | | | - Françoise Degoul
- UMR 990 INSERM/Université d'Auvergne, F-63005 Clermont-Ferrand, France
| | | | - Philippe Auzeloux
- UMR 990 INSERM/Université d'Auvergne, F-63005 Clermont-Ferrand, France
| | | |
Collapse
|
28
|
Rizzo-Padoin N, Chaussard M, Vignal N, Kotula E, Tsoupko-Sitnikov V, Vaz S, Hontonnou F, Liu WQ, Poyet JL, Vidal M, Merlet P, Hosten B, Sarda-Mantel L. [ 18F]MEL050 as a melanin-targeted PET tracer: Fully automated radiosynthesis and comparison to 18F-FDG for the detection of pigmented melanoma in mice primary subcutaneous tumors and pulmonary metastases. Nucl Med Biol 2016; 43:773-780. [PMID: 27693672 DOI: 10.1016/j.nucmedbio.2016.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Melanoma is a highly malignant cutaneous tumor of melanin-producing cells. MEL050 is a synthetic benzamide-derived molecule that specifically binds to melanin with high affinity. Our aim was to implement a fully automated radiosynthesis of [18F]MEL050, using for the first time, the AllInOne™ synthesis module (Trasis), and to evaluate the potential of [18F]MEL050 for the detection of pigmented melanoma in mice primary subcutaneous tumors and pulmonary metastases, and to compare it with that of [18F]FDG. METHODS Automated radiosynthesis of [18F]MEL050, including HPLC purification and formulation, were performed on an AllInOne™ synthesis module. [18F]MEL050 was synthesized using a one-step bromine-for-fluorine nucleophilic heteroaromatic substitution. Melanoma models were induced by subcutaneous (primary tumor) or intravenous (pulmonary metastases) injection of B16-F10-luc2 cells in NMRI mice. The maximum percentage of [18F]MEL050 Injected Dose per g of lung tissue (%ID/g Max) was determined on PET images, compared to [18F]FDG and correlated to in vivo bioluminescence imaging. RESULTS The automated radiosynthesis of [18F]MEL050 required an overall radiosynthesis time of 48min, with a yield of 13-18% (not-decay corrected) and radiochemical purity higher than 99%. [18F]MEL050 PET/CT images were concordant with bioluminescence imaging, showing increased radiotracer uptake in all primary subcutaneous tumors and pulmonary metastases of mice. PET quantification of radiotracers uptake in tumors and muscles demonstrated similar tumor-to-background ratio (TBR) with [18F]MEL050 and [18F]FDG in subcutaneous tumors and higher TBR with [18F]MEL050 than with [18F]FDG in pulmonary metastases. CONCLUSION We successfully implemented the radiosynthesis of [18F]MEL050 using the AllInOne™ module, including HPLC purification and formulation. In vivo PET/CT validation of [18F]MEL050 was obtained in mouse models of pigmented melanoma, where higher [18F]MEL050 uptake was observed in sub-millimetric pulmonary metastases, comparatively to [18F]FDG.
Collapse
Affiliation(s)
- Nathalie Rizzo-Padoin
- Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, Paris, 75010, France; Inserm, UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, 75006, France.
| | - Michael Chaussard
- Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, Paris, 75010, France
| | - Nicolas Vignal
- Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, Paris, 75010, France; Inserm, UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, 75006, France
| | - Ewa Kotula
- Inserm, UMRS 1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, 75010, France
| | - Vadim Tsoupko-Sitnikov
- Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, Paris, 75010, France
| | - Sofia Vaz
- Assistance Publique - Hôpitaux de Paris, Hôpital Lariboisière, Médecine nucléaire, Paris, 75010, France
| | - Fortune Hontonnou
- Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, Paris, 75010, France; Université Paris Diderot, Paris, 75010, France
| | - Wang-Qing Liu
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, 75006, France
| | - Jean-Luc Poyet
- Inserm, UMRS 1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, 75010, France; Université Paris Diderot, Paris, 75010, France
| | - Michel Vidal
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, 75006, France
| | - Pascal Merlet
- Université Paris Diderot, Paris, 75010, France; Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Médecine nucléaire, Paris, 75010, France
| | - Benoit Hosten
- Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, Paris, 75010, France; Inserm, UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, 75006, France
| | - Laure Sarda-Mantel
- Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, Paris, 75010, France; Assistance Publique - Hôpitaux de Paris, Hôpital Lariboisière, Médecine nucléaire, Paris, 75010, France; Université Paris Diderot, Paris, 75010, France; Inserm UMR-S 942, Hôpital Lariboisière, Paris, 75010, France
| |
Collapse
|
29
|
Feng H, Xia X, Li C, Song Y, Qin C, Liu Q, Zhang Y, Lan X. Imaging malignant melanoma with (18)F-5-FPN. Eur J Nucl Med Mol Imaging 2015; 43:113-122. [PMID: 26260649 DOI: 10.1007/s00259-015-3134-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE Radiolabelled benzamides are attractive candidates for targeting melanoma because they bind to melanin and exhibit high tumour uptake and retention. (18)F-5-Fluoro-N-(2-[diethylamino]ethyl)picolinamide ((18)F-5-FPN), a benzamide analogue, was prepared and its pharmacokinetics and binding affinity evaluated both in vitro and in vivo to assess its clinical potential in the diagnosis and staging of melanoma. METHODS (18)F-5-FPN was prepared and purified. Its binding specificity was measured in vitro in two different melanoma cell lines, one pigmented (B16F10 cells) and one nonpigmented (A375m cells), and in vivo in mice xenografted with the same cell lines. Dynamic and static PET images using (18)F-5-FPN were obtained in the tumour-bearing mice, and the static images were also compared with those acquired with (18)F-FDG. PET imaging with (18)F-5-FPN was also performed in B16F10 tumour-bearing mice with lung metastases. RESULTS (18)F-5-FPN was successfully prepared with radiochemical yields of 5 - 10 %. Binding of (18)F-5-FPN to B16F10 cells was much higher than to A375m cells. On dynamic PET imaging B16F10 tumours were visible about 1 min after injection of the tracer, and the uptake gradually increased over time. (18)F-5-FPN was rapidly excreted via the kidneys. B16F10 tumours were clearly visible on static images acquired 1 and 2 h after injection, with high uptake values of 24.34 ± 6.32 %ID/g and 16.63 ± 5.41 %ID/g, respectively, in the biodistribution study (five mice). However, there was no visible uptake by A375m tumours. (18)F-5-FPN and (18)F-FDG PET imaging were compared in B16F10 tumour xenografts, and the tumour-to-background ratio of (18)F-5-FPN was ten times higher than that of (18)F-FDG (35.22 ± 7.02 vs. 3.29 ± 0.53, five mice). (18)F-5-FPN PET imaging also detected simulated lung metastases measuring 1 - 2 mm. CONCLUSION (18)F-5-FPN specifically targeted melanin in vitro and in vivo with high retention and affinity and favourable pharmacokinetics. (18)F-5-FPN may be an ideal molecular probe for melanoma diagnosis and staging.
Collapse
Affiliation(s)
- Hongyan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Chongjiao Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Yiling Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China.
| |
Collapse
|
30
|
Synthesis, radiolabeling and preliminary in vivo evaluation of multimodal radiotracers for PET imaging and targeted radionuclide therapy of pigmented melanoma. Eur J Med Chem 2015; 92:818-38. [DOI: 10.1016/j.ejmech.2015.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 12/27/2022]
|
31
|
Parat A, Kryza D, Degoul F, Taleb J, Viallard C, Janier M, Garofalo A, Bonazza P, Heinrich-Balard L, Cohen R, Miot-Noirault E, Chezal JM, Billotey C, Felder-Flesch D. Radiolabeled dendritic probes as tools for high in vivo tumor targeting: application to melanoma. J Mater Chem B 2015; 3:2560-2571. [DOI: 10.1039/c5tb00235d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A small-sized and bifunctional111In-radiolabeled dendron shows highin vivotargeting efficiency towards an intracellular target in a murine melanoma model.
Collapse
|
32
|
Vallabhajosula S, Nikolopoulou A, Babich JW, Osborne JR, Tagawa ST, Lipai I, Solnes L, Maresca KP, Armor T, Joyal JL, Crummet R, Stubbs JB, Goldsmith SJ. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen: pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer. J Nucl Med 2014; 55:1791-8. [PMID: 25342385 DOI: 10.2967/jnumed.114.140426] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Prostate-specific membrane antigen (PSMA) is a well-established target for developing radiopharmaceuticals for imaging and therapy of prostate cancer (PCa). We have recently reported that novel (99m)Tc-labeled small-molecule PSMA inhibitors bind with high affinity to PSMA-positive tumor cells in vitro and localize in PCa xenografts. This study reports the first, to our knowledge, human data in men with metastatic PCa and in healthy male subjects. METHODS Under an exploratory investigational new drug, using a cross-over design, we compared the pharmacokinetics, biodistribution, and tumor uptake of (99m)Tc-MIP-1404 and (99m)Tc-MIP-1405 in 6 healthy men and 6 men with radiographic evidence of metastatic PCa. Whole-body images were obtained at 10 min and 1, 2, 4, and 24 h. SPECT was performed between 3 and 4 h after injection. RESULTS Both agents cleared the blood rapidly, with MIP-1404 demonstrating significantly lower urinary activity (7%) than MIP-1405 (26%). Both agents showed persistent uptake in the salivary, lacrimal, and parotid glands. Uptake in the liver and kidney was acceptable for imaging at 1-2 h. In men with PCa, both agents rapidly localized in bone and lymph node lesions as early as 1 h. SPECT demonstrated excellent lesion contrast. Good correlation was seen with bone scanning; however, more lesions were demonstrated with (99m)Tc-MIP-1404 and (99m)Tc-MIP-1405. The high-contrast images exhibited tumor-to-background ratios from 3:1 to 9:1 at 4 and 20 h. CONCLUSION Compared with the standard-of-care bone scanning, (99m)Tc-MIP-1404 and (99m)Tc-MIP-1405 identified most bone metastatic lesions and rapidly detected soft-tissue PCa lesions including subcentimeter lymph nodes. Because (99m)Tc-MIP-1404 has minimal activity in the bladder, further work is planned to correlate imaging findings with histopathology in patients with high-risk metastatic PCa.
Collapse
Affiliation(s)
| | | | - John W Babich
- Molecular Insight Pharmaceuticals, Inc., Cambridge, Massachusetts; and
| | - Joseph R Osborne
- New York Presbyterian Hospital and Weill Cornell Medical College, New York, New York
| | - Scott T Tagawa
- New York Presbyterian Hospital and Weill Cornell Medical College, New York, New York
| | - Irina Lipai
- New York Presbyterian Hospital and Weill Cornell Medical College, New York, New York
| | - Lilja Solnes
- New York Presbyterian Hospital and Weill Cornell Medical College, New York, New York
| | - Kevin P Maresca
- Molecular Insight Pharmaceuticals, Inc., Cambridge, Massachusetts; and
| | - Thomas Armor
- Molecular Insight Pharmaceuticals, Inc., Cambridge, Massachusetts; and
| | - John L Joyal
- Molecular Insight Pharmaceuticals, Inc., Cambridge, Massachusetts; and
| | - Robert Crummet
- Molecular Insight Pharmaceuticals, Inc., Cambridge, Massachusetts; and
| | | | - Stanley J Goldsmith
- New York Presbyterian Hospital and Weill Cornell Medical College, New York, New York
| |
Collapse
|
33
|
Fuji H, Yoshikawa S, Kasami M, Murayama S, Onitsuka T, Kashiwagi H, Kiyohara Y. High-dose proton beam therapy for sinonasal mucosal malignant melanoma. Radiat Oncol 2014; 9:162. [PMID: 25056641 PMCID: PMC4118609 DOI: 10.1186/1748-717x-9-162] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/12/2014] [Indexed: 02/03/2023] Open
Abstract
Background The significance of definitive radiotherapy for sinonasal mucosal melanoma (SMM) is sill controvertial. This study was to evaluate the role of high-dose proton beam therapy (PBT) in patients with SMM. Methods The cases of 20 patients with SMM localized to the primary site who were treated by PBT between 2006 and 2012 were retrospectively analyzed. The patterns of overall survival and morbidity were assessed. Results The median follow-up time was 35 months (range, 6–77 months). The 5-year overall and disease-free survival rates were 51% and 38%, respectively. Four patients showed local failure, 2 showed regrowth of the primary tumor, and 2 showed new sinonasal tumors beyond the primary site. The 5-year local control rate after PBT was 62%. Nodal and distant failure was seen in 7 patients. Three grade 4 late toxicities were observed in tumor-involved optic nerve. Conclusion Our findings suggested that high-dose PBT is an effective local treatment that is less invasive than surgery but with comparable outcomes.
Collapse
Affiliation(s)
- Hiroshi Fuji
- Divisions of Proton Therapy, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka 411-8777, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Gilardi L, Grana CM, Paganelli G. Evaluation of response to immunotherapy: new challenges and opportunities for PET imaging. Eur J Nucl Med Mol Imaging 2014; 41:2090-2. [PMID: 25012872 DOI: 10.1007/s00259-014-2848-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Laura Gilardi
- Division of Nuclear Medicine, European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy,
| | | | | |
Collapse
|
35
|
El Aissi R, Liu J, Besse S, Canitrot D, Chavignon O, Chezal JM, Miot-Noirault E, Moreau E. Synthesis and Biological Evaluation of New Quinoxaline Derivatives of ICF01012 as Melanoma-Targeting Probes. ACS Med Chem Lett 2014; 5:468-73. [PMID: 24900863 DOI: 10.1021/ml400468x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/20/2014] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was the synthesis and pharmacokinetic selection of a best melanin-targeting ligand for addressing anticancer agents to pigmented melanoma. Seven quinoxaline carboxamide derivatives were synthesized and radiolabeled with iodine-125. Biodistribution studies of compounds [ (125) I]1a-g performed in melanoma-bearing mice tumor showed significant tumor uptake (range 2.43-5.68%ID/g) within 1 h after i.v. injection. Fast clearance of the radioactivity from the nontarget organs mainly via the urinary system gave high tumor-to-blood and tumor-to-muscle ratios. Given its favorable clearance and high tumor-melanoma uptake at 72 h, amide 1d was the most promising melanoma-targeting ligand in this series. Compound 1d will be used as building block for the design of new melanoma-selective drug delivery systems.
Collapse
Affiliation(s)
- Radhia El Aissi
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| | - Jianrong Liu
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| | - Sophie Besse
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| | - Damien Canitrot
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| | - Olivier Chavignon
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| | - Jean-Michel Chezal
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| | - Elisabeth Miot-Noirault
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| | - Emmanuel Moreau
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| |
Collapse
|