1
|
Wang L, Lv Z, Yang L, Wu X, Zhu Y, Liu L, Zhao Y, Huang Z, Nicewicz DA, Wu Z, Chen Y, Li Z. First-in-Human Evaluation of [ 18F]FDOPA Produced by Organo-Photoredox Reactions. Bioconjug Chem 2024; 35:1160-1165. [PMID: 39023912 DOI: 10.1021/acs.bioconjchem.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Photoredox is a powerful synthetic tool in organic chemistry and has been widely used in various fields, including nuclear medicine and molecular imaging. In particular, acridinium-based organophotoredox radiolabeling has significantly impacted the production and discovery of positron emission tomography (PET) agents. Despite their extensive use in preclinical research, no PET agents synthesized by acridinium photoredox labeling have been tested in humans. [18F]FDOPA is clinically used for tumor diagnosis and the evaluation of neuropsychiatric disorders, but its application is limited by complex synthesis methods, the need for expensive modules, and/or the high cost of consumable materials/cassettes. In this report, we integrated a photoredox labeling unit with an automated module and produced [18F]FDOPA for human study. This research not only represents the first human study of a PET agent generated by acridinium-based organophotoredox reactions but also demonstrates the safety of this novel labeling method, serving as a milestone/reference for the clinical translation of other PET agents generated by this technique in the future.
Collapse
Affiliation(s)
- Li Wang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Zhiyu Lv
- Department of Neurology Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Liping Yang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Xuedan Wu
- LED Radiofluidics Corp., 250 Bell Tower Drive, Genome Science Building, Chapel Hill, North Carolina 27599, United States
| | - Yan Zhu
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Lin Liu
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Yan Zhao
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Zhanwen Huang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Zhanhong Wu
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yue Chen
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Zibo Li
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Wu X, Chen W, Deng H, Wang L, Nicewicz DA, Li Z, Wu Z. Manufacturing 6-[ 18F]Fluoro- L-DOPA via Flow Chemistry-Enhanced Photoredox Radiofluorination. Org Lett 2024; 26:4308-4313. [PMID: 38728659 DOI: 10.1021/acs.orglett.4c01114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In this study, we introduce a practical methodology for the synthesis of PET probes by seamlessly combining flow chemistry with photoredox radiofluorination. The clinical PET tracer 6-[18F]FDOPA was smoothly prepared in a 24.3% non-decay-corrected yield with over 99.0% radiochemical purity (RCP) and enantiomeric excess (ee), notably by a simple cartridge-based purification. The flow chemistry-enhanced photolabeling method supplies an efficient and versatile solution for the synthesis of 6-[18F]FDOPA and for more PET tracer development.
Collapse
Affiliation(s)
- Xuedan Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
- LED Radiofluidics Corp., 250 Bell Tower Drive, Genome Science Building, Chapel Hill, North Carolina 27599, United States
| | - Wei Chen
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
| | - Huaifu Deng
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
| | - Li Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina-Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27514, United States
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Haveman LYF, Vugts DJ, Windhorst AD. State of the art procedures towards reactive [ 18F]fluoride in PET tracer synthesis. EJNMMI Radiopharm Chem 2023; 8:28. [PMID: 37824021 PMCID: PMC10570257 DOI: 10.1186/s41181-023-00203-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Positron emission tomography (PET) is a powerful, non-invasive preclinical and clinical nuclear imaging technique used in disease diagnosis and therapy assessment. Fluorine-18 is the predominant radionuclide used for PET tracer synthesis. An impressive variety of new 'late-stage' radiolabeling methodologies for the preparation of 18F-labeled tracers has appeared in order to improve the efficiency of the labeling reaction. MAIN BODY Despite these developments, one outstanding challenge into the early key steps of the process remains: the preparation of reactive [18F]fluoride from oxygen-18 enriched water ([18O]H2O). In the last decade, significant changes into the trapping, elution and drying stages have been introduced. This review provides an overview of the strategies and recent developments in the production of reactive [18F]fluoride and its use for radiolabeling. CONCLUSION Improved, modified or even completely new fluorine-18 work-up procedures have been developed in the last decade with widespread use in base-sensitive nucleophilic 18F-fluorination reactions. The many promising developments may lead to a few standardized drying methodologies for the routine production of a broad scale of PET tracers.
Collapse
Affiliation(s)
- Lizeth Y F Haveman
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Danielle J Vugts
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Albert D Windhorst
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Neuroscience Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Waśniowski P, Czuczejko J, Chuchra M, Wędrowski M, Marciniak D, Sobiak S, Małkowski B. Automatic Production of [ 18F]F-DOPA Using the Raytest SynChrom R&D Module. Pharmaceuticals (Basel) 2022; 16:ph16010010. [PMID: 36678506 PMCID: PMC9865388 DOI: 10.3390/ph16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
[18F]F-DOPA is widely used in PET diagnostics. Diseases diagnosed with this tracer are schizophrenia, Parkinson's disease, gliomas, neuroendocrine tumors, pheochromocytomas, and pancreatic adenocarcinoma. It should be noted that the [18F]F-DOPA tracer has been known for over 30 years. However, the methods of radiosynthesis applied in the past did not allow its clinical use due to low efficiency and purity. Currently, in the market, one encounters different types of radiosynthesis using the fluorine 18F isotope and variants of the same method. The synthesis and its modifications were carried out using a Raytest Synchrom R&D module. The synthesis consists of the following steps: (a) binding of the fluoride anion 18F- on an anion exchange column; (b) elution with TBAHCO3-; (c) nucleophilic fluorination to the ABX 1336 precursor; (d) purification of the intermediate product on the C18ec column; (e) Baeyer-Villiger oxidation; (f) hydrolysis; and (gfinal purification of the crude product on a semipreparative column. The nucleophilic synthesis of [18F]F-DOPA was successfully performed in 120 min, using the ABX 1336 precursor on the Raytest SynChrom R&D module, with a radiochemical yield (RCY) of 15%, radiochemical purity (RCP) ≥ 97%, and enantiomeric purity (ee) ≥ 96%.
Collapse
Affiliation(s)
- Paweł Waśniowski
- Department of Inorganic and Analytical Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Jagiellonska 13-15, 85-067 Bydgoszcz, Poland
- Nuclear Medicine Department, Oncology Centre Professor Franciszek Łukaszczyk Memorial, dr I. Romanowskiej 2 Street, 85-796 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-52-374-3781
| | - Jolanta Czuczejko
- Nuclear Medicine Department, Oncology Centre Professor Franciszek Łukaszczyk Memorial, dr I. Romanowskiej 2 Street, 85-796 Bydgoszcz, Poland
- Department of Psychiatry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Jagiellonska 13-15, 85-067 Bydgoszcz, Poland
| | - Michał Chuchra
- Nuclear Medicine Department, Oncology Centre Professor Franciszek Łukaszczyk Memorial, dr I. Romanowskiej 2 Street, 85-796 Bydgoszcz, Poland
| | - Mateusz Wędrowski
- Nuclear Medicine Department, Oncology Centre Professor Franciszek Łukaszczyk Memorial, dr I. Romanowskiej 2 Street, 85-796 Bydgoszcz, Poland
- Department of Diagnostic Imaging, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Jagiellonska 13-15, 85-067 Bydgoszcz, Poland
| | - Dawid Marciniak
- Department of Manufacturing Techniques, Bydgoszcz University of Science and Technology, ul. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Stanisław Sobiak
- Department of Inorganic and Analytical Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Jagiellonska 13-15, 85-067 Bydgoszcz, Poland
| | - Bogdan Małkowski
- Nuclear Medicine Department, Oncology Centre Professor Franciszek Łukaszczyk Memorial, dr I. Romanowskiej 2 Street, 85-796 Bydgoszcz, Poland
- Department of Diagnostic Imaging, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Jagiellonska 13-15, 85-067 Bydgoszcz, Poland
| |
Collapse
|
5
|
Wang C, Lin R, Yao S. Recent Advances in 18F-Labeled Amino Acids Synthesis and Application. Pharmaceutics 2022; 14:pharmaceutics14102207. [PMID: 36297641 PMCID: PMC9609324 DOI: 10.3390/pharmaceutics14102207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Radiolabeled amino acids are an important class of agents for positron emission tomography imaging that target amino acid transporters in many tumor types. Traditional 18F-labeled amino acid synthesis strategies are always based on nucleophilic aromatic substitution reactions with multistep radiosynthesis and low radiochemical yields. In recent years, new 18F-labeling methodologies such as metal-catalyzed radiofluorination and heteroatom (B, P, S, Si, etc.)-18F bond formation are being effectively used to synthesize radiopharmaceuticals. This review focuses on recent advances in the synthesis, radiolabeling, and application of a series of 18F-labeled amino acid analogs using new 18F-labeling strategies.
Collapse
|
6
|
Comparison of 18 F-DOPA and 18 F-DTBZ for PET/CT Imaging of Idiopathic Parkinson Disease. Clin Nucl Med 2022; 47:931-935. [PMID: 35961651 DOI: 10.1097/rlu.0000000000004361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to compare 2 imaging tracers, 18 F-DOPA and 18 F-DTBZ, for PET/CT imaging in idiopathic Parkinson disease (PD). METHODS We recruited 32 PD patients and 12 healthy controls in this study. All subjects underwent both 18 F-DOPA and 18 F-DTBZ PET/CT, and the results were interpreted by visual analysis and semiquantitative analysis (specific uptake ratios [SURs]). A 1-way analysis of variance was used to compare the clinical data and the SURs among the patients at different stages. Regression analysis was performed to analyze the correlation between the SURs and the clinical data. RESULTS Among the PD patients, there were 7 patients in Hoehn and Yahr stage I, 14 patients in stage II, and 11 patients in stage III. Linear correlation was found in striatal SURs between the 2 tracers ( P < 0.05). In patients of early stages, the striatal SUR decrease percent of 2 tracers had no statistical difference (paired t test, P > 0.05). By initial visual analysis, all the patients were interpreted as positive with 18 F-DBTZ (6 unilaterally, 26 bilaterally), and 31 cases were regarded as positive with 18 F-DOPA (8 unilaterally, 23 bilaterally). After setting the upper limit of SUR images with the putamen SURs of healthy controls (SUR T ), all patients were interpreted as positive with both tracers ( 18 F-DTBZ: 5 unilaterally, 27 bilaterally; 18 F-DOPA: 4 unilaterally, 28 bilaterally). CONCLUSION 18 F-DTBZ and 18 F-DOPA could reflect the same level of dopaminergic neuron degeneration for PD in early stages, and they have the consistent visual analysis results.
Collapse
|
7
|
Lee D, Yun T, Kim S, Koo Y, Chae Y, Kim S, Chang D, Yang MP, Kim H, Kang BT. Case Report: 18F-Fluoro-L-Phenylalanine Positron Emission Tomography Findings and Immunoreactivity for L-Type Amino Acid Transporter 1 in a Dog With Meningioma. Front Vet Sci 2022; 9:899229. [PMID: 35909694 PMCID: PMC9334767 DOI: 10.3389/fvets.2022.899229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
A 12-year-old intact female Miniature Pinscher dog weighing 5.4 kg presented with a history of seizures. On neurological examination, postural reactions were decreased in the left-sided limbs, and menace responses were bilaterally absent. Magnetic resonance imaging (MRI) of the brain was performed, and a solitary amorphous mass (2.7 × 1.9 × 2.2 cm) was observed on the right side of the frontal lobe. Based on the signalment, clinical signs, and MRI findings, a brain tumor was tentatively diagnosed, and meningioma was suspected. The dog was treated with hydroxyurea, prednisolone, and other antiepileptic drugs. One week after the treatment began, postural reactions returned to normal, and the menace response improved. At 119 days after treatment, 18F-fluoro-L-phenylalanine (18F-FDOPA) positron emission tomography (PET) was performed. Marked 18F-FDOPA uptake was observed in the lesion. The mean and maximal standardized uptake values of the lesion were 2.61 and 3.72, respectively, and the tumor-to-normal tissue ratio was 1.95. At 355 days after the initial treatment, a second MRI scan was performed and the tumor size had increased to 3.5 × 2.8 × 2.9 cm. The dog died 443 days after the initial treatment and was definitively diagnosed with grade 1 meningioma by histopathological examination. Immunohistochemical staining for Ki67 and L-type amino acid transporter 1 was positive and negative for p53, respectively. The labeling index of Ki67 was 2.4%. This is the first case to demonstrate 18F-FDOPA PET findings in a clinical case of a dog histologically diagnosed with a meningioma.
Collapse
Affiliation(s)
- Dohee Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Taesik Yun
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sanggu Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Yoonhoi Koo
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Yeon Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Dongwoo Chang
- Department of Veterinary Imaging, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Mhan-Pyo Yang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Hakhyun Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Byeong-Teck Kang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- *Correspondence: Byeong-Teck Kang
| |
Collapse
|
8
|
Stenberg VY, Tornes AJK, Nilsen HR, Revheim ME, Bruland ØS, Larsen RH, Juzeniene A. Factors Influencing the Therapeutic Efficacy of the PSMA Targeting Radioligand 212Pb-NG001. Cancers (Basel) 2022; 14:cancers14112784. [PMID: 35681766 PMCID: PMC9179904 DOI: 10.3390/cancers14112784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Prostate-specific membrane antigen (PSMA) is a protein overexpressed in metastatic castration-resistant prostate cancer and a promising target for targeted radionuclide therapy. PSMA-targeted alpha therapy is of growing interest due to the high-emission energy and short range of alpha particles, resulting in a prominent cytotoxic potency. This study assesses the influence of various factors on the in vitro and in vivo therapeutic efficacy of the alpha particle generating PSMA-targeting radioligand 212Pb-NG001. Abstract This study aimed to determine the influence of cellular PSMA expression, radioligand binding and internalization, and repeated administrations on the therapeutic effects of the PSMA-targeting radioligand 212Pb-NG001. Cellular binding and internalization, cytotoxicity, biodistribution, and the therapeutic efficacy of 212Pb-NG001 were investigated in two human prostate cancer cell lines with different PSMA levels: C4-2 (PSMA+) and PC-3 PIP (PSMA+++). Despite 10-fold higher PSMA expression on PC-3 PIP cells, cytotoxicity and therapeutic efficacy of the radioligand was only 1.8-fold better than for the C4-2 model, possibly explained by lower cellular internalization and less blood-rich stroma in PC-3 PIP xenografts. Mice bearing subcutaneous PC-3 PIP xenografts were treated with 0.2, 0.4, and 0.8 MBq of 212Pb-NG001 that resulted in therapeutic indexes of 2.7, 3.0, and 3.5, respectively. A significant increase in treatment response was observed in mice that received repeated injections compared to the corresponding single dose (therapeutic indexes of 3.6 for 2 × 0.2 MBq and 4.4 for 2 × 0.4 MBq). The results indicate that 212Pb-NG001 can induce therapeutic effects at clinically transferrable doses, both in the C4-2 model that resembles solid tumors and micrometastases with natural PSMA expression and in the PC-3 PIP model that mimics poorly vascularized metastases.
Collapse
Affiliation(s)
- Vilde Yuli Stenberg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
- Nucligen AS, 0379 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Correspondence: ; Tel.: +47-9012-8434
| | - Anna Julie Kjøl Tornes
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
- Nucligen AS, 0379 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
| | - Hogne Røed Nilsen
- Department of Pathology, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway;
| | - Mona-Elisabeth Revheim
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0379 Oslo, Norway
| | - Øyvind Sverre Bruland
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
| |
Collapse
|
9
|
Oh YH, Shinde SS, Lee S. Nucleophilic Radiofluorination Using Tri- tert-Butanol Ammonium as a Bifunctional Organocatalyst: Mechanism and Energetics. Molecules 2022; 27:1044. [PMID: 35164308 PMCID: PMC8838713 DOI: 10.3390/molecules27031044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
We present a quantum chemical analysis of the 18F-fluorination of 1,3-ditosylpropane, promoted by a quaternary ammonium salt (tri-(tert-butanol)-methylammonium iodide (TBMA-I) with moderate to good radiochemical yields (RCYs), experimentally observed by Shinde et al. We obtained the mechanism of the SN2 process, focusing on the role of the -OH functional groups facilitating the reactions. We found that the counter-cation TBMA+ acts as a bifunctional promoter: the -OH groups function as a bidentate 'anchor' bridging the nucleophile [18F]F- and the -OTs leaving group or the third -OH. These electrostatic interactions cooperate for the formation of the transition states of a very compact configuration for facile SN2 18F-fluorination.
Collapse
Affiliation(s)
- Young-Ho Oh
- Department of Applied Chemistry, Kyung Hee University, Deogyeong-daero 1732, Yongin-si 17104, Gyeonggi-do, Korea;
| | - Sandip S. Shinde
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Sungyul Lee
- Department of Applied Chemistry, Kyung Hee University, Deogyeong-daero 1732, Yongin-si 17104, Gyeonggi-do, Korea;
| |
Collapse
|
10
|
Chao MN, Chezal JM, Debiton E, Canitrot D, Witkowski T, Levesque S, Degoul F, Tarrit S, Wenzel B, Miot-Noirault E, Serre A, Maisonial-Besset A. A Convenient Route to New (Radio)Fluorinated and (Radio)Iodinated Cyclic Tyrosine Analogs. Pharmaceuticals (Basel) 2022; 15:ph15020162. [PMID: 35215275 PMCID: PMC8877694 DOI: 10.3390/ph15020162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The use of radiolabeled non-natural amino acids can provide high contrast SPECT/PET metabolic imaging of solid tumors. Among them, radiohalogenated tyrosine analogs (i.e., [123I]IMT, [18F]FET, [18F]FDOPA, [123I]8-iodo-L-TIC(OH), etc.) are of particular interest. While radioiodinated derivatives, such as [123I]IMT, are easily available via electrophilic aromatic substitutions, the production of radiofluorinated aryl tyrosine analogs was a long-standing challenge for radiochemists before the development of innovative radiofluorination processes using arylboronate, arylstannane or iodoniums salts as precursors. Surprisingly, despite these methodological advances, no radiofluorinated analogs have been reported for [123I]8-iodo-L-TIC(OH), a very promising radiotracer for SPECT imaging of prostatic tumors. This work describes a convenient synthetic pathway to obtain new radioiodinated and radiofluorinated derivatives of TIC(OH), as well as their non-radiolabeled counterparts. Using organotin compounds as key intermediates, [125I]5-iodo-L-TIC(OH), [125I]6-iodo-L-TIC(OH) and [125I]8-iodo-L-TIC(OH) were efficiently prepared with good radiochemical yield (RCY, 51–78%), high radiochemical purity (RCP, >98%), molar activity (Am, >1.5–2.9 GBq/µmol) and enantiomeric excess (e.e. >99%). The corresponding [18F]fluoro-L-TIC(OH) derivatives were also successfully obtained by radiofluorination of the organotin precursors in the presence of tetrakis(pyridine)copper(II) triflate and nucleophilic [18F]F− with 19–28% RCY d.c., high RCP (>98.9%), Am (20–107 GBq/µmol) and e.e. (>99%).
Collapse
Affiliation(s)
- Maria Noelia Chao
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Jean-Michel Chezal
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Eric Debiton
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Damien Canitrot
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Tiffany Witkowski
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Sophie Levesque
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
- Department of Nuclear Medicine, Jean Perrin Comprehensive Cancer Centre, F-63000 Clermont-Ferrand, France
| | - Françoise Degoul
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Sébastien Tarrit
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany;
| | - Elisabeth Miot-Noirault
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Audrey Serre
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Aurélie Maisonial-Besset
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
- Correspondence:
| |
Collapse
|
11
|
Luurtsema G, Pichler V, Bongarzone S, Seimbille Y, Elsinga P, Gee A, Vercouillie J. EANM guideline for harmonisation on molar activity or specific activity of radiopharmaceuticals: impact on safety and imaging quality. EJNMMI Radiopharm Chem 2021; 6:34. [PMID: 34628570 PMCID: PMC8502193 DOI: 10.1186/s41181-021-00149-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/20/2021] [Indexed: 02/04/2023] Open
Abstract
This guideline on molar activity (Am) and specific activity (As) focusses on small molecules, peptides and macromolecules radiolabelled for diagnostic and therapeutic applications. In this guideline we describe the definition of Am and As, and how these measurements must be standardised and harmonised. Selected examples highlighting the importance of Am and As in imaging studies of saturable binding sites will be given, and the necessity of using appropriate materials and equipment will be discussed. Furthermore, common Am pitfalls and remedies are described. Finally, some aspects of Am in relation the emergence of a new generation of highly sensitive PET scanners will be discussed.
Collapse
Affiliation(s)
- Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Medical University of Vienna, Vienna, Austria
| | | | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Philip Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Antony Gee
- Department of Imaging Sciences, King's College London, London, UK
| | | |
Collapse
|
12
|
Stormezand GN, Schreuder RSBH, Brouwers AH, Slart RHJA, Elsinga PH, Walenkamp AME, Dierckx RAJO, Glaudemans AWJM, Luurtsema G. The effects of molar activity on [ 18F]FDOPA uptake in patients with neuroendocrine tumors. EJNMMI Res 2021; 11:88. [PMID: 34495420 PMCID: PMC8426426 DOI: 10.1186/s13550-021-00829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background 6-[18F]fluoro-l-3,4-dihydroxyphenyl alanine ([18F]FDOPA) is a commonly used PET tracer for the detection and staging of neuroendocrine tumors. In neuroendocrine tumors, [18F]FDOPA is decarboxylated to [18F]dopamine via the enzyme amino acid decarboxylase (AADC), leading to increased uptake when there is increased AADC activity. Recently, in our hospital, a new GMP compliant multi-dose production of [18F]FDOPA has been developed, [18F]FDOPA-H, resulting in a higher activity yield, improved molar activity and a lower administered mass than the conventional method ([18F]FDOPA-L). Aims This study aimed to investigate whether the difference in molar activity affects the [18F]FDOPA uptake at physiological sites and in tumor lesions, in patients with NET. It was anticipated that the specific uptake of [18F]FDOPA-H would be equal to or higher than [18F]FDOPA-L. Methods We retrospectively analyzed 49 patients with pathologically confirmed NETs and stable disease who underwent PET scanning using both [18F]FDOPA-H and [18F]FDOPA-L within a time span of 5 years. A total of 98 [18F]FDOPA scans (49 [18F]FDOPA-L and 49 [18F]FDOPA-H with average molar activities of 8 and 107 GBq/mmol) were analyzed. The SUVmean was calculated for physiological organ uptake and SUVmax for tumor lesions in both groups for comparison, and separately in subjects with low tumor load (1–2 lesions) and higher tumor load (3–10 lesions). Results Comparable or slightly higher uptake was demonstrated in various physiological uptake sites in subjects scanned with [18F]FDOPA-H compared to [18F]FDOPA-L, with large overlap being present in the interquartile ranges. Tumor uptake was slightly higher in the [18F]FDOPA-H group with 3–10 lesion (SUVmax 6.83 vs. 5.19, p < 0.001). In the other groups, no significant differences were seen between H and L. Conclusion [18F]FDOPA-H provides a higher activity yield, offering the possibility to scan more patients with one single production. Minor differences were observed in SUV’s, with slight increases in uptake of [18F]FDOPA-H in comparison to [18F]FDOPA-L. This finding is not a concern for clinical practice, but could be of importance when quantifying follow-up scans while introducing new production methods with a higher molar activity of [18F]FDOPA.
Collapse
Affiliation(s)
- Gilles N Stormezand
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
| | - Romano S B H Schreuder
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Annemiek M E Walenkamp
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
13
|
Neves ÂCB, Hrynchak I, Fonseca I, Alves VHP, Pereira MM, Falcão A, Abrunhosa AJ. Advances in the automated synthesis of 6-[ 18F]Fluoro-L-DOPA. EJNMMI Radiopharm Chem 2021; 6:11. [PMID: 33689056 PMCID: PMC7947162 DOI: 10.1186/s41181-021-00126-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/12/2020] [Indexed: 01/20/2023] Open
Abstract
The neurotracer 6-[18F] FDOPA has been, for many years, a powerful tool in PET imaging of neuropsychiatric diseases, movement disorders and brain malignancies. More recently, it also demonstrated good results in the diagnosis of other malignancies such as neuroendocrine tumours, pheochromocytoma or pancreatic adenocarcinoma.The multiple clinical applications of this tracer fostered a very strong interest in the development of new and improved methods for its radiosynthesis. The no-carrier-added nucleophilic 18F-fluorination process has gained increasing attention, in recent years, due to the high molar activities obtained, when compared with the other methods although the radiochemical yield remains low (17-30%). This led to the development of several nucleophilic synthetic processes in order to obtain the product with molar activity, radiochemical yield and enantiomeric purity suitable for human PET studies.Automation of the synthetic processes is crucial for routine clinical use and compliance with GMP requirements. Nevertheless, the complexity of the synthesis makes the production challenging, increasing the chance of failure in routine production. Thus, for large-scale clinical application and wider use of this radiopharmaceutical, progress in the automation of this complex radiosynthesis is of critical importance.This review summarizes the most recent developments of 6-[18F]FDOPA radiosynthesis and discusses the key issues regarding its automation for routine clinical use.
Collapse
Affiliation(s)
- Ângela C B Neves
- ICNAS/CIBIT - Institute for Nuclear Sciences Applied to Health, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ivanna Hrynchak
- ICNAS/CIBIT - Institute for Nuclear Sciences Applied to Health, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Inês Fonseca
- ICNAS/CIBIT - Institute for Nuclear Sciences Applied to Health, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Vítor H P Alves
- ICNAS/CIBIT - Institute for Nuclear Sciences Applied to Health, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Mariette M Pereira
- Coimbra Chemistry Center, Chemistry Department, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - Amílcar Falcão
- ICNAS/CIBIT - Institute for Nuclear Sciences Applied to Health, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Antero J Abrunhosa
- ICNAS/CIBIT - Institute for Nuclear Sciences Applied to Health, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| |
Collapse
|
14
|
Krasikova RN. Nucleophilic Synthesis of 6-l-[ 18F]FDOPA. Is Copper-Mediated Radiofluorination the Answer? Molecules 2020; 25:E4365. [PMID: 32977512 PMCID: PMC7582790 DOI: 10.3390/molecules25194365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023] Open
Abstract
Positron emission tomography employing 6-l-[18F]fluoro-3,4-dihydroxyphenylalanine (6-l-[18F]FDOPA) is currently a highly relevant clinical tool for detection of gliomas, neuroendocrine tumors and evaluation of Parkinson's disease progression. Yet, the deficiencies of electrophilic synthesis of 6-l-[18F]FDOPA hold back its wider use. To fulfill growing clinical demands for this radiotracer, novel synthetic strategies via direct nucleophilic 18F-radiloabeling starting from multi-Curie amounts of [18F]fluoride, have been recently introduced. In particular, Cu-mediated radiofluorination of arylpinacol boronates and arylstannanes show significant promise for introduction into clinical practice. In this short review these current developments will be discussed with a focus on their applicability to automation.
Collapse
Affiliation(s)
- Raisa N Krasikova
- N.P. Bechtereva Institute of the Human Brain Russian Academy of Science, 197376 St. Petersburg, Russia
| |
Collapse
|
15
|
Craig A, Kolks N, Urusova EA, Zischler J, Brugger M, Endepols H, Neumaier B, Zlatopolskiy BD. Preparation of labeled aromatic amino acids via late-stage 18F-fluorination of chiral nickel and copper complexes. Chem Commun (Camb) 2020; 56:9505-9508. [PMID: 32686800 DOI: 10.1039/d0cc02223c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general protocol for the preparation of 18F-labeled AAAs and α-methyl-AAAs applying alcohol-enhanced Cu-mediated radiofluorination of Bpin-substituted chiral complexes using Ni/Cu-BPX templates as double protecting groups is reported. The chiral auxiliaries are easily accessible from commercially available starting materials in a few synthetic steps. The versatility of the method was demonstrated by the high-yielding preparation of a series of [18F]F-AAAs and the successful implementation of the protocol into automated radiosynthesis modules.
Collapse
Affiliation(s)
- Austin Craig
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM-5 Nuclear Chemistry, 52425 Jülich, Germany. and Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany and Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Niklas Kolks
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM-5 Nuclear Chemistry, 52425 Jülich, Germany. and Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Elizaveta A Urusova
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM-5 Nuclear Chemistry, 52425 Jülich, Germany. and Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Johannes Zischler
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM-5 Nuclear Chemistry, 52425 Jülich, Germany. and Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Melanie Brugger
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM-5 Nuclear Chemistry, 52425 Jülich, Germany.
| | - Heike Endepols
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM-5 Nuclear Chemistry, 52425 Jülich, Germany. and Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany and Department of Nuclear Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM-5 Nuclear Chemistry, 52425 Jülich, Germany. and Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany and Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Boris D Zlatopolskiy
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM-5 Nuclear Chemistry, 52425 Jülich, Germany. and Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany and Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany
| |
Collapse
|
16
|
Mossine AV, Tanzey SS, Brooks AF, Makaravage KJ, Ichiishi N, Miller JM, Henderson BD, Erhard T, Bruetting C, Skaddan MB, Sanford MS, Scott PJH. Synthesis of high-molar-activity [ 18F]6-fluoro-L-DOPA suitable for human use via Cu-mediated fluorination of a BPin precursor. Nat Protoc 2020; 15:1742-1759. [PMID: 32269382 PMCID: PMC7333241 DOI: 10.1038/s41596-020-0305-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/27/2020] [Indexed: 11/09/2022]
Abstract
[18F]6-fluoro-L-DOPA ([18F]FDOPA) is a diagnostic radiopharmaceutical for positron emission tomography (PET) imaging that is used to image Parkinson's disease, brain tumors, and focal hyperinsulinism of infancy. Despite these important applications, [18F]FDOPA PET remains underutilized because of synthetic challenges associated with accessing the radiotracer for clinical use; these stem from the need to radiofluorinate a highly electron-rich catechol ring in the presence of an amino acid. To address this longstanding challenge in the PET radiochemistry community, we have developed a one-pot, two-step synthesis of high-molar-activity [18F]FDOPA by Cu-mediated fluorination of a pinacol boronate (BPin) precursor. The method is fully automated, has been validated to work well at two separate sites (an academic facility with a cyclotron on site and an industry lab purchasing [18F]fluoride from an outside vendor), and provides [18F]FDOPA in reasonable radiochemical yield (2.44 ± 0.70 GBq, 66 ± 19 mCi, 5 ± 1%), excellent radiochemical purity (>98%) and high molar activity (76 ± 30 TBq/mmol, 2,050 ± 804 Ci/mmol), n = 26. Herein we report a detailed protocol for the synthesis of [18F]FDOPA that has been successfully implemented at two sites and validated for production of the radiotracer for human use.
Collapse
Affiliation(s)
- Andrew V Mossine
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Curium Pharma, Nuclear Medicine Manufacturing, Noblesville, IN, USA
| | - Sean S Tanzey
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Katarina J Makaravage
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Naoko Ichiishi
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Takeda Pharmaceuticals International Co., Process Chemistry, Boston, MA, USA
| | - Jason M Miller
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Environmental Analysis Branch, US Army Corps of Engineers, Detroit, MI, USA
| | | | - Thomas Erhard
- AbbVie Deustschland GmbH & Co. KG Ludwigschafen, Ludwigshafen, Germany
| | | | | | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Oh Y, Choi H, Lee S, Lee S. Toward the Robust Synthesis of [
18
F]F‐DOPA: Quantum Chemical Analysis of S
N
Ar Cold Fluorination of Diaryl Iodonium Salt by
19
F
−. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Young‐Ho Oh
- Department of Applied ChemistryKyung Hee University Seoul 17140 Republic of Korea
| | - Hyoju Choi
- Department of Applied ChemistryKyung Hee University Seoul 17140 Republic of Korea
| | - Sung‐Sik Lee
- Department of Applied ChemistryKyung Hee University Seoul 17140 Republic of Korea
| | - Sungyul Lee
- Department of Applied ChemistryKyung Hee University Seoul 17140 Republic of Korea
| |
Collapse
|
18
|
Wang J, Holloway T, Lisova K, van Dam RM. Green and efficient synthesis of the radiopharmaceutical [ 18F]FDOPA using a microdroplet reactor. REACT CHEM ENG 2020; 5:320-329. [PMID: 34164154 PMCID: PMC8218909 DOI: 10.1039/c9re00354a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From an efficiency standpoint, microdroplet reactors enable significant improvements in the preparation of radiopharmaceuticals due to the vastly reduced reaction volume. To demonstrate these advantages, we adapt the conventional (macroscale) synthesis of the clinically-important positron-emission tomography tracer [18F]FDOPA, following the nucleophilic diaryliodonium salt approach, to a newly-developed ultra-compact microdroplet reaction platform. In this first microfluidic implementation of [18F]FDOPA synthesis, optimized via a high-throughput multi-reaction platform, the radiochemical yield (non-decay-corrected) was found to be comparable to macroscale reports, but the synthesis consumed significantly less precursor and organic solvents, and the synthesis process was much faster. In this initial report, we demonstrate the production of [18F]FDOPA in 15 MBq [400 μCi] amounts, sufficient for imaging of multiple mice, at high molar activity.
Collapse
Affiliation(s)
- Jia Wang
- Department of Bioengineering, Henry Samueli School of Engineering
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
| | - Travis Holloway
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
| | - Ksenia Lisova
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
- Physics in Biology and Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
| | - R Michael van Dam
- Department of Bioengineering, Henry Samueli School of Engineering
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
- Physics in Biology and Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
| |
Collapse
|
19
|
Wang J, van Dam RM. High-Efficiency Production of Radiopharmaceuticals via Droplet Radiochemistry: A Review of Recent Progress. Mol Imaging 2020; 19:1536012120973099. [PMID: 33296272 PMCID: PMC7731702 DOI: 10.1177/1536012120973099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/02/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
New platforms are enabling radiochemistry to be carried out in tiny, microliter-scale volumes, and this capability has enormous benefits for the production of radiopharmaceuticals. These droplet-based technologies can achieve comparable or better yields compared to conventional methods, but with vastly reduced reagent consumption, shorter synthesis time, higher molar activity (even for low activity batches), faster purification, and ultra-compact system size. We review here the state of the art of this emerging direction, summarize the radiotracers and prosthetic groups that have been synthesized in droplet format, describe recent achievements in scaling up activity levels, and discuss advantages and limitations and the future outlook of these innovative devices.
Collapse
Affiliation(s)
- Jia Wang
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA, Los Angeles, CA, USA
| | - R. Michael van Dam
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA, Los Angeles, CA, USA
| |
Collapse
|
20
|
Lisova K, Chen BY, Wang J, Fong KMM, Clark PM, van Dam RM. Rapid, efficient, and economical synthesis of PET tracers in a droplet microreactor: application to O-(2-[ 18F]fluoroethyl)-L-tyrosine ([ 18F]FET). EJNMMI Radiopharm Chem 2019; 5:1. [PMID: 31893318 PMCID: PMC6938530 DOI: 10.1186/s41181-019-0082-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Conventional scale production of small batches of PET tracers (e.g. for preclinical imaging) is an inefficient use of resources. Using O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET), we demonstrate that simple microvolume radiosynthesis techniques can improve the efficiency of production by consuming tiny amounts of precursor, and maintaining high molar activity of the tracers even with low starting activity. PROCEDURES The synthesis was carried out in microvolume droplets manipulated on a disposable patterned silicon "chip" affixed to a heater. A droplet of [18F]fluoride containing TBAHCO3 was first deposited onto a chip and dried at 100 °C. Subsequently, a droplet containing 60 nmol of precursor was added to the chip and the fluorination reaction was performed at 90 °C for 5 min. Removal of protecting groups was accomplished with a droplet of HCl heated at 90 °C for 3 min. Finally, the crude product was collected in a methanol-water mixture, purified via analytical-scale radio-HPLC and formulated in saline. As a demonstration, using [18F]FET produced on the chip, we prepared aliquots with different molar activities to explore the impact on preclinical PET imaging of tumor-bearing mice. RESULTS The microdroplet synthesis exhibited an overall decay-corrected radiochemical yield of 55 ± 7% (n = 4) after purification and formulation. When automated, the synthesis could be completed in 35 min. Starting with < 370 MBq of activity, ~ 150 MBq of [18F]FET could be produced, sufficient for multiple in vivo experiments, with high molar activities (48-119 GBq/μmol). The demonstration imaging study revealed the uptake of [18F]FET in subcutaneous tumors, but no significant differences in tumor uptake as a result of molar activity differences (ranging 0.37-48 GBq/μmol) were observed. CONCLUSIONS A microdroplet synthesis of [18F]FET was developed demonstrating low reagent consumption, high yield, and high molar activity. The approach can be expanded to tracers other than [18F]FET, and adapted to produce higher quantities of the tracer sufficient for clinical PET imaging.
Collapse
Affiliation(s)
- Ksenia Lisova
- Physics in Biology and Medicine Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bao Ying Chen
- Physics in Biology and Medicine Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jia Wang
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kelly Mun-Ming Fong
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter M Clark
- Physics in Biology and Medicine Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - R Michael van Dam
- Physics in Biology and Medicine Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA.
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Jang KS, Lee SS, Oh YH, Lee SH, Kim SE, Kim DW, Lee BC, Lee S, Raffel DM. Control of reactivity and selectivity of guanidinyliodonium salts toward 18F-Labeling by monitoring of protecting groups: Experiment and theory. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Baeyer-Villiger oxidation tuned to chemoselective conversion of non-activated [18
F]fluorobenzaldehydes to [18
F]fluorophenols. J Labelled Comp Radiopharm 2019; 62:380-392. [DOI: 10.1002/jlcr.3740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
|
23
|
Facile 18F labeling of non-activated arenes via a spirocyclic iodonium(III) ylide method and its application in the synthesis of the mGluR 5 PET radiopharmaceutical [ 18F]FPEB. Nat Protoc 2019; 14:1530-1545. [PMID: 30980032 DOI: 10.1038/s41596-019-0149-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/12/2019] [Indexed: 01/08/2023]
Abstract
Non-activated (electron-rich and/or sterically hindered) arenes are prevalent chemical scaffolds in pharmaceuticals and positron emission tomography (PET) diagnostics. Despite substantial efforts to develop a general method to introduce 18F into these moieties for molecular imaging by PET, there is an urgent and unmet need for novel radiofluorination strategies that result in sufficiently labeled tracers to enable human imaging. Herein, we describe an efficient method that relies on spirocyclic iodonium ylide (SCIDY) precursors for one-step and regioselective radiofluorination, as well as proof-of-concept translation to the radiosynthesis of a clinically useful PET tracer, 3-[18F]fluoro-5-[(pyridin-3-yl)ethynyl] benzonitrile ([18F]FPEB). The protocol begins with the preparation of a SCIDY precursor for FPEB, followed by radiosynthesis of [18F]FPEB, by either manual operation or an automated synthesis module. [18F]FPEB can be obtained in quantities >7.4 GBq (200 mCi), ready for injection (20 ± 5%, non-decay corrected), and has excellent chemical and radiochemical purity (>98%) as well as high molar activity (666 ± 51.8 GBq/μmol; 18 ± 1.4 Ci/μmol). The total time for the synthesis and purification of the corresponding labeling SCIDY precursor is 10 h. The subsequent radionuclide production, experimental setup, 18F labeling, and formulation of a product that is ready for injection require 2 h.
Collapse
|
24
|
Maisonial-Besset A, Serre A, Ouadi A, Schmitt S, Canitrot D, Léal F, Miot-Noirault E, Brasse D, Marchand P, Chezal JM. Base/Cryptand/Metal-Free Automated Nucleophilic Radiofluorination of [18
F]FDOPA from Iodonium Salts: Importance of Hydrogen Carbonate Counterion. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aurélie Maisonial-Besset
- Université Clermont Auvergne; INSERM U1240; Imagerie Moléculaire et Stratégies Théranostiques; BP 184, 58 rue Montalembert 63000 Clermont Ferrand France
| | - Audrey Serre
- Université Clermont Auvergne; INSERM U1240; Imagerie Moléculaire et Stratégies Théranostiques; BP 184, 58 rue Montalembert 63000 Clermont Ferrand France
| | - Ali Ouadi
- CNRS; IPHC; Université de Strasbourg; 23 rue du Loess BP 28 67000 Strasbourg France
| | - Sébastien Schmitt
- Université Clermont Auvergne; INSERM U1240; Imagerie Moléculaire et Stratégies Théranostiques; BP 184, 58 rue Montalembert 63000 Clermont Ferrand France
| | - Damien Canitrot
- Université Clermont Auvergne; INSERM U1240; Imagerie Moléculaire et Stratégies Théranostiques; BP 184, 58 rue Montalembert 63000 Clermont Ferrand France
| | - Fernand Léal
- Université Clermont Auvergne; INSERM U1240; Imagerie Moléculaire et Stratégies Théranostiques; BP 184, 58 rue Montalembert 63000 Clermont Ferrand France
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne; INSERM U1240; Imagerie Moléculaire et Stratégies Théranostiques; BP 184, 58 rue Montalembert 63000 Clermont Ferrand France
| | - David Brasse
- CNRS; IPHC; Université de Strasbourg; 23 rue du Loess BP 28 67000 Strasbourg France
| | - Patrice Marchand
- CNRS; IPHC; Université de Strasbourg; 23 rue du Loess BP 28 67000 Strasbourg France
| | - Jean-Michel Chezal
- Université Clermont Auvergne; INSERM U1240; Imagerie Moléculaire et Stratégies Théranostiques; BP 184, 58 rue Montalembert 63000 Clermont Ferrand France
| |
Collapse
|
25
|
|
26
|
Vatsadze SZ, Eremina OE, Veselova IA, Kalmykov SN, Nenajdenko VG. 18F-Labelled catecholamine type radiopharmaceuticals in the diagnosis of neurodegenerative diseases and neuroendocrine tumours: approaches to synthesis and development prospects. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Performing radiosynthesis in microvolumes to maximize molar activity of tracers for positron emission tomography. Commun Chem 2018; 1. [PMID: 34291178 DOI: 10.1038/s42004-018-0009-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Positron emission tomography (PET) is a molecular diagnostic imaging technology to quantitatively visualize biological processes in vivo. For many applications, including imaging of low tissue density targets (e.g. neuroreceptors), imaging in small animals, and evaluation of novel tracers, the injected PET tracer must be produced with high molar activity to ensure low occupancy of biological targets and avoid pharmacologic effects. Additionally, high molar activity is essential for tracers with lengthy syntheses or tracers transported to distant imaging sites. We show that radiosynthesis of PET tracers in microliter volumes instead of conventional milliliter volumes results in substantially increased molar activity, and we identify the most relevant variables affecting this parameter. Furthermore, using the PET tracer [18F]fallypride, we illustrate that molar activity can have a significant impact on biodistribution. With full automation, microdroplet platforms could provide a means for radiochemists to routinely, conveniently, and safely produce PET tracers with high molar activity.
Collapse
|
28
|
Das P, Tokunaga E, Akiyama H, Doi H, Saito N, Shibata N. Synthesis of fluoro-functionalized diaryl-λ 3-iodonium salts and their cytotoxicity against human lymphoma U937 cells. Beilstein J Org Chem 2018; 14:364-372. [PMID: 29507641 PMCID: PMC5815272 DOI: 10.3762/bjoc.14.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/24/2018] [Indexed: 12/24/2022] Open
Abstract
Conscious of the potential bioactivity of fluorine, an investigation was conducted using various fluorine-containing diaryliodonium salts in order to study and compare their biological activity against human lymphoma U937 cells. Most of the compounds tested are well-known reagents for fluoro-functionalized arylation reactions in synthetic organic chemistry, but their biological properties are not fully understood. Herein, after initially investigating 18 fluoro-functionalized reagents, we discovered that the ortho-fluoro-functionalized diaryliodonium salt reagents showed remarkable cytotoxicity in vitro. These results led us to synthesize more compounds, previously unknown sterically demanding diaryliodonium salts having a pentafluorosulfanyl (SF5) functional group at the ortho-position, that is, unsymmetrical ortho-SF5 phenylaryl-λ3-iodonium salts. Newly synthesized mesityl(2-(pentafluoro-λ6-sulfanyl)phenyl)iodonium exhibited the greatest potency in vitro against U937 cells. Evaluation of the cytotoxicity of selected phenylaryl-λ3-iodonium salts against AGLCL (a normal human B cell line) was also examined.
Collapse
Affiliation(s)
- Prajwalita Das
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Hidehiko Akiyama
- Faculty of Medical Technology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan
| | - Hiroki Doi
- Faculty of Medical Technology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan
| | - Norimichi Saito
- Pharmaceutical Division, Ube Industries, Ltd. Seavans North Bldg., 1-2-1 Shibaura, Minato-ku, Tokyo 105-8449, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.,Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
| |
Collapse
|
29
|
Pike VW. Hypervalent aryliodine compounds as precursors for radiofluorination. J Labelled Comp Radiopharm 2018; 61:196-227. [PMID: 28981159 PMCID: PMC10081107 DOI: 10.1002/jlcr.3570] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022]
Abstract
Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no-carrier-added cyclotron-produced [18 F]fluoride ion (t1/2 = 109.8 min). They permit rapid and effective radiofluorination at electron-rich as well as electron-deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small-molecule 18 F-labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
A Practical Method for the Preparation of 18F-Labeled Aromatic Amino Acids from Nucleophilic [ 18F]Fluoride and Stannyl Precursors for Electrophilic Radiohalogenation. Molecules 2017; 22:molecules22122231. [PMID: 29244780 PMCID: PMC6149761 DOI: 10.3390/molecules22122231] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 11/17/2022] Open
Abstract
In a recent contribution of Scott et al., the substrate scope of Cu-mediated nucleophilic radiofluorination with [18F]KF for the preparation of 18F-labeled arenes was extended to aryl- and vinylstannanes. Based on these findings, the potential of this reaction for the production of clinically relevant positron emission tomography (PET) tracers was investigated. To this end, Cu-mediated radiofluorodestannylation using trimethyl(phenyl)tin as a model substrate was re-evaluated with respect to different reaction parameters. The resulting labeling protocol was applied for 18F-fluorination of different electron-rich, -neutral and -poor arylstannyl substrates in RCCs of 16-88%. Furthermore, this method was utilized for the synthesis of 18F-labeled aromatic amino acids from additionally N-Boc protected commercially available stannyl precursors routinely applied for electrophilic radiohalogenation. Finally, an automated synthesis of 6-[18F]fluoro-l-m-tyrosine (6-[18F]FMT), 2-[18F]fluoro-l-tyrosine (2-[18F]F-Tyr), 6-[18F]fluoro-l-3,4-dihydroxyphenylalanine (6-[18F]FDOPA) and 3-O-methyl-6-[18F]FDOPA ([18F]OMFD) was established furnishing these PET probes in isolated radiochemical yields (RCYs) of 32-54% on a preparative scale. Remarkably, the automated radiosynthesis of 6-[18F]FDOPA afforded an exceptionally high RCY of 54 ± 5% (n = 5).
Collapse
|
31
|
Production of diverse PET probes with limited resources: 24 18F-labeled compounds prepared with a single radiosynthesizer. Proc Natl Acad Sci U S A 2017; 114:11309-11314. [PMID: 29073049 DOI: 10.1073/pnas.1710466114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
New radiolabeled probes for positron-emission tomography (PET) are providing an ever-increasing ability to answer diverse research and clinical questions and to facilitate the discovery, development, and clinical use of drugs in patient care. Despite the high equipment and facility costs to produce PET probes, many radiopharmacies and radiochemistry laboratories use a dedicated radiosynthesizer to produce each probe, even if the equipment is idle much of the time, to avoid the challenges of reconfiguring the system fluidics to switch from one probe to another. To meet growing demand, more cost-efficient approaches are being developed, such as radiosynthesizers based on disposable "cassettes," that do not require reconfiguration to switch among probes. However, most cassette-based systems make sacrifices in synthesis complexity or tolerated reaction conditions, and some do not support custom programming, thereby limiting their generality. In contrast, the design of the ELIXYS FLEX/CHEM cassette-based synthesizer supports higher temperatures and pressures than other systems while also facilitating flexible synthesis development. In this paper, the syntheses of 24 known PET probes are adapted to this system to explore the possibility of using a single radiosynthesizer and hot cell for production of a diverse array of compounds with wide-ranging synthesis requirements, alongside synthesis development efforts. Most probes were produced with yields and synthesis times comparable to literature reports, and because hardware modification was unnecessary, it was convenient to frequently switch among probes based on demand. Although our facility supplies probes for preclinical imaging, the same workflow would be applicable in a clinical setting.
Collapse
|
32
|
Pandit-Taskar N, Modak S. Norepinephrine Transporter as a Target for Imaging and Therapy. J Nucl Med 2017; 58:39S-53S. [PMID: 28864611 DOI: 10.2967/jnumed.116.186833] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
The norepinephrine transporter (NET) is essential for norepinephrine uptake at the synaptic terminals and adrenal chromaffin cells. In neuroendocrine tumors, NET can be targeted for imaging as well as therapy. One of the most widely used theranostic agents targeting NET is metaiodobenzylguanidine (MIBG), a guanethidine analog of norepinephrine. 123I/131I-MIBG theranostics have been applied in the clinical evaluation and management of neuroendocrine tumors, especially in neuroblastoma, paraganglioma, and pheochromocytoma. 123I-MIBG imaging is a mainstay in the evaluation of neuroblastoma, and 131I-MIBG has been used for the treatment of relapsed high-risk neuroblastoma for several years, however, the outcome remains suboptimal. 131I-MIBG has essentially been only palliative in paraganglioma/pheochromocytoma patients. Various techniques of improving therapeutic outcomes, such as dosimetric estimations, high-dose therapies, multiple fractionated administration and combination therapy with radiation sensitizers, chemotherapy, and other radionuclide therapies, are being evaluated. PET tracers targeting NET appear promising and may be more convenient options for the imaging and assessment after treatment. Here, we present an overview of NET as a target for theranostics; review its current role in some neuroendocrine tumors, such as neuroblastoma, paraganglioma/pheochromocytoma, and carcinoids; and discuss approaches to improving targeting and theranostic outcomes.
Collapse
Affiliation(s)
| | - Shakeel Modak
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
33
|
Imperiale A, Boisson F, Kreutter G, Goichot B, Namer IJ, Bachellier P, Laquerriere P, Kessler L, Marchand P, Brasse D. O-(2- 18F-fluoroethyl)-l-tyrosine ( 18F-FET) uptake in insulinoma: first results from a xenograft mouse model and from human. Nucl Med Biol 2017; 53:21-28. [PMID: 28793277 DOI: 10.1016/j.nucmedbio.2017.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Herein we have evaluated the uptake of O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) in insulinoma in comparison with those of 6-18F-fluoro-3,4-dihydroxy-l-phenylalanine (18F-FDOPA) providing first data from both murine xenograft model and one patient with proved endogenous hyperinsulinemic hypoglycemia. METHODS Dynamic 18F-FET and carbidopa-assisted 18F-FDOPA PET were performed on tumor-bearing nude mice after subcutaneous injection of RIN-m5F murine beta cells and on a 30-year-old man with type-1 multiple endocrine neoplasia and hyperinsulinemic hypoglycemia defined by a positive fasting test. RESULTS Seven and three nude mice bearing a RIN-m5F insulinoma xenograft were respectively studied by 18F-FET and 18F-FDOPA μPET. Insulinoma xenograft was detected in all the imaged animals. Xenograft was characterized by an early but moderate increase of 18F-FET uptake followed by a slight decline of uptake intensity during the 20 min dynamic acquisition. Tumoral radiotracer peak intensity and the highest tumor-to-background contrast were reached about 5 minutes after 18F-FET iv. injection (mean SUV: 1.21 ± 0.10). The biodistribution of 18F-FET and 18F-FDOPA and their dynamic tumoral uptake profile and intensity were similar. In the examined patient, 18F-FDOPA and 18F-FET PET/CT showed one concordant focal area of well-defined increased uptake in the pancreatic tail corresponding to 11 mm histologically proved insulinoma. The SUVmax tumor to liver ratio was 1.5, 1.1 for 18F-FDOPA, 1.1, 1 for 18F-FET at early (0-5 min post injection) and delayed (5-20 min post injection) PET/CT acquisition, respectively. Despite the relatively low tumoral uptake intensity, insulinoma was clearly identified due to the low background in the pancreas. At the contrary, no 18F-FDOPA or 18F-FET tumoral uptake was revealed on whole-body PET/CT images performed about 30 min after radiotracer administration. Note of worth, the dynamic uptake pattern of 18F-FET and 18F-FDOPA were similar between human insulinoma and mice xenograft tumor. CONCLUSION 18F-FET PET compared equally to 18F-FDOPA PET in a preclinical RIN-m5F murine model of insulinoma and in one patient with insulinoma-related hypoglycemia. However, in both cases, the tumoral uptake intensity was moderate and the tumor was only visible until 20 min after radiotracer injection. Hence, caution should be taken before asserting the translational relevance of our results in the clinical practices. However, the structural analogies between 18F-FET and 18F-FDOPA as well as the limited pancreatic uptake of 18F-FET in human, encourage evaluating 18F-FET as diagnostic radiotracer for insulinoma detection in further prospective studies involving large cohorts of patients.
Collapse
Affiliation(s)
- Alessio Imperiale
- Biophysics and Nuclear Medicine, Strasbourg University Hospitals, Strasbourg, France; ICube, CNRS/UMR 7357, Strasbourg University, Strasbourg, France; Federation of Translational Medicine of Strasbourg (FMTS), Faculty of Medicine, Strasbourg University, Strasbourg, France; Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000, Strasbourg, France.
| | - Frédéric Boisson
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000, Strasbourg, France
| | - Guillaume Kreutter
- Federation of Translational Medicine of Strasbourg (FMTS), Faculty of Medicine, Strasbourg University, Strasbourg, France; EA7293, Vascular and Tissular Stress in Transplantation, Illkirch, France
| | - Bernard Goichot
- Internal Medicine, Strasbourg University Hospitals, Strasbourg, France
| | - Izzie Jacques Namer
- Biophysics and Nuclear Medicine, Strasbourg University Hospitals, Strasbourg, France; ICube, CNRS/UMR 7357, Strasbourg University, Strasbourg, France; Federation of Translational Medicine of Strasbourg (FMTS), Faculty of Medicine, Strasbourg University, Strasbourg, France
| | - Philippe Bachellier
- Visceral Surgery and Transplantation, Strasbourg University Hospitals, Strasbourg, France
| | | | - Laurence Kessler
- Federation of Translational Medicine of Strasbourg (FMTS), Faculty of Medicine, Strasbourg University, Strasbourg, France; EA7293, Vascular and Tissular Stress in Transplantation, Illkirch, France; Diabetology, Strasbourg University Hospitals, Strasbourg, France
| | - Patrice Marchand
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000, Strasbourg, France
| | - David Brasse
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000, Strasbourg, France
| |
Collapse
|
34
|
Linstad EJ, Vāvere AL, Hu B, Kempinger JJ, Snyder SE, DiMagno SG. Thermolysis and radiofluorination of diaryliodonium salts derived from anilines. Org Biomol Chem 2017; 15:2246-2252. [DOI: 10.1039/c7ob00253j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanistic and theoretical studies reveal new reactions of Ar2I salts that can interfere with radiolabeling of these substrates.
Collapse
Affiliation(s)
- Ethan J. Linstad
- Department of Chemistry
- University of Nebraska–Lincoln
- Lincoln
- USA
- Departments of Medicinal Chemistry & Pharmacognosy and Chemistry
| | - Amy L. Vāvere
- Division of Nuclear Medicine
- Department of Diagnostic Imaging
- St. Jude Children's Research Hospital
- Memphis
- USA
| | - Bao Hu
- Departments of Medicinal Chemistry & Pharmacognosy and Chemistry
- University of Illinois–Chicago
- Chicago
- USA
| | | | - Scott E. Snyder
- Division of Nuclear Medicine
- Department of Diagnostic Imaging
- St. Jude Children's Research Hospital
- Memphis
- USA
| | - Stephen G. DiMagno
- Departments of Medicinal Chemistry & Pharmacognosy and Chemistry
- University of Illinois–Chicago
- Chicago
- USA
| |
Collapse
|
35
|
A revisit to quantitative PET with 18F-FDOPA of high specific activity using a high-resolution condition in view of application to regenerative therapy. Ann Nucl Med 2016; 31:163-171. [DOI: 10.1007/s12149-016-1143-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/28/2016] [Indexed: 01/08/2023]
|
36
|
Deroose CM, Hindié E, Kebebew E, Goichot B, Pacak K, Taïeb D, Imperiale A. Molecular Imaging of Gastroenteropancreatic Neuroendocrine Tumors: Current Status and Future Directions. J Nucl Med 2016; 57:1949-1956. [PMID: 27811124 DOI: 10.2967/jnumed.116.179234] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023] Open
Abstract
Through diagnostic imaging and peptide receptor radionuclide therapy, nuclear medicine has earned a major role in gastroenteropancreatic neuroendocrine tumors (GEP NETs). GEP NETs are diagnosed fortuitously or on the basis of symptoms or hormonal syndrome. The functional tumor characteristics shown by radionuclide imaging allow for more accurate staging and treatment selection. Tumor grade helps determine which tracer should be selected. In the past, 111In-pentetreotide has been successful in well-differentiated (G1 and G2) tumors. However, PET/CT imaging with novel somatostatin analogs (e.g., 68Ga-DOTATOC, 68Ga-DOTATATE, 68Ga-DOTANOC, and 64Cu-DOTATATE) now offers improved sensitivity. 18F-fluorodihydroxyphenylalanine (18F-FDOPA) is another interesting radiopharmaceutical. 18F-FDOPA sensitivity is influenced by a tumor's capacity to take up, decarboxylate, and store amine precursors. 18F-FDOPA sensitivities are highest in ileal NETs and may also be helpful in insulinomas. A high uptake of 18F-FDG with a low uptake of somatostatin analog usually indicates poorly differentiated tumors (G3). Starting from these principles, this article discusses theranostic approaches to GEP NETs, taking into account both primary and metastatic lesions.
Collapse
Affiliation(s)
| | - Elif Hindié
- Nuclear Medicine, Haut-Lévêque Hospital, University of Bordeaux, France.,LabEx TRAIL, University of Bordeaux, France
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Bernard Goichot
- Internal Medicine, Strasbourg University Hospitals, Strasbourg, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, Maryland
| | - David Taïeb
- Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France.,European Center for Research in Medical Imaging, Marseille, France.,INSERM UMR1068, Marseille, France
| | - Alessio Imperiale
- Biophysics and Nuclear Medicine, Strasbourg University Hospitals, Strasbourg, France; and .,ICube, UMR 7357, University of Strasbourg/CNRS and FMTS, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| |
Collapse
|
37
|
Evaluation of two nucleophilic syntheses routes for the automated synthesis of 6-[ 18F]fluoro-l-DOPA. Nucl Med Biol 2016; 45:35-42. [PMID: 27886621 DOI: 10.1016/j.nucmedbio.2016.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/09/2016] [Accepted: 10/24/2016] [Indexed: 01/05/2023]
Abstract
Two different strategies for the nucleophilic radiosynthesis of [18F]F-DOPA were evaluated regarding their applicability for an automated routine production on an Ecker&Ziegler Modular-Lab Standard module. Initially, we evaluated a promising 5-step synthesis based on a chiral, cinchonidine-derived phase-transfer catalyst (cPTC) being described to give the product in high radiochemical yields (RCY), high specific activities (AS) and high enantiomeric excesses (ee). However, the radiosynthesis of [18F]F-DOPA based on this strategy showed to be highly complex, giving the intermediate products as well as the final product in insufficient yields for automatization. Furthermore, the automatization proved to be problematic due to incomplete radiochemical conversions and the formation of precipitates during the enantioselective reaction step. Furthermore, the required use of HI at 180°C during the last reaction step led to partial decomposition of lines and seals of the module which further counteracts an automatization. Further on, we evaluated a 3-step synthesis using the commercially available, enantiomerically pure precursor AB1336 for automatization. This synthesis approach gave much better results and [18F]F-DOPA could be produced fully automated within 114min in RCYs of 20±1%, ee of >96%, a radiochemical purity (RCP) of >98% and specific activities of up to 2.2GBq/μmol.
Collapse
|
38
|
Makaravage KJ, Brooks AF, Mossine AV, Sanford MS, Scott PJH. Copper-Mediated Radiofluorination of Arylstannanes with [ 18F]KF. Org Lett 2016; 18:5440-5443. [PMID: 27718581 PMCID: PMC5078836 DOI: 10.1021/acs.orglett.6b02911] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
A copper-mediated nucleophilic radiofluorination
of aryl- and vinylstannanes
with [18F]KF is described. This method is fast, uses commercially
available reagents, and is compatible with both electron-rich and
electron-deficient arene substrates. This method has been applied
to the manual synthesis of a variety of clinically relevant radiotracers
including protected [18F]F-phenylalanine and [18F]F-DOPA. In addition, an automated synthesis of [18F]MPPF
is demonstrated that delivers a clinically validated dose of 200 ±
20 mCi with a high specific activity of 2400 ± 900 Ci/mmol.
Collapse
Affiliation(s)
| | - Allen F Brooks
- Department of Radiology, University of Michigan Medical School , 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Andrew V Mossine
- Department of Radiology, University of Michigan Medical School , 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | | | - Peter J H Scott
- Department of Radiology, University of Michigan Medical School , 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
39
|
Yuan Z, Cheng R, Chen P, Liu G, Liang SH. Efficient Pathway for the Preparation of Aryl(isoquinoline)iodonium(III) Salts and Synthesis of Radiofluorinated Isoquinolines. Angew Chem Int Ed Engl 2016; 55:11882-11886. [PMID: 27554850 PMCID: PMC5175407 DOI: 10.1002/anie.201606381] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 12/22/2022]
Abstract
Iodonium compounds play a pivotal role in (18) F-fluorination of radiopharmaceuticals containing non-activated arenes. However, preparation of these species is limited to oxidation conditions or exchange with organometallics that are prepared from aryl halides. Herein we describe a novel "one-pot" process to assemble aryl(isoquinoline)iodonium salts in 40-94 % yields from mesoionic carbene silver complex and Aryl-I-Py2 (OTf)2 . The method is general, practical, and compatible with well-functionalized molecules as well as useful for the preparation of a wide range of (18) F-labeled isoquinolines resulting in up to 92 % radiochemical conversion. As proof of concept, a fluorinated isoquinoline alkaloid, (18) F-aspergillitine is prepared in 10 % isolated radiochemical yield from the corresponding phenyl(aspergillitine)iodonium salt.
Collapse
Affiliation(s)
- Zheliang Yuan
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road, Shanghai, 200032 (China)
| | - Ran Cheng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Gordon Center for Medical Imaging & Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA (USA)
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road, Shanghai, 200032 (China)
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road, Shanghai, 200032 (China)
| | - Steven H. Liang
- Gordon Center for Medical Imaging & Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA (USA)
| |
Collapse
|
40
|
Detour J, Pierre A, Boisson F, Kreutter G, Lavaux T, Namer IJ, Kessler L, Brasse D, Marchand P, Imperiale A. Effect of Carbidopa on 18F-FDOPA Uptake in Insulinoma: From Cell Culture to Small-Animal PET Imaging. J Nucl Med 2016; 58:36-41. [PMID: 27609787 DOI: 10.2967/jnumed.116.180588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/10/2016] [Indexed: 01/13/2023] Open
Abstract
Patient premedication with carbidopa seems to improve the accuracy of 6-18F-fluoro-3,4-dihydroxy-l-phenylalanine (18F-FDOPA) PET for insulinoma diagnosis. However, the risk of PET false-negative results in the presence of carbidopa is a concern. Consequently, we aimed to evaluate the effect of carbidopa on 18F-FDOPA uptake in insulinoma β-cells and an insulinoma xenograft model in mice. METHODS 18F-FDOPA in vitro accumulation was assessed in the murine β-cell line RIN-m5F. In vivo small-animal PET experiments were performed on tumor-bearing nude mice after subcutaneous injection of RIN-m5F cells. Experiments were conducted with and without carbidopa pretreatment. RESULTS Incubation of RIN-m5F cells with 80 μM carbidopa did not significantly affect the cellular accumulation of 18F-FDOPA. Tumor xenografts were clearly detectable by small-animal PET in all cases. Insulinoma xenografts in carbidopa-treated mice showed significantly higher 18F-FDOPA uptake than those in nontreated mice. Regardless of carbidopa premedication, the xenografts were characterized by an early increase in 18F-FDOPA uptake and then a progressive reduction over time. CONCLUSION Carbidopa did not influence in vitro 18F-FDOPA accumulation in RIN-m5F cells but improved insulinoma imaging in vivo. Our findings increase current knowledge about the 18F-FDOPA uptake profile of RIN-m5F cells and a related xenograft model. To our knowledge, the present work represents the first preclinical research specifically focused on insulinomas, with potential translational implications.
Collapse
Affiliation(s)
- Julien Detour
- Department of Radiopharmacy, Strasbourg University Hospitals, Strasbourg, France.,Department of Biophysics and Nuclear Medicine, Strasbourg University Hospitals, Strasbourg, France
| | - Alice Pierre
- Department of Radiopharmacy, Strasbourg University Hospitals, Strasbourg, France.,Department of Biophysics and Nuclear Medicine, Strasbourg University Hospitals, Strasbourg, France
| | - Fréderic Boisson
- Institut Pluridisciplinaire Hubert Curien (IPHC), CNRS/UMR7178, Strasbourg University, Strasbourg, France
| | - Guillaume Kreutter
- EA7293, Vascular and Tissular Stress in Transplantation, Illkirch, France.,Federation of Translational Medicine of Strasbourg (FMTS), Faculty of Medicine, Strasbourg University, Strasbourg, France
| | - Thomas Lavaux
- Department of Biochemistry and Molecular Biology, Strasbourg University Hospitals, Strasbourg, France
| | - Izzie Jacques Namer
- Department of Biophysics and Nuclear Medicine, Strasbourg University Hospitals, Strasbourg, France.,Federation of Translational Medicine of Strasbourg (FMTS), Faculty of Medicine, Strasbourg University, Strasbourg, France.,ICube, CNRS/UMR7357, Strasbourg University, Strasbourg, France; and
| | - Laurence Kessler
- EA7293, Vascular and Tissular Stress in Transplantation, Illkirch, France.,Federation of Translational Medicine of Strasbourg (FMTS), Faculty of Medicine, Strasbourg University, Strasbourg, France.,Department of Diabetology, Strasbourg University Hospitals, Strasbourg, France
| | - David Brasse
- Institut Pluridisciplinaire Hubert Curien (IPHC), CNRS/UMR7178, Strasbourg University, Strasbourg, France
| | - Patrice Marchand
- Institut Pluridisciplinaire Hubert Curien (IPHC), CNRS/UMR7178, Strasbourg University, Strasbourg, France
| | - Alessio Imperiale
- Department of Biophysics and Nuclear Medicine, Strasbourg University Hospitals, Strasbourg, France .,Institut Pluridisciplinaire Hubert Curien (IPHC), CNRS/UMR7178, Strasbourg University, Strasbourg, France.,Federation of Translational Medicine of Strasbourg (FMTS), Faculty of Medicine, Strasbourg University, Strasbourg, France.,ICube, CNRS/UMR7357, Strasbourg University, Strasbourg, France; and
| |
Collapse
|
41
|
Yuan Z, Cheng R, Chen P, Liu G, Liang SH. Efficient Pathway for the Preparation of Aryl(isoquinoline)iodonium(III) Salts and Synthesis of Radiofluorinated Isoquinolines. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zheliang Yuan
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Ran Cheng
- School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
- Gordon Center for Medical Imaging & Division of Nuclear Medicine and Molecular Imaging; Massachusetts General Hospital and Harvard Medical School; 55 Fruit St. Boston MA USA
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Steven H. Liang
- Gordon Center for Medical Imaging & Division of Nuclear Medicine and Molecular Imaging; Massachusetts General Hospital and Harvard Medical School; 55 Fruit St. Boston MA USA
| |
Collapse
|
42
|
Luurtsema G, Boersma HH, Schepers M, de Vries AMT, Maas B, Zijlma R, de Vries EFJ, Elsinga PH. Improved GMP-compliant multi-dose production and quality control of 6-[ 18F]fluoro-L-DOPA. EJNMMI Radiopharm Chem 2016; 1:7. [PMID: 29564384 PMCID: PMC5843807 DOI: 10.1186/s41181-016-0009-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/14/2016] [Indexed: 11/20/2022] Open
Abstract
Background 6-[18F]Fluoro-L-3,4-dihydroxyphenylalanine (FDOPA) is a frequently used radiopharmaceutical for detecting neuroendocrine and brain tumors and for the differential diagnosis of Parkinson’s disease. To meet the demand for FDOPA, a high-yield GMP-compliant production method is required. Therefore, this study aimed to improve the FDOPA production and quality control procedures to enable distribution of the radiopharmaceutical over distances. FDOPA was prepared by electrophilic fluorination of the trimethylstannyl precursor with [18F]F2, produced from [18O]2 via the double-shoot approach, leading to FDOPA with higher specific activity as compared to FDOPA which was synthesized, using [18F]F2 produced from 20Ne, leading to FDOPA with a lower specific activity. The quality control of the product was performed using a validated UPLC system and compared with quality control with a conventional HPLC system. Impurities were identified using UPLC-MS. Results The [18O]2 double-shoot radionuclide production method yielded significantly more [18F]F2 with less carrier F2 than the conventional method starting from 20Ne. After adjustment of radiolabeling parameters substantially higher amounts of FDOPA with higher specific activity could be obtained. Quality control by UPLC was much faster and detected more side-products than HPLC. UPLC-MS showed that the most important side-product was FDOPA-quinone, rather than 6-hydroxydopa as suggested by the European Pharmacopoeia. Conclusion The production and quality control of FDOPA were significantly improved by introducing the [18O]2 double-shoot radionuclide production method, and product analysis by UPLC, respectively. As a result, FDOPA is now routinely available for clinical practice and for distribution over distances.
Collapse
Affiliation(s)
- G Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - H H Boersma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - M Schepers
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - A M T de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - B Maas
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - R Zijlma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - E F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - P H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
43
|
Rotstein BH, Wang L, Liu RY, Patteson J, Kwan EE, Vasdev N, Liang SH. Mechanistic Studies and Radiofluorination of Structurally Diverse Pharmaceuticals with Spirocyclic Iodonium(III) Ylides. Chem Sci 2016; 7:4407-4417. [PMID: 27540460 PMCID: PMC4987086 DOI: 10.1039/c6sc00197a] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Theoretical studies provide insight into radiofluorination of non-activated electron-rich and sterically hindered 18F-arenes using a new class of adamantyl-based spirocyclic iodonium(iii) ylide precursors.
Synthesis of non-activated electron-rich and sterically hindered 18F-arenes remains a major challenge due to limitations of existing radiofluorination methodologies. Herein, we report on our mechanistic investigations of spirocyclic iodonium(iii) ylide precursors for arene radiofluorination, including their reactivity, selectivity, and stability with no-carrier-added [18F]fluoride. Benchmark calculations at the G2[ECP] level indicate that pseudorotation and reductive elimination at iodine(iii) can be modeled well by appropriately selected dispersion-corrected density functional methods. Modeling of the reaction pathways show that fluoride–iodonium(iii) adduct intermediates are strongly activated and highly regioselective for reductive elimination of the desired [18F]fluoroarenes (difference in barriers, ΔΔG‡ > 25 kcal mol–1). The advantage of spirocyclic auxiliaries is further supported by NMR spectroscopy studies, which bolster evidence for underlying decomposition processes which can be overcome for radiofluorination of iodonium(iii) precursors. Using a novel adamantyl auxiliary, sterically hindered iodonium ylides have been developed to enable highly efficient radiofluorination of electron-rich arenes, including fragments of pharmaceutically relevant nitrogen-containing heterocycles and tertiary amines. Furthermore, this methodology has been applied for the syntheses of the radiopharmaceuticals 6-[18F]fluoro-meta-tyrosine ([18F]FMT, 11 ± 1% isolated radiochemical yield, non-decay-corrected (RCY, n.d.c.), n = 3), and meta-[18F]fluorobenzylguanidine ([18F]mFBG, 14 ± 1% isolated RCY, n.d.c., n = 3) which cannot be directly radiolabeled using conventional nucleophilic aromatic substitution with [18F]fluoride.
Collapse
Affiliation(s)
- Benjamin H Rotstein
- Division of Nuclear Medicine and Molecular Imaging & Gordon Center for Medical Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts, 02114, United States of America; Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114, United States of America
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging & Gordon Center for Medical Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts, 02114, United States of America
| | - Richard Y Liu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, United States of America
| | - Jon Patteson
- Division of Nuclear Medicine and Molecular Imaging & Gordon Center for Medical Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts, 02114, United States of America
| | - Eugene E Kwan
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, United States of America
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging & Gordon Center for Medical Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts, 02114, United States of America; Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114, United States of America
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging & Gordon Center for Medical Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts, 02114, United States of America; Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114, United States of America
| |
Collapse
|
44
|
|
45
|
Preshlock S, Tredwell M, Gouverneur V. (18)F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem Rev 2016; 116:719-66. [PMID: 26751274 DOI: 10.1021/acs.chemrev.5b00493] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diverse radiochemistry is an essential component of nuclear medicine; this includes imaging techniques such as positron emission tomography (PET). As such, PET can track diseases at an early stage of development, help patient care planning through personalized medicine and support drug discovery programs. Fluorine-18 is the most frequently used radioisotope in PET radiopharmaceuticals for both clinical and preclinical research. Its physical and nuclear characteristics (97% β(+) decay, 109.8 min half-life, 635 keV positron energy) and high specific activity make it an attractive nuclide for labeling and molecular imaging. Arenes and heteroarenes are privileged candidates for (18)F-incorporation as they are metabolically robust and therefore widely used by medicinal chemists and radiochemists alike. For many years, the range of (hetero)arenes amenable to (18)F-fluorination was limited by the lack of chemically diverse precursors, and of radiochemical methods allowing (18)F-incorporation in high selectivity and efficiency (radiochemical yield and purity, specific activity, and radio-scalability). The appearance of late-stage fluorination reactions catalyzed by transition metal or small organic molecules (organocatalysis) has encouraged much research on the use of these activation manifolds for (18)F-fluorination. In this piece, we review all of the reactions known to date to install the (18)F substituent and other key (18)F-motifs (e.g., CF3, CHF2, OCF3, SCF3, OCHF2) of medicinal relevance onto (hetero)arenes. The field has changed significantly in the past five years, and the current trend suggests that the radiochemical space available for PET applications will expand rapidly in the near future.
Collapse
Affiliation(s)
- Sean Preshlock
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Matthew Tredwell
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| |
Collapse
|
46
|
Qin L, Hu B, Neumann KD, Linstad EJ, McCauley K, Veness J, Kempinger JJ, DiMagno SG. A Mild and General One-Pot Synthesis of Densely Functionalized Diaryliodonium Salts. European J Org Chem 2015; 2015:5919-5924. [PMID: 27065751 PMCID: PMC4824678 DOI: 10.1002/ejoc.201500986] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 01/12/2023]
Abstract
Diaryliodonium salts are powerful and widely used arylating agents in organic chemistry. Here we report a scalable, synthesis of densely functionalized diaryliodonium salts from aryl iodides under mild conditions. This two-step, one-pot process has remarkable functional group tolerance, is compatible with commonly employed acid-labile protective group strategies, avoids heavy metal and transition metal reagents, and provides a direct route to stable precursors to PET imaging agents.
Collapse
Affiliation(s)
- Linlin Qin
- Department of Chemistry & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0304 (USA), http://chem.unl.edu/dimagno-group
| | - Bao Hu
- Department of Chemistry & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0304 (USA), http://chem.unl.edu/dimagno-group
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014 (China)
| | - Kiel D. Neumann
- Department of Chemistry & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0304 (USA), http://chem.unl.edu/dimagno-group
| | - Ethan J. Linstad
- Department of Chemistry & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0304 (USA), http://chem.unl.edu/dimagno-group
| | - Katelyenn McCauley
- Department of Chemistry & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0304 (USA), http://chem.unl.edu/dimagno-group
| | - Jordan Veness
- Department of Chemistry & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0304 (USA), http://chem.unl.edu/dimagno-group
| | - Jayson J. Kempinger
- Department of Chemistry & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0304 (USA), http://chem.unl.edu/dimagno-group
| | - Stephen G. DiMagno
- Department of Chemistry & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0304 (USA), http://chem.unl.edu/dimagno-group
| |
Collapse
|
47
|
Zlatopolskiy BD, Zischler J, Urusova EA, Endepols H, Kordys E, Frauendorf H, Mottaghy FM, Neumaier B. A Practical One-Pot Synthesis of Positron Emission Tomography (PET) Tracers via Nickel-Mediated Radiofluorination. ChemistryOpen 2015; 4:457-62. [PMID: 26478840 PMCID: PMC4603406 DOI: 10.1002/open.201500056] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 12/28/2022] Open
Abstract
Recently a novel method for the preparation of (18)F-labeled arenes via oxidative [(18)F]fluorination of easily accessible and sufficiently stable nickel complexes with [(18)F]fluoride under exceptionally mild reaction conditions was published. The suitability of this procedure for the routine preparation of clinically relevant positron emission tomography (PET) tracers, 6-[(18)F]fluorodopamine (6-[(18)F]FDA), 6-[(18)F]fluoro-l-DOPA (6-[(18)F]FDOPA) and 6-[(18)F]fluoro-m-tyrosine (6-[(18)F]FMT), was evaluated. The originally published base-free method was inoperative. However, a "low base" protocol afforded protected radiolabeled intermediates in radiochemical conversions (RCCs) of 5-18 %. The subsequent deprotection step proceeded almost quantitatively (>95 %). The simple one-pot two-step procedure allowed the preparation of clinical doses of 6-[(18)F]FDA and 6-[(18)F]FDOPA within 50 min (12 and 7 % radiochemical yield, respectively). In an unilateral rat model of Parkinsons disease, 6-[(18)F]FDOPA with high specific activity (175 GBq μmol(-1)) prepared using the described nickel-mediated radiofluorination was compared to 6-[(18)F]FDOPA with low specific activity (30 MBq μmol(-1)) produced via conventional electrophilic radiofluorination. Unexpectedly both tracer variants displayed very similar in vivo properties with respect to signal-to-noise ratio and brain distribution, and consequently, the quality of the obtained PET images was almost identical.
Collapse
Affiliation(s)
- Boris D Zlatopolskiy
- Institute of Radiochemistry & Experimental Molecular Imaging, University Clinic CologneKerpener Str. 62, 50937, Cologne, Germany
- Max Planck Institute for Metabolism ResearchGleueler Str. 50, 50931, Cologne, Germany
| | - Johannes Zischler
- Institute of Radiochemistry & Experimental Molecular Imaging, University Clinic CologneKerpener Str. 62, 50937, Cologne, Germany
- Max Planck Institute for Metabolism ResearchGleueler Str. 50, 50931, Cologne, Germany
| | - Elizaveta A Urusova
- Institute of Radiochemistry & Experimental Molecular Imaging, University Clinic CologneKerpener Str. 62, 50937, Cologne, Germany
- Max Planck Institute for Metabolism ResearchGleueler Str. 50, 50931, Cologne, Germany
- Clinic of Nuclear Medicine, RWTH Aachen UniversityPauwelsstraße 30, 52074, Aachen, Germany
| | - Heike Endepols
- Institute of Radiochemistry & Experimental Molecular Imaging, University Clinic CologneKerpener Str. 62, 50937, Cologne, Germany
- Max Planck Institute for Metabolism ResearchGleueler Str. 50, 50931, Cologne, Germany
| | - Elena Kordys
- Institute of Radiochemistry & Experimental Molecular Imaging, University Clinic CologneKerpener Str. 62, 50937, Cologne, Germany
- Max Planck Institute for Metabolism ResearchGleueler Str. 50, 50931, Cologne, Germany
| | - Holm Frauendorf
- Institute of Organic & Biomolecular Chemistry, Georg-August UniversityTammannstr. 2, 37077, Göttingen, Germany
| | - Felix M Mottaghy
- Clinic of Nuclear Medicine, RWTH Aachen UniversityPauwelsstraße 30, 52074, Aachen, Germany
- Department of Nuclear Medicine, Maastricht University Medical CenterPO Box 616, 6200, MD Maastricht, The Netherlands
| | - Bernd Neumaier
- Institute of Radiochemistry & Experimental Molecular Imaging, University Clinic CologneKerpener Str. 62, 50937, Cologne, Germany
- Max Planck Institute for Metabolism ResearchGleueler Str. 50, 50931, Cologne, Germany
| |
Collapse
|