1
|
Hamoya T, Kaminaga K, Igarashi R, Nishimura Y, Yanagihara H, Morioka T, Suzuki C, Abe H, Ohshima T, Imaoka T. Intravital microscopic thermometry of rat mammary epithelium by fluorescent nanodiamond. NANOSCALE HORIZONS 2024; 9:1938-1947. [PMID: 39297440 DOI: 10.1039/d4nh00237g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Quantum sensing using the fluorescent nanodiamond (FND) nitrogen-vacancy center enables physical/chemical measurements of the microenvironment, although application of such measurements in living mammals poses significant challenges due to the unknown biodistribution and toxicity of FNDs, the limited penetration of visible light for quantum state manipulation/measurement, and interference from physiological motion. Here, we describe a microenvironmental thermometry technique using FNDs in rat mammary epithelium, an important model for mammary gland biology and breast cancer research. FNDs were injected directly into the mammary gland. Microscopic observation of mammary tissue sections showed that most FNDs remained in the mammary epithelium for at least 8 weeks. Pathological examination indicated no obvious change in tissue morphology, suggesting negligible toxicity. Optical excitation and detection were performed through a skin incision. Periodic movements due to respiration and heartbeat were mitigated by frequency filtering of the signal. Based on these methods, we successfully detected temperature elevation in the mammary epithelium associated with lipopolysaccharide-induced inflammation, demonstrating the sensitivity and relevance of the technique in biological contexts. This study lays the groundwork for expanding the applicability of quantum sensing in biomedical research, providing a tool for real-time monitoring of physiological and pathological processes.
Collapse
Affiliation(s)
- Takahiro Hamoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kiichi Kaminaga
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Okayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hiromi Yanagihara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takamitsu Morioka
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Chihiro Suzuki
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Hiroshi Abe
- Quantum Materials and Applications Research Center, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1207, Japan
| | - Takeshi Ohshima
- Quantum Materials and Applications Research Center, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1207, Japan
| | - Tatsuhiko Imaoka
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
2
|
Lang F, Rönicke F, Wagenknecht HA. Cell-resistant wavelength-shifting molecular beacons made of L-DNA and a clickable L-configured uridine. Org Biomol Chem 2024; 22:4568-4573. [PMID: 38771639 DOI: 10.1039/d4ob00692e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Wavelength-shifting molecular beacons were prepared from L-DNA. The clickable anchor for the two dyes, Cy3 and Cy5, was 2'-O-propargyl-L-uridine and was synthesized from L-ribose. Four clickable molecular beacons were prepared and double-modified with the azide dyes by a combination of click chemistry on a solid support for Cy3 during DNA synthesis and postsynthetic click chemistry for Cy5 in solution. Cy3 and Cy5 successfully formed a FRET pair in the beacons, and the closed form (red fluorescence) and the open form (green fluorescence) can be distinguished by the two-color fluorescence readout. Two molecular beacons were identified to show the greatest fluorescence contrast in temperature-dependent fluorescence measurements. The stability of the L-configured molecular beacons was demonstrated after several heating and cooling cycles as well as in the cell lysate. In comparison, D-configured molecular beacons showed a rapid decrease of fluorescence contrast in the cell lysate, which is caused by the opening of the beacons, probably due to degradation. This was confirmed in cell experiments using confocal microscopy. The L-configured molecular beacons are potential intracellular thermometers for future applications.
Collapse
Affiliation(s)
- Fabian Lang
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Franziska Rönicke
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
3
|
Suzuki M, Liu C, Oyama K, Yamazawa T. Trans-scale thermal signaling in biological systems. J Biochem 2023; 174:217-225. [PMID: 37461189 PMCID: PMC10464929 DOI: 10.1093/jb/mvad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023] Open
Abstract
Biochemical reactions in cells serve as the endogenous source of heat, maintaining a constant body temperature. This process requires proper control; otherwise, serious consequences can arise due to the unwanted but unavoidable responses of biological systems to heat. This review aims to present a range of responses to heat in biological systems across various spatial scales. We begin by examining the impaired thermogenesis of malignant hyperthermia in model mice and skeletal muscle cells, demonstrating that the progression of this disease is caused by a positive feedback loop between thermally driven Ca2+ signaling and thermogenesis at the subcellular scale. After we explore thermally driven force generation in both muscle and non-muscle cells, we illustrate how in vitro assays using purified proteins can reveal the heat-responsive properties of proteins and protein assemblies. Building on these experimental findings, we propose the concept of 'trans-scale thermal signaling'.
Collapse
Key Words
- ATPase
- fluorescence microscopy
- heat-induced calcium release
- microheating
- type 1 ryanodine receptor.
Abbreviations: [Ca2+]i, intracellular Ca2+ concentration; CICR, Ca2+-induced Ca2+ release; ER, endoplasmic reticulum; FDB, flexor digitorum brevis; HEK293 cell, human embryonic kidney 293 cell; HICR, heat-induced Ca2+ release; IP3R, inositol 1,4,5-trisphosphate receptor; MH, malignant hyperthermia; RCC, rapid cooling contracture; RyR1, type 1 ryanodine receptor; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SR, sarcoplasmic reticulum; TRP, transient receptor potential; WT, wild type
Collapse
Affiliation(s)
- Madoka Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chujie Liu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Kotaro Oyama
- Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, 1233 Watanukimachi, Takasaki-shi, Gunma 370-1292, Japan
| | - Toshiko Yamazawa
- Core Research Facilities, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
4
|
Romshin AM, Zeeb V, Glushkov E, Radenovic A, Sinogeikin AG, Vlasov II. Nanoscale thermal control of a single living cell enabled by diamond heater-thermometer. Sci Rep 2023; 13:8546. [PMID: 37236978 DOI: 10.1038/s41598-023-35141-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
We report a new approach to controllable thermal stimulation of a single living cell and its compartments. The technique is based on the use of a single polycrystalline diamond particle containing silicon-vacancy (SiV) color centers. Due to the presence of amorphous carbon at its intercrystalline boundaries, such a particle is an efficient light absorber and becomes a local heat source when illuminated by a laser. Furthermore, the temperature of such a local heater is tracked by the spectral shift of the zero-phonon line of SiV centers. Thus, the diamond particle acts simultaneously as a heater and a thermometer. In the current work, we demonstrate the ability of such a Diamond Heater-Thermometer (DHT) to locally alter the temperature, one of the numerous parameters that play a decisive role for the living organisms at the nanoscale. In particular, we show that the local heating of 11-12 °C relative to the ambient temperature (22 °C) next to individual HeLa cells and neurons, isolated from the mouse hippocampus, leads to a change in the intracellular distribution of the concentration of free calcium ions. For individual HeLa cells, a long-term (about 30 s) increase in the integral intensity of Fluo-4 NW fluorescence by about three times is observed, which characterizes an increase in the [Ca2+]cyt concentration of free calcium in the cytoplasm. Heating near mouse hippocampal neurons also caused a calcium surge-an increase in the intensity of Fluo-4 NW fluorescence by 30% and a duration of ~ 0.4 ms.
Collapse
Affiliation(s)
- Alexey M Romshin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, 119991, Russia.
| | - Vadim Zeeb
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia.
| | - Evgenii Glushkov
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Andrey G Sinogeikin
- NanThermix SA, Ecole Polytechnique Federale de Lausanne (EPFL) Innovation Park, 1015, Lausanne, Switzerland
| | - Igor I Vlasov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, 119991, Russia
| |
Collapse
|
5
|
Fan CH, Tsai HC, Tsai YS, Wang HC, Lin YC, Chiang PH, Wu N, Chou MH, Ho YJ, Lin ZH, Yeh CK. Selective Activation of Cells by Piezoelectric Molybdenum Disulfide Nanosheets with Focused Ultrasound. ACS NANO 2023; 17:9140-9154. [PMID: 37163347 DOI: 10.1021/acsnano.2c12438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An accurate method for neural stimulation within the brain could be very useful for treating brain circuit dysfunctions and neurological disorders. With the aim of developing such a method, this study investigated the use of piezoelectric molybdenum disulfide nanosheets (MoS2 NS) to remotely convert ultrasound energy into localized electrical stimulation in vitro and in vivo. The application of ultrasound to cells surrounding MoS2 NS required only a single pulse of 2 MHz ultrasound (400 kPa, 1,000,000 cycles, and 500 ms pulse duration) to elicit significant responses in 37.9 ± 7.4% of cells in terms of fluxes of calcium ions without detectable cellular damage. The proportion of responsive cells was mainly influenced by the acoustic pressure, number of ultrasound cycles, and concentration of MoS2 NS. Tests using appropriate blockers revealed that voltage-gated membrane channels were activated. In vivo data suggested that, with ultrasound stimulation, neurons closest to the MoS2 NS were 3-fold more likely to present c-Fos expression than cells far from the NS. The successful activation of neurons surrounding MoS2 NS suggests that this represents a method with high spatial precision for selectively modulating one or several targeted brain circuits.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701401, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan City 701401, Taiwan
| | - Hong-Chieh Tsai
- Division of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan City 333423, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Sheng Tsai
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Hsien-Chu Wang
- Department of Medical Science, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yu-Chun Lin
- Department of Medical Science, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Po-Han Chiang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan
| | - Nan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Min-Hwa Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yi-Ju Ho
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei City 10617, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| |
Collapse
|
6
|
Tsuboi Y, Oyama K, Kobirumaki-Shimozawa F, Murayama T, Kurebayashi N, Tachibana T, Manome Y, Kikuchi E, Noguchi S, Inoue T, Inoue YU, Nishino I, Mori S, Ishida R, Kagechika H, Suzuki M, Fukuda N, Yamazawa T. Mice with R2509C-RYR1 mutation exhibit dysfunctional Ca2+ dynamics in primary skeletal myocytes. J Gen Physiol 2022; 154:213526. [PMID: 36200983 PMCID: PMC9546722 DOI: 10.1085/jgp.202213136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum (SR) of the skeletal muscle and plays a critical role in excitation-contraction coupling. Mutations in RYR1 cause severe muscle diseases, such as malignant hyperthermia, a disorder of Ca2+-induced Ca2+ release (CICR) through RYR1 from the SR. We recently reported that volatile anesthetics induce malignant hyperthermia (MH)-like episodes through enhanced CICR in heterozygous R2509C-RYR1 mice. However, the characterization of Ca2+ dynamics has yet to be investigated in skeletal muscle cells from homozygous mice because these animals die in utero. In the present study, we generated primary cultured skeletal myocytes from R2509C-RYR1 mice. No differences in cellular morphology were detected between wild type (WT) and mutant myocytes. Spontaneous Ca2+ transients and cellular contractions occurred in WT and heterozygous myocytes, but not in homozygous myocytes. Electron microscopic observation revealed that the sarcomere length was shortened to ∼1.7 µm in homozygous myocytes, as compared to ∼2.2 and ∼2.3 µm in WT and heterozygous myocytes, respectively. Consistently, the resting intracellular Ca2+ concentration was higher in homozygous myocytes than in WT or heterozygous myocytes, which may be coupled with a reduced Ca2+ concentration in the SR. Finally, using infrared laser-based microheating, we found that heterozygous myocytes showed larger heat-induced Ca2+ transients than WT myocytes. Our findings suggest that the R2509C mutation in RYR1 causes dysfunctional Ca2+ dynamics in a mutant-gene dose-dependent manner in the skeletal muscles, in turn provoking MH-like episodes and embryonic lethality in heterozygous and homozygous mice, respectively.
Collapse
Affiliation(s)
- Yoshitaka Tsuboi
- Core Research Facilities, The Jikei University School of Medicine, Tokyo, Japan.,Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kotaro Oyama
- Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Gunma, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Tachibana
- Core Research Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshinobu Manome
- Core Research Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Emi Kikuchi
- Core Research Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shuichi Mori
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryosuke Ishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshiko Yamazawa
- Core Research Facilities, The Jikei University School of Medicine, Tokyo, Japan.,Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Kim T, Kadji H, Whalen AJ, Ashourvan A, Freeman E, Fried SI, Tadigadapa S, Schiff SJ. Thermal effects on neurons during stimulation of the brain. J Neural Eng 2022; 19:056029. [PMID: 36126646 PMCID: PMC9855718 DOI: 10.1088/1741-2552/ac9339] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023]
Abstract
All electric and magnetic stimulation of the brain deposits thermal energy in the brain. This occurs through either Joule heating of the conductors carrying current through electrodes and magnetic coils, or through dissipation of energy in the conductive brain.Objective.Although electrical interaction with brain tissue is inseparable from thermal effects when electrodes are used, magnetic induction enables us to separate Joule heating from induction effects by contrasting AC and DC driving of magnetic coils using the same energy deposition within the conductors. Since mammalian cortical neurons have no known sensitivity to static magnetic fields, and if there is no evidence of effect on spike timing to oscillating magnetic fields, we can presume that the induced electrical currents within the brain are below the molecular shot noise where any interaction with tissue is purely thermal.Approach.In this study, we examined a range of frequencies produced from micromagnetic coils operating below the molecular shot noise threshold for electrical interaction with single neurons.Main results.We found that small temperature increases and decreases of 1∘C caused consistent transient suppression and excitation of neurons during temperature change. Numerical modeling of the biophysics demonstrated that the Na-K pump, and to a lesser extent the Nernst potential, could account for these transient effects. Such effects are dependent upon compartmental ion fluxes and the rate of temperature change.Significance.A new bifurcation is described in the model dynamics that accounts for the transient suppression and excitation; in addition, we note the remarkable similarity of this bifurcation's rate dependency with other thermal rate-dependent tipping points in planetary warming dynamics. These experimental and theoretical findings demonstrate that stimulation of the brain must take into account small thermal effects that are ubiquitously present in electrical and magnetic stimulation. More sophisticated models of electrical current interaction with neurons combined with thermal effects will lead to more accurate modulation of neuronal activity.
Collapse
Affiliation(s)
- TaeKen Kim
- Department of Physics, The Pennsylvania State University, University Park, PA, United States of America
| | - Herve Kadji
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States of America
- Department of Radiation Oncology, Hackensack Meridian Health Mountainside Medical Center, Montclair, NJ, United States of America
| | - Andrew J Whalen
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States of America
| | - Arian Ashourvan
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States of America
| | - Eugene Freeman
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- Honeywell International Aerospace Advanced Technology, Plymouth, MN, United States of America
| | - Shelley I Fried
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States of America
- Boston VA Healthcare System, Boston 02130, United States of America
| | - Srinivas Tadigadapa
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States of America
| | - Steven J Schiff
- Department of Physics, The Pennsylvania State University, University Park, PA, United States of America
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, United States of America
- Department of Neurosurgery, Yale University, 333 Cedar Street, TMP 410, New Haven, CT 06510, United States of America
| |
Collapse
|
8
|
Petrini G, Tomagra G, Bernardi E, Moreva E, Traina P, Marcantoni A, Picollo F, Kvaková K, Cígler P, Degiovanni IP, Carabelli V, Genovese M. Nanodiamond-Quantum Sensors Reveal Temperature Variation Associated to Hippocampal Neurons Firing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202014. [PMID: 35876403 PMCID: PMC9534962 DOI: 10.1002/advs.202202014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Indexed: 05/17/2023]
Abstract
Temperature is one of the most relevant parameters for the regulation of intracellular processes. Measuring localized subcellular temperature gradients is fundamental for a deeper understanding of cell function, such as the genesis of action potentials, and cell metabolism. Notwithstanding several proposed techniques, at the moment detection of temperature fluctuations at the subcellular level still represents an ongoing challenge. Here, for the first time, temperature variations (1 °C) associated with potentiation and inhibition of neuronal firing is detected, by exploiting a nanoscale thermometer based on optically detected magnetic resonance in nanodiamonds. The results demonstrate that nitrogen-vacancy centers in nanodiamonds provide a tool for assessing various levels of neuronal spiking activity, since they are suitable for monitoring different temperature variations, respectively, associated with the spontaneous firing of hippocampal neurons, the disinhibition of GABAergic transmission and the silencing of the network. Conjugated with the high sensitivity of this technique (in perspective sensitive to < 0.1 °C variations), nanodiamonds pave the way to a systematic study of the generation of localized temperature gradients under physiological and pathological conditions. Furthermore, they prompt further studies explaining in detail the physiological mechanism originating this effect.
Collapse
Affiliation(s)
- Giulia Petrini
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
- Physics Department, University of Torinovia P. Giuria 1Torino10125Italy
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
| | - Giulia Tomagra
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
- NIS Inter‐departmental Centrevia G. Quarello 15Torino10135Italy
| | - Ettore Bernardi
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
| | - Ekaterina Moreva
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
| | - Paolo Traina
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
| | - Andrea Marcantoni
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
- NIS Inter‐departmental Centrevia G. Quarello 15Torino10135Italy
| | - Federico Picollo
- Physics Department, University of Torinovia P. Giuria 1Torino10125Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torinovia P. Giuria 1Torino10125Italy
| | - Klaudia Kvaková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nam. 2Prague 6166 10Czechia
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles University
Katerinska 1660/32Prague 2121 08Czechia
| | - Petr Cígler
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles University
Katerinska 1660/32Prague 2121 08Czechia
| | - Ivo Pietro Degiovanni
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torinovia P. Giuria 1Torino10125Italy
| | - Valentina Carabelli
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
- NIS Inter‐departmental Centrevia G. Quarello 15Torino10135Italy
| | - Marco Genovese
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torinovia P. Giuria 1Torino10125Italy
| |
Collapse
|
9
|
Heat-hypersensitive mutants of ryanodine receptor type 1 revealed by microscopic heating. Proc Natl Acad Sci U S A 2022; 119:e2201286119. [PMID: 35925888 PMCID: PMC9371657 DOI: 10.1073/pnas.2201286119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malignant hyperthermia (MH) is a life-threatening disorder caused largely by mutations in ryanodine receptor type 1 (RyR1) Ca2+-release channels. Enhanced Ca2+ release through the mutant channels induces excessive heat development upon exposure to volatile anesthetics. However, the mechanism by which Ca2+ release is accelerated at an elevated temperature is yet to be identified. Fluorescence Ca2+ imaging with rapid heating by an infrared laser beam provides direct evidence that heat induces Ca2+ release through the RyR1 channel. And the mutant channels are more heat sensitive than the wild-type channels, thereby causing an increase in the cytosolic Ca2+ concentration in mutant cells. It is likely that the heat-induced Ca2+ release participates as an enhancer in the cellular mechanism of MH. Thermoregulation is an important aspect of human homeostasis, and high temperatures pose serious stresses for the body. Malignant hyperthermia (MH) is a life-threatening disorder in which body temperature can rise to a lethal level. Here we employ an optically controlled local heat-pulse method to manipulate the temperature in cells with a precision of less than 1 °C and find that the mutants of ryanodine receptor type 1 (RyR1), a key Ca2+ release channel underlying MH, are heat hypersensitive compared with the wild type (WT). We show that the local heat pulses induce an intracellular Ca2+ burst in human embryonic kidney 293 cells overexpressing WT RyR1 and some RyR1 mutants related to MH. Fluorescence Ca2+ imaging using the endoplasmic reticulum–targeted fluorescent probes demonstrates that the Ca2+ burst originates from heat-induced Ca2+ release (HICR) through RyR1-mutant channels because of the channels’ heat hypersensitivity. Furthermore, the variation in the heat hypersensitivity of four RyR1 mutants highlights the complexity of MH. HICR likewise occurs in skeletal muscles of MH model mice. We propose that HICR contributes an additional positive feedback to accelerate thermogenesis in patients with MH.
Collapse
|
10
|
Tanaka A, Inami W, Suzuki Y, Kawata Y. Development of a direct point electron beam exposure system to investigate the biological functions of subcellular domains in a living biological cell. Micron 2022; 155:103214. [DOI: 10.1016/j.micron.2022.103214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 11/26/2022]
|
11
|
Opto-thermal technologies for microscopic analysis of cellular temperature-sensing systems. Biophys Rev 2021; 14:41-54. [PMID: 35340595 PMCID: PMC8921355 DOI: 10.1007/s12551-021-00854-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
AbstractCould enzymatic activities and their cooperative functions act as cellular temperature-sensing systems? This review introduces recent opto-thermal technologies for microscopic analyses of various types of cellular temperature-sensing system. Optical microheating technologies have been developed for local and rapid temperature manipulations at the cellular level. Advanced luminescent thermometers visualize the dynamics of cellular local temperature in space and time during microheating. An optical heater and thermometer can be combined into one smart nanomaterial that demonstrates hybrid function. These technologies have revealed a variety of cellular responses to spatial and temporal changes in temperature. Spatial temperature gradients cause asymmetric deformations during mitosis and neurite outgrowth. Rapid changes in temperature causes imbalance of intracellular Ca2+ homeostasis and membrane potential. Among those responses, heat-induced muscle contractions are highlighted. It is also demonstrated that the short-term heating hyperactivates molecular motors to exceed their maximal activities at optimal temperatures. We discuss future prospects for opto-thermal manipulation of cellular functions and contributions to obtain a deeper understanding of the mechanisms of cellular temperature-sensing systems.
Collapse
|
12
|
Romshin AM, Zeeb V, Martyanov AK, Kudryavtsev OS, Pasternak DG, Sedov VS, Ralchenko VG, Sinogeykin AG, Vlasov II. A new approach to precise mapping of local temperature fields in submicrometer aqueous volumes. Sci Rep 2021; 11:14228. [PMID: 34244547 PMCID: PMC8270900 DOI: 10.1038/s41598-021-93374-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/16/2021] [Indexed: 11/09/2022] Open
Abstract
Nanodiamonds hosting temperature-sensing centers constitute a closed thermodynamic system. Such a system prevents direct contact of the temperature sensors with the environment making it an ideal environmental insensitive nanosized thermometer. A new design of a nanodiamond thermometer, based on a 500-nm luminescent nanodiamond embedded into the inner channel of a glass submicron pipette is reported. All-optical detection of temperature, based on spectral changes of the emission of "silicon-vacancy" centers with temperature, is used. We demonstrate the applicability of the thermometric tool to the study of temperature distribution near a local heater, placed in an aqueous medium. The calculated and experimental values of temperatures are shown to coincide within measurement error at gradients up to 20 °C/μm. Until now, temperature measurements on the submicron scale at such high gradients have not been performed. The new thermometric tool opens up unique opportunities to answer the urgent paradigm-shifting questions of cell physiology thermodynamics.
Collapse
Affiliation(s)
- Alexey M Romshin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, Russia, 119991
| | - Vadim Zeeb
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142292.
| | - Artem K Martyanov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, Russia, 119991
| | - Oleg S Kudryavtsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, Russia, 119991
| | - Dmitrii G Pasternak
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, Russia, 119991
| | - Vadim S Sedov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, Russia, 119991
| | - Victor G Ralchenko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, Russia, 119991
| | - Andrey G Sinogeykin
- Wonder Technologies LLC, Skolkovo Innovation Center, Bolshoy blvd. 42, Moscow, Russia
| | - Igor I Vlasov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, Russia, 119991.
| |
Collapse
|
13
|
Zhu D, Feng L, Feliu N, Guse AH, Parak WJ. Stimulation of Local Cytosolic Calcium Release by Photothermal Heating for Studying Intra- and Intercellular Calcium Waves. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008261. [PMID: 33949733 PMCID: PMC11469046 DOI: 10.1002/adma.202008261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/16/2021] [Indexed: 06/12/2023]
Abstract
A methodology is described that allows for localized Ca2+ release by photoexcitation. For this, cells are loaded with polymer capsules with integrated plasmonic nanoparticles, which reside in endo-lysosomes. The micrometer-sized capsules can be individually excited by near-infrared light from a light pointer, causing photothermal heating, upon which there is a rise in the free cytosolic Ca2+ concentration ([Ca2+ ]i ). The [Ca2+ ]i can be analyzed with a Ca2+ indicator fluorophore. In this way, it is possible to excite local lysosomal Ca2+ release in a desired target cell.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Fachbereich PhysikCHyNUniversität HamburgLuruper Chaussee 14922761HamburgGermany
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal UniversityYuhangtang road 2318Hangzhou311121China
| | - Lili Feng
- Fachbereich PhysikCHyNUniversität HamburgLuruper Chaussee 14922761HamburgGermany
| | - Neus Feliu
- Fachbereich PhysikCHyNUniversität HamburgLuruper Chaussee 14922761HamburgGermany
- CANFraunhofer InstitutGrindelallee 11720146HamburgGermany
| | - Andreas H. Guse
- Department of Biochemistry and Molecular Cell BiologyUniversity Medical Center Hamburg‐EppendorfMartinistraße 5220246HamburgGermany
| | - Wolfgang J. Parak
- Fachbereich PhysikCHyNUniversität HamburgLuruper Chaussee 14922761HamburgGermany
- National Engineering Center for Nanotechnology (NECN)Shanghai Jiao Tong UniversityDongchuan road 800Shanghai200240China
| |
Collapse
|
14
|
Brown WGA, Needham K, Begeng JM, Thompson AC, Nayagam BA, Kameneva T, Stoddart PR. Response of primary auditory neurons to stimulation with infrared light in vitro. J Neural Eng 2021; 18:046003. [PMID: 33724234 DOI: 10.1088/1741-2552/abe7b8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Infrared light can be used to modulate the activity of neuronal cells through thermally-evoked capacitive currents and thermosensitive ion channel modulation. The infrared power threshold for action potentials has previously been found to be far lower in the in vivo cochlea when compared with other neuronal targets, implicating spiral ganglion neurons (SGNs) as a potential target for infrared auditory prostheses. However, conflicting experimental evidence suggests that this low threshold may arise from an intermediary mechanism other than direct SGN stimulation, potentially involving residual hair cell activity. APPROACH Patch-clamp recordings from cultured SGNs were used to explicitly quantify the capacitive and ion channel currents in an environment devoid of hair cells. Neurons were irradiated by a 1870 nm laser with pulse durations of 0.2-5.0 ms and powers up to 1.5 W. A Hodgkin-Huxley-type model was established by first characterising the voltage dependent currents, and then incorporating laser-evoked currents separated into temperature-dependent and temperature-gradient-dependent components. This model was found to accurately simulate neuronal responses and allowed the results to be extrapolated to stimulation parameter spaces not accessible during this study. MAIN RESULTS The previously-reported low in vivo SGN stimulation threshold was not observed, and only subthreshold depolarisation was achieved, even at high light exposures. Extrapolating these results with our Hodgkin-Huxley-type model predicts an action potential threshold which does not deviate significantly from other neuronal types. SIGNIFICANCE This suggests that the low-threshold response that is commonly reported in vivo may arise from an alternative mechanism, and calls into question the potential usefulness of the effect for auditory prostheses. The step-wise approach to modelling optically-evoked currents described here may prove useful for analysing a wider range of cell types where capacitive currents and conductance modulation are dominant.
Collapse
Affiliation(s)
- William G A Brown
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn VIC 3122, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Oyama K, Gotoh M, Hosaka Y, Oyama TG, Kubonoya A, Suzuki Y, Arai T, Tsukamoto S, Kawamura Y, Itoh H, Shintani SA, Yamazawa T, Taguchi M, Ishiwata S, Fukuda N. Single-cell temperature mapping with fluorescent thermometer nanosheets. J Gen Physiol 2020; 152:151786. [PMID: 32421782 PMCID: PMC7398143 DOI: 10.1085/jgp.201912469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/17/2020] [Indexed: 01/09/2023] Open
Abstract
Recent studies using intracellular thermometers have shown that the temperature inside cultured single cells varies heterogeneously on the order of 1°C. However, the reliability of intracellular thermometry has been challenged both experimentally and theoretically because it is, in principle, exceedingly difficult to exclude the effects of nonthermal factors on the thermometers. To accurately measure cellular temperatures from outside of cells, we developed novel thermometry with fluorescent thermometer nanosheets, allowing for noninvasive global temperature mapping of cultured single cells. Various types of cells, i.e., HeLa/HEK293 cells, brown adipocytes, cardiomyocytes, and neurons, were cultured on nanosheets containing the temperature-sensitive fluorescent dye europium (III) thenoyltrifluoroacetonate trihydrate. First, we found that the difference in temperature on the nanosheet between nonexcitable HeLa/HEK293 cells and the culture medium was less than 0.2°C. The expression of mutated type 1 ryanodine receptors (R164C or Y523S) in HEK293 cells that cause Ca2+ leak from the endoplasmic reticulum did not change the cellular temperature greater than 0.1°C. Yet intracellular thermometry detected an increase in temperature of greater than ∼2°C at the endoplasmic reticulum in HeLa cells upon ionomycin-induced intracellular Ca2+ burst; global cellular temperature remained nearly constant within ±0.2°C. When rat neonatal cardiomyocytes or brown adipocytes were stimulated by a mitochondrial uncoupling reagent, the temperature was nearly unchanged within ±0.1°C. In cardiomyocytes, the temperature was stable within ±0.01°C during contractions when electrically stimulated at 2 Hz. Similarly, when rat hippocampal neurons were electrically stimulated at 0.25 Hz, the temperature was stable within ±0.03°C. The present findings with nonexcitable and excitable cells demonstrate that heat produced upon activation in single cells does not uniformly increase cellular temperature on a global basis, but merely forms a local temperature gradient on the order of ∼1°C just proximal to a heat source, such as the endoplasmic/sarcoplasmic reticulum ATPase.
Collapse
Affiliation(s)
- Kotaro Oyama
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mizuho Gotoh
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuji Hosaka
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Tomoko G Oyama
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Aya Kubonoya
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuma Suzuki
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomomi Arai
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Seiichi Tsukamoto
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Kawamura
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hideki Itoh
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Epithelial Biology Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - Seine A Shintani
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsumasa Taguchi
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Membrane potential manipulation with visible flash lamp illumination of targeted microbeads. Biochem Biophys Res Commun 2019; 517:297-302. [PMID: 31353087 DOI: 10.1016/j.bbrc.2019.07.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 11/24/2022]
Abstract
The electrical membrane potential (Vm) is a key dynamical variable of excitable membranes. Despite the tremendous success of optogenetic methods to modulate Vm with light, there are some shortcomings, such as the need of genetic manipulation and limited time resolution. Direct optical stimulation of gold nanoparticles targeted to cells is an attractive alternative because the absorbed energy heats the membrane and, thus, generates capacitive current sufficient to trigger action potentials [1, Carvalho-de-Souza et al., 2015]. However, focused laser light is required and precise location and binding of the nanoparticles cannot be assessed with a conventional microscope. We therefore examined a complementary method to manipulate Vm in a spatio-temporal fashion by non-focused visible flashlight stimulation (Xenon discharge lamp, 385-485 nm, ∼500 μs) of superparamagnetic microbeads. Flashlight stimulation of single beads targeted to cells resulted in transient inward currents under whole-cell patch-clamp control. The waveform of the current reflected the first time derivative of the local temperature induced by the absorbed light and subsequent heat dissipation. The maximal peak current as well as the temperature excursion scaled with the proximity to the plasma membrane. Transient illumination of light-absorbing beads, targeted to specific cellular sites via protein-protein interaction or direct micromanipulation, may provide means of rapid and spatially confined heating and electrical cell stimulation.
Collapse
|
17
|
Zakhvataev VE. Nonequilibrium dynamic structure factor of a lipid bilayer in the presence of an in-plane temperature gradient. Phys Rev E 2018; 98:022404. [PMID: 30253585 DOI: 10.1103/physreve.98.022404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 01/02/2023]
Abstract
There is rapidly increasing evidence that nanoscale temperature heterogeneities are involved in important biological processes. Combining nanoheating and nanoscale thermosensors forms the basis of emerging unique methods of cell therapy, tissue engineering, and regenerative medicine. Understanding corresponding phenomena seems to require a mesoscopic nonequilibrium hydrodynamic theory. In this paper, a Langevin-type model of dynamics of phonon modes propagating along a bilayer lipid membrane in the presence of an in-plane temperature gradient is proposed. Corresponding quantitative estimates for the Brillouin components of the nonequilibrium dynamic structure factor and the equal-time longitudinal momentum-density correlation function for a lipid bilayer are obtained. The analysis reveals that for typical values of parameters of lipid bilayer, the longitudinal temperature gradient of the order of 5qK for wave numbers q from 0.01 to 1nm^{-1} induces significant asymmetry of the Brillouin components of the dynamic structure factor and long-range spatial correlations in the plane of the bilayer. The corresponding membrane temperature gradients seem to be typical or achievable for cellular processes responsible for intracellular temperature variations and such external physical impacts as high-intensity electromagnetic pulses or heating of membrane-associated nanoparticles.
Collapse
Affiliation(s)
- V E Zakhvataev
- Federal Research Center, "Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences," Krasnoyarsk 660036, Russia and Siberian Federal University, Krasnoyarsk 660041, Russia
| |
Collapse
|
18
|
Yang F, Yang N, Huo X, Xu S. Thermal sensing in fluid at the micro-nano-scales. BIOMICROFLUIDICS 2018; 12:041501. [PMID: 30867860 PMCID: PMC6404956 DOI: 10.1063/1.5037421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 06/09/2023]
Abstract
Temperature is one of the most fundamental parameters for the characterization of a physical system. With rapid development of lab-on-a-chip and biology at single cell level, a great demand has risen for the temperature sensors with high spatial, temporal, and thermal resolution. Nevertheless, measuring temperature in liquid environment is always a technical challenge. Various factors may affect the sensing results, such as the fabrication parameters of built-in sensors, thermal property of electrical insulating layer, and stability of fluorescent thermometers in liquid environment. In this review, we focused on different kinds of micro/nano-thermometers applied in the thermal sensing for microfluidic systems and cultured cells. We discussed the advantages and limitations of these thermometers in specific applications and the challenges and possible solutions for more accurate temperature measurements in further studies.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Nana Yang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Xiaoye Huo
- Faculty of Mechanical Engineering, Micro-and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Shengyong Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
19
|
Moreau D, Lefort C, Pas J, Bardet SM, Leveque P, O'Connor RP. Infrared neural stimulation induces intracellular Ca 2+ release mediated by phospholipase C. JOURNAL OF BIOPHOTONICS 2018; 11:e201700020. [PMID: 28700117 DOI: 10.1002/jbio.201700020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 05/18/2023]
Abstract
The influence of infrared laser pulses on intracellular Ca2+ signaling was investigated in neural cell lines with fluorescent live cell imaging. The probe Fluo-4 was used to measure Ca2+ in HT22 mouse hippocampal neurons and nonelectrically excitable U87 human glioblastoma cells exposed to 50 to 500 ms infrared pulses at 1470 nm. Fluorescence recordings of Fluo-4 demonstrated that infrared stimulation induced an instantaneous intracellular Ca2+ transient with similar dose-response characteristics in hippocampal neurons and glioblastoma cells (half-maximal effective energy density EC50 of around 58 J.cm-2 ). For both type of cells, the source of the infrared-induced Ca2+ transients was found to originate from intracellular stores and to be mediated by phospholipase C and IP3 -induced Ca2+ release from the endoplasmic reticulum. The activation of phosphoinositide signaling by IR light is a new mechanism of interaction relevant to infrared neural stimulation that will also be widely applicable to nonexcitable cell types. The prospect of infrared optostimulation of the PLC/IP3 cell signaling cascade has many potential applications including the development of optoceutical therapeutics.
Collapse
Affiliation(s)
- David Moreau
- CNRS, XLIM, University of Limoges, UMR 7252, Limoges, France
| | - Claire Lefort
- CNRS, XLIM, University of Limoges, UMR 7252, Limoges, France
| | - Jolien Pas
- Bioelectronics Department, École Nationale Supérieure des Mines de Saint-Étienne, Centre Microélectronique de Provence - Georges Charpak Campus, 880 route de Mimet, 13541 Gardanne, France
| | - Sylvia M Bardet
- CNRS, XLIM, University of Limoges, UMR 7252, Limoges, France
| | | | - Rodney P O'Connor
- Bioelectronics Department, École Nationale Supérieure des Mines de Saint-Étienne, Centre Microélectronique de Provence - Georges Charpak Campus, 880 route de Mimet, 13541 Gardanne, France
| |
Collapse
|
20
|
Antonova OY, Kochetkova OY, Shabarchina LI, Zeeb VE. Local thermal activation of individual living cells and measurement of temperature gradients in microscopic volumes. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917050025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Ermakova YG, Lanin AA, Fedotov IV, Roshchin M, Kelmanson IV, Kulik D, Bogdanova YA, Shokhina AG, Bilan DS, Staroverov DB, Balaban PM, Fedotov AB, Sidorov-Biryukov DA, Nikitin ES, Zheltikov AM, Belousov VV. Thermogenetic neurostimulation with single-cell resolution. Nat Commun 2017; 8:15362. [PMID: 28530239 PMCID: PMC5493594 DOI: 10.1038/ncomms15362] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 03/22/2017] [Indexed: 02/04/2023] Open
Abstract
Thermogenetics is a promising innovative neurostimulation technique, which enables robust activation of neurons using thermosensitive transient receptor potential (TRP) cation channels. Broader application of this approach in neuroscience is, however, hindered by a limited variety of suitable ion channels, and by low spatial and temporal resolution of neuronal activation when TRP channels are activated by ambient temperature variations or chemical agonists. Here, we demonstrate rapid, robust and reproducible repeated activation of snake TRPA1 channels heterologously expressed in non-neuronal cells, mouse neurons and zebrafish neurons in vivo by infrared (IR) laser radiation. A fibre-optic probe that integrates a nitrogen-vacancy (NV) diamond quantum sensor with optical and microwave waveguide delivery enables thermometry with single-cell resolution, allowing neurons to be activated by exceptionally mild heating, thus preventing the damaging effects of excessive heat. The neuronal responses to the activation by IR laser radiation are fully characterized using Ca2+ imaging and electrophysiology, providing, for the first time, a complete framework for a thermogenetic manipulation of individual neurons using IR light.
Collapse
Affiliation(s)
- Yulia G. Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Aleksandr A. Lanin
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
- Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025, Russia
- Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, 420126 Kazan, Russia
| | - Ilya V. Fedotov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
- Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025, Russia
- Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, 420126 Kazan, Russia
- Kurchatov Institute National Research Center, Moscow 123182, Russia
| | - Matvey Roshchin
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry Kulik
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
- Present address: Zaporizhya State Engineering Academy, 69006 Zaporizhzhya, Ukraine
| | - Yulia A. Bogdanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Arina G. Shokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Dmitry B. Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Pavel M. Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Andrei B. Fedotov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
- Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025, Russia
- Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, 420126 Kazan, Russia
| | - Dmitry A. Sidorov-Biryukov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
- Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025, Russia
- Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, 420126 Kazan, Russia
| | - Evgeny S. Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Aleksei M. Zheltikov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
- Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025, Russia
- Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, 420126 Kazan, Russia
- Kurchatov Institute National Research Center, Moscow 123182, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37075 Göttingen, Germany
| |
Collapse
|
22
|
Measurement of local temperature increments induced by cultured HepG2 cells with micro-thermocouples in a thermally stabilized system. Sci Rep 2017; 7:1721. [PMID: 28496166 PMCID: PMC5431931 DOI: 10.1038/s41598-017-01891-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/05/2017] [Indexed: 12/28/2022] Open
Abstract
To monitor the temperature distribution of a cell and its changes under varied conditions is currently a technical challenge. A variety of non-contact methods used for measuring cellular temperature have been developed, where changes of local temperature at cell-level and sub-cell-level are indirectly calculated through the changes in intensity, band-shape, bandwidth, lifetime or polarization anisotropy of the fluorescence spectra recorded from the nano-sized fluorescent materials pre-injected into the target cell. Unfortunately, the optical properties of the fluorescent nano-materials may be affected by complicated intracellular environment, leading to unexpected measurement errors and controversial arguments. Here, we attempted to offer an alternative approach for measuring the absolute increments of local temperature in micro-Testing Zones induced by live cells. In this method, built-in high-performance micro-thermocouple arrays and double-stabilized system with a stability of 10 mK were applied. Increments of local temperature close to adherent human hepatoblastoma (HepG2) cells were continuously recorded for days without stimulus, showing frequent fluctuations within 60 mK and a maximum increment by 285 mK. This method may open a door for real-time recording of the absolute local temperature increments of individual cells, therefore offering valuable information for cell biology and clinical therapy in the field of cancer research.
Collapse
|
23
|
Tolstykh GP, Olsovsky CA, Ibey BL, Beier HT. Ryanodine and IP 3 receptor-mediated calcium signaling play a pivotal role in neurological infrared laser modulation. NEUROPHOTONICS 2017; 4:025001. [PMID: 28413806 PMCID: PMC5381754 DOI: 10.1117/1.nph.4.2.025001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/20/2017] [Indexed: 05/13/2023]
Abstract
Pulsed infrared (IR) laser energy has been shown to modulate neurological activity through both stimulation and inhibition of action potentials. While the mechanism(s) behind this phenomenon is (are) not completely understood, certain hypotheses suggest that the rise in temperature from IR exposure could activate temperature- or pressure-sensitive ion channels or create pores in the cellular outer membrane, allowing an influx of typically plasma-membrane-impermeant ions. Studies using fluorescent intensity-based calcium ion ([Formula: see text]) sensitive dyes show changes in [Formula: see text] levels after various IR stimulation parameters, which suggests that [Formula: see text] may originate from the external solution. However, activation of intracellular signaling pathways has also been demonstrated, indicating a more complex mechanism of increasing intracellular [Formula: see text] concentration. We quantified the [Formula: see text] mobilization in terms of influx from the external solution and efflux from intracellular organelles using Fura-2 and a high-speed ratiometric imaging system that rapidly alternates the dye excitation wavelengths. Using nonexcitable Chinese hamster ovarian ([Formula: see text]) cells and neuroblastoma-glioma (NG108) cells, we demonstrate that intracellular [Formula: see text] receptors play an important role in the IR-induced [Formula: see text], with the [Formula: see text] response augmented by ryanodine receptors in excitable cells.
Collapse
Affiliation(s)
- Gleb P. Tolstykh
- General Dynamics Information Technology, JBSA Fort Sam Houston, San Antonio, Texas, United States
- Address all correspondence to: Gleb P. Tolstykh, E-mail:
| | - Cory A. Olsovsky
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Bennett L. Ibey
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, San Antonio, Texas, United States
| | - Hope T. Beier
- Air Force Research Laboratory, 711th Human Performance Wing, Airman System Directorate, Bioeffects Division, Optical Radiation Bioeffects Branch, JBSA Fort Sam Houston, San Antonio, Texas, United States
| |
Collapse
|
24
|
Nakano M, Nagai T. Thermometers for monitoring cellular temperature. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2016.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Gentemann L, Kalies S, Coffee M, Meyer H, Ripken T, Heisterkamp A, Zweigerdt R, Heinemann D. Modulation of cardiomyocyte activity using pulsed laser irradiated gold nanoparticles. BIOMEDICAL OPTICS EXPRESS 2017; 8:177-192. [PMID: 28101410 PMCID: PMC5231291 DOI: 10.1364/boe.8.000177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/03/2016] [Accepted: 11/11/2016] [Indexed: 05/08/2023]
Abstract
Can photothermal gold nanoparticle mediated laser manipulation be applied to induce cardiac contraction? Based on our previous work, we present a novel concept of cell stimulation. A 532 nm picosecond laser was employed to heat gold nanoparticles on cardiomyocytes. This leads to calcium oscillations in the HL-1 cardiomyocyte cell line. As calcium is connected to the contractility, we aimed to alter the contraction rate of native and stem cell derived cardiomyocytes. A contraction rate increase was particularly observed in calcium containing buffer with neonatal rat cardiomyocytes. Consequently, the study provides conceptual ideas for a light based, nanoparticle mediated stimulation system.
Collapse
Affiliation(s)
- Lara Gentemann
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- These authors contributed equally to this publication and should be considered co-first authors
| | - Stefan Kalies
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Institut für Quantenoptik, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- Cluster of Excellence REBIRTH, Hannover, Germany
- These authors contributed equally to this publication and should be considered co-first authors
| | - Michelle Coffee
- Cluster of Excellence REBIRTH, Hannover, Germany
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH - Center for Regenerative Medicine, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Heiko Meyer
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Tammo Ripken
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Alexander Heisterkamp
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Institut für Quantenoptik, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- Cluster of Excellence REBIRTH, Hannover, Germany
| | - Robert Zweigerdt
- Cluster of Excellence REBIRTH, Hannover, Germany
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH - Center for Regenerative Medicine, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dag Heinemann
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| |
Collapse
|
26
|
Yamamoto A, Takahashi K, Saito S, Tominaga M, Ohta T. Two different avian cold-sensitive sensory neurons: Transient receptor potential melastatin 8 (TRPM8)-dependent and -independent activation mechanisms. Neuropharmacology 2016; 111:130-141. [DOI: 10.1016/j.neuropharm.2016.08.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/23/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
|
27
|
Rabbitt RD, Brichta AM, Tabatabaee H, Boutros PJ, Ahn J, Della Santina CC, Poppi LA, Lim R. Heat pulse excitability of vestibular hair cells and afferent neurons. J Neurophysiol 2016; 116:825-43. [PMID: 27226448 DOI: 10.1152/jn.00110.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022] Open
Abstract
In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in <3 ms and decaying with a time constant of ∼24 ms. The inhibitory component dominated whole cell currents in 50% of hair cells at -68 mV and in 67% of hair cells at -60 mV. Responses were quantified and described on the basis of first principles of thermodynamics. Results identify key molecular targets underlying heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability.
Collapse
Affiliation(s)
- Richard D Rabbitt
- Departments of Bioengineering and Otolaryngology, University of Utah, Salt Lake City, Utah;
| | - Alan M Brichta
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; and
| | - Hessam Tabatabaee
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; and
| | - Peter J Boutros
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - JoongHo Ahn
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Charles C Della Santina
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lauren A Poppi
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; and
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; and
| |
Collapse
|
28
|
Oyama K, Arai T, Isaka A, Sekiguchi T, Itoh H, Seto Y, Miyazaki M, Itabashi T, Ohki T, Suzuki M, Ishiwata S. Directional bleb formation in spherical cells under temperature gradient. Biophys J 2016. [PMID: 26200871 DOI: 10.1016/j.bpj.2015.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Living cells sense absolute temperature and temporal changes in temperature using biological thermosensors such as ion channels. Here, we reveal, to our knowledge, a novel mechanism of sensing spatial temperature gradients within single cells. Spherical mitotic cells form directional membrane extensions (polar blebs) under sharp temperature gradients (≥∼0.065°C μm(-1); 1.3°C temperature difference within a cell), which are created by local heating with a focused 1455-nm laser beam under an optical microscope. On the other hand, multiple nondirectional blebs are formed under gradual temperature gradients or uniform heating. During heating, the distribution of actomyosin complexes becomes inhomogeneous due to a break in the symmetry of its contractile force, highlighting the role of the actomyosin complex as a sensor of local temperature gradients.
Collapse
Affiliation(s)
- Kotaro Oyama
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Tomomi Arai
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Akira Isaka
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Taku Sekiguchi
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hideki Itoh
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; Institute of Medical Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Yusuke Seto
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Makito Miyazaki
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takeshi Itabashi
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takashi Ohki
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Madoka Suzuki
- WASEDA Bioscience Research Institute in Singapore (WABIOS), Singapore, Singapore; Organization for University Research Initiatives, Waseda University, Tokyo, Japan.
| | - Shin'ichi Ishiwata
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; WASEDA Bioscience Research Institute in Singapore (WABIOS), Singapore, Singapore; Organization for University Research Initiatives, Waseda University, Tokyo, Japan.
| |
Collapse
|
29
|
Tanimoto R, Hiraiwa T, Nakai Y, Shindo Y, Oka K, Hiroi N, Funahashi A. Detection of Temperature Difference in Neuronal Cells. Sci Rep 2016; 6:22071. [PMID: 26925874 PMCID: PMC4772094 DOI: 10.1038/srep22071] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/05/2016] [Indexed: 12/15/2022] Open
Abstract
For a better understanding of the mechanisms behind cellular functions, quantification of the heterogeneity in an organism or cells is essential. Recently, the importance of quantifying temperature has been highlighted, as it correlates with biochemical reaction rates. Several methods for detecting intracellular temperature have recently been established. Here we develop a novel method for sensing temperature in living cells based on the imaging technique of fluorescence of quantum dots. We apply the method to quantify the temperature difference in a human derived neuronal cell line, SH-SY5Y. Our results show that temperatures in the cell body and neurites are different and thus suggest that inhomogeneous heat production and dissipation happen in a cell. We estimate that heterogeneous heat dissipation results from the characteristic shape of neuronal cells, which consist of several compartments formed with different surface-volume ratios. Inhomogeneous heat production is attributable to the localization of specific organelles as the heat source.
Collapse
Affiliation(s)
- Ryuichi Tanimoto
- Keio University, Department of Biosciences and Informatics, 3-14-1, Hiyoshi, Kohoku-Ward, Yokohama, 223-8522, Japan
| | - Takumi Hiraiwa
- Keio University, Department of Biosciences and Informatics, 3-14-1, Hiyoshi, Kohoku-Ward, Yokohama, 223-8522, Japan
| | - Yuichiro Nakai
- Keio University, Department of Biosciences and Informatics, 3-14-1, Hiyoshi, Kohoku-Ward, Yokohama, 223-8522, Japan
| | - Yutaka Shindo
- Keio University, Department of Biosciences and Informatics, 3-14-1, Hiyoshi, Kohoku-Ward, Yokohama, 223-8522, Japan
| | - Kotaro Oka
- Keio University, Department of Biosciences and Informatics, 3-14-1, Hiyoshi, Kohoku-Ward, Yokohama, 223-8522, Japan
| | - Noriko Hiroi
- Keio University, Department of Biosciences and Informatics, 3-14-1, Hiyoshi, Kohoku-Ward, Yokohama, 223-8522, Japan
| | - Akira Funahashi
- Keio University, Department of Biosciences and Informatics, 3-14-1, Hiyoshi, Kohoku-Ward, Yokohama, 223-8522, Japan
| |
Collapse
|
30
|
Oyama K, Zeeb V, Kawamura Y, Arai T, Gotoh M, Itoh H, Itabashi T, Suzuki M, Ishiwata S. Triggering of high-speed neurite outgrowth using an optical microheater. Sci Rep 2015; 5:16611. [PMID: 26568288 PMCID: PMC4645119 DOI: 10.1038/srep16611] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/16/2015] [Indexed: 12/12/2022] Open
Abstract
Optical microheating is a powerful non-invasive method for manipulating biological functions such as gene expression, muscle contraction, and cell excitation. Here, we demonstrate its potential usage for regulating neurite outgrowth. We found that optical microheating with a water-absorbable 1,455-nm laser beam triggers directional and explosive neurite outgrowth and branching in rat hippocampal neurons. The focused laser beam under a microscope rapidly increases the local temperature from 36 °C to 41 °C (stabilized within 2 s), resulting in the elongation of neurites by more than 10 μm within 1 min. This high-speed, persistent elongation of neurites was suppressed by inhibitors of both microtubule and actin polymerization, indicating that the thermosensitive dynamics of these cytoskeletons play crucial roles in this heat-induced neurite outgrowth. Furthermore, we showed that microheating induced the regrowth of injured neurites and the interconnection of neurites. These results demonstrate the efficacy of optical microheating methods for the construction of arbitrary neural networks.
Collapse
Affiliation(s)
- Kotaro Oyama
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Vadim Zeeb
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142292, Russia
| | - Yuki Kawamura
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tomomi Arai
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Mizuho Gotoh
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hideki Itoh
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Takeshi Itabashi
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Madoka Suzuki
- WASEDA Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore.,Organization for University Research Initiatives, Waseda University, #304, Block 120-4, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041 Japan
| | - Shin'ichi Ishiwata
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,WASEDA Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore.,Organization for University Research Initiatives, Waseda University, #304, Block 120-4, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041 Japan
| |
Collapse
|
31
|
Marino A, Arai S, Hou Y, Sinibaldi E, Pellegrino M, Chang YT, Mazzolai B, Mattoli V, Suzuki M, Ciofani G. Piezoelectric Nanoparticle-Assisted Wireless Neuronal Stimulation. ACS NANO 2015; 9:7678-89. [PMID: 26168074 PMCID: PMC9003232 DOI: 10.1021/acsnano.5b03162] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Tetragonal barium titanate nanoparticles (BTNPs) have been exploited as nanotransducers owing to their piezoelectric properties, in order to provide indirect electrical stimulation to SH-SY5Y neuron-like cells. Following application of ultrasounds to cells treated with BTNPs, fluorescence imaging of ion dynamics revealed that the synergic stimulation is able to elicit a significant cellular response in terms of calcium and sodium fluxes; moreover, tests with appropriate blockers demonstrated that voltage-gated membrane channels are activated. The hypothesis of piezoelectric stimulation of neuron-like cells was supported by lack of cellular response in the presence of cubic nonpiezoelectric BTNPs, and further corroborated by a simple electroelastic model of a BTNP subjected to ultrasounds, according to which the generated voltage is compatible with the values required for the activation of voltage-sensitive channels.
Collapse
Affiliation(s)
- Attilio Marino
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
- The Biorobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
- Address correspondence to , ,
| | - Satoshi Arai
- WASEDA Bioscience Research Institute in Singapore (WABIOS), Biopolis Way 11, #05-02 Helios, 138667 Singapore
| | - Yanyan Hou
- WASEDA Bioscience Research Institute in Singapore (WABIOS), Biopolis Way 11, #05-02 Helios, 138667 Singapore
| | - Edoardo Sinibaldi
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Mario Pellegrino
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Young-Tae Chang
- Department of Chemistry, National University of Singapore, MedChem Program of Life Sciences Institute, National University of Singapore, 3 Science Drive 3, 117543 Singapore
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Biopolis, 138667 Singapore
| | - Barbara Mazzolai
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Virgilio Mattoli
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Madoka Suzuki
- WASEDA Bioscience Research Institute in Singapore (WABIOS), Biopolis Way 11, #05-02 Helios, 138667 Singapore
- Organization for University Research Initiatives, Waseda University, #304, Block 120-4, 513 Waseda-Tsurumaki-Cho, Shinjuku-Ku, 162-0041 Tokyo, Japan
- Address correspondence to , ,
| | - Gianni Ciofani
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
- Address correspondence to , ,
| |
Collapse
|
32
|
Kalies S, Antonopoulos GC, Rakoski MS, Heinemann D, Schomaker M, Ripken T, Meyer H. Investigation of biophysical mechanisms in gold nanoparticle mediated laser manipulation of cells using a multimodal holographic and fluorescence imaging setup. PLoS One 2015; 10:e0124052. [PMID: 25909631 PMCID: PMC4409398 DOI: 10.1371/journal.pone.0124052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/25/2015] [Indexed: 12/16/2022] Open
Abstract
Laser based cell manipulation has proven to be a versatile tool in biomedical applications. In this context, combining weakly focused laser pulses and nanostructures, e.g. gold nanoparticles, promises to be useful for high throughput cell manipulation, such as transfection and photothermal therapy. Interactions between laser pulses and gold nanoparticles are well understood. However, it is still necessary to study cell behavior in gold nanoparticle mediated laser manipulation. While parameters like cell viability or perforation efficiency are commonly addressed, the influence of the manipulation process on other essential cell parameters is not sufficiently investigated yet. Thus, we set out to study four relevant cell properties: cell volume and area, ion exchange and cytoskeleton structure after gold nanoparticle based laser manipulation. For this, we designed a multimodal imaging and manipulation setup. 200 nm gold nanoparticles were attached unspecifically to canine cells and irradiated by weakly focused 850 ps laser pulses. Volume and area change in the first minute post laser manipulation was monitored using digital holography. Calcium imaging and cells expressing a marker for filamentous actin (F-actin) served to analyze the ion exchange and the cytoskeleton, respectively. High radiant exposures led to cells exhibiting a tendency to shrink in volume and area, possibly due to outflow of cytoplasm. An intracellular raise in calcium was observed and accompanied by an intercellular calcium wave. This multimodal approach enabled for the first time a comprehensive analysis of the cell behavior in gold nanoparticle mediated cell manipulation. Additionally, this work can pave the way for a better understanding and the evaluation of new applications in the context of cell transfection or photothermal therapy.
Collapse
Affiliation(s)
- Stefan Kalies
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hanover, Germany
- * E-mail:
| | | | - Mirko S. Rakoski
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hanover, Germany
| | - Dag Heinemann
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hanover, Germany
| | - Markus Schomaker
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hanover, Germany
| | - Tammo Ripken
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hanover, Germany
| | - Heiko Meyer
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hanover, Germany
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| |
Collapse
|
33
|
Shintani SA, Oyama K, Fukuda N, Ishiwata S. High-frequency sarcomeric auto-oscillations induced by heating in living neonatal cardiomyocytes of the rat. Biochem Biophys Res Commun 2014; 457:165-70. [PMID: 25545063 DOI: 10.1016/j.bbrc.2014.12.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
In the present study, we investigated the effects of infra-red laser irradiation on sarcomere dynamics in living neonatal cardiomyocytes of the rat. A rapid increase in temperature to >~38 °C induced [Ca(2+)]i-independent high-frequency (~5-10 Hz) sarcomeric auto-oscillations (Hyperthermal Sarcomeric Oscillations; HSOs). In myocytes with the intact sarcoplasmic reticular functions, HSOs coexisted with [Ca(2+)]i-dependent spontaneous beating in the same sarcomeres, with markedly varying frequencies (~10 and ~1 Hz for the former and latter, respectively). HSOs likewise occurred following blockade of the sarcoplasmic reticular functions, with the amplitude becoming larger and the frequency lower in a time-dependent manner. The present findings suggest that in the mammalian heart, sarcomeres spontaneously oscillate at higher frequencies than the sinus rhythm at temperatures slightly above the physiologically relevant levels.
Collapse
Affiliation(s)
- Seine A Shintani
- Department of Pure and Applied Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kotaro Oyama
- Department of Pure and Applied Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Shin'ichi Ishiwata
- Department of Pure and Applied Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; WASEDA Bioscience Research Institute in Singapore (WABIOS), Singapore.
| |
Collapse
|
34
|
Itoh H, Oyama K, Suzuki M, Ishiwata S. Microscopic heat pulse-induced calcium dynamics in single WI-38 fibroblasts. Biophysics (Nagoya-shi) 2014; 10:109-19. [PMID: 27493505 PMCID: PMC4629654 DOI: 10.2142/biophysics.10.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/16/2014] [Indexed: 12/31/2022] Open
Abstract
Temperature-sensitive Ca2+ dynamics occur primarily through transient receptor potential channels, but also by means of Ca2+ channels and pumps on the endoplasmic reticulum membrane. As such, cytoplasmic Ca2+ concentration ([Ca2+]cyt) is re-equilibrated by changes in ambient temperature. The present study investigated the effects of heat pulses (heating duration: 2 s or 150 s) on [Ca2+]cyt in single WI-38 fibroblasts, which are considered as normal cells. We found that Ca2+ burst occurred immediately after short (2 s) heat pulse, which is similar to our previous report on HeLa cells, but with less thermosensitivity. The heat pulses originated from a focused 1455-nm infrared laser light were applied in the vicinity of cells under the optical microscope. Ca2+ bursts induced by the heat pulse were suppressed by treating cells with inhibitors for sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) or inositol trisphosphate receptor (IP3R). Long (150 s) heat pulses also induced Ca2+ bursts after the onset of heating and immediately after re-cooling. Cells were more thermosensitive at physiological (37°C) than at room (25°C) temperature; however, at 37°C, cells were responsive at a higher temperature (ambient temperature+heat pulse). These results strongly suggest that the heat pulse-induced Ca2+ burst is caused by a transient imbalance in Ca2+ flow between SERCA and IP3R, and offer a potential new method for thermally controlling Ca2+-regulated cellular functions.
Collapse
Affiliation(s)
- Hideki Itoh
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Institute of Medical Biology, Agency for Science Technology & Research (ASTAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Kotaro Oyama
- Department of Physics, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Madoka Suzuki
- Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore; Organization for University Research Initiatives, Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Shin'ichi Ishiwata
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Department of Physics, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore; Organization for University Research Initiatives, Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| |
Collapse
|
35
|
Liu Q, Frerck MJ, Holman HA, Jorgensen EM, Rabbitt RD. Exciting cell membranes with a blustering heat shock. Biophys J 2014; 106:1570-7. [PMID: 24739156 DOI: 10.1016/j.bpj.2014.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/30/2022] Open
Abstract
Brief heat shocks delivered to cells by pulsed laser light can evoke action potentials in neurons and contraction in cardiomyocytes, but the primary biophysical mechanism has been elusive. In this report we show in the neuromuscular junction of Caenorhabditis elegans that application of a 500°C/s heat shock for 500 μs evoked ~35 pA of excitatory current and injected ~23 fC(femtocoulomb) of charge into the cell while raising the temperature only 0.25°C. The key variable driving the current was the rate of change of temperature (dT/dt heat shock), not temperature itself. The photothermal heat shock current was voltage-dependent and was from thermally driven displacement of ions near the plasma membrane. The charge movement was rapid during the heat shock and slow during thermal relaxation, thus leading to an asymmetrical capacitive current that briefly depolarized the cell. A simple quantitative model is introduced to describe modulation of the membrane potential and facilitate practical application of optical heat shock stimuli.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Micah J Frerck
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - Holly A Holman
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - Erik M Jorgensen
- Department of Biology, University of Utah, Salt Lake City, Utah; Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah
| | - Richard D Rabbitt
- Department of Bioengineering, University of Utah, Salt Lake City, Utah; Marine Biological Laboratory, Woods Hole, Massachusetts.
| |
Collapse
|
36
|
A molecular fluorescent probe for targeted visualization of temperature at the endoplasmic reticulum. Sci Rep 2014; 4:6701. [PMID: 25330751 PMCID: PMC4204065 DOI: 10.1038/srep06701] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/02/2014] [Indexed: 12/23/2022] Open
Abstract
The dynamics of cellular heat production and propagation remains elusive at a subcellular level. Here we report the first small molecule fluorescent thermometer selectively targeting the endoplasmic reticulum (ER thermo yellow), with the highest sensitivity reported so far (3.9%/°C). Unlike nanoparticle thermometers, ER thermo yellow stains the target organelle evenly without the commonly encountered problem of aggregation, and successfully demonstrates the ability to monitor intracellular temperature gradients generated by external heat sources in various cell types. We further confirm the ability of ER thermo yellow to monitor heat production by intracellular Ca2+ changes in HeLa cells. Our thermometer anchored at nearly-zero distance from the ER, i.e. the heat source, allowed the detection of the heat as it readily dissipated, and revealed the dynamics of heat production in real time at a subcellular level.
Collapse
|
37
|
Deng W, Goldys EM, Farnham MMJ, Pilowsky PM. Optogenetics, the intersection between physics and neuroscience: light stimulation of neurons in physiological conditions. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1292-302. [PMID: 25274906 DOI: 10.1152/ajpregu.00072.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neuronal stimulation by light is a novel approach in the emerging field of optogenetics, where genetic engineering is used to introduce light-activated channels. However, light is also capable of stimulating neurons even in the absence of genetic modifications through a range of physical and biological mechanisms. As a result, rigorous design of optogenetic experiments needs to take note of alternative and parallel effects of light illumination of neuronal tissues. Thus all matters relating to light penetration are critical to the development of studies using light-activated proteins. This paper discusses ways to quantify light, light penetration in tissue, as well as light stimulation of neurons in physiological conditions. We also describe the direct effect of light on neurons investigated at different sites.
Collapse
Affiliation(s)
- Wei Deng
- Physics and Astronomy Department, Macquarie University, Sydney, Australia; and
| | - Ewa M Goldys
- Physics and Astronomy Department, Macquarie University, Sydney, Australia; and
| | | | - Paul M Pilowsky
- Heart Research Institute and Sydney University, Sydney, Australia
| |
Collapse
|
38
|
Vu XH, Levy M, Barroca T, Tran HN, Fort E. Gold nanocrescents for remotely measuring and controlling local temperature. NANOTECHNOLOGY 2013; 24:325501. [PMID: 23863331 DOI: 10.1088/0957-4484/24/32/325501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present a novel technique to remotely measure and control the local temperature within a medium. This technique is based on the observation of the rotational Brownian motion of gold nanocrescent particles, which possess a strong anisotropic light interaction due to their plasmonic properties. Rotational scattering correlation spectroscopy performed on a single nanoparticle is able to determine the local temperature with high accuracy. These nano-thermometers can simultaneously play the role of nano-heaters when absorbing the light of a focused laser beam.
Collapse
Affiliation(s)
- Xuan Hoa Vu
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587 & INSERM ERL U979, 1 rue Jussieu, F-75238 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
39
|
Park JH, Lee S, Cho DH, Park YM, Kang DH, Jo I. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179. Biochem Biophys Res Commun 2013; 436:601-6. [PMID: 23756809 DOI: 10.1016/j.bbrc.2013.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/01/2013] [Indexed: 10/26/2022]
Abstract
Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser(1179)) in a time-dependent manner (up to 40min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca(2+) levels. Treatment with KN-93, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. This study suggests that FIR radiation increases NO production via increasing CaMKII-mediated eNOS-Ser(1179) phosphorylation but TRPV channels may not be involved in this pathway. Our results may provide the molecular mechanism by which FIR radiation improves endothelial function.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710, South Korea
| | | | | | | | | | | |
Collapse
|
40
|
Stavermann M, Buddrus K, St John JA, Ekberg JA, Nilius B, Deitmer JW, Lohr C. Temperature-dependent calcium-induced calcium release via InsP3 receptors in mouse olfactory ensheathing glial cells. Cell Calcium 2012; 52:113-23. [DOI: 10.1016/j.ceca.2012.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 03/22/2012] [Accepted: 04/24/2012] [Indexed: 02/07/2023]
|
41
|
Oyama K, Takabayashi M, Takei Y, Arai S, Takeoka S, Ishiwata S, Suzuki M. Walking nanothermometers: spatiotemporal temperature measurement of transported acidic organelles in single living cells. LAB ON A CHIP 2012; 12:1591-3. [PMID: 22437040 DOI: 10.1039/c2lc00014h] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We fabricated fluorescent nanoparticles which monitor temperature changes without sensitivity to pH (4-10) and ionic strength (0-500 mM). The nanothermometers spontaneously enter living HeLa cells via endocytosis, enclosed in acidic organelles, i.e., endosome/lysosome, and then transported along microtubules in a temperature-dependent manner, working as "walking nanothermometers".
Collapse
Affiliation(s)
- Kotaro Oyama
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat Commun 2012; 3:705. [PMID: 22426226 PMCID: PMC3293419 DOI: 10.1038/ncomms1714] [Citation(s) in RCA: 671] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 01/31/2012] [Indexed: 02/07/2023] Open
Abstract
Cellular functions are fundamentally regulated by intracellular temperature, which influences biochemical reactions inside a cell. Despite the important contributions to biological and medical applications that it would offer, intracellular temperature mapping has not been achieved. Here we demonstrate the first intracellular temperature mapping based on a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. The spatial and temperature resolutions of our thermometry were at the diffraction limited level (200 nm) and 0.18–0.58 °C. The intracellular temperature distribution we observed indicated that the nucleus and centrosome of a COS7 cell, both showed a significantly higher temperature than the cytoplasm and that the temperature gap between the nucleus and the cytoplasm differed depending on the cell cycle. The heat production from mitochondria was also observed as a proximal local temperature increase. These results showed that our new intracellular thermometry could determine an intrinsic relationship between the temperature and organelle function. Intracellular temperature mapping has not previously been achieved. Now, a fluorescent polymeric thermometer has been developed that can be used in combination with fluorescence-lifetime imaging microscopy to allow thermometry with spatial and temperature resolutions of 200 nm and 0.18–0.58 ° C.
Collapse
|
43
|
Oyama K, Mizuno A, Shintani SA, Itoh H, Serizawa T, Fukuda N, Suzuki M, Ishiwata S. Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients. Biochem Biophys Res Commun 2011; 417:607-12. [PMID: 22182408 DOI: 10.1016/j.bbrc.2011.12.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022]
Abstract
It was recently demonstrated that laser irradiation can control the beating of cardiomyocytes and hearts, however, the precise mechanism remains to be clarified. Among the effects induced by laser irradiation on biological tissues, temperature change is one possible effect which can alter physiological functions. Therefore, we investigated the mechanism by which heat pulses, produced by infra-red laser light under an optical microscope, induce contractions of cardiomyocytes. Here we show that microscopic heat pulses induce contraction of rat adult cardiomyocytes. The temperature increase, ΔT, required for inducing contraction of cardiomyocytes was dependent upon the ambient temperature; that is, ΔT at physiological temperature was lower than that at room temperature. Ca(2+) transients, which are usually coupled to contraction, were not detected. We confirmed that the contractions of skinned cardiomyocytes were induced by the heat pulses even in free Ca(2+) solution. This heat pulse-induced Ca(2+)-decoupled contraction technique has the potential to stimulate heart and skeletal muscles in a manner different from the conventional electrical stimulations.
Collapse
Affiliation(s)
- Kotaro Oyama
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ginet P, Montagne K, Akiyama S, Rajabpour A, Taniguchi A, Fujii T, Sakai Y, Kim B, Fourmy D, Volz S. Towards single cell heat shock response by accurate control on thermal confinement with an on-chip microwire electrode. LAB ON A CHIP 2011; 11:1513-1520. [PMID: 21394336 DOI: 10.1039/c0lc00701c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Metal electrodes with micron scale width enable the heating of less than a dozen cells in a confluent layer at predictable temperatures up to 85 °C with an accuracy of ±2 °C. Those performances were obtained by a preliminary robust temperature calibration based on biotin-rhodamine fluorescence and by controlling the temperature map on the substrate through thermal modeling. The temperature accuracy was proved by inducing the expression of heat shock proteins (HSP) in a few NIH-3T3 cells through a confined and precise temperature rise. Our device is therefore effective to locally induce a heat shock response with almost single-cell resolution. Furthermore, we show that cells heated at a higher temperature than the one of heat shock remain alive without producing HSP. Electrode deposition being one of the most common engineering processes, the fabrication of electrode arrays with a simple control circuit is clearly within reach for parallel testing. This should enable the study of several key mechanisms such as cell heat shock, death or signaling. In nanomedicine, controlled drug release by external stimuli such as for example temperature has attracted much attention. Our device could allow fast and efficient testing of thermoactivable drug delivery systems.
Collapse
Affiliation(s)
- Patrick Ginet
- Laboratory of Integrated Micro and Mechatronics Systems/IIS UMI CNRS 2820, Institute of Industrial Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dittami GM, Rajguru SM, Lasher RA, Hitchcock RW, Rabbitt RD. Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes. J Physiol 2011; 589:1295-306. [PMID: 21242257 DOI: 10.1113/jphysiol.2010.198804] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neonatal rat ventricular cardiomyocytes were used to investigate mechanisms underlying transient changes in intracellular free Ca2+ concentration ([Ca2+]i) evoked by pulsed infrared radiation (IR, 1862 nm). Fluorescence confocal microscopy revealed IR-evoked [Ca2+]i events with each IR pulse (3-4 ms pulse⁻¹, 9.1-11.6 J cm⁻² pulse⁻¹). IR-evoked [Ca2+]i events were distinct from the relatively large spontaneous [Ca2+]i transients, with IR-evoked events exhibiting smaller amplitudes (0.88 ΔF/F0 vs. 1.99 ΔF/F0) and shorter time constants (τ =0.64 s vs. 1.19 s, respectively). Both IR-evoked [Ca2+]i events and spontaneous [Ca2+]i transients could be entrained by the IR pulse (0.2-1 pulse s⁻¹), provided the IR dose was sufficient and the radiation was applied directly to the cell. Examination of IR-evoked events during peak spontaneous [Ca2+]i periods revealed a rapid drop in [Ca2+]i, often restoring the baseline [Ca2+]i concentration, followed by a transient increase in [Ca2+]i.Cardiomyocytes were challenged with pharmacological agents to examine potential contributors to the IR-evoked [Ca2+]i events. Three compounds proved to be the most potent, reversible inhibitors: (1) CGP-37157 (20 μM, n =12), an inhibitor of the mitochondrial Na+/Ca2+ exchanger (mNCX), (2) Ruthenium Red (40 μM, n =13), an inhibitor of the mitochondrial Ca2+ uniporter (mCU), and (3) 2-aminoethoxydiphenylborane (10 μM, n =6), an IP3 channel antagonist. Ryanodine blocked the spontaneous [Ca2+]i transients but did not alter the IR-evoked events in the same cells. This pharmacological array implicates mitochondria as the major intracellular store of Ca2+ involved in IR-evoked responses reported here. Results support the hypothesis that 1862 nm pulsed IR modulates mitochondrial Ca2+ transport primarily through actions on mCU and mNCX.
Collapse
Affiliation(s)
- Gregory M Dittami
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | |
Collapse
|
46
|
Rajguru SM, Richter CP, Matic AI, Holstein GR, Highstein SM, Dittami GM, Rabbitt RD. Infrared photostimulation of the crista ampullaris. J Physiol 2011; 589:1283-94. [PMID: 21242259 DOI: 10.1113/jphysiol.2010.198333] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The present results show that the semicircular canal crista ampullaris of the toadfish, Opsanus tau, is sensitive to infrared radiation (IR) applied in vivo. IR pulse trains (∼1862 nm, ∼200 μs pulse⁻¹) delivered to the sensory epithelium by an optical fibre evoked profound changes in phasic and tonic discharge rates of postsynaptic afferent neurons. Phasic afferent responses to pulsed IR occurred with a latency of <8 ms while tonic responses developed with a time constant (τ) of 7 ms to 10 s following the onset or cessation of the radiation. Afferents responded to direct optical radiation of the sensory epithelium but did not respond to thermal stimuli that generated nearly equivalent temperature increases of the whole organ. A subset of afferent neurons fired an action potential in response to each IR pulse delivered to the sensory epithelium, at phase-locked rates up to 96 pulses per second. The latency between IR pulses and afferent nerve action potentials was much greater than synaptic delay and spike generation, demonstrating the presence of a signalling delay interposed between the IR pulse and the action potential. The same IR stimulus applied to afferent nerve axons failed to evoke responses of similar magnitude and failed to phase-lock afferent nerve action potentials. The present data support the hypothesis that pulsed IR activates sensory hair cells, thus leading to modulation of synaptic transmission and afferent nerve discharge reported here.
Collapse
Affiliation(s)
- Suhrud M Rajguru
- Department of Otolaryngology, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Rajguru SM, Matic AI, Robinson AM, Fishman AJ, Moreno LE, Bradley A, Vujanovic I, Breen J, Wells JD, Bendett M, Richter CP. Optical cochlear implants: evaluation of surgical approach and laser parameters in cats. Hear Res 2010; 269:102-11. [PMID: 20603207 DOI: 10.1016/j.heares.2010.06.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 04/25/2010] [Accepted: 06/28/2010] [Indexed: 11/17/2022]
Abstract
Previous research has shown that neural stimulation with infrared radiation (IR) is spatially selective and illustrated the potential of IR in stimulating auditory neurons. The present work demonstrates the application of a miniaturized pulsed IR stimulator for chronic implantation in cats, quantifies its efficacy, and short-term safety in stimulating auditory neurons. IR stimulation of the neurons was achieved using an optical fiber inserted through a cochleostomy drilled in the basal turn of the cat cochlea and was characterized by measuring compound action potentials (CAPs). Neurons were stimulated with IR at various pulse durations, radiant exposures, and pulse repetition rates. Pulse durations as short as 50 mus were successful in evoking CAPs in normal as well as deafened cochleae. Continual stimulation was provided at 200 pulses per second, at 200 mW per pulse, and 100 mus pulse duration. Stable CAP amplitudes were observed for up to 10 h of continual IR stimulation. Combined with histological data, the results suggest that pulsed IR stimulation does not lead to detectable acute tissue damage and validate the stimulation parameters that can be used in future chronic implants based on pulsed IR.
Collapse
Affiliation(s)
- Suhrud M Rajguru
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611-3008, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|