1
|
Eacret D, Manduchi E, Noreck J, Tyner E, Fenik P, Dunn AD, Schug J, Veasey SC, Blendy JA. Mu-opioid receptor-expressing neurons in the paraventricular thalamus modulate chronic morphine-induced wake alterations. Transl Psychiatry 2023; 13:78. [PMID: 36869037 PMCID: PMC9984393 DOI: 10.1038/s41398-023-02382-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Disrupted sleep is a symptom of many psychiatric disorders, including substance use disorders. Most drugs of abuse, including opioids, disrupt sleep. However, the extent and consequence of opioid-induced sleep disturbance, especially during chronic drug exposure, is understudied. We have previously shown that sleep disturbance alters voluntary morphine intake. Here, we examine the effects of acute and chronic morphine exposure on sleep. Using an oral self-administration paradigm, we show that morphine disrupts sleep, most significantly during the dark cycle in chronic morphine, with a concomitant sustained increase in neural activity in the Paraventricular Nucleus of the Thalamus (PVT). Morphine binds primarily to Mu Opioid Receptors (MORs), which are highly expressed in the PVT. Translating Ribosome Affinity Purification (TRAP)-Sequencing of PVT neurons that express MORs showed significant enrichment of the circadian entrainment pathway. To determine whether MOR + cells in the PVT mediate morphine-induced sleep/wake properties, we inhibited these neurons during the dark cycle while mice were self-administering morphine. This inhibition decreased morphine-induced wakefulness but not general wakefulness, indicating that MORs in the PVT contribute to opioid-specific wake alterations. Overall, our results suggest an important role for PVT neurons that express MORs in mediating morphine-induced sleep disturbance.
Collapse
Affiliation(s)
- Darrell Eacret
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elisabetta Manduchi
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Noreck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma Tyner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Polina Fenik
- Center for Sleep and Circadian Neurobiology and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amelia D Dunn
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sigrid C Veasey
- Center for Sleep and Circadian Neurobiology and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Oh CE, Lim HJ, Park J, Moon E, Park JK. Relationship of Circadian Rhythm in Behavioral Characteristics and Lipid Peroxidation of Brain Tissues in Mice. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:649-661. [PMID: 36263640 PMCID: PMC9606440 DOI: 10.9758/cpn.2022.20.4.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE This study aimed to explore the relationship among several indices of circadian rhythms and lipid peroxidation of brain tissue in mice. METHODS After entrainment of 4-week-old mice, one group was disrupted their circadian rhythms for three days and the other group for seven days (n = 10, respectively). After a recovery period, the Y-maze test, the elevated plus maze test, the tail suspension test, and the forced swimming test were conducted. To assess lipid peroxidation in brain tissue, thiobarbituric acid reactive substances were measured in the cortex, hippocampus, and cerebellum. RESULTS When circadian rhythms were disrupted and adapted back to their original rhythm, the recovery time of the 7-day disruption group (median 3.35 days) was significiantly faster than one of the 3-day disruption group (median 4.87 days). In the group with a 7-day disruption, mice that had recovered their rhythms early had higher malondialdehyde levels in their hippocampus compared to those with delayed recovery. The entrainment of circadian rhythms was negatively correlated with the malondialdehyde level of brain tissue. The behavioral test results showed no differences depending on the disruption durations or recovery patterns of circadian rhythms. CONCLUSION These results suggest that disruption types, recovery patterns, and the entrainment of circadian rhythms are likely to affect oxidative stress in adolescents or young adult mice. Future study is needed to confirm and specify these results on the effects of circadian rhythms on oxidative stress and age-dependent effects.
Collapse
Affiliation(s)
- Chi Eun Oh
- Department of Pediatrics, Kosin University College of Medicine, Busan, Korea,Address for correspondence: Ji Kyoung Park Department of Pediatrics, Busan Paik Hospital, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Busan 47392, Korea, E-mail: , ORCID: https://orcid.org/0000-0002-8241-2302, Eunsoo Moon, E-mail: , ORCID ID: https://orcid.org/0000-0002-8863-3413, This manuscript is based on Chi Eun Oh’s doctoral thesis
| | - Hyun Ju Lim
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Jeounghyun Park
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Eunsoo Moon
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea,Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Korea,Address for correspondence: Ji Kyoung Park Department of Pediatrics, Busan Paik Hospital, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Busan 47392, Korea, E-mail: , ORCID: https://orcid.org/0000-0002-8241-2302, Eunsoo Moon, E-mail: , ORCID ID: https://orcid.org/0000-0002-8863-3413, This manuscript is based on Chi Eun Oh’s doctoral thesis
| | - Ji Kyoung Park
- Department of Pediatrics, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea,Address for correspondence: Ji Kyoung Park Department of Pediatrics, Busan Paik Hospital, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Busan 47392, Korea, E-mail: , ORCID: https://orcid.org/0000-0002-8241-2302, Eunsoo Moon, E-mail: , ORCID ID: https://orcid.org/0000-0002-8863-3413, This manuscript is based on Chi Eun Oh’s doctoral thesis
| |
Collapse
|
3
|
Abstract
During the evolution of life, the temporal rhythm of our rotating planet was internalized in the form of circadian rhythms. Circadian rhythms are ~24h internal manifestations that drive daily patterns of physiology and behavior. These rhythms are entrained (synchronized) to the external environment, primarily by the light-dark cycle, and precisely controlled via molecular clocks located within the suprachiasmatic nucleus of the hypothalamus. Misalignment and/or disruption of circadian rhythms can have detrimental consequences for human health. Indeed, studies suggest strong associations between mental health and circadian rhythms. However, direct interactions between mood regulation and the circadian system are just beginning to be uncovered and appreciated. This chapter examines the relationship between disruption of circadian rhythms and mental health. The primary focus will be outlining the association between circadian disruption, in the form of night shift work, exposure to light at night, jet lag, and social jet lag, and psychiatric illness (i.e., anxiety, major depressive disorder, bipolar disorder, and schizophrenia). Additionally, we review animal models of disrupted circadian rhythms, which provide further evidence in support of a strong association between circadian disruption and affective responses. Finally, we discuss future directions for the field and suggest areas of study that require further investigation.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States.
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
4
|
The increased density of the habenular neurons, high impulsivity, aggression and resistant fear memory in Disc1-Q31L genetic mouse model of depression. Behav Brain Res 2020; 392:112693. [PMID: 32422236 DOI: 10.1016/j.bbr.2020.112693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/07/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Mood disorders affect nearly 300 million humans worldwide, and it is a leading cause of death from suicide. In the last decade, the habenula has gained increased attention due to its major role to modulate emotional behavior and related psychopathologies, including depression and bipolar disorder, through the modulation of monoamines' neurotransmission. However, it is still unclear which genetic factors may directly affect the function of the habenula and hence, could contribute to the psychopathological mechanisms of mood disorders. Disrupted-In-Schizophrenia-1 (DISC1) gene is among robust gene-candidates predisposing to major depression, bipolar disorder and schizophrenia in humans. DISC1-Q31L, a well-established genetic mouse model of depression, offers a unique opportunity for translational studies. The current study aimed to probe morphological features of the habenula in the DISC1-Q31L mouse line and detect novel behavioral endophenotypes, including the increased emotionality in mutant females, high aggression in mutant males and deficient extinction of fear memory in DISC1 mutant mice of both sexes. The histological analysis found the increased neural density in the lateral and medial habenula in DISC1-Q31L mice regardless of sex, hence, excluding direct association between the habenular neurons and emotionality in mutant females. Altogether, our findings demonstrated, for the first time, the direct impact of the DISC1 gene on the habenular neurons and affective behavior in the DISC1-Q31L genetic mouse line. These new findings suggest that the combination of the DISC1 genetic analysis together with habenular neuroimaging may improve diagnostics of mood disorder in clinical studies.
Collapse
|
5
|
Walker WH, Walton JC, DeVries AC, Nelson RJ. Circadian rhythm disruption and mental health. Transl Psychiatry 2020; 10:28. [PMID: 32066704 PMCID: PMC7026420 DOI: 10.1038/s41398-020-0694-0] [Citation(s) in RCA: 418] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Circadian rhythms are internal manifestations of the solar day that permit adaptations to predictable environmental temporal changes. These ~24-h rhythms are controlled by molecular clockworks within the brain that are reset daily to precisely 24 h by exposure to the light-dark cycle. Information from the master clock in the mammalian hypothalamus conveys temporal information to the entire body via humoral and neural communication. A bidirectional relationship exists between mood disorders and circadian rhythms. Mood disorders are often associated with disrupted circadian clock-controlled responses, such as sleep and cortisol secretion, whereas disruption of circadian rhythms via jet lag, night-shift work, or exposure to artificial light at night, can precipitate or exacerbate affective symptoms in susceptible individuals. Evidence suggests strong associations between circadian rhythms and mental health, but only recently have studies begun to discover the direct interactions between the circadian system and mood regulation. This review provides an overview of disrupted circadian rhythms and the relationship to behavioral health and psychiatry. The focus of this review is delineating the role of disruption of circadian rhythms on mood disorders using human night shift studies, as well as jet lag studies to identify links. We also review animal models of disrupted circadian rhythms on affective responses. Lastly, we propose low-cost behavioral and lifestyle changes to improve circadian rhythms and presumably behavioral health.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University, Morgantown, WV, 26506, USA.
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University, Morgantown, WV, 26506, USA
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University, Morgantown, WV, 26506, USA
- Department of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
6
|
Zhang H, Zhang H, Ouyang K, Yan C, Lai J, Hu S. Current status and progress of electroencephalogram study in patients with bipolar disorder. Minerva Med 2019; 111:613-614. [PMID: 31256579 DOI: 10.23736/s0026-4806.19.06160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haixiao Zhang
- Encephalopathy Center, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, China
| | - Hanzhi Zhang
- Division of Special Survey, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, China -
| | - Kan Ouyang
- Encephalopathy Center, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, China
| | - Chao Yan
- Department of Nursing, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, China
| | - Jianbo Lai
- Division of Mental Health, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shaohua Hu
- Division of Mental Health, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|