1
|
Gutiérrez Fuster R, León A, Aparicio GI, Brizuela Sotelo F, Scorticati C. Combined additive effects of neuronal membrane glycoprotein GPM6a and the intercellular cell adhesion molecule ICAM5 on neuronal morphogenesis. J Neurochem 2025; 169:e16231. [PMID: 39352694 DOI: 10.1111/jnc.16231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 12/20/2024]
Abstract
The mechanisms underlying neuronal development and synaptic formation in the brain depend on intricate cellular and molecular processes. The neuronal membrane glycoprotein GPM6a promotes neurite elongation, filopodia/spine formation, and synapse development, yet its molecular mechanisms remain unknown. Since the extracellular domains of GPM6a (ECs) command its function, we investigated the interaction between ICAM5, the neuronal member of the intercellular adhesion molecule (ICAM) family, and GPM6a's ECs. Our study aimed to explore the functional relationship between GPM6a and ICAM5 in hippocampal culture neurons and cell lines. Immunostaining of 15 days in vitro (DIV) neurons revealed significant co-localization between endogenous GPM6a clusters and ICAM5 clusters in the dendritic shaft. These results were further corroborated by overexpressing GPM6a and ICAM5 in N2a cells and hippocampal neurons at 5 DIV. Moreover, results from the co-immunoprecipitations and cell aggregation assays prove the cis and trans interaction between both proteins in GPM6a/ICAM5 overexpressing HEK293 cells. Additionally, GPM6a and ICAM5 overexpression additively enhanced neurite length, the number of neurites in N2a cells, and filopodia formation in 5 DIV neurons, indicating their cooperative role. These findings highlight the dynamic association between GPM6a and ICAM5 during neuronal development, offering insights into their contributions to neurite outgrowth, filopodia formation, and cell-cell interactions.
Collapse
Affiliation(s)
- R Gutiérrez Fuster
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - A León
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - G I Aparicio
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Neurorestoration Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - F Brizuela Sotelo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - C Scorticati
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
2
|
Acutain MF, Baez MV. Reduced expression of GluN2A induces a delay in neuron maturation. J Neurochem 2024; 168:4001-4013. [PMID: 38037434 DOI: 10.1111/jnc.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
NMDA receptors (NMDARs) play an important role in synaptic plasticity both in physiological and pathological conditions. GluN2A and GluN2B are the most expressed NMDAR regulatory subunits, in the hippocampus and other cognitive-related brain structures. GluN2B is characteristic of immature structures and GluN2A of mature ones. Changes in GluN2A expression were associated with complex phenotypes that led to complex neurodevelopmental disorders, including the occurrence of seizures. However, little is known about the role of GluN2A in these phenotypes. In this work, we reduced GluN2A expression in mature neuronal cultures and observed an altered GluN2A/GluN2B ratio. Furthermore, those neurons exhibit an increase in immature dendritic spines and dendritic branching, as well as an increased response to glutamate stimulus. This phenotype (considering GluN2A/GluN2B ratio, index branching and glutamate response) resembles those observed at immature neuronal stages in vitro. We propose that this immature phenotype led to a higher response to glutamate stimulus which, in vivo, would be the basis of reduced threshold for seizure onset in GluN2A-pathological conditions.
Collapse
Affiliation(s)
- María Florencia Acutain
- Laboratorio de Sinapsis y Neurobiología Celular, Instituto de Biología Celular y Neurociencia (IBCN)-CONICET-UBA, Ciudad de Buenos Aires, Argentina
| | - María Verónica Baez
- Laboratorio de Sinapsis y Neurobiología Celular, Instituto de Biología Celular y Neurociencia (IBCN)-CONICET-UBA, Ciudad de Buenos Aires, Argentina
- 1UA de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, UBA, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
3
|
Grabeklis SA, Kozlova MA, Mikhaleva LM, Dygai AM, Vandysheva RA, Anurkina AI, Areshidze DA. Effect of Constant Illumination on the Morphofunctional State and Rhythmostasis of Rat Livers at Experimental Toxic Injury. Int J Mol Sci 2024; 25:12476. [PMID: 39596541 PMCID: PMC11594381 DOI: 10.3390/ijms252212476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
The effect of dark deprivation on the morphofunctional state and rhythmostasis of the liver under CCl4 toxic exposure has been studied. The relevance of this study is due to the fact that the hepatotoxic effect of carbon tetrachloride on the liver is well studied, but there are very few data on the relationship between CCl4 intoxication and circadian biorhythms, and most of the studies consider the susceptibility of the organism in general and of the liver in particular to the influence of CCl4 in some separate periods of the rhythm, but not the influence of this chemical agent on the structure of the whole rhythm. In addition, earlier studies indicate that light disturbance causes certain changes in the morphofunctional state of the liver and the structure of the circadian rhythm of a number of parameters. As a result of this study, we found that the effect of CCl4 in conditions of prolonged dark deprivation causes more significant structural and functional changes in hepatocytes, as well as leading to significant changes in the circadian rhythms of a number of parameters, which was not observed in the action of CCl4 as a monofactor. We assume that the severity of structural and functional changes is due to the light-induced deficiency of melatonin, which has hepatoprotective properties. Thus, the mechanisms of CCl4 action on CRs under conditions of light regime violations leave a large number of questions requiring further study, including the role of melatonin in these processes.
Collapse
Affiliation(s)
- Sevil A. Grabeklis
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - Maria A. Kozlova
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - Lyudmila M. Mikhaleva
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - Alexander M. Dygai
- Research Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Rositsa A. Vandysheva
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - Anna I. Anurkina
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - David A. Areshidze
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| |
Collapse
|
4
|
Karimi H, Mohamadian M, Azizi P, Ghasemi P, Karimi M, Layegh T, Rahmatkhah-Yazdi M, Vaseghi S. Crocin has a greater therapeutic role in the restoration of behavioral impairments caused by maternal social isolation in adolescent than in adult offspring probably through GSK-3beta downregulation. LEARNING AND MOTIVATION 2024; 88:102060. [DOI: 10.1016/j.lmot.2024.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Enayati S, Chang K, Lennikov A, Yang M, Lee C, Ashok A, Elzaridi F, Yen C, Gunes K, Xie J, Cho KS, Utheim TP, Chen DF. Optimal transcorneal electrical stimulation parameters for preserving photoreceptors in a mouse model of retinitis pigmentosa. Neural Regen Res 2024; 19:2543-2552. [PMID: 38526290 PMCID: PMC11090438 DOI: 10.4103/1673-5374.392888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 11/21/2023] [Accepted: 12/29/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00034/figure1/v/2024-03-08T184507Z/r/image-tiff Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors, leading to progressive photoreceptor loss. Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival. This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation (tcES) in mice affected by inherited retinal degeneration. Additionally, the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans. In this study, we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular, sine, and ramp waveforms. To investigate the functional effects of electrical stimulation on photoreceptors, we used human retinal explant cultures and rhodopsin knockout (Rho-/-) mice, demonstrating progressive photoreceptor degeneration with age. Human retinal explants isolated from the donors' eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro. Photoreceptor density was evaluated by rhodopsin immunolabeling. In vivo Rho-/- mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms. Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response (OMR), respectively. Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas. Oscilloscope recordings indicated effective delivery of rectangular, sine, and ramp waveforms to the retina by transcorneal electrical stimulation, of which the ramp waveform required the lowest voltage. Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes. The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro (~0.5-1.5°C). Electrical stimulation increased photoreceptor survival in human retinal explant cultures, particularly at the ramp waveform. Transcorneal electrical stimulation (rectangular + ramp) waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results. Histology and immunolabeling demonstrated increased photoreceptor survival, improved outer nuclear layer thickness, and increased bipolar cell sprouting in Rho-/- mice. These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina, improves photoreceptor survival in both human and mouse retinas, and increases visual function in Rho-/- mice. Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion.
Collapse
Affiliation(s)
- Sam Enayati
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Institute of clinical medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Karen Chang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Anton Lennikov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Menglu Yang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Cherin Lee
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ajay Ashok
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Farris Elzaridi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Christina Yen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kasim Gunes
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkiye
| | - Jia Xie
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tor Paaske Utheim
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Institute of clinical medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Lan Y, Wang M, Yuan H, Xu H. Catechins counteracted hepatotoxicity induced by cadmium through Keap1-Nrf2 pathway regulation. FOOD BIOSCI 2024; 61:104593. [DOI: 10.1016/j.fbio.2024.104593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Karimi S, Kazori N, Alavi SMH, Alijanpour S, Siddiqi MAA, Zeynali B. Nandrolone decanoate-induced hypogonadism in male rats: Dose- and time-dependent effects on pituitary and testicular hormonal functions. Physiol Rep 2024; 12:e70053. [PMID: 39370302 PMCID: PMC11456365 DOI: 10.14814/phy2.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Anabolic-androgenic steroids (AASs) impairment of reproduction has been reported. We investigated dose- and time-dependent effects of Nandrolone decanoate (ND) on reproductive system in comparison with Testosterone enanthate (TE). Male Wistar rats were administrated with 1, 3, and 9 mg/kg/weeks ND or 1 and 3 mg/kg/weeks TE for 8 weeks, and testicular phenotype and reproductive hormones were assessed at 4 and 8 weeks post-treatments. AASs × treatment period interaction was significant for gonadosomatic index (GSI), testosterone (T), 17β-estradiol (E2), and luteinizing hormone (LH). At 4 weeks post-treatment, GSI was decreased in rats treated with 3 mg/kg/weeks ND and T was decreased in all ND-treated groups, while no significant changes in LH levels were observed. At 8 weeks post-treatment, GSI was decreased in rats treated with 1 and 3 mg/kg/weeks ND and with 3 mg/kg/weeks TE, T was decreased in all groups, and E2 and LH were increased and decreased, respectively, in rats treated with 9 mg/kg/weeks ND and with 3 mg/kg/weeks TE. The testes showed histopathological defects in both ND- and TE-treated rats suggesting a delay in seminiferous cycle. This study shows AASs-induced hypogonadism at low-dose that coincided with inhibition of T biosynthesis and disruption of T feedback on pituitary.
Collapse
Affiliation(s)
- Sholeh Karimi
- Department of Animal Biology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Negar Kazori
- Department of Animal Biology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | | | - Sara Alijanpour
- Department of Animal Biology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Mohammad Alim Atif Siddiqi
- Department of Animal Biology, School of Biology, College of ScienceUniversity of TehranTehranIran
- Present address:
Department of Biology, Faculty of EducationLoger Higher Education InstituteLogerAfghanistan
| | - Bahman Zeynali
- Department of Animal Biology, School of Biology, College of ScienceUniversity of TehranTehranIran
| |
Collapse
|
8
|
Alqhtani MM, Al Mousa NA, Al Zayer NM, Al Abbas LA, Alamer N, Almousa MA, Naguib YM. Safflower Improves Memory, Learning, and Behavior in Rats Subjected to Sleep Deprivation. Cureus 2024; 16:e70150. [PMID: 39323543 PMCID: PMC11423276 DOI: 10.7759/cureus.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Sleep is a physiological process that provides the body with a window for recovery and restoration. Intriguingly, even short-term sleep deprivation can impair brain memory, emotional capacity, information processing, and attention. Safflower (Carthamus tinctorius L.) has been shown to attenuate memory loss and improve anxiety and depression. OBJECTIVE This study aims to study the possible therapeutic effect of safflower on sleep deprivation-dependent effects on memory and behavior. MATERIALS AND METHODS Thirty young male Wistar albino rats were acclimatized, trained, and then assigned to three random groups: control (C), sleep-deprived (SD), and sleep-deprived Safflower-treated (SD+Sf) groups. Morris Water Maze (MWM) and Elevated Plus Maze (EPM) tests were used to study spatial memory and learning and anxiety-related behavior, respectively, in the study groups. RESULTS There was a significant deterioration in learning and memory, as tested by the MWM in the SD group, compared to the C group. This included prolonged test duration, reduced average speed, and longer travel distance. Treatment with safflower significantly improved MWM test performance in the SD+Sf group when compared to the SD group. When compared to the C group, rats in the SD group demonstrated altered EPM test parameters suggestive of anxiety-like behavior. These included spending more time in the closed arms, spending less time in the open arms, and having fewer entries in the open arms. Rats in the SD+Sf group showed improved EPM test parameters when compared to the SD group. CONCLUSION Safflower significantly ameliorated sleep deprivation induced by memory loss and altered behavior. Safflower supplementation may provide potential memory-enhancing and preserving, anxiolytic, and antidepressant therapeutic roles.
Collapse
Affiliation(s)
- Muhanned M Alqhtani
- Internal Medicine Department, King Hamad University Hospital, Manama, BHR
- College of Medicine and Health Sciences, Arabian Gulf University, Manama, BHR
| | - Noor A Al Mousa
- Physiology Department, College of Medicine and Health Sciences, Arabian Gulf University, Manama, BHR
| | - Noor M Al Zayer
- Physiology Department, College of Medicine and Health Sciences, Arabian Gulf University, Manama, BHR
| | - Layan A Al Abbas
- Physiology Department, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, BHR
| | - Nourah Alamer
- College of Medicine, King Khalid University, Abha, SAU
| | | | - Yahya M Naguib
- Physiology Department, College of Medicine and Health Sciences, Arabian Gulf University, Manama, BHR
- Clinical Physiology Department, Faculty of Medicine, Menoufia University, Shebin El Kom, EGY
| |
Collapse
|
9
|
Gunes K, Chang K, Lennikov A, Tai WL, Chen J, ElZaridi F, Cho KS, Utheim TP, Dong Feng C. Preservation of vision by transpalpebral electrical stimulation in mice with inherited retinal degeneration. Front Cell Dev Biol 2024; 12:1412909. [PMID: 39206091 PMCID: PMC11349514 DOI: 10.3389/fcell.2024.1412909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction The potential neuroprotective and regenerative properties of electrical stimulation (ES) were studied in rhodopsin knockout mice (Rho -/- ), a murine model of inherited retinal degeneration. The study focused on assessing the impact of varying ES frequencies on visual functions and photoreceptor cell survival in Rho -/- mice. Methods To elucidate the impact of electrical stimulation on cone survival, Rho -/- mice received either sham or transpalpebral ES using biphasic ramp or rectangular waveforms at 100 µA amplitude, starting at six weeks of age. The treatment duration spanned from one to three weeks. The optimal treatment frequency of ES sessions was determined by applying ES every one, two, or three days in three separate groups of Rho -/- mice. The sham group received daily treatments without the application of ES. Results Our study revealed significant improvement of visual function in Rho -/- mice following daily or every-other-day noninvasive transpalpebral ES, as evidenced by electroretinogram and optomotor response-based visual behavior assays. Concurrently, assessment of outer nuclear thickness and immunohistochemistry for the cone photoreceptor cell marker PNA demonstrated pronounced increases in the survival of rods and cones and improvement in the morphology of the inner and outer segments. Discussion This study underscores the protective effect of non-invasive ES in rhodopsin knockout-induced retinal degenerative disorders, providing a foundation for developing targeted therapeutic interventions for retinitis pigmentosa.
Collapse
Affiliation(s)
- Kasim Gunes
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Türkiye
| | - Karen Chang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Wai Lydia Tai
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Julie Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Farris ElZaridi
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Tor Paaske Utheim
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Chen Dong Feng
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Luo X, Liu L, Rong H, Liu X, Yang L, Li N, Shi H. ENU-based dominant genetic screen identifies contractile and neuronal gene mutations in congenital heart disease. Genome Med 2024; 16:97. [PMID: 39135118 PMCID: PMC11318149 DOI: 10.1186/s13073-024-01372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is the most prevalent congenital anomaly, but its underlying causes are still not fully understood. It is believed that multiple rare genetic mutations may contribute to the development of CHD. METHODS In this study, we aimed to identify novel genetic risk factors for CHD using an ENU-based dominant genetic screen in mice. We analyzed fetuses with malformed hearts and compared them to control littermates by whole exome or whole genome sequencing (WES/WGS). The differences in mutation rates between observed and expected values were tested using the Poisson and Binomial distribution. Additionally, we compared WES data from human CHD probands obtained from the Pediatric Cardiac Genomics Consortium with control subjects from the 1000 Genomes Project using Fisher's exact test to evaluate the burden of rare inherited damaging mutations in patients. RESULTS By screening 10,285 fetuses, we identified 1109 cases with various heart defects, with ventricular septal defects and bicuspid aortic valves being the most common types. WES/WGS analysis of 598 cases and 532 control littermates revealed a higher number of ENU-induced damaging mutations in cases compared to controls. GO term and KEGG pathway enrichment analysis showed that pathways related to cardiac contraction and neuronal development and functions were enriched in cases. Further analysis of 1457 human CHD probands and 2675 control subjects also revealed an enrichment of genes associated with muscle and nervous system development in patients. By combining the mice and human data, we identified a list of 101 candidate digenic genesets, from which each geneset was co-mutated in at least one mouse and two human probands with CHD but not in control mouse and control human subjects. CONCLUSIONS Our findings suggest that gene mutations affecting early hemodynamic perturbations in the developing heart may play a significant role as a genetic risk factor for CHD. Further validation of the candidate gene set identified in this study could enhance our understanding of the complex genetics underlying CHD and potentially lead to the development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoxi Luo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lifeng Liu
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Haowei Rong
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiangyang Liu
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Ling Yang
- Westlake University High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Li
- Westlake University High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Hongjun Shi
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Zhou L, Le K, Chen Q, Wang H. The efficacy and potential mechanisms of pyrotinib in targeting EGFR and HER2 in advanced oral squamous cell carcinoma. BMC Oral Health 2024; 24:898. [PMID: 39107736 PMCID: PMC11302363 DOI: 10.1186/s12903-024-04459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/07/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2) plays an important role in the progression of multiple solid tumors and induces resistance to epidermal growth factor receptor (EGFR) target treatment. However, the expression status and the clinical significance of HER2 in oral squamous cell carcinoma (OSCC) is still controversial. Pyrotinib (PYR) is a promising novel EGFR/HER2 dual inhibitor, whose efficacy in OSCC has not been determined. METHODS 57 locally advanced de novo OSCC patients were included in this study to investigate the relationship between the HER2 expression levels and the prognosis by the tissue microarray analysis (TMA). In vitro and in vivo experiments were performed to retrieve the efficacy of PYR in OSCC. The main downstream of HER2 was evaluated by western blotting in OSCC cell lines and xenograft tumors to explore the potential mechanism of PYR. RESULTS This study revealed the primary tumor of OSCC had higher HER2 expression levels. Patients with HER2 overexpression had poor overall survival (P < 0.014) and poor disease free survival (P < 0.042). In vitro, PYR suppressed the proliferation, colony formation and migration of OSCC cells. It also promoted apoptosis of OSCC cells and induced cell cycle arrest. Furthermore, PYR was able to inhibit the occurrence and development of OSCC effectively in vivo. Western blotting revealed that PYR suppressed OSCC by inhibiting the phosphorylation of HER2, AKT and ERK. CONCLUSIONS This study exhibited the anti-OSCC effects of PYR in vitro and in vivo, and demonstrated PYR inhibited OSCC cells by inducing apoptosis via the HER2/ AKT and ERK pathway. The result of this study also indicated locally advanced OSCC patients might benefit from HER2 assay and EGFR/HER2 dual inhibit treatment.
Collapse
Affiliation(s)
- Liang Zhou
- Head and Neck Surgery, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, PR China
| | - Kehao Le
- Head and Neck Surgery, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, PR China
| | - Qianming Chen
- Oral and Maxillofacial Surgery, the Stomatology Hospital, Zhejiang University School of Medicine, No.166 Qiutao Road, Hangzhou, 310016, Zhejiang, PR China
| | - Huiming Wang
- Oral and Maxillofacial Surgery, the Stomatology Hospital, Zhejiang University School of Medicine, No.166 Qiutao Road, Hangzhou, 310016, Zhejiang, PR China.
| |
Collapse
|
12
|
Volpe A, Lyashchenko SK, Ponomarev V. Nuclear-Based Labeling of Cellular Immunotherapies: A Simple Protocol for Preclinical Use. Mol Imaging Biol 2024; 26:555-568. [PMID: 38958882 PMCID: PMC11281953 DOI: 10.1007/s11307-024-01923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 07/04/2024]
Abstract
Labeling and tracking existing and emerging cell-based immunotherapies using nuclear imaging is widely used to guide the preclinical phases of development and testing of existing and new emerging off-the-shelf cell-based immunotherapies. In fact, advancing our knowledge about their mechanism of action and limitations could provide preclinical support and justification for moving towards clinical experimentation of newly generated products and expedite their approval by the Food and Drug Administration (FDA).Here we provide the reader with a ready to use protocol describing the labeling methodologies and practical procedures to render different candidate cell therapies in vivo traceable by nuclear-based imaging. The protocol includes sufficient practical details to aid researchers at all career stages and from different fields in familiarizing with the described concepts and incorporating them into their work.
Collapse
Affiliation(s)
- Alessia Volpe
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Serge K Lyashchenko
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
13
|
Song L, Wang D, Zhai Y, Zhang X, Zhang Y, Yu Y, Sun L, Zhou K. Aqueous extract of Epimedium sagittatum (Sieb. et Zucc.) Maxim. induces liver injury in mice via pyroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118164. [PMID: 38593963 DOI: 10.1016/j.jep.2024.118164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium sagittatum (Sieb. et Zucc.) Maxim. has been used traditionally in Asia. It can dispel wind and cold, tonify the kidney, and strengthen bones and tendons. However, adverse effects of E. sagittatum have been reported, and the underlying mechanisms remain unclear. AIM OF THE STUDY This study aimed to investigate liver injury caused by an aqueous extract of E. sagittatum in Institute of Cancer Research (ICR) mice and explore its potential mechanisms. MATERIALS AND METHODS Dried E. sagittatum leaves were decocted in water to prepare aqueous extracts for ultra-high performance liquid chromatography analysis. Mice were administered an aqueous extract of E. sagittatum equivalent to either 3 g raw E. sagittatum/kg or 10 g raw E. sagittatum/kg once daily via intragastric injection for three months. The liver weights and levels of the serum biochemical parameters including alanine transaminase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), total bilirubin (TBIL), and alkaline phosphatase were measured. Hematoxylin-eosin staining was performed for histopathology. Apoptosis was detected using the TUNEL apoptosis assay kit. IL-1β was detected using ELISA kits. Proteomics was used to identify the differentially expressed proteins. Western blot analysis was performed to determine the levels of proteins significantly affected by the aqueous extract of E. sagittatum. RESULTS E. sagittatum treatment increased the liver weights and liver coefficients, and ALT and AST levels significantly increased (p < 0.05). A high dose of E. sagittatum significantly increased LDH and TBIL levels (p < 0.05). Ruptured cell membranes and multiple sites of inflammatory cell infiltration were also observed. No evidence of apoptosis was observed. IL-1β levels were significantly increased (p < 0.05). The expressions of PIK3R1, p-MAP2K4, p-Jun N-terminal kinase (JNK)/JNK, p-c-Jun, VDAC2, Bax, and CYC were upregulated, whereas that of Bcl-2 was inhibited by E. sagittatum. The expression of cleaved caspase-1 was significantly increased; however, its effects on GSDMD and GSDMD-N were significantly decreased. The expression levels of cleaved caspase-3 and its effector proteins GSDME and GSDME-N significantly increased. CONCLUSIONS Our results suggest that the aqueous extract of E. sagittatum induces liver injury in ICR mice after three months of intragastric injection via inflammatory pyroptosis.
Collapse
Affiliation(s)
- Lei Song
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China
| | - Dongyu Wang
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuxia Zhai
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoying Zhang
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yue Zhang
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China
| | - Yingli Yu
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China
| | - Likang Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kun Zhou
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
14
|
Tajabadi Farahani Z, Vaseghi S, Rajabbeigi E, Ghorbani Yekta B. The effect of olanzapine on spatial memory impairment, depressive-like behavior, pain perception, and BDNF and synaptophysin expression following childhood chronic unpredictable mild stress in adult male and female rats. Behav Brain Res 2024; 468:115039. [PMID: 38718877 DOI: 10.1016/j.bbr.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Chronic unpredictable mild stress (CUMS) method has been introduced as a rodent model of depression. On the other hand, olanzapine, as an antipsychotic, can induce antidepressant and antipsychotic effects. Also, olanzapine may improve cognitive functions. Both CUMS and olanzapine can also affect the expression level of brain-derived neurotrophic factor (BDNF) and synaptophysin, the molecular factors involved in synaptic function, and learning and memory. In this study, we investigated the effect of olanzapine on locomotor activity (using open field test), pain threshold (using hot plate), depressive-like behavior (using forced swim test), spatial learning and memory (using Morris water maze), and BDNF and synaptophysin hippocampal expression (using real-time PCR) in both male and female CUMS rats. CUMS was performed for three consecutive weeks. Olanzapine was also injected intraperitoneally at the dose of 5 mg/kg. Our data showed that olanzapine can reverse the effects of CUMS on behavioral functions and BDNF and synaptophysin expression levels in the hippocampus of both males and females. It was also shown that olanzapine effects on spatial memory, pain perception, and BDNF and synaptophysin level were stronger in females than males. In conclusion, we suggested that the therapeutic effects of olanzapine in CUMS rats may be closely related to the function of BDNF and synaptophysin. Also, the therapeutic effects of olanzapine may be stronger in females. Therefore, and for the first time, we showed that there may be a sex difference in the effects of olanzapine on behavioral and molecular changes following CUMS.
Collapse
Affiliation(s)
- Zahra Tajabadi Farahani
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Elham Rajabbeigi
- Department of Developmental Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Batool Ghorbani Yekta
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
Nabil G, Ahmed YH, Ahmed O, Milad SS, Hisham M, Rafat M, Atia M, Shokry AA. Argel's stemmoside C as a novel natural remedy for mice with alcohol-induced gastric ulcer based on its molecular mechanistic pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117970. [PMID: 38428660 DOI: 10.1016/j.jep.2024.117970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solenostemma argel is widely distributed in Africa & Asia with traditional usage in alleviating abdominal colic, aches, & cramps. This plant is rich in phytochemicals, which must be explored for its pharmacological effects. PURPOSE Peptic Ulcer Disease (PUD) is the digestion of the digestive tube. PUD not only interferes with food digestion & nutrient absorption, damages one of the largest defensive barriers against pathogenic micro-organisms, but also impedes drug absorption & bioavailability, rendering the oral route, the most convenient way, ineffective. Omeprazole, one of the indispensable cost-effective proton-pump inhibitors (PPIs) extensively prescribed to control PUD, is showing growing apprehensions toward multiple drug interactions & side effects. Hence, finding a natural alternative with Omeprazole-like activity & limited side effects is a medical concern. STUDY DESIGN Therefore, we present Stemmoside C as a new gastroprotective phytochemical agent isolated from Solenostemma argel to be tested in upgrading doses against ethanol-induced gastric ulcers in mice compared to negative, positive, & reference Omeprazole groups. METHODS We carried out in-depth pharmacological & histopathological studies to determine the possible mechanistic pathway. RESULTS Our results showed that Stemmoside C protected the stomach against ethanol-induced gastric ulcers parallel to Omeprazole. Furthermore, the mechanistic studies revealed that Stemmoside C produced its effect using an orchestrated array of different mechanisms. Stemmoside C stimulates stomach defense by increasing COX-2, PGE-2, NO, & TFF-1 healing factors, IL-10 anti-inflammatory cytokine, & Nrf-2 & HO-1 anti-oxidant pathways. It also suppresses stomach ulceration by inhibiting leucocyte recruitment, especially neutrophils, leading to subsequent inhibition of NF-κBp65, TNF-α, IL-1β, & iNOS pro-inflammatory cytokines & JAK-1/STAT-3 inflammation-induced carcinogenicity cascade in addition to MMP-9 responsible for tissue degradation. CONCLUSION These findings cast light on Stemmoside C's clinical application against gastric ulcer progression, recurrence, & tumorigenicity & concurrently with chemotherapy.
Collapse
Affiliation(s)
- Ghazal Nabil
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Yasmine H Ahmed
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Omaima Ahmed
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Selvia S Milad
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Hisham
- Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Rafat
- Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Atia
- Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Aya A Shokry
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
16
|
Mahmoud K, Ahmed A F S, Marwa M M, Zeinab A E, Salwa M EH, Walid F, May A EM, Youssef EM. Cell based and In vivo systematic evaluation of some Egyptian plant extracts targeting breast cancer. Toxicon 2024; 244:107752. [PMID: 38761923 DOI: 10.1016/j.toxicon.2024.107752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
The prevalence of breast cancer as a significant public health concern necessitates continued exploration of natural resources for novel anti-cancer agents is crucial. MATERIAL AND METHODS Anticancer activity of plant extracts on monolayer breast cancer cell line (MCF7) with lower levels of toxicity towards normal (RPE1) underwent further assessment using a three-dimensional model (3D). The extract's effects were investigated through multiple assays including apoptosis induction using quantifying cleaved cytokeratin-18 (CK18) and DNA fragmentation. Additionally, the expression of Bcl-2 and Bax was quantitative using real-time PCR. The median lethal dose (LD50) was determined by the acute oral toxicity, while biomarkers associated with tumorigenesis, metastasis, and cell death were quantified by ELISA. RESULTS Limoniastrum monopetalum and Bauhinia variegata exhibited the most potent antitumor efficacy among the investigated extracts. They demonstrated potent cytotoxicity against MCF7 with no significant effect on hTERT RPE-1, with an IC50 of 100 μM. The extract demonstrated effectiveness in killing cancer cells within 3D tumor-like structures, induced apoptosis through caspase-3 activation and cleavage of cytokeratin-18, up-regulated the tumor suppressor p53, down-regulated the anti-apoptotic Bcl-2 gene, and caused DNA fragmentation. Acute oral toxicity studies in mice indicated low toxicity, and in a syngeneic mouse tumor model, the extract significantly inhibited tumor growth, suggesting its potential for further development. CONCLUSION Limoniastrum monopetalum and Bauhinia variegata exhibited the most potent antitumor efficacy among the investigated extracts.
Collapse
Affiliation(s)
- Khaled Mahmoud
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Pharmaceutical and Drug Industries Division, Dokki, Giza, 12622, Egypt.
| | - Soliman Ahmed A F
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Pharmaceutical and Drug Industries Division, Dokki, Giza, 12622, Egypt
| | - Mounier Marwa M
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Pharmaceutical and Drug Industries Division, Dokki, Giza, 12622, Egypt
| | - Elshahid Zeinab A
- Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industry, Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - El-Hallouty Salwa M
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Pharmaceutical and Drug Industries Division, Dokki, Giza, 12622, Egypt
| | - Fayad Walid
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Pharmaceutical and Drug Industries Division, Dokki, Giza, 12622, Egypt
| | - El-Manawaty May A
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Pharmaceutical and Drug Industries Division, Dokki, Giza, 12622, Egypt
| | - Elham M Youssef
- Biochemistry Department, National Research Centre, Giza, Egypt
| |
Collapse
|
17
|
Abdelgalil MH, Elhammamy RH, Ragab HM, Sheta E, Wahid A. The hepatoprotective effect of 4-phenyltetrahydroquinolines on carbon tetrachloride induced hepatotoxicity in rats through autophagy inhibition. Biol Res 2024; 57:32. [PMID: 38797855 PMCID: PMC11129499 DOI: 10.1186/s40659-024-00510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The liver serves as a metabolic hub within the human body, playing a crucial role in various essential functions, such as detoxification, nutrient metabolism, and hormone regulation. Therefore, protecting the liver against endogenous and exogenous insults has become a primary focus in medical research. Consequently, the potential hepatoprotective properties of multiple 4-phenyltetrahydroquinolines inspired us to thoroughly study the influence of four specially designed and synthesized derivatives on carbon tetrachloride (CCl4)-induced liver injury in rats. METHODS AND RESULTS Seventy-seven Wistar albino male rats weighing 140 ± 18 g were divided into eleven groups to investigate both the toxicity profile and the hepatoprotective potential of 4-phenyltetrahydroquinolines. An in-vivo hepatotoxicity model was conducted using CCl4 (1 ml/kg body weight, a 1:1 v/v mixture with corn oil, i.p.) every 72 h for 14 days. The concurrent treatment of rats with our newly synthesized compounds (each at a dose of 25 mg/kg body weight, suspended in 0.5% CMC, p.o.) every 24 h effectively lowered transaminases, preserved liver tissue integrity, and mitigated oxidative stress and inflammation. Moreover, the histopathological examination of liver tissues revealed a significant reduction in liver fibrosis, which was further supported by the immunohistochemical analysis of α-SMA. Additionally, the expression of the apoptotic genes BAX and BCL2 was monitored using real-time PCR, which showed a significant decrease in liver apoptosis. Further investigations unveiled the ability of the compounds to significantly decrease the expression of autophagy-related proteins, Beclin-1 and LC3B, consequently inhibiting autophagy. Finally, our computer-assisted simulation dockingonfirmed the obtained experimental activities. CONCLUSION Our findings suggest that derivatives of 4-phenyltetrahydroquinoline demonstrate hepatoprotective properties in CCl4-induced liver damage and fibrosis in rats. The potential mechanism of action may be due to the inhibition of autophagy in liver cells.
Collapse
Affiliation(s)
- Mohamed Hussein Abdelgalil
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Reem H Elhammamy
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
18
|
Chen K, Hu B, Ren J, Deng X, Li Q, Zhang R, Zhang Y, Shen G, Liu S, Zhang J, Lu P. Enhanced protein-metabolite correlation analysis: To investigate the association between Staphylococcus aureus mastitis and metabolic immune pathways. FASEB J 2024; 38:e23587. [PMID: 38568835 DOI: 10.1096/fj.202302242rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Mastitis is a disease characterized by congestion, swelling, and inflammation of the mammary gland and usually caused by infection with pathogenic microorganisms. Furthermore, the development of mastitis is closely linked to the exogenous pathway of the gastrointestinal tract. However, the regulatory mechanisms governing the gut-metabolism-mammary axis remain incompletely understood. The present study revealed alterations in the gut microbiota of mastitis rats characterized by an increased abundance of the Proteobacteria phylum. Plasma analysis revealed significantly higher levels of L-isoleucine and cholic acid along with 7-ketodeoxycholic acid. Mammary tissue showed elevated levels of arachidonic acid metabolites and norlithocholic acid. Proteomic analysis showed increased levels of IFIH1, Tnfaip8l2, IRGM, and IRF5 in mastitis rats, which suggests that mastitis triggers an inflammatory response and immune stress. Follistatin (Fst) and progesterone receptor (Pgr) were significantly downregulated, raising the risk of breast cancer. Extracellular matrix (ECM) receptors and focal adhesion signaling pathways were downregulated, while blood-milk barrier integrity was disrupted. Analysis of protein-metabolic network regulation revealed that necroptosis, protein digestion and absorption, and arachidonic acid metabolism were the principal regulatory pathways involved in the development of mastitis. In short, the onset of mastitis leads to changes in the microbiota and alterations in the metabolic profiles of various biological samples, including colonic contents, plasma, and mammary tissue. Key manifestations include disturbances in bile acid metabolism, amino acid metabolism, and arachidonic acid metabolism. At the same time, the integrity of the blood-milk barrier is compromised while inflammation is promoted, thereby reducing cell adhesion in the mammary glands. These findings contribute to a more comprehensive understanding of the metabolic status of mastitis and provide new insights into its impact on the immune system.
Collapse
Affiliation(s)
- Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binhong Hu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jingyuan Ren
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Xin Deng
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Qing Li
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Rong Zhang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Gengyu Shen
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jiacheng Zhang
- Department of Hepatobiliary, Pancreatic and Liver Transplantation Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Eliav A, Ofri R, Brust K, Kushnir Y, Shilo-Benjamini Y. Improving rat welfare through the development of a peribulbar anaesthesia technique for ophthalmic procedures: A preliminary study. Lab Anim 2024; 58:116-126. [PMID: 37728920 DOI: 10.1177/00236772231178433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Rats are a commonly used animal model for the study of the pathogenesis and novel treatments of glaucoma, which is induced experimentally using invasive, painful procedures. Peribulbar anaesthesia (PBA) is frequently used in people and domestic animals prior to ophthalmic surgeries to provide excellent perioperative analgesia. Our goal was to develop a PBA technique adapted to rat anatomy, improving the welfare of animals used as a model for glaucoma. Eighteen rat cadavers (n = 36 eyes) were used to establish the optimal needle insertion location. Five injection techniques using 0.1 mL/100 g lidocaine 2% and a contrast agent (1:1 volume ratio) were compared via computed tomography (CT). CT images were scored for injectate distribution at four locations: extraconal, intraconal, around the optic nerve and at the orbital fissure (scale 0-8, where 0 = none and 8 = excellent). Median scores using the dorso-medial-75° (5; range 2-6) and medial-canthus (4.5; range 2-8) injection techniques were not different from the dorso-medial-45° (4; range 3-6) technique and were higher (better distribution) compared with mid-ventral (3; range 2-5) and ventro-lateral (2; range 1-3) techniques. The two superior techniques were used in two experimental rats (n = 4 eyes) to determine the volume of bupivacaine 0.5% necessary to affect corneal touch threshold (CTT) and periocular skin sensitivity (PSS). A volume of 0.05 mL/100 g decreased CTT and PSS for several hours, while a larger volume produced excessively long effects. Dorso-medial-75° or medial-canthus PBA using 0.05 mL/100 g bupivacaine are likely to provide ocular and periocular analgesia in rats, with minor transient adverse effects.
Collapse
Affiliation(s)
- Ady Eliav
- The Authority for Biological and Biomedical Models, The Hebrew University of Jerusalem, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Kelsey Brust
- Department of Veterinary Surgery and Radiology, School of Veterinary Medicine, University of California, USA
| | - Yishai Kushnir
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Yael Shilo-Benjamini
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
20
|
Rinwa P, Eriksson M, Cotgreave I, Bäckberg M. 3R-Refinement principles: elevating rodent well-being and research quality. Lab Anim Res 2024; 40:11. [PMID: 38549171 PMCID: PMC10979584 DOI: 10.1186/s42826-024-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
This review article delves into the details of the 3R-Refinement principles as a vital framework for ethically sound rodent research laboratory. It highlights the core objective of the refinement protocol, namely, to enhance the well-being of laboratory animals while simultaneously improving the scientific validity of research outcomes. Through an exploration of key components of the refinement principles, the article outlines how these ethics should be implemented at various stages of animal experiments. It emphasizes the significance of enriched housing environments that reduce stress and encourage natural behaviors, non-restraint methods in handling and training, refined dosing and sampling techniques that prioritize animal comfort, the critical role of optimal pain management and the importance of regular animal welfare assessment in maintaining the rodents well-being. Additionally, the advantages of collaboration with animal care and ethics committees are also mentioned. The other half of the article explains the extensive benefits of the 3R-Refinement protocol such as heightened animal welfare, enhanced research quality, reduced variability, and positive feedback from researchers and animal care staff. Furthermore, it addresses avenues for promoting the adoption of the protocol, such as disseminating best practices, conducting training programs, and engaging with regulatory bodies. Overall, this article highlights the significance of 3R-Refinement protocol in aligning scientific advancement with ethical considerations along with shaping a more compassionate and responsible future for animal research.
Collapse
Affiliation(s)
- Puneet Rinwa
- Department of Chemical and Pharmaceutical Safety, Division of Bioeconomy and Health, RISE Research Institutes of Sweden, Forskargatan 18, Södertälje, 151 36, Sweden
| | - Marie Eriksson
- Department of Chemical and Pharmaceutical Safety, Division of Bioeconomy and Health, RISE Research Institutes of Sweden, Forskargatan 18, Södertälje, 151 36, Sweden
| | - Ian Cotgreave
- Department of Chemical and Pharmaceutical Safety, Division of Bioeconomy and Health, RISE Research Institutes of Sweden, Forskargatan 18, Södertälje, 151 36, Sweden
| | - Matilda Bäckberg
- Department of Chemical and Pharmaceutical Safety, Division of Bioeconomy and Health, RISE Research Institutes of Sweden, Forskargatan 18, Södertälje, 151 36, Sweden.
| |
Collapse
|
21
|
Hu H, Yan Q, Tang X, Lai S, Qin Z, Xu T, Zhang H, Hu H. A novel model of urosepsis in mice developed by ureteral ligation and injection of Escherichia coli into the renal pelvis. Heliyon 2024; 10:e25522. [PMID: 38327418 PMCID: PMC10847998 DOI: 10.1016/j.heliyon.2024.e25522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Despite extensive investigations, urosepsis remains a life-threatening and high-mortality illness. The absence of widely acknowledged animal models for urosepsis prompted this investigation with the objective of formulating a replicable murine model. Eighty-four adult male C57BL/6J mice were arbitrarily distributed into three cohorts based on the concentration of the Escherichia coli (E. coli) solution administered into the renal pelvis: Sham, Low-grade sepsis (1.0 × 108 cfu/mL), and High-grade sepsis (1.0 × 109 cfu/mL). By fabricating a glass needle with a 100 μm outer diameter, bacterial leakage during renal pelvic injection was minimized. After the ureteral ligation, the mice were injected with this needle into the right renal pelvis (normal saline or E. coli solution, 1 ml/kg). Ten days post after E. coli injection, the mortality rates for the Low-grade sepsis and High-grade sepsis groups stood at 30 % and 100 %, respectively. Post-successful modeling, mice in the urosepsis cohort exhibited a noteworthy reduction in activity, body temperature, and white blood cell count within a 2-h timeframe. At the 24-h mark post-modeling, mice afflicted with urosepsis displayed compromised coagulation functionality. Concurrently, multiple organ dysfunction was confirmed as evidenced by markedly elevated levels of inflammatory factors (IL-6 and TNF-α) in four distinct organs (heart, lung, liver, and kidney). This study confirmed the feasibility of establishing a standardized mouse model of urosepsis by ureteral ligation and E. coli injection into the renal pelvis. A primary drawback of this model resides in the mice's diminished blood volume, rendering continuous blood extraction at multiple intervals challenging.
Collapse
Affiliation(s)
- Haopu Hu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Qiuxia Yan
- Department of Urology, Huizhou First People's Hospital, Huizhou, Guangdong, China
| | - Xinwei Tang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Shicong Lai
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Ziyu Qin
- State Key Laboratory of Vascular Homeostasis and Remodeling, The lnstitute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, The lnstitute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hao Hu
- Department of Urology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
22
|
Wishahi M, Hassan S, Kamal N, Badawy M, Hafiz E. Is bladder outlet obstruction rat model to induce overactive bladder (OAB) has similarity to human OAB? Research on the events in smooth muscle, collagen, interstitial cell and telocyte distribution. BMC Res Notes 2024; 17:22. [PMID: 38212840 PMCID: PMC10785408 DOI: 10.1186/s13104-023-06681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Cellular and cytoskeletal events of overactive bladder (OAB) have not been sufficiently explored in human bladder due to different limitations. Bladder outlet obstruction (BOO) had been induced in different animal models with different methods to induce (OAB). Similarity of the animal models of BOO to the human OAB is postulated but has not been confirmed. The interstitial cells of Cajal (ICCs), and telocytes (TCs) are an important players in smooth muscles conductivity, they had not been well investigated in the previous BOO models. Objectives are to investigate the morphological pattern of cellular, cytoskeleton and telocytes distribution in BOO rat model and to match the events in two time periods and compare it to the findings in real-world human OAB. METHODS Female Sprague-Dawley rats (Rattus norvegicus) were randomly divided into: sham (n = 10), BOO 6 W (n = 10), BOO 8 W (n = 10). Operative procedure to Induce BOO was done under anesthesia with intraperitoneal Ketamine administration. The Effect of induction of BOO was evaluated after 6 and 8 weeks. The rats were anesthetized, and the urinary bladder was removed, while the rat was unconscious under anaesthesia it was transferred to the inhalation anaesthesia cage for euthanasia, rats were sacrificed under light anesthesia using isoflurane. Care of animals, surgical procedure, and euthanasia adhered to Guide for the Care and Use of Laboratory Animals, and AVMA Guidelines for the Euthanasia of Animals. The retrieved bladder was processed for examination with histopathology, immunohistochemistry (IHC), and transmission electron microscopy (EM). RESULTS Histological examination of the bladder shows thinner urothelium, condensation of collagen between muscle bundles. IHC with c-kit shows the excess distribution of ICCs between smooth muscle bundles. EM shows frequent distribution of TCs that were situated between collagen fibers. Finings in BOO 6 W group and BOO 8 W group were comparable. CONCLUSION The animal model study demonstrated increased collagen/ smooth muscle ratio, high intensity of ICCs and presence of TCs. Findings show that a minimally invasive procedure to induce BOO in rats had resulted in an OAB that has morphological changes that were stable in 6 & 8 weeks. We demonstrated the distribution of TCs and ICCs in the rat animal model and defined them. The population of TCs in the BOO rat model is described for the first time, suggests that the TCs and ICCs may contribute to the pathophysiology of OAB. Similarity of animal model to human events OAB was demonstrated. These findings warrant further study to define the role of TCs in OAB. CLINICAL TRIAL REGISTRY The study does not require a clinical trial registration; it is an experimental animal study in basic science and does not include human subjects.
Collapse
Affiliation(s)
- Mohamed Wishahi
- Department of Urology, Theodor Bilharz Research Institute, P.O. 30, Warrak El-Hadar, Cairo, Imbaba, Giza, 12411, Egypt.
| | - Sarah Hassan
- Department of Pathology and Electron microscopy, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Nabawya Kamal
- Department of Anesthesia, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Mohamed Badawy
- Department of Urology, Theodor Bilharz Research Institute, P.O. 30, Warrak El-Hadar, Cairo, Imbaba, Giza, 12411, Egypt
| | - Ehab Hafiz
- Department of Pathology and Electron microscopy, Theodor Bilharz Research Institute, Cairo, Egypt
| |
Collapse
|
23
|
Lamont KA, Boynton MH, Hickman DL, Fletcher CA, Williams MD. Acute Effects of Hypothermia and Inhalant Anesthesia on Ultrasonic Vocalizations and Neuroendocrine Markers in Neonatal Rats. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:57-66. [PMID: 38040412 PMCID: PMC10844739 DOI: 10.30802/aalas-jaalas-23-000008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 10/23/2023] [Indexed: 12/03/2023]
Abstract
Neonatal rodents undergo anesthesia for numerous procedures and for euthanasia by anesthetic overdose. However, data regarding whether neonatal anesthesia is humane are limited. Hypothermia (cryoanesthesia) is the most commonly used anesthetic protocol for neonatal rats 10 d of age or younger. However, hypothermia has recently been restricted in several countries due to perceived painful effects, including pain on rewarming. Minimizing the potential pain and distress of neonates in research is imperative, although very challenging. Traditional validated and nonvalidated behavioral and physiologic outcome measures used for adult rats undergoing anesthesia are unsuitable for evaluating neonates. Therefore, we investigated the effects of several anesthetic methods on neonatal rats by using the innovative objective approaches of noninvasive ultrasonic vocalizations and more invasive neuroendocrine responses (i. e., serum corticosterone, norepinephrine, glucose). Our results show that hypothermia leads to heightened acute distress in neonatal rats as indicated by prolonged recovery times, increased duration of vocalizations, and elevated corticosterone levels, as compared with neonates undergoing inhalational anesthesia. We demonstrate that inhalational anesthesia is preferable to cryoanesthesia for neonatal rats, and researchers using hypothermia anesthesia should consider using inhalational anesthesia as an alternative method.
Collapse
Affiliation(s)
| | - Marcella H Boynton
- Division of General Medicine and Clinical Epidemiology, School of Medicine, and
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Debra L Hickman
- Laboratory Animal Resource Center, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana; and
| | - Craig A Fletcher
- Division of Comparative Medicine
- Department of Pathology and Laboratory Medicine
| | - Morika D Williams
- Division of Comparative Medicine
- Department of Pathology and Laboratory Medicine
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
24
|
Costa CJS, Wadt D, Conti LC, Landi MFDA, Cintra L, de Oliveira FA, Mori CMC. Histological Alterations in the Internal Organs of Wistar Han Rats ( Rattus norvegicus) Euthanized by Five Different Methods. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:81-88. [PMID: 38056883 PMCID: PMC10844740 DOI: 10.30802/aalas-jaalas-23-000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 09/19/2023] [Indexed: 12/08/2023]
Abstract
Selecting a method of euthanasia is an important step in designing research studies that use animals; euthanasia methods must be humane, cause minimal pain and suffering to the animal, and preserve the tissue architecture of the organs of interest. In this study, we evaluated the histomorphology of the internal organs (lung, spleen, heart, kidney, liver, brain, and adrenal gland) of rats submitted to five different methods of euthanasia, with the goal of determining which protocol caused the least alteration of histomorphology. Twenty adult Wistar Han rats (Rattus norvegicus) were divided into 5 groups of 4 rats each (2 females and 2 males) and were euthanized by CO₂ or isoflurane inhalation, sodium thiopental or xylazine plus ketamine overdose, or decapitation. All euthanasia was performed in accordance with published guidelines and local legal require- ments. Necropsy was performed immediately after euthanasia. Specific internal organs were removed and placed in formalin and submitted for routine histologic processing. Histomorphological examination of hematoxylin and eosin-stained tissues revealed circulatory alterations in multiple organs, predominantly congestion in multiple tissues, pulmonary hemorrhage, and hepatic degeneration. The euthanasia methods that induced the most severe alterations were exposure to CO₂ and anesthetic overdose with xylazine plus ketamine or sodium thiopental. Euthanasia by overexposure to isoflurane caused less damage, and the alterations were of minimal severity. Decapitation resulted in the lowest incidence of lesions in multiple organs but due its traumatic nature, it caused the highest incidence of pulmonary hemorrhage. In selecting a method of euthanasia, factors to consider are the species of animal, the purpose of the research, and the practical ability to perform the procedure to achieve maximal animal welfare without iatrogenic changes that could compromise the outcome and reproducibility of the study.
Collapse
Affiliation(s)
- Cícero Júlio Silva Costa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; and
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Danilo Wadt
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; and
| | - Luiza Cesar Conti
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; and
| | | | - Luciana Cintra
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; and
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Claudia Madalena Cabrera Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; and
| |
Collapse
|
25
|
Canet G, Rocaboy E, Laliberté F, Boscher E, Guisle I, Diego-Diaz S, Fereydouni-Forouzandeh P, Whittington RA, Hébert SS, Pernet V, Planel E. Temperature-induced Artifacts in Tau Phosphorylation: Implications for Reliable Alzheimer's Disease Research. Exp Neurobiol 2023; 32:423-440. [PMID: 38196137 PMCID: PMC10789175 DOI: 10.5607/en23025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
In preclinical research on Alzheimer's disease and related tauopathies, tau phosphorylation analysis is routinely employed in both cellular and animal models. However, recognizing the sensitivity of tau phosphorylation to various extrinsic factors, notably temperature, is vital for experimental accuracy. Hypothermia can trigger tau hyperphosphorylation, while hyperthermia leads to its dephosphorylation. Nevertheless, the rapidity of tau phosphorylation in response to unintentional temperature variations remains unknown. In cell cultures, the most significant temperature change occurs when the cells are removed from the incubator before harvesting, and in animal models, during anesthesia prior to euthanasia. In this study, we investigate the kinetics of tau phosphorylation in N2a and SH-SY5Y neuronal cell lines, as well as in mice exposed to anesthesia. We observed changes in tau phosphorylation within the few seconds upon transferring cell cultures from their 37°C incubator to room temperature conditions. However, cells placed directly on ice post-incubation exhibited negligible phosphorylation changes. In vivo, isoflurane anesthesia rapidly resulted in tau hyperphosphorylation within the few seconds needed to lose the pedal withdrawal reflex in mice. These findings emphasize the critical importance of preventing temperature variation in researches focused on tau. To ensure accurate results, we recommend avoiding anesthesia before euthanasia and promptly placing cells on ice after removal from the incubator. By controlling temperature fluctuations, the reliability and validity of tau phosphorylation studies can be significantly enhanced.
Collapse
Affiliation(s)
- Geoffrey Canet
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Emma Rocaboy
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
| | - Francis Laliberté
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Emmanuelle Boscher
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Isabelle Guisle
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Sofia Diego-Diaz
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
| | | | - Robert A. Whittington
- Department of Anesthesiology and Perioperative Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Sébastien S. Hébert
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Vincent Pernet
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Department of Neurology, Bern University Hospital, Bern 3010, Switzerland
| | - Emmanuel Planel
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| |
Collapse
|
26
|
Ansong S, Nkrumah D, Nketia RI, Bekoe SO, Brobbey AA, Asante-Kwatia E, Komlaga G. Antimalarial Properties of Sida cordifolia L. Leaf Extract in Mice: Survivability Depends Less on Parasitaemia Suppression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5560711. [PMID: 38161788 PMCID: PMC10757657 DOI: 10.1155/2023/5560711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/24/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Sida cordifolia has been used to treat malaria in Ghana albeit without scientific evidence of antimalarial activity and safety. This work aimed to assess the antimalarial properties and acute toxicity of the aqueous leaf extract of S. cordifolia in murine models. Aqueous extract of the plant was analysed for both suppressive and curative antimalarial properties in chloroquine-sensitive ANKA strains of rodent Plasmodium berghei-infected mice. Acute toxicity evaluation was performed in rats according to the OECD 425 guidelines. The extract displayed antiplasmodial activity in vivo with ED50 of 117.49 ± 15.22 mg/kg and 144.84 ± 18.17 mg/kg in suppressive and curative studies, respectively. The highest % parasitaemia suppression exerted was 76.90 ± 0.64% and 61.50 ± 0.97%, respectively, in the suppressive and curative studies. Survival of infected mice treated with the extract was significantly prolonged. This was dependent on the dose of the extract but imperfectly related to the % parasitaemia suppression. Related antimalarial parameters including percentage hematocrit, changes in body weight, and temperature of experimental mice indicated alleviation of malarial symptoms of treated animals. The extract did not show toxicity in rats. Sida cordifolia L. has antimalarial properties, and was safe. It suppressed parasitaemia in both suppressive and curative studies, was not toxic to animals and prolonged the life of infected animals under treatment. This, therefore, justifies the traditional use of S. cordifolia for the treatment of malaria in Ghana.
Collapse
|
27
|
Anbar HS, Vahora NY, Shah HL, Azam MM, Islam T, Hersi F, Omar HA, Dohle W, Potter BVL, El-Gamal MI. Promising drug candidates for the treatment of polycystic ovary syndrome (PCOS) as alternatives to the classical medication metformin. Eur J Pharmacol 2023; 960:176119. [PMID: 37852569 DOI: 10.1016/j.ejphar.2023.176119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent hormonal disorder that affects women of reproductive age. It is characterized by abnormal production of androgens, typically present in small quantities in females. This study aimed to investigate the therapeutic potential of Irosustat (STX64), STX140, and compound 1G as new drug candidates for the treatment of letrozole-induced PCOS in female Wistar rats. 36 rats were divided into six groups of equal size. PCOS was induced in all groups, except the normal control group, by administering letrozole orally (1 mg/kg/day for 35 days). The onset of abnormal estrous cycle was confirmed by examining daily vaginal smears under a microscope. Subsequently, each rat group was assigned to a different treatment regimen, including one control group, one letrozole group, one metformin group (500 mg/kg/day) as a reference drug, and the other groups received a different drug candidate orally for 30 days. After treatment, blood collection was performed for biochemical measurements and determination of oxidative stress markers. The rats were dissected to separate ovaries and uterus for morphological, histological, and western blotting studies. Treatment with the drug candidates improved the ovaries and uterus weight measurements compared to the untreated PCOS group. The three tested drug candidates demonstrated promising improvements in lipid profile, blood glucose level, testosterone, progesterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and estradiol levels. In addition, western blotting confirmed their promising effects on Akt, mTOR, and AMPK-α pathways. This study led to the discovery of three promising drug candidates for the management of PCOS as alternatives to metformin.
Collapse
Affiliation(s)
- Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates.
| | | | | | | | - Tamanna Islam
- Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Fatima Hersi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hany A Omar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Wolfgang Dohle
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, United Kingdom
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, United Kingdom
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
28
|
Zeng J, Li Y, Jiang L, Luo L, Wang Y, Wang H, Han X, Zhao J, Gu G, Fang M, Huang Q, Yan J. Mpox multi-antigen mRNA vaccine candidates by a simplified manufacturing strategy afford efficient protection against lethal orthopoxvirus challenge. Emerg Microbes Infect 2023; 12:2204151. [PMID: 37070521 PMCID: PMC10167873 DOI: 10.1080/22221751.2023.2204151] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Current unprecedented mpox outbreaks in non-endemic regions represent a global public health concern. Although two live-attenuated vaccinia virus (VACV)-based vaccines have been urgently approved for people at high risk for mpox, a safer and more effective vaccine that can be available for the general public is desperately needed. By utilizing a simplified manufacturing strategy of mixing DNA plasmids before transcription, we developed two multi-antigen mRNA vaccine candidates, which encode four (M1, A29, B6, A35, termed as Rmix4) or six (M1, H3, A29, E8, B6, A35, termed as Rmix6) mpox virus antigens. We demonstrated that those mpox multi-antigen mRNA vaccine candidates elicited similar potent cross-neutralizing immune responses against VACV, and compared to Rmix4, Rmix6 elicited significantly stronger cellular immune responses. Moreover, immunization with both vaccine candidates protected mice from the lethal VACV challenge. Investigation of B-cell receptor (BCR) repertoire elicited by mpox individual antigen demonstrated that the M1 antigen efficiently induced neutralizing antibody responses, and all neutralizing antibodies among the top 20 frequent antibodies appeared to target the same conformational epitope as 7D11, revealing potential vulnerability to viral immune evasion. Our findings suggest that Rmix4 and Rmix6 from a simplified manufacturing process are promising candidates to combat mpox.
Collapse
Affiliation(s)
- Jiawei Zeng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Linrui Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ling Luo
- College of Life Sciences, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Yue Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hao Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xiaonan Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jian Zhao
- College of Life Sceinces, Henan University, Kaifeng, People’s Republic of China
| | - Guanglei Gu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qingrui Huang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
| |
Collapse
|
29
|
Yang Z, Ning R, Liu Q, Zang R, Liu S, Sun S. Umbelliferone attenuates cisplatin-induced acute kidney injury by inhibiting oxidative stress and inflammation via NRF2. Physiol Rep 2023; 11:e15879. [PMID: 38030388 PMCID: PMC10686806 DOI: 10.14814/phy2.15879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, we investigated the nephroprotective effects of Umbelliferone (UMB) against cisplatin-induced acute kidney injury (AKI). C57BL/6J mice were treated with cisplatin via a single intraperitoneal injection (25 mg/kg) with or without UMB (40 mg/kg/day) by gavage. Renal function, apoptosis, oxidative stress, inflammation, and mitochondrial function were analyzed to evaluate kidney injury. In vitro, human proximal tubule epithelial cells were treated with cisplatin, with or without UMB, for 24 h. Western blotting and immunohistochemistry were performed to explore the mechanisms underlying the nephroprotective effects of UMB. Cisplatin-induced renal dysfunction, including increases in blood urea nitrogen, serum creatinine, and renal tubular injury indices (NGAL and KIM-1), were significantly attenuated by UMB treatment, along with renal phenotypic changes and renal tubular injury, as evidenced by improved renal histology. Moreover, NRF2 was activated by UMB pretreatment, along with the inhibition of oxidative stress and inflammatory response, as evidenced by decreased levels of antioxidant genes and inflammatory cytokines in cisplatin-induced AKI. Our results demonstrate that UMB can protect against cisplatin-induced nephrotoxicity, which is mediated by the NRF2 signaling pathway via antioxidant and anti-inflammatory activities, suggesting the clinical potential of UMB for the treatment of AKI.
Collapse
Affiliation(s)
- Zhenle Yang
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Ruofei Ning
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Qianying Liu
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Ruixian Zang
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Suwen Liu
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Department of PediatricsShandong University, Shandong Provincial HospitalJinanShandongChina
| | - Shuzhen Sun
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Department of PediatricsShandong University, Shandong Provincial HospitalJinanShandongChina
| |
Collapse
|
30
|
Grandhi S, Al-Tabakha M, Avula PR. Enhancement of Liver Targetability through Statistical Optimization and Surface Modification of Biodegradable Nanocapsules Loaded with Lamivudine. Adv Pharmacol Pharm Sci 2023; 2023:8902963. [PMID: 38029229 PMCID: PMC10676277 DOI: 10.1155/2023/8902963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
The intention of the current work was to develop and optimize the formulation of biodegradable polymeric nanocapsules for lamivudine (LMV) in order to obtain desired physical characteristics so as to have improved liver targetability. Nanocapsules were prepared in this study as aqueous-core nanocapsules (ACNs) with poly(lactide-co-glycolide) using a modified multiple emulsion technique. LMV was taken as a model drug to investigate the potential of ACNs developed in this work in achieving the liver targetability. Three formulations factors were chosen and 33 factorial design was adopted. The selected formulation factors were optimized statistically so as to have the anticipated characteristics of the ACNs viz. maximum entrapment efficiency, minimum particle size, and less drug release rate constant. The optimized LMV-ACNs were found to have 71.54 ± 1.93% of entrapment efficiency and 288.36 ± 2.53 nm of particle size with zeta potential of -24.7 ± 1.2 mV and 0.095 ± 0.006 h-1 of release rate constant. This optimized formulation was subjected to surface modification by treating with sodium lauryl sulphate (SLS), which increased the zeta potential to a maximum of -41.6 ± 1.3 mV at a 6 mM concentration of SLS. The results of in vivo pharmacokinetics from blood and liver tissues indicated that hepatic bioavailability of LMV was increased from 13.78 ± 3.48 μg/mL ∗ h for LMV solution to 32.94 ± 5.12 μg/mL ∗ h for the optimized LMV-ACNs and to 54.91 ± 6.68 μg/mL ∗ h for the surface-modified LMV-ACNs.
Collapse
Affiliation(s)
- Srikar Grandhi
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur 522213, India
| | - Moawia Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, P.O. Box 346, Ajman, UAE
- Centre of Medical and Bio-Allied Health Sciences Research Centre, Ajman University, P.O. Box 346, Ajman, UAE
| | - Prameela Rani Avula
- University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India
| |
Collapse
|
31
|
Dubey V, Roy A, Dixit AB, Tripathi M, Pandey S, Jain S, Chandra PS, Banerjee J. Dendritic reorganization in the hippocampus, anterior temporal lobe, and frontal neocortex of lithium-pilocarpine induced Status Epilepticus (SE). J Chem Neuroanat 2023; 133:102329. [PMID: 37659616 DOI: 10.1016/j.jchemneu.2023.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Status Epilepticus (SE) is a distributed network disorder, which involves the hippocampus and extra-hippocampal structures. Epileptogenesis in SE is tightly associated with neurogenesis, plastic changes and neural network reorganization facilitating hyper-excitability. On the other hand, dendritic spines are known to be the excitatory synapse in the brain. Therefore, dendritic spine dynamics could play an intricate role in these network alterations. However, the exact reason behind these structural changes in SE are elusive. In the present study, we have investigated the aforementioned hypothesis in the lithium-pilocarpine treated rat model of SE. We have examined cytoarchitectural and morphological changes using hematoxylin-eosin and Golgi-Cox staining in three different brain regions viz. CA1 pyramidal layer of the dorsal hippocampus, layer V pyramidal neurons of anterior temporal lobe (ATL), and frontal neocortex of the same animals. We observed macrostructural and layer-wise alteration of the pyramidal layer mainly in the hippocampus and ATL of SE rats, which is associated with sclerosis in the hippocampus. Sholl analysis exhibited partial dendritic plasticity in apical and basal dendrites of pyramidal cells as compared to the saline-treated weight-/age-matched control group. These findings indicate that region-specific alterations in dendritogenesis may contribute to the development of independent epileptogenic networks in the hippocampus, ATL, and frontal neocortex of SE rats.
Collapse
Affiliation(s)
- Vivek Dubey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Avishek Roy
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Shivam Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
32
|
Martins KLE, Thomaz MM, Magno LN, Vinaud MC, Almeida LM, Gonçalves PJ, Lino RDS. Macroporous latex biomembrane from Hancornia speciosa modulates the inflammatory process and has a debridement effect on wound healing in rats. Acta Cir Bras 2023; 38:e385323. [PMID: 37878987 PMCID: PMC10592594 DOI: 10.1590/acb385323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 10/27/2023] Open
Abstract
PURPOSE The angiogenic, osteogenic and anti-inflammatory activity of latex of Hancornia speciosa has been evidenced and indicates pharmacological potential with great applicability in the health area, especially in the wound healing process. The present work aimed to compare the effects of the H. speciosa macroporous latex biomembrane with saline on wound healing. METHODS Forty-three Wistar rats were submitted to excisional wound induction procedure and divided into groups according to treatment: saline (G1), and macroporous biomembrane (G2). The animals were euthanized at three, seven, 14, and 21 days after injury induction (DAI), and three animals were used for the debridement test. Morphometric, macroscopic, and microscopic analyses of general pathological processes were performed. RESULTS The macroporous biomembrane minimized necrosis and inflammation during the inflammatory and proliferative phases of the healing process, confirmed by the lower intensity of the crust and the debridement effect. In addition, the wounds treated with the macroporous biomembrane presented greater contraction rates in all the experimental periods analyzed. CONCLUSIONS The macroporous biomembrane presents angiogenic, anti-inflammatory and debridement effects, contributing to the healing process, and can be considered a potentially promising new biomaterial to be used as a dressing.
Collapse
Affiliation(s)
| | - Marcelo Martins Thomaz
- Instituto Master de Ensino Presidente Antônio Carlos – Medicine School – Itumbiara (GO) – Brazil
| | | | - Marina Clare Vinaud
- Universidade Federal de Goiás – Tropical Pathology and Public Health Institute – Goiânia (GO) – Brazil
| | | | | | - Ruy de Souza Lino
- Universidade Federal de Goiás – Physics Institute – Goiânia (GO) – Brazil
| |
Collapse
|
33
|
Ansere VA, Bubak MP, Miller BF, Freeman WM. Heterochronic Plasma Transfer: Experimental Design, Considerations, and Technical Challenges. Rejuvenation Res 2023; 26:171-179. [PMID: 37551981 PMCID: PMC10611967 DOI: 10.1089/rej.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Experimental approaches such as Heterochronic Plasma Transfer (HPT) provide insights into the aging process and help identify the factors that impact aging, with the aim of developing anti-aging therapies. HPT involves the transfer of plasma from an animal of one age to an animal of a different age and highlights the effects of the systemic environment on aging. Despite its importance as an aging research tool, HPT is not without limitations and HPT experiments across various studies differ in key experimental designs considerations, presenting a challenge in obtaining comparable outcomes. In this review, we examine the caveats and experimental design considerations of HPT as a research tool. We provide insights into plasma preparation procedures, route of administration, dosing regimen, and appropriate controls to assist investigators in achieving their experimental goals.
Collapse
Affiliation(s)
- Victor A. Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Matthew P. Bubak
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Benjamin F. Miller
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Willard M. Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
34
|
Liu X, Ke L, Lei K, Yu Q, Zhang W, Li C, Tian Z. Antibiotic-induced gut microbiota dysbiosis has a functional impact on purine metabolism. BMC Microbiol 2023; 23:187. [PMID: 37442943 PMCID: PMC10339580 DOI: 10.1186/s12866-023-02932-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Dysbiosis of the gut microbiota is closely linked to hyperuricemia. However, the effect of the microbiome on uric acid (UA) metabolism remains unclear. This study aimed to explore the mechanisms through which microbiomes affect UA metabolism with the hypothesis that modifying the intestinal microbiota influences the development of hyperuricemia. RESULTS We proposed combining an antibiotic strategy with protein-protein interaction analysis to test this hypothesis. The data demonstrated that antibiotics altered the composition of gut microbiota as UA increased, and that the spectrum of the antibiotic was connected to the purine salvage pathway. The antibiotic-elevated UA concentration was dependent on the increase in microbiomes that code for the proteins involved in purine metabolism, and was paralleled by the depletion of bacteria-coding enzymes required for the purine salvage pathway. On the contrary, the microbiota with abundant purine salvage proteins decreased hyperuricemia. We also found that the antibiotic-increased microbiota coincided with a higher relative abundance of bacteria in hyperuricemia mice. CONCLUSIONS An antibiotic strategy combined with the prediction of microbiome bacterial function presents a feasible method for defining the key bacteria involved in hyperuricemia. Our investigations discovered that the core microbiomes of hyperuricemia may be related to the gut microbiota that enriches purine metabolism related-proteins. However, the bacteria that enrich the purine salvage-proteins may be a probiotic for decreasing urate, and are more likely to be killed by antibiotics. Therefore, the purine salvage pathway may be a potential target for the treatment of both hyperuricemia and antibiotic resistance.
Collapse
Affiliation(s)
- Xin Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Leyong Ke
- Department of Cosmetic surgery, Kunming Medical University, Kunming, 650000, China
| | - Ke Lei
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Qian Yu
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Wenqing Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Changgui Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, 266003, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|
35
|
Hsieh MC, Lai CY, Yeh CM, Yang PS, Cheng JK, Wang HH, Lin KH, Nie ST, Lin TB, Peng HY. Phosphorylated Upstream Frameshift 1-dependent Nonsense-mediated μ-Opioid Receptor mRNA Decay in the Spinal Cord Contributes to the Development of Neuropathic Allodynia-like Behavior in Rats. Anesthesiology 2023; 138:634-655. [PMID: 36867667 DOI: 10.1097/aln.0000000000004550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND Nonsense-mediated messenger RNA (mRNA) decay increases targeted mRNA degradation and has been implicated in the regulation of gene expression in neurons. The authors hypothesized that nonsense-mediated μ-opioid receptor mRNA decay in the spinal cord is involved in the development of neuropathic allodynia-like behavior in rats. METHODS Adult Sprague-Dawley rats of both sexes received spinal nerve ligation to induce neuropathic allodynia-like behavior. The mRNA and protein expression contents in the dorsal horn of animals were measured by biochemical analyses. Nociceptive behaviors were evaluated by the von Frey test and the burrow test. RESULTS On Day 7, spinal nerve ligation significantly increased phosphorylated upstream frameshift 1 (UPF1) expression in the dorsal horn (mean ± SD; 0.34 ± 0.19 in the sham ipsilateral group vs. 0.88 ± 0.15 in the nerve ligation ipsilateral group; P < 0.001; data in arbitrary units) and drove allodynia-like behaviors in rats (10.58 ± 1.72 g in the sham ipsilateral group vs. 1.19 ± 0.31 g in the nerve ligation ipsilateral group, P < 0.001). No sex-based differences were found in either Western blotting or behavior tests in rats. Eukaryotic translation initiation factor 4A3 (eIF4A3) triggered SMG1 kinase (0.06 ± 0.02 in the sham group vs. 0.20 ± 0.08 in the nerve ligation group, P = 0.005, data in arbitrary units)-mediated UPF1 phosphorylation, leading to increased nonsense-mediated mRNA decay factor SMG7 binding and µ-opioid receptor mRNA degradation (0.87 ± 0.11-fold in the sham group vs. 0.50 ± 0.11-fold in the nerve ligation group, P = 0.002) in the dorsal horn of the spinal cord after spinal nerve ligation. Pharmacologic or genetic inhibition of this signaling pathway in vivo ameliorated allodynia-like behaviors after spinal nerve ligation. CONCLUSIONS This study suggests that phosphorylated UPF1-dependent nonsense-mediated μ-opioid receptor mRNA decay is involved in the pathogenesis of neuropathic pain. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan; Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Po-Sheng Yang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Siao-Tong Nie
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan; Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
36
|
Tawfeek HM, Younis MA, Aldosari BN, Almurshedi AS, Abdelfattah A, Abdel-Aleem JA. Impact of the Functional Coating of Silver Nanoparticles on their In Vivo Performance and Biosafety. Drug Dev Ind Pharm 2023:1-8. [PMID: 37184200 DOI: 10.1080/03639045.2023.2214207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
OBJECTIVE AND SIGNIFICANCE Silver nanoparticles (AgNPs) have become an interesting therapeutic modality and drug delivery platform. Herein, we aimed to investigate the impact of functional coating on the in vivo performance of AgNPs as an economic and scalable method to modulate their behavior. METHODS AgNPs were coated with chitosan (CHI) as a model biopolymer using a one-pot reduction-based method, where CHI of two molecular weight ranges were investigated. The resultant CHI-coated AgNPs (AgNPs-CHI) were characterized using UV-VIS spectroscopy, DLS, and TEM. AgNPs were administered intravenously to rats and their biodistribution and serum levels of hepato-renal function markers were monitored 24 h later compared to plain AgNO3 as a positive control. RESULTS UV-VIS spectroscopy confirmed the successful coating of AgNPs with CHI. DLS revealed the superiority of medium molecular weight CHI over its low molecular weight counterpart. AgNPs-CHI demonstrated a semi-complete clearance from the systemic circulation, a liver-dominated tissue tropism, and a limited renal exposure. On the other hand, AgNO3 was poorly cleared from the circulation, with a relatively high renal exposure and a non-specific tissue tropism. AgNPs-CHI were well-tolerated by the liver and kidney without signs of toxicity or inflammation, in contrary with AgNO3 which resulted in a significant elevation of Creatinine (CRE), Urea, and Total Protein (TP), suggesting a significant nephrotoxicity and inflammation. CONCLUSIONS Functional coating of AgNPs with CHI substantially modulated their in vivo behavior, promoting their hepatic selectivity and biotolerability, which can be invested in the development of drug delivery systems for the treatment of liver diseases.
Collapse
Affiliation(s)
- Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Basma Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Ahmed Abdelfattah
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Jelan A Abdel-Aleem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
37
|
Hickman DL. Euthanasia of Neonatal Rats and Mice using Carbon Monoxide. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:274-278. [PMID: 37137681 PMCID: PMC10230535 DOI: 10.30802/aalas-jaalas-22-000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
Minimization of potential pain and distress of rodents undergoing euthanasia is a touchstone of veterinary clinical medicine. Evaluation of this issue in postweanling rodents has supported revisions to the AVMA (American Veterinary Medical Association) Guidelines on Euthanasia in 2020. However, relatively little information is available on humane aspects of anesthesia and euthanasia in neonatal mice and rats. These neonates are not reliably euthanized by exposure to commonly used inhalant anesthetic agents due to their physiologic adaptations to hypercapnic environments. Therefore, options such as prolonged inhalant anesthetic gas exposure, decapitation, or use of injectable anesthetics are recommended for neonates. All of these recommended methods have operational implications, ranging from reported job dissatisfaction by animal care staff to rigorous reporting requirements associated with the use of controlled substances. This lack of a euthanasia method that does not entail operational issues hampers the ability of veterinary professionals to provide appropriate guidance to scientists working with neonates. This study was designed to assess the effectiveness of carbon monoxide (CO) as an alternative euthanasia agent for mouse and rat pups on postnatal days (PND) 0 to 12. The study demonstrates that CO may be a potential alternative for preweanling mice and rats at PND6 or older but is not appropriate for neonates at PND5 or younger.
Collapse
Affiliation(s)
- Debra L Hickman
- College of Veterinary Medicine, Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
- Laboratory Animal Resource Center, School of Medicine, Indiana University, Indianapolis, Indiana
| |
Collapse
|
38
|
Clarkson JM, Leach MC, McKeegan DEF, Martin JE. The perspectives of UK personnel towards current killing practices for laboratory rodents. Sci Rep 2023; 13:4808. [PMID: 36959244 PMCID: PMC10036518 DOI: 10.1038/s41598-023-31808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
Rodents are the predominant species used for scientific research and must be humanely killed upon completion of the work. In the UK this is regulated by Schedule 1 of the Animals Scientific Procedures Act 1986, which lists permitted methodologies considered capable of humane killing, including overdose of an anaesthetic, exposure to carbon dioxide (CO2) gas, dislocation of the neck and concussion of the brain by striking the cranium. Although all are permitted, operator motivations behind method selection and individual operator preference remain unknown. The views of 219 laboratory animal personnel on institutional availability and use of Schedule 1 killing methods for laboratory rodents were obtained. Only 10% of participants reported that all four methods were available at their institution with 57.5% of respondents preferring cervical dislocation. For CO2, only 18.6% of participants reported using the recommended flow rate, while 45.5% did not know the flow rate employed. We highlight the urgent requirement for the development of quality-controlled training programmes, to improve knowledge and confidence in the selection and application of killing methods. We advocate for continuous review of killing practices to ensure best practice is reflected in legislation and achieve optimal protection of the welfare of laboratory rodents during killing.
Collapse
Affiliation(s)
- Jasmine M Clarkson
- Institute of Biodiversity, One Health and Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland.
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, England.
| | - Matthew C Leach
- Comparative Biology Centre, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, England
| | - Dorothy E F McKeegan
- Institute of Biodiversity, One Health and Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Jessica E Martin
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, England
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
39
|
Evaluation of anti-Alzheimer activity of Echinacea purpurea extracts in aluminum chloride-induced neurotoxicity in rat model. J Chem Neuroanat 2023; 128:102234. [PMID: 36640914 DOI: 10.1016/j.jchemneu.2023.102234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative illnesses that impair individual life & increase the demand for caregivers with no available curative medication right now. Therefore, there is a growing concern about employing herbal medicine to limit AD progression & improve patients' life quality, thus potentiating its add-on therapy. In addition, herbs are cost-effective & accessible with nearly no side effects. In the same vein, our study aimed to investigate the potency of Echinacea purpurea (EP) flower extracts to ameliorate the neurodegenerative effect of Aluminum chloride (AlCl3) in a rat model. Moreover, mechanistic studies, including impact on the cholinesterase activity, redox status, inflammatory mediators, behavior performance, glucose level & histopathology, were carried on. Our results showed that 250 mg/kg of Aqueous (AQ) & Alcoholic (AL) extracts of EP inhibited cholinesterase, restored oxidative balance, down-regulated IL-6 & TNF-α cytokines & improved behavior performance in vivo that was reflected in the brain picture by decreasing neuronal degeneration & amyloid plaques in cerebral cortex & hippocampus. The potency of both extracts was compared to reference drugs & AlCl3 positive control group. The AQ extract showed greater potency against COX-1, COX-2 & α-amylase in vitro, while the AL extract was more potent against cholinesterase in vitro, inflammatory cytokines, behavior & pathological improvement in vivo. Conclusively EP overcame AlCl3-induced neurobehavioral toxicity in the rat model via different pathways, which support its regular administration to postpone progressive neural damage in AD patients.
Collapse
|
40
|
Song F, Xu Y, Peng P, Li H, Zheng R, Zhang H, Han Y, Weng Q, Yuan Z. Seasonal Changes in the Structure and Function of Gut Microbiota in the Muskrat ( Ondatra zibethicus). Metabolites 2023; 13:248. [PMID: 36837868 PMCID: PMC9966595 DOI: 10.3390/metabo13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023] Open
Abstract
The gut microbiota plays a crucial role in the nutrition, metabolism, and immune function of the host animal. The muskrat (Ondatra zibethicus) is a typical seasonal breeding animal. The present study performed a metagenomic analysis of cecum contents from muskrats in the breeding and non-breeding seasons. The results indicated that the breeding muskrats and non-breeding muskrats differed in gut microbiota structure and function. During the breeding season, the relative abundance of phylum Bacteroidetes, genus Prevotella, and genus Alistipes increased, while the relative abundance of phylum Firmicutes and phylum Actinobacteria decreased. The muskrat gut microbiota was enriched in the metabolism-related pathways, especially amino acid and vitamin metabolism, and genetically related metabolites in the breeding season. We presumed that the muskrat gut microbiota might seasonally change to secure reproductive activity and satisfy the metabolic demands of different seasons. This study could explore potential mechanisms by which gut microbiota affects reproduction. Moreover, this study may provide a new theoretical basis for the management of muskrat captive breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
41
|
Kumosa LS. Commonly Overlooked Factors in Biocompatibility Studies of Neural Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205095. [PMID: 36596702 PMCID: PMC9951391 DOI: 10.1002/advs.202205095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Biocompatibility of cutting-edge neural implants, surgical tools and techniques, and therapeutic technologies is a challenging concept that can be easily misjudged. For example, neural interfaces are routinely gauged on how effectively they determine active neurons near their recording sites. Tissue integration and toxicity of neural interfaces are frequently assessed histologically in animal models to determine tissue morphological and cellular changes in response to surgical implantation and chronic presence. A disconnect between histological and efficacious biocompatibility exists, however, as neuronal numbers frequently observed near electrodes do not match recorded neuronal spiking activity. The downstream effects of the myriad surgical and experimental factors involved in such studies are rarely examined when deciding whether a technology or surgical process is biocompatible. Such surgical factors as anesthesia, temperature excursions, bleed incidence, mechanical forces generated, and metabolic conditions are known to have strong systemic and thus local cellular and extracellular consequences. Many tissue markers are extremely sensitive to the physiological state of cells and tissues, thus significantly impacting histological accuracy. This review aims to shed light on commonly overlooked factors that can have a strong impact on the assessment of neural biocompatibility and to address the mismatch between results stemming from functional and histological methods.
Collapse
Affiliation(s)
- Lucas S. Kumosa
- Neuronano Research CenterDepartment of Experimental Medical ScienceMedical FacultyLund UniversityMedicon Village, Byggnad 404 A2, Scheelevägen 8Lund223 81Sweden
| |
Collapse
|
42
|
Effect of Immature Rubus occidentalis on Postoperative Pain in a Rat Model. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020264. [PMID: 36837466 PMCID: PMC9958716 DOI: 10.3390/medicina59020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Background and Objectives: This study aimed to identify the analgesic properties of immature Rubus occidentalis extract (iROE) using a postoperative-pain rat model. We also aimed to compare the analgesic effects of iROE to those of mature R. occidentalis extract (mROE) and examine the proinflammatory cytokine response and associated underlying mechanisms. Materials and Methods: In adult male Sprague Dawley rats, acute postoperative pain was induced through plantar hind-paw incisions. After the plantar incisions were made, the rats were intraperitoneally administered with normal saline or various doses of iROE and mROE to investigate and compare the analgesic effects of iROE and mROE. The mechanisms underlying iROE-induced analgesia were investigated via post-incisional administration of yohimbine, dexmedetomidine, prazosin, naloxone, atropine, or mecamylamine, followed by iROE. Mechanical withdrawal threshold (MWT) evaluations with von Frey filaments were carried out at different time points. Serum levels of tumor necrosis factor α, interleukin (IL)-1β, and IL-6 were measured to assess inflammatory responses. Multivariate analysis of variance (MANOVA) and linear mixed-effects model (LMEM) analysis were used to analyze the analgesic effect data. Results: The MWTs demonstrated significant increases in iROE in a dose-dependent manner up to 2 h after the plantar incisions were made. An LMEM analysis demonstrated that iROE yielded a significantly greater analgesic effect than mROE, but there was no significant difference between the two according to MANOVA. Dexmedetomidine enhanced the MWT-confirmed iROE response, while yohimbine and naloxone diminished it. Administration of iROE significantly attenuated the post-incisional increases in serum IL-1β and IL-6 levels. Conclusions: The iROE demonstrated analgesic and anti-inflammatory effects in a rat model of incisional pain, which were more pronounced than those associated with mROE. The analgesic activity of iROE may be associated with α2-adrenergic and opioid receptors.
Collapse
|
43
|
Chen G, Yang RY, Chai R, Pan JY, Bao JY, Xia PH, Wang YK, Chen Y, Li Y, Wu J. Knockdown of polypyrimidine tract binding protein facilitates motor function recovery after spinal cord injury. Neural Regen Res 2023; 18:396-403. [PMID: 35900436 PMCID: PMC9396513 DOI: 10.4103/1673-5374.346463] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
After spinal cord injury (SCI), a fibroblast- and microglia-mediated fibrotic scar is formed in the lesion core, and a glial scar is formed around the fibrotic scar as a result of the activation and proliferation of astrocytes. Simultaneously, a large number of neurons are lost in the injured area. Regulating the dense glial scar and replenishing neurons in the injured area are essential for SCI repair. Polypyrimidine tract binding protein (PTB), known as an RNA-binding protein, plays a key role in neurogenesis. Here, we utilized short hairpin RNAs (shRNAs) and antisense oligonucleotides (ASOs) to knock down PTB expression. We found that reactive spinal astrocytes from mice were directly reprogrammed into motoneuron-like cells by PTB downregulation in vitro. In a mouse model of compression-induced SCI, adeno-associated viral shRNA-mediated PTB knockdown replenished motoneuron-like cells around the injured area. Basso Mouse Scale scores and forced swim, inclined plate, cold allodynia, and hot plate tests showed that PTB knockdown promoted motor function recovery in mice but did not improve sensory perception after SCI. Furthermore, ASO-mediated PTB knockdown improved motor function restoration by not only replenishing motoneuron-like cells around the injured area but also by modestly reducing the density of the glial scar without disrupting its overall structure. Together, these findings suggest that PTB knockdown may be a promising therapeutic strategy to promote motor function recovery during spinal cord repair.
Collapse
|
44
|
The Neuroprotective Effects of Administration of Methylprednisolone in Cardiopulmonary Resuscitation in Experimental Cardiac Arrest Model. Cell Mol Neurobiol 2022:10.1007/s10571-022-01300-w. [DOI: 10.1007/s10571-022-01300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
|
45
|
Network Pharmacology-Based Prediction and Verification of the Potential Mechanisms of He's Yangchao Formula against Diminished Ovarian Reserve. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8361808. [PMID: 35707481 PMCID: PMC9192314 DOI: 10.1155/2022/8361808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022]
Abstract
Background He's Yangchao formula (HSYC) has been clinically proven to be effective in treating diminished ovarian reserve (DOR). However, the underlying molecular mechanisms of HSYC in DOR are unclear. Objective This study aims to predict the underlying mechanisms of He's Yangchao formula (HSYC) against DOR through network pharmacology strategies and verify in vivo. Methods Systematic network pharmacology was used to speculate the bioactive components, potential targets, and the underlying mechanism of HSYC in the treatment of DOR. Then, the CTX-induced DOR mouse model was established to verify the effect of HSYC against DOR and the possible molecular mechanisms as predicted in the network pharmacology approach. Results A total of 44 active components and 423 potential targets were obtained in HSYC. In addition, 91 targets of DOR were also screened. The identified hub genes were AKT1, ESR1, IL6, and P53. Further molecular docking showed that the four hub targets were well-bound with their corresponding compounds. In vivo experiments showed that HSYC could promote the recovery of the estrous cycle and increase the number of primordial, growing follicles and corpora lutea. Besides, The results of qRT-PCR showed HSYC could regulate the expression of AKT1, ESR1, P53, and IL6 in DOR mice. Conclusion It was demonstrated that HSYC could increase ovarian reserves, and AKT1, ESR1, IL6, and P53 may play an essential role in this effect, which provided a new reference for the current lack of active interventions of DOR.
Collapse
|
46
|
Hickman DL. Minimal Exposure Times for Irreversible Euthanasia with Carbon Dioxide in Mice and Rats. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:283-286. [PMID: 35414376 PMCID: PMC9137289 DOI: 10.30802/aalas-jaalas-21-000113] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/19/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
When using an anesthetic overdose to euthanize laboratory rodents, a secondary method of euthanasia is recommended to ensure that the apparent death is irreversible. This secondary method usually is accomplished through the collection of tissues that are required to complete the research project. However, frequently laboratory rodents must be euthanized because they cannot be used for studies; in these cases, caretakers must perform a secondary method of euthanasia. Performing physical methods of euthanasia, even on unconscious rodents, can contribute to compassion fatigue in these persons. The current study was designed based on existing literature regarding minimal exposure times for preweanling rats and mice euthanized with carbon dioxide. The study evaluated the minimal time that adult rats and mice must remain in 100% carbon dioxide for death to be irreversible on removal. Adult rats (14 stocks and strains) and mice (more than 40 stocks and strains) were euthanized using a 50% volume per minute displacement rate of carbon dioxide for 2 min. The cages were then left undisturbed for predetermined times, ranging from 0 to almost 12 min. Upon removal from the cage, the animals were stimulated to determine whether they could be resuscitated. If an animal recovered, it was euthanized by using a physical method of euthanasia, and a duration that was 30 s longer than the previous predetermined time was assessed using other animals. The study demonstrated that exposure times of at least 3 min in carbon dioxide reliably result in irreversible euthanasia of mice but that exposure times of at least 10.5 min in carbon dioxide were required to ensure irreversible euthanasia of rats. Although an irreversible death can be attained with carbon dioxide, the use of appropriate species-specific exposure times is critical.
Collapse
Affiliation(s)
- Debra L Hickman
- Laboratory Animal Resource Center, School of Medicine, Indiana University, Indianapolis, IN;,
| |
Collapse
|
47
|
Cytoprotective Antioxidant, Anti-Inflammatory, and Antifibrotic Impact of Celery Seed Oil and Manuka Honey Against Cyclophosphamide-Induced Cystitis in Rabbits. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2863023. [PMID: 35341158 PMCID: PMC8947928 DOI: 10.1155/2022/2863023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 01/11/2023]
Abstract
Patients treated with cyclophosphamide (CP) usually suffer from severe hemorrhagic cystitis (HC). Our previous study exhibited that mesna + celery cotherapy partially ameliorated HC. Therefore, there is a substantial need to seek alternative regimens to get complete protection against CP-induced HC. The current study investigated the effects of mesna + celery seed oil (MCSO) or mesna + manuka honey (MMH) cotherapy against CP-induced HC in adult male rabbits. The forty rabbits were divided into four equal groups and treated for three weeks. The control group (G1) received distilled water and the second group (G2) received CP (50 mg/kg/week). The third group (G3) received CP + MCSO (CPMCSO regimen), and the fourth group (G4) received CP + MMH (CPMMH regimen). The urinary bladder (UB) specimens were processed to evaluate UB changes through histopathological, immunohistochemical, ultrastructural, and biochemical investigations. In G2, CP provoked HC features (urothelial necrosis, ulceration, and sloughing), UB fibrosis, and TNF-α immunoexpression. Besides, CP reduced the activity of antioxidant enzymes (GPx1, SOD3, and CAT) and elevated the serum levels of NF-κB, TNF-α, IL-1B, and IL-6 cytokines in G2 rabbits. In contrast, the CPMMH regimen caused significant increments of UB protection against HC in G4 rabbits compared to the partial protection by the CPMCSO regimen in G3. Therefore, our study indicated for the first time that the novel CPMMH regimen resulted in complete UB protection against CP-induced HC via combined antioxidant, anti-inflammatory, and antifibrotic properties.
Collapse
|
48
|
Hickman DL. Evaluation of Carbon Dioxide Euthanasia of Female Sprague Dawley Rats Alone or With Unfamiliar Conspecifics. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:195-200. [PMID: 35101159 PMCID: PMC8956221 DOI: 10.30802/aalas-jaalas-21-000051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
Most studies evaluating methods of euthanasia to date have focused on the euthanasia of individual animals. However, larger chambers are commonly used to euthanize multiple cages of animals at once. This study evaluated the use of a commercially available system for euthanasia of 1, 2, or 4 cages containing an individual female Sprague-Dawley rat using volume per minute displacement rates (VDR/min) of either 25% or 50% of 100% carbon dioxide. Animal wellbeing was assessed based on physiologic changes (serum noradrenaline and corticosterone) and behavioral assessments (relative frequency of rearing, line crossing, and grooming). The 25% VDR/min was associated with a significantly longer time to loss of consciousness, but this was not associated with significant physiologic or behavioral changes. The 50% VDR/min treatment group was associated with significant increases in the relative frequency of movement from 1 side of the cage to the other. Increases in the relative frequency of rears were detected in the 25% VDR/min treatment group when 2 or 4 rats were in the chamber as compared with a single rat in the chamber. The absence of significant physiologic changes suggest that the behavioral changes may have been associated with the novelty of the euthanasia experience rather than with distress. The location of the cage within the chamber did not significantly affect any of the measured parameters at either 25% or 50% VDR/min. These data suggest that groups of rats euthanized in these chambers are not experiencing decreases in their welfare.
Collapse
Affiliation(s)
- Debra L Hickman
- School of Medicine, Indiana University, Indianapolis, Indiana
| |
Collapse
|
49
|
Choi GJ, Kang H, Lee OH, Ahn EJ, White FA, Cho YJ, Baek CW, Jung YH, Kwon JW. Effectiveness of maturity of Rubus occidentalis on hyperalgesia induced by acidic saline injection in rats. BMC Complement Med Ther 2022; 22:12. [PMID: 35016667 PMCID: PMC8751266 DOI: 10.1186/s12906-021-03491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/17/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Rubus occidentalis, also known as black raspberry, contains several bioactive components that vary depending on the maturity of the fruit. The goal of this study was to evaluate the efficacy of immature Rubus occidentalis extract(iROE) on acid-induced hyperalgesia, investigate the mechanism involved, and compare the antihyperalgesic effect of immature and mature ROEs.
Methods
In adult male Sprague-Dawley rats, chronic muscle pain was induced via two injections of acidic saline into one gastrocnemius muscle. To evaluate the dose response, the rats were injected intraperitoneally with 0.9% saline or iROE (10, 30, 100, or 300 mg/kg) following hyperalgesia development. To evaluate the mechanism underlying iROE-induced analgesia, the rats were injected intraperitoneally with saline, yohimbine 2 mg/kg, dexmedetomidine 50 μg/kg, prazosin 1 mg/kg, atropine 5 mg/kg, mecamylamine 1 mg/kg, or naloxone 5 mg/kg 24 h after hyperalgesia development, followed by iROE 300 mg/kg administration. To compare immature versus mature ROE, the rats were injected with mature ROE 300 mg/kg and immature ROE 300 mg/kg after hyperalgesia development. For all experiments, the mechanical withdrawal threshold(MWT) was evaluated using von Frey filaments before the first acidic saline injection, 24 h after the second injection, and at various time points after drug administration. Data were analysed using multivariate analysis of variance(MANOVA) and the linear mixed-effects model(LMEM). We compared the MWT at each time point using analysis of variance with the Bonferroni correction.
Results
The iROE 300 mg/kg injection resulted in a significant increase in MWT compared with the control, iROE 30 mg/kg, and iROE 100 mg/kg injections at ipsilateral and contralateral sites. The iROE injection together with yohimbine, mecamylamine, or naloxone significantly decreased the MWT compared with iROE alone, whereas ROE together with dexmedetomidine significantly increased the MWT. According to MANOVA, the effects of immature and mature ROEs were not significantly different; however, the LMEM presented a significant difference between the two groups.
Conclusions
Immature R. occidentalis showed antihyperalgesic activity against acid-induced chronic muscle pain, which may be mediated by the α2-adrenergic, nicotinic cholinergic, and opioid receptors. The iROE displayed superior tendency regarding analgesic effect compared to mature ROE.
Collapse
|
50
|
Welles JE, Lacko H, Kawasawa YI, Dennis MD, Jefferson LS, Kimball SR. An integrative approach to assessing effects of a short-term Western diet on gene expression in rat liver. Front Endocrinol (Lausanne) 2022; 13:1032293. [PMID: 36387860 PMCID: PMC9643360 DOI: 10.3389/fendo.2022.1032293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022] Open
Abstract
Consumption of a diet rich in saturated fatty acids and carbohydrates contributes to the accumulation of fat in the liver and development of non-alcoholic steatohepatitis (NASH). Herein we investigated the hypothesis that short-term consumption of a high fat/sucrose Western diet (WD) alters the genomic and translatomic profile of the liver in association with changes in signaling through the protein kinase mTORC1, and that such alterations contribute to development of NAFLD. The results identify a plethora of mRNAs that exhibit altered expression and/or translation in the liver of rats consuming a WD compared to a CD. In particular, consumption of a WD altered the abundance and ribosome association of mRNAs involved in lipid and fatty acid metabolism, as well as those involved in glucose metabolism and insulin signaling. Hepatic mTORC1 signaling was enhanced when rats were fasted overnight and then refed in the morning; however, this effect was blunted in rats fed a WD as compared to a CD. Despite similar plasma insulin concentrations, fatty acid content was elevated in the liver of rats fed a WD as compared to a CD. We found that feeding had a significant positive effect on ribosome occupancy of 49 mRNAs associated with hepatic steatosis (e.g., LIPE, LPL), but this effect was blunted in the liver of rats fed a WD. In many cases, changes in ribosome association were independent of alterations in mRNA abundance, suggesting a critical role for diet-induced changes in mRNA translation in the expression of proteins encoded by those mRNAs. Overall, the findings demonstrate that short-term consumption of a WD impacts hepatic gene expression by altering the abundance of many mRNAs, but also causes wide-spread variation in mRNA translation that potentially contribute to development of hepatic steatosis.
Collapse
Affiliation(s)
- Jaclyn E. Welles
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, United States
| | - Holly Lacko
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, United States
| | - Leonard S. Jefferson
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, United States
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, United States
- *Correspondence: Scot R. Kimball,
| |
Collapse
|