1
|
Ferrer I. Historical review: The golden age of the Golgi method in human neuropathology. J Neuropathol Exp Neurol 2024; 83:375-395. [PMID: 38622902 DOI: 10.1093/jnen/nlae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Golgi methods were used to study human neuropathology in the 1970s, 1980s, and 1990s of the last century. Although a relatively small number of laboratories applied these methods, their impact was crucial by increasing knowledge about: (1) the morphology, orientation, and localization of neurons in human cerebral and cerebellar malformations and ganglionic tumors, and (2) the presence of abnormal structures including large and thin spines (spine dysgenesis) in several disorders linked to mental retardation, focal enlargements of the axon hillock and dendrites (meganeurites) in neuronal storage diseases, growth cone-like appendages in Alzheimer disease, as well as abnormal structures in other dementias. Although there were initial concerns about their reliability, reduced dendritic branches and dendritic spines were identified as common alterations in mental retardation, dementia, and other pathological conditions. Similar observations in appropriate experimental models have supported many abnormalities that were first identified using Golgi methods in human material. Moreover, electron microscopy, immunohistochemistry, fluorescent tracers, and combined methods have proven the accuracy of pioneering observations uniquely visualized as 3D images of fully stained individual neurons. Although Golgi methods had their golden age many years ago, these methods may still be useful complementary tools in human neuropathology.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de LLobregat, Spain
| |
Collapse
|
2
|
Brain Microstructural Changes in Patients with Amnestic mild Cognitive Impairment. Clin Neuroradiol 2022; 33:445-453. [DOI: 10.1007/s00062-022-01226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022]
|
3
|
Walker CK, Greathouse KM, Liu E, Muhammad HM, Boros BD, Freeman CD, Seo JV, Herskowitz JH. Comparison of Golgi-Cox and Intracellular Loading of Lucifer Yellow for Dendritic Spine Density and Morphology Analysis in the Mouse Brain. Neuroscience 2022; 498:1-18. [PMID: 35752428 PMCID: PMC9420811 DOI: 10.1016/j.neuroscience.2022.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Dendritic spines are small protrusions on dendrites that serve as the postsynaptic site of the majority of excitatory synapses. These structures are important for normal synaptic transmission, and alterations in their density and morphology have been documented in various disease states. Over 130 years ago, Ramón y Cajal used Golgi-stained tissue sections to study dendritic morphology. Despite the array of technological advances, including iontophoretic microinjection of Lucifer yellow (LY) fluorescent dye, Golgi staining continues to be one of the most popular approaches to visualize dendritic spines. Here, we compared dendritic spine density and morphology among pyramidal neurons in layers 2/3 of the mouse medial prefrontal cortex (mPFC) and pyramidal neurons in hippocampal CA1 using three-dimensional digital reconstructions of (1) brightfield microscopy z-stacks of Golgi-impregnated dendrites and (2) confocal microscopy z-stacks of LY-filled dendrites. Analysis of spine density revealed that the LY microinjection approach enabled detection of approximately three times as many spines as the Golgi staining approach in both brain regions. Spine volume measurements were larger using Golgi staining compared to LY microinjection in both mPFC and CA1. Spine length was mostly comparable between techniques in both regions. In the mPFC, head diameter was similar for Golgi staining and LY microinjection. However, in CA1, head diameter was approximately 50% smaller on LY-filled dendrites compared to Golgi staining. These results indicate that Golgi staining and LY microinjection yield different spine density and morphology measurements, with Golgi staining failing to detect dendritic spines and overestimating spine size.
Collapse
Affiliation(s)
- Courtney K Walker
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Kelsey M Greathouse
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Evan Liu
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Hamad M Muhammad
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Benjamin D Boros
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Cameron D Freeman
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Jung Vin Seo
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Jeremy H Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA.
| |
Collapse
|
4
|
Vogt NM, Hunt JFV, Adluru N, Ma Y, Van Hulle CA, Dean DC, Kecskemeti SR, Chin NA, Carlsson CM, Asthana S, Johnson SC, Kollmorgen G, Batrla R, Wild N, Buck K, Zetterberg H, Alexander AL, Blennow K, Bendlin BB. Interaction of amyloid and tau on cortical microstructure in cognitively unimpaired adults. Alzheimers Dement 2022; 18:65-76. [PMID: 33984184 PMCID: PMC8589921 DOI: 10.1002/alz.12364] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Neurite orientation dispersion and density imaging (NODDI), a multi-compartment diffusion-weighted imaging (DWI) model, may be useful for detecting early cortical microstructural alterations in Alzheimer's disease prior to cognitive impairment. METHODS Using neuroimaging (NODDI and T1-weighted magnetic resonance imaging [MRI]) and cerebrospinal fluid (CSF) biomarker data (measured using Elecsys® CSF immunoassays) from 219 cognitively unimpaired participants, we tested the main and interactive effects of CSF amyloid beta (Aβ)42 /Aβ40 and phosphorylated tau (p-tau) on cortical NODDI metrics and cortical thickness, controlling for age, sex, and apolipoprotein E ε4. RESULTS We observed a significant CSF Aβ42 /Aβ40 × p-tau interaction on cortical neurite density index (NDI), but not orientation dispersion index or cortical thickness. The directionality of these interactive effects indicated: (1) among individuals with lower CSF p-tau, greater amyloid burden was associated with higher cortical NDI; and (2) individuals with greater amyloid and p-tau burden had lower cortical NDI, consistent with cortical neurodegenerative changes. DISCUSSION NDI is a particularly sensitive marker for early cortical changes that occur prior to gross atrophy or development of cognitive impairment.
Collapse
Affiliation(s)
- Nicholas M. Vogt
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jack F. V. Hunt
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nagesh Adluru
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Yue Ma
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Carol A. Van Hulle
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Douglas C. Dean
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Steven R. Kecskemeti
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathaniel A. Chin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Cynthia M. Carlsson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | | | - Richard Batrla
- Roche Diagnostics International AG, Rotkreuz, Switzerland
| | | | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at University College London, London, UK
| | - Andrew L. Alexander
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Barbara B. Bendlin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
5
|
Paciello F, Rinaudo M, Longo V, Cocco S, Conforto G, Pisani A, Podda MV, Fetoni AR, Paludetti G, Grassi C. Auditory sensory deprivation induced by noise exposure exacerbates cognitive decline in a mouse model of Alzheimer's disease. eLife 2021; 10:70908. [PMID: 34699347 PMCID: PMC8547960 DOI: 10.7554/elife.70908] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
Although association between hearing impairment and dementia has been widely documented by epidemiological studies, the role of auditory sensory deprivation in cognitive decline remains to be fully understood. To address this issue we investigated the impact of hearing loss on the onset and time-course of cognitive decline in an animal model of Alzheimer's disease (AD), that is the 3×Tg-AD mice and the underlying mechanisms. We found that hearing loss induced by noise exposure in the 3×Tg-AD mice before the phenotype is manifested caused persistent synaptic and morphological alterations in the auditory cortex. This was associated with earlier hippocampal dysfunction, increased tau phosphorylation, neuroinflammation, and redox imbalance, along with anticipated memory deficits compared to the expected time-course of the neurodegenerative phenotype. Our data suggest that a mouse model of AD is more vulnerable to central damage induced by hearing loss and shows reduced ability to counteract noise-induced detrimental effects, which accelerates the neurodegenerative disease onset.
Collapse
Affiliation(s)
- Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Longo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Conforto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Vittoria Podda
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
6
|
Griffiths TD, Lad M, Kumar S, Holmes E, McMurray B, Maguire EA, Billig AJ, Sedley W. How Can Hearing Loss Cause Dementia? Neuron 2020; 108:401-412. [PMID: 32871106 PMCID: PMC7664986 DOI: 10.1016/j.neuron.2020.08.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Epidemiological studies identify midlife hearing loss as an independent risk factor for dementia, estimated to account for 9% of cases. We evaluate candidate brain bases for this relationship. These bases include a common pathology affecting the ascending auditory pathway and multimodal cortex, depletion of cognitive reserve due to an impoverished listening environment, and the occupation of cognitive resources when listening in difficult conditions. We also put forward an alternate mechanism, drawing on new insights into the role of the medial temporal lobe in auditory cognition. In particular, we consider how aberrant activity in the service of auditory pattern analysis, working memory, and object processing may interact with dementia pathology in people with hearing loss. We highlight how the effect of hearing interventions on dementia depends on the specific mechanism and suggest avenues for work at the molecular, neuronal, and systems levels to pin this down.
Collapse
Affiliation(s)
- Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| | - Meher Lad
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Sukhbinder Kumar
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Emma Holmes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Bob McMurray
- Departments of Psychological and Brain Sciences, Communication Sciences and Disorders, Otolaryngology, University of Iowa, Iowa City, IA 52242, USA
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | | | - William Sedley
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
7
|
Maharani A, Dawes P, Nazroo J, Tampubolon G, Pendleton N. Trajectories of recall memory as predictive of hearing impairment: A longitudinal cohort study. PLoS One 2020; 15:e0234623. [PMID: 32555743 PMCID: PMC7302912 DOI: 10.1371/journal.pone.0234623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/31/2020] [Indexed: 01/13/2023] Open
Abstract
Objectives Accumulating evidence points to a relationship between hearing function and cognitive ability in later life. However, the exact mechanisms of this relationship are still unclear. This study aimed to characterise latent cognitive trajectories in recall memory and identify their association with subsequent risk of hearing impairment. Methods We analysed data from the English Longitudinal Study of Ageing Wave 1 (2002/03) until Wave 7 (2014/15). The study population consisted of 3,615 adults aged 50+ who participated in the first wave of the English Longitudinal Study of Ageing, who had no self-reported hearing impairment in Wave 1, and who underwent a hearing test in Wave 7. Respondents were classified as having hearing impairment if they failed to hear tones quieter than 35 dB HL in the better ear. Results The trajectories of recall memory scores were grouped using latent class growth mixture modelling and were related to the presence of hearing impairment in Wave 7. Models estimating 1-class through 5-class recall memory trajectories were compared and the best-fitting models were 4-class trajectories. The different recall memory trajectories represent different starting points and mean of the memory scores. Compared to respondents with the highest recall memory trajectory, other trajectories were increasingly likely to develop later hearing impairment. Conclusions Long-term changes in cognitive ability predict hearing impairment. Further research is required to identify the mechanisms explaining the association between cognitive trajectories and hearing impairment, as well as to determine whether intervention for maintenance of cognitive function also give benefit on hearing function among older adults.
Collapse
Affiliation(s)
- Asri Maharani
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- * E-mail:
| | - Piers Dawes
- Division of Human Communication, Development & Hearing, University of Manchester, Manchester, United Kingdom
| | - James Nazroo
- Cathie Marsh Institute for Social Research, University of Manchester, Manchester, United Kingdom
| | - Gindo Tampubolon
- Cathie Marsh Institute for Social Research, University of Manchester, Manchester, United Kingdom
| | - Neil Pendleton
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
8
|
Vogt NM, Hunt JF, Adluru N, Dean DC, Johnson SC, Asthana S, Yu JPJ, Alexander AL, Bendlin BB. Cortical Microstructural Alterations in Mild Cognitive Impairment and Alzheimer's Disease Dementia. Cereb Cortex 2020; 30:2948-2960. [PMID: 31833550 PMCID: PMC7197091 DOI: 10.1093/cercor/bhz286] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In Alzheimer's disease (AD), neurodegenerative processes are ongoing for years prior to the time that cortical atrophy can be reliably detected using conventional neuroimaging techniques. Recent advances in diffusion-weighted imaging have provided new techniques to study neural microstructure, which may provide additional information regarding neurodegeneration. In this study, we used neurite orientation dispersion and density imaging (NODDI), a multi-compartment diffusion model, in order to investigate cortical microstructure along the clinical continuum of mild cognitive impairment (MCI) and AD dementia. Using gray matter-based spatial statistics (GBSS), we demonstrated that neurite density index (NDI) was significantly lower throughout temporal and parietal cortical regions in MCI, while both NDI and orientation dispersion index (ODI) were lower throughout parietal, temporal, and frontal regions in AD dementia. In follow-up ROI analyses comparing microstructure and cortical thickness (derived from T1-weighted MRI) within the same brain regions, differences in NODDI metrics remained, even after controlling for cortical thickness. Moreover, for participants with MCI, gray matter NDI-but not cortical thickness-was lower in temporal, parietal, and posterior cingulate regions. Taken together, our results highlight the utility of NODDI metrics in detecting cortical microstructural degeneration that occurs prior to measurable macrostructural changes and overt clinical dementia.
Collapse
Affiliation(s)
- Nicholas M Vogt
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792 USA
| | - Jack F Hunt
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792 USA
| | - Nagesh Adluru
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705 USA
| | - Douglas C Dean
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705 USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792 USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705 USA
| | - Sterling C Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792 USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705 USA
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792 USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705 USA
| | - John-Paul J Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792 USA
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719 USA
| | - Andrew L Alexander
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705 USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705 USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792 USA
| |
Collapse
|
9
|
Overexpression of endophilin A1 exacerbates synaptic alterations in a mouse model of Alzheimer's disease. Nat Commun 2018; 9:2968. [PMID: 30061577 PMCID: PMC6065365 DOI: 10.1038/s41467-018-04389-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 04/27/2018] [Indexed: 02/05/2023] Open
Abstract
Endophilin A1 (EP) is a protein enriched in synaptic terminals that has been linked to Alzheimer's disease (AD). Previous in vitro studies have shown that EP can bind to a variety of proteins, which elicit changes in synaptic transmission of neurotransmitters and spine formation. Additionally, we previously showed that EP protein levels are elevated in AD patients and AD transgenic animal models. Here, we establish the in vivo consequences of upregulation of EP expression in amyloid-β peptide (Aβ)-rich environments, leading to changes in both long-term potentiation and learning and memory of transgenic animals. Specifically, increasing EP augmented cerebral Aβ accumulation. EP-mediated signal transduction via reactive oxygen species (ROS)/p38 mitogen-activated protein (MAP) kinase contributes to Aβ-induced mitochondrial dysfunction, synaptic injury, and cognitive decline, which could be rescued by blocking either ROS or p38 MAP kinase activity.
Collapse
|
10
|
Parker TD, Slattery CF, Zhang J, Nicholas JM, Paterson RW, Foulkes AJM, Malone IB, Thomas DL, Modat M, Cash DM, Crutch SJ, Alexander DC, Ourselin S, Fox NC, Zhang H, Schott JM. Cortical microstructure in young onset Alzheimer's disease using neurite orientation dispersion and density imaging. Hum Brain Mapp 2018; 39:3005-3017. [PMID: 29575324 PMCID: PMC6055830 DOI: 10.1002/hbm.24056] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/20/2018] [Accepted: 03/13/2018] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is associated with extensive alterations in grey matter microstructure, but our ability to quantify this in vivo is limited. Neurite orientation dispersion and density imaging (NODDI) is a multi-shell diffusion MRI technique that estimates neuritic microstructure in the form of orientation dispersion and neurite density indices (ODI/NDI). Mean values for cortical thickness, ODI, and NDI were extracted from predefined regions of interest in the cortical grey matter of 38 patients with young onset AD and 22 healthy controls. Five cortical regions associated with early atrophy in AD (entorhinal cortex, inferior temporal gyrus, middle temporal gyrus, fusiform gyrus, and precuneus) and one region relatively spared from atrophy in AD (precentral gyrus) were investigated. ODI, NDI, and cortical thickness values were compared between controls and patients for each region, and their associations with MMSE score were assessed. NDI values of all regions were significantly lower in patients. Cortical thickness measurements were significantly lower in patients in regions associated with early atrophy in AD, but not in the precentral gyrus. Decreased ODI was evident in patients in the inferior and middle temporal gyri, fusiform gyrus, and precuneus. The majority of AD-related decreases in cortical ODI and NDI persisted following adjustment for cortical thickness, as well as each other. There was evidence in the patient group that cortical NDI was associated with MMSE performance. These data suggest distinct differences in cortical NDI and ODI occur in AD and these metrics provide pathologically relevant information beyond that of cortical thinning.
Collapse
Affiliation(s)
- Thomas D Parker
- Department of Neurodegenerative Disease, Institute of Neurology, UCL, London, United Kingdom
| | - Catherine F Slattery
- Department of Neurodegenerative Disease, Institute of Neurology, UCL, London, United Kingdom
| | - Jiaying Zhang
- Department of Computer Science and Centre for Medical Image Computing, UCL, London, United Kingdom
| | - Jennifer M Nicholas
- Department of Neurodegenerative Disease, Institute of Neurology, UCL, London, United Kingdom.,Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ross W Paterson
- Department of Neurodegenerative Disease, Institute of Neurology, UCL, London, United Kingdom
| | - Alexander J M Foulkes
- Department of Neurodegenerative Disease, Institute of Neurology, UCL, London, United Kingdom
| | - Ian B Malone
- Department of Neurodegenerative Disease, Institute of Neurology, UCL, London, United Kingdom
| | - David L Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, United Kingdom.,Leonard Wolfson Experimental Neurology Centre, UCL Institute of Neurology, London, United Kingdom
| | - Marc Modat
- Translational Imaging Group, Centre for Medical Image Computing, UCL, London, United Kingdom
| | - David M Cash
- Department of Neurodegenerative Disease, Institute of Neurology, UCL, London, United Kingdom.,Translational Imaging Group, Centre for Medical Image Computing, UCL, London, United Kingdom
| | - Sebastian J Crutch
- Department of Neurodegenerative Disease, Institute of Neurology, UCL, London, United Kingdom
| | - Daniel C Alexander
- Department of Computer Science and Centre for Medical Image Computing, UCL, London, United Kingdom
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, UCL, London, United Kingdom
| | - Nick C Fox
- Department of Neurodegenerative Disease, Institute of Neurology, UCL, London, United Kingdom
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, UCL, London, United Kingdom
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, Institute of Neurology, UCL, London, United Kingdom
| |
Collapse
|
11
|
Van Dam D, Vermeiren Y, Dekker AD, Naudé PJW, Deyn PPD. Neuropsychiatric Disturbances in Alzheimer's Disease: What Have We Learned from Neuropathological Studies? Curr Alzheimer Res 2017; 13:1145-64. [PMID: 27137218 PMCID: PMC5070416 DOI: 10.2174/1567205013666160502123607] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/04/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Neuropsychiatric symptoms (NPS) are an integral part of the dementia syndrome and were therefore recently included in the core diagnostic criteria of dementia. The near universal prevalence of NPS in Alzheimer's disease (AD), combined with their disabling effects on patients and caregivers, is contrasted by the fact that few effective and safe treatments exist, which is in part to be attributed to our incomplete understanding of the neurobiology of NPS. In this review, we describe the pathological alterations typical for AD, including spreading and evolution of burden, effect on the molecular and cellular integrity, functional consequences and atrophy of NPS-relevant brain regions and circuits in correlation with specific NPS assessments. It is thereby clearly established that NPS are fundamental expressions of the underlying neurodegenerative brain disease and not simply reflect the patients' secondary response to their illness. Neuropathological studies, moreover, include a majority of end-stage patient samples, which may not correctly represent the pathophysiological environment responsible for particular NPS that may already be present in an early stage, or even prior to AD diagnosis. The burdensome nature and high prevalence of NPS, in combination with the absence of effective and safe pharmacotherapies, provide a strong incentive to continue neuropathological and neurochemical, as well as imaging and other relevant approaches to further improve our apprehension of the neurobiology of NPS.
Collapse
Affiliation(s)
| | | | | | | | - Peter P De Deyn
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, and, Faculty of Medical and Health Care Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk (Antwerp), Belgium
| |
Collapse
|
12
|
Hardy CJD, Marshall CR, Golden HL, Clark CN, Mummery CJ, Griffiths TD, Bamiou DE, Warren JD. Hearing and dementia. J Neurol 2016; 263:2339-2354. [PMID: 27372450 PMCID: PMC5065893 DOI: 10.1007/s00415-016-8208-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Hearing deficits associated with cognitive impairment have attracted much recent interest, motivated by emerging evidence that impaired hearing is a risk factor for cognitive decline. However, dementia and hearing impairment present immense challenges in their own right, and their intersection in the auditory brain remains poorly understood and difficult to assess. Here, we outline a clinically oriented, symptom-based approach to the assessment of hearing in dementias, informed by recent progress in the clinical auditory neuroscience of these diseases. We consider the significance and interpretation of hearing loss and symptoms that point to a disorder of auditory cognition in patients with dementia. We identify key auditory characteristics of some important dementias and conclude with a bedside approach to assessing and managing auditory dysfunction in dementia.
Collapse
Affiliation(s)
- Chris J D Hardy
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Charles R Marshall
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Hannah L Golden
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Camilla N Clark
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Catherine J Mummery
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
- Cognitive Disorders Clinic for the Deaf, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Timothy D Griffiths
- Auditory Group, Institute of Neuroscience, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
- Central Auditory Disorders Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Doris-Eva Bamiou
- Department of Neuro-otology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Ear Institute, University College London, London, UK
- Central Auditory Disorders Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Jason D Warren
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
- Central Auditory Disorders Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
13
|
Abstract
Electron microscopy has enlarged the visual horizons of the morphological alterations in Alzheimer's disease (AD). Study of the mitochondria and Golgi apparatus in early cases of AD revealed the principal role that these important organelles play in the drama of pathogenic dialog of AD, substantially affecting energy production and supply, and protein trafficking in neurons and glia. In addition, study of the morphological alterations of the dendritic arbor, dendritic spines and neuronal synapses, which are associated with mitochondrial damage, may reasonably interpret the clinical phenomena of the irreversible decline of the mental faculties and an individual's personality changes. Electron microscopy also reveals the involvement of microvascular alterations in the etiopathogenic background of AD.
Collapse
|
14
|
Baloyannis SJ, Mavroudis I, Mitilineos D, Baloyannis IS, Costa VG. The hypothalamus in Alzheimer's disease: a Golgi and electron microscope study. Am J Alzheimers Dis Other Demen 2015; 30:478-87. [PMID: 25380804 PMCID: PMC10852817 DOI: 10.1177/1533317514556876] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, characterized by irreversible decline of mental faculties, emotional and behavioral changes, loss of motor skills, and dysfunction of autonomic nervous system and disruption of circadian rhythms (CRs). We attempted to describe the morphological findings of the hypothalamus in early cases of AD, focusing our study mostly on the suprachiasmatic nucleus (SCN), the supraoptic nucleus (SON), and the paraventricular nucleus (PVN). Samples were processed for electron microscopy and silver impregnation techniques. The hypothalamic nuclei demonstrated a substantial decrease in the neuronal population, which was particularly prominent in the SCN. Marked abbreviation of dendritic arborization, in association with spinal pathology, was also seen. The SON and PVN demonstrated a substantial number of dystrophic axons and abnormal spines. Alzheimer's pathology, such as deposits of amyloid-β peptide and neurofibrillary degeneration, was minimal. Electron microscopy revealed mitochondrial alterations in the cell body and the dendritic branches. The morphological alterations of the hypothalamic nuclei in early cases of AD may be related to the gradual alteration of CRs and the instability of autonomic regulation.
Collapse
Affiliation(s)
- Stavros J Baloyannis
- Department of Neurology, Laboratory of Neuropathology and Electron Microscopy, Aristotelian University, Thessaloniki, Greece Laboratory of Neuropathology, Institute for Research on Alzheimer's Disease, Iraklion, Greece
| | - Ioannis Mavroudis
- Department of Neurology, Laboratory of Neuropathology and Electron Microscopy, Aristotelian University, Thessaloniki, Greece
| | - Demetrios Mitilineos
- Department of Neurology, Laboratory of Neuropathology and Electron Microscopy, Aristotelian University, Thessaloniki, Greece
| | - Ioannis S Baloyannis
- Department of Neurology, Laboratory of Neuropathology and Electron Microscopy, Aristotelian University, Thessaloniki, Greece
| | - Vassiliki G Costa
- Department of Neurology, Laboratory of Neuropathology and Electron Microscopy, Aristotelian University, Thessaloniki, Greece Laboratory of Neuropathology, Institute for Research on Alzheimer's Disease, Iraklion, Greece
| |
Collapse
|
15
|
|
16
|
Fakhran S, Yaeger K, Alhilali L. Symptomatic White Matter Changes in Mild Traumatic Brain Injury Resemble Pathologic Features of Early Alzheimer Dementia. Radiology 2013; 269:249-57. [DOI: 10.1148/radiol.13122343] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Dhanjal NS, Warren JE, Patel MC, Wise RJS. Auditory cortical function during verbal episodic memory encoding in Alzheimer's disease. Ann Neurol 2012; 73:294-302. [PMID: 23281111 DOI: 10.1002/ana.23789] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 09/29/2012] [Accepted: 10/05/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Episodic memory encoding of a verbal message depends upon initial registration, which requires sustained auditory attention followed by deep semantic processing of the message. Motivated by previous data demonstrating modulation of auditory cortical activity during sustained attention to auditory stimuli, we investigated the response of the human auditory cortex during encoding of sentences to episodic memory. Subsequently, we investigated this response in patients with mild cognitive impairment (MCI) and probable Alzheimer's disease (pAD). METHODS Using functional magnetic resonance imaging, 31 healthy participants were studied. The response in 18 MCI and 18 pAD patients was then determined, and compared to 18 matched healthy controls. Subjects heard factual sentences, and subsequent retrieval performance indicated successful registration and episodic encoding. RESULTS The healthy subjects demonstrated that suppression of auditory cortical responses was related to greater success in encoding heard sentences; and that this was also associated with greater activity in the semantic system. In contrast, there was reduced auditory cortical suppression in patients with MCI, and absence of suppression in pAD. Administration of a central cholinesterase inhibitor (ChI) partially restored the suppression in patients with pAD, and this was associated with an improvement in verbal memory. INTERPRETATION Verbal episodic memory impairment in AD is associated with altered auditory cortical function, reversible with a ChI. Although these results may indicate the direct influence of pathology in auditory cortex, they are also likely to indicate a partially reversible impairment of feedback from neocortical systems responsible for sustained attention and semantic processing.
Collapse
Affiliation(s)
- Novraj S Dhanjal
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom.
| | | | | | | |
Collapse
|