1
|
Yıldırım E, Aktürk T, Hanoğlu L, Yener G, Babiloni C, Güntekin B. Lower oddball event-related EEG delta and theta responses in patients with dementia due to Parkinson's and Lewy body than Alzheimer's disease. Neurobiol Aging 2024; 137:78-93. [PMID: 38452574 DOI: 10.1016/j.neurobiolaging.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/04/2024] [Accepted: 02/11/2024] [Indexed: 03/09/2024]
Abstract
Oddball task-related EEG delta and theta responses are associated with frontal executive functions, which are significantly impaired in patients with dementia due to Parkinson's disease (PDD) and Lewy bodies (DLB). The present study investigated the oddball task-related EEG delta and theta responses in patients with PDD, DLB, and Alzheimer's disease dementia (ADD). During visual and auditory oddball paradigms, EEG activity was recorded in 20 ADD, 17 DLB, 20 PDD, and 20 healthy (HC) older adults. Event-related EEG power spectrum and phase-locking analysis were performed at the delta (1-4 Hz) and theta (4-7 Hz) frequency bands for target and nontarget stimuli. Compared to the HC persons, dementia groups showed lower frontal and central delta and theta power and phase-locking associated with task performance and neuropsychological test scores. Notably, this effect was more significant in the PDD and DLB than in the ADD. In conclusion, oddball task-related frontal and central EEG delta and theta responses may reflect frontal supramodal executive dysfunctions in PDD and DLB patients.
Collapse
Affiliation(s)
- Ebru Yıldırım
- Istanbul Medipol University, Vocational School, Program of Electroneurophysiology, Istanbul, Turkey; Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul, Turkey
| | - Tuba Aktürk
- Istanbul Medipol University, Vocational School, Program of Electroneurophysiology, Istanbul, Turkey; Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul, Turkey
| | - Lütfü Hanoğlu
- Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul, Turkey; Istanbul Medipol University, School of Medicine, Department of Neurology, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey; Dokuz Eylül University, Brain Dynamics Multidisciplinary Research Center, Izmir, Turkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino (FR), Italy
| | - Bahar Güntekin
- Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul, Turkey; Istanbul Medipol University, School of Medicine, Department of Biophysics, Istanbul, Turkey.
| |
Collapse
|
2
|
Yang H, Yang X, Yan S. A dynamic computational model of the parallel circuit on the basal ganglia-cortex associated with Parkinson's disease dementia. BIOLOGICAL CYBERNETICS 2024; 118:127-143. [PMID: 38644417 DOI: 10.1007/s00422-024-00988-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
The cognitive impairment will gradually appear over time in Parkinson's patients, which is closely related to the basal ganglia-cortex network. This network contains two parallel circuits mediated by putamen and caudate nucleus, respectively. Based on the biophysical mean-field model, we construct a dynamic computational model of the parallel circuit in the basal ganglia-cortex network associated with Parkinson's disease dementia. The simulated results show that the decrease of power ratio in the prefrontal cortex is mainly caused by dopamine depletion in the caudate nucleus and is less related to that in the putamen, which indicates Parkinson's disease dementia may be caused by a lesion of the caudate nucleus rather than putamen. Furthermore, the underlying dynamic mechanism behind the decrease of power ratio is investigated by bifurcation analysis, which demonstrates that the decrease of power ratio is due to the change of brain discharge pattern from the limit cycle mode to the point attractor mode. More importantly, the spatiotemporal course of dopamine depletion in Parkinson's disease patients is well simulated, which states that with the loss of dopaminergic neurons projecting to the striatum, motor dysfunction of Parkinson's disease is first observed, whereas cognitive impairment occurs after a period of onset of motor dysfunction. These results are helpful to understand the pathogenesis of cognitive impairment and provide insights into the treatment of Parkinson's disease dementia.
Collapse
Affiliation(s)
- Hao Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - XiaoLi Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| | - SiLu Yan
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| |
Collapse
|
3
|
Babiloni C, Noce G, Tucci F, Jakhar D, Ferri R, Panerai S, Catania V, Soricelli A, Salvatore M, Nobili F, Arnaldi D, Famà F, Buttinelli C, Giubilei F, Onofrj M, Stocchi F, Vacca L, Radicati F, Fuhr P, Gschwandtner U, Ransmayr G, Parnetti L, Marizzoni M, D'Antonio F, Bruno G, De Lena C, Güntekin B, Yıldırım E, Hanoğlu L, Yener G, Hünerli D, Taylor JP, Schumacher J, McKeith I, Frisoni GB, Antonini A, Ferreri F, Bonanni L, De Pandis MF, Del Percio C. Poor reactivity of posterior electroencephalographic alpha rhythms during the eyes open condition in patients with dementia due to Parkinson's disease. Neurobiol Aging 2024; 135:1-14. [PMID: 38142464 DOI: 10.1016/j.neurobiolaging.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Here, we hypothesized that the reactivity of posterior resting-state electroencephalographic (rsEEG) alpha rhythms during the transition from eyes-closed to -open condition might be lower in patients with Parkinson's disease dementia (PDD) than in patients with Alzheimer's disease dementia (ADD). A Eurasian database provided clinical-demographic-rsEEG datasets in 73 PDD patients, 35 ADD patients, and 25 matched cognitively unimpaired (Healthy) persons. The eLORETA freeware was used to estimate cortical rsEEG sources. Results showed substantial (greater than -10%) reduction (reactivity) in the posterior alpha source activities from the eyes-closed to the eyes-open condition in 88% of the Healthy seniors, 57% of the ADD patients, and only 35% of the PDD patients. In these alpha-reactive participants, there was lower reactivity in the parietal alpha source activities in the PDD group than in the healthy control seniors and the ADD patients. These results suggest that PDD patients show poor reactivity of mechanisms desynchronizing posterior rsEEG alpha rhythms in response to visual inputs. That neurophysiological biomarker may provide an endpoint for (non) pharmacological interventions for improving vigilance regulation in those patients.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, FR, Italy.
| | | | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | | | | | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Flavio Nobili
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences, CESI, and Department of Medicine and Aging Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fabrizio Stocchi
- IRCCS San Raffaele, Rome, Italy; Telematic University San Raffaele, Rome, Italy
| | | | | | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland; Departments of Neurology and of Clinical Research, University Hospital Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland; Departments of Neurology and of Clinical Research, University Hospital Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology 2, Med Campus III, Faculty of Medicine, Johannes Kepler University, Kepler University Hospital, Krankenhausstr. 9, A-4020 Linz., Austria
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabrizia D'Antonio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey
| | - Duygu Hünerli
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Julia Schumacher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Ian McKeith
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Angelo Antonini
- Unit and Study Center for Neurodegenerative diseases (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| | - Florinda Ferreri
- Unit and Study Center for Neurodegenerative diseases (CESNE), Department of Neuroscience, University of Padua, Padua, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Habich A, Wahlund LO, Westman E, Dierks T, Ferreira D. (Dis-)Connected Dots in Dementia with Lewy Bodies-A Systematic Review of Connectivity Studies. Mov Disord 2023; 38:4-15. [PMID: 36253921 PMCID: PMC10092805 DOI: 10.1002/mds.29248] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 01/21/2023] Open
Abstract
Studies on dementia with Lewy bodies (DLB) have mainly focused on the degeneration of distinct cortical and subcortical regions related to the deposition of Lewy bodies. In view of the proposed trans-synaptic spread of the α-synuclein pathology, investigating the disease only in this segregated fashion would be detrimental to our understanding of its progression. In this systematic review, we summarize findings on structural and functional brain connectivity in DLB, as connectivity measures may offer better insights on how the brain is affected by the spread of the pathology. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched Web of Science, PubMed, and SCOPUS for relevant articles published up to November 1, 2021. Of 1215 identified records, we selected and systematically reviewed 53 articles that compared connectivity features between patients with DLB and healthy controls. Structural and functional magnetic resonance imaging, positron emission tomography, single-positron emission computer tomography, and electroencephalography assessments of patients revealed widespread abnormalities within and across brain networks in DLB. Frontoparietal, default mode, and visual networks and their connections to other brain regions featured the most consistent disruptions, which were also associated with core clinical features and cognitive impairments. Furthermore, graph theoretical measures revealed disease-related decreases in local and global network efficiency. This systematic review shows that structural and functional connectivity characteristics in DLB may be particularly valuable at early stages, before overt brain atrophy can be observed. This knowledge may help improve the diagnosis and prognosis in DLB as well as pinpoint targets for future disease-modifying treatments. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Güntekin B, Aktürk T, Arakaki X, Bonanni L, Del Percio C, Edelmayer R, Farina F, Ferri R, Hanoğlu L, Kumar S, Lizio R, Lopez S, Murphy B, Noce G, Randall F, Sack AT, Stocchi F, Yener G, Yıldırım E, Babiloni C. Are there consistent abnormalities in event-related EEG oscillations in patients with Alzheimer's disease compared to other diseases belonging to dementia? Psychophysiology 2022; 59:e13934. [PMID: 34460957 DOI: 10.1111/psyp.13934] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 01/30/2023]
Abstract
Cerebrospinal and structural-molecular neuroimaging in-vivo biomarkers are recommended for diagnostic purposes in Alzheimer's disease (AD) and other dementias; however, they do not explain the effects of AD neuropathology on neurophysiological mechanisms underpinning cognitive processes. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association reviewed the field literature and reached consensus on the event-related electroencephalographic oscillations (EROs) that show consistent abnormalities in patients with significant cognitive deficits due to Alzheimer's, Parkinson's (PD), Lewy body (LBD), and cerebrovascular diseases. Converging evidence from oddball paradigms showed that, as compared to cognitively unimpaired (CU) older adults, AD patients had lower amplitude in widespread delta (>4 Hz) and theta (4-7 Hz) phase-locked EROs as a function of disease severity. Similar effects were also observed in PD, LBD, and/or cerebrovascular cognitive impairment patients. Non-phase-locked alpha (8-12 Hz) and beta (13-30 Hz) oscillations were abnormally reduced (event-related desynchronization, ERD) in AD patients relative to CU. However, studies on patients with other dementias remain lacking. Delta and theta phase-locked EROs during oddball tasks may be useful neurophysiological biomarkers of cognitive systems at work in heuristic and intervention clinical trials performed in AD patients, but more research is needed regarding their potential role for other dementias.
Collapse
Affiliation(s)
- Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Tuba Aktürk
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
- Vocational School, Program of Electroneurophysiology, Istanbul Medipol University, Istanbul, Turkey
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | | | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Francesca Farina
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | - Lütfü Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Sanjeev Kumar
- Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | | | - Fiona Randall
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts, USA
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Görsev Yener
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Ebru Yıldırım
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
- Vocational School, Program of Electroneurophysiology, Istanbul Medipol University, Istanbul, Turkey
| | - Claudio Babiloni
- Alzheimer's Association, Chicago, Illinois, USA
- Institute for Research and Medical Care, Hospital San Raffaele of Cassino, Cassino, Italy
| |
Collapse
|
6
|
REACTIVITY OF POSTERIOR CORTICAL ELECTROENCEPHALOGRAPHIC ALPHA RHYTHMS DURING EYES OPENING IN COGNITIVELY INTACT OLDER ADULTS AND PATIENTS WITH DEMENTIA DUE TO ALZHEIMER'S AND LEWY BODY DISEASES. Neurobiol Aging 2022; 115:88-108. [DOI: 10.1016/j.neurobiolaging.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 03/17/2022] [Accepted: 04/02/2022] [Indexed: 12/19/2022]
|
7
|
Armstrong RA. Visual signs and symptoms of dementia with Lewy bodies. Clin Exp Optom 2021; 95:621-30. [DOI: 10.1111/j.1444-0938.2012.00770.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/31/2012] [Accepted: 04/03/2012] [Indexed: 11/28/2022] Open
|
8
|
Peláez Suárez AA, Berrillo Batista S, Pedroso Ibáñez I, Casabona Fernández E, Fuentes Campos M, Chacón LM. EEG-Derived Functional Connectivity Patterns Associated with Mild Cognitive Impairment in Parkinson's Disease. Behav Sci (Basel) 2021; 11:40. [PMID: 33806841 PMCID: PMC8005012 DOI: 10.3390/bs11030040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate EEG-derived functional connectivity (FC) patterns associated with mild cognitive impairment (MCI) in Parkinson's disease (PD). METHODS A sample of 15 patients without cognitive impairment (PD-WCI), 15 with MCI (PD-MCI), and 26 healthy subjects were studied. The EEG was performed in the waking functional state with eyes closed, for the functional analysis it was used the synchronization likelihood (SL) and graph theory (GT). RESULTS PD-MCI patients showed decreased FC in frequencies alpha, in posterior regions, and delta with a generalized distribution. Patients, compared to the healthy people, presented a decrease in segregation (lower clustering coefficient in alpha p = 0.003 in PD-MCI patients) and increased integration (shorter mean path length in delta (p = 0.004) and theta (p = 0.002) in PD-MCI patients). There were no significant differences in the network topology between the parkinsonian groups. In PD-MCI patients, executive dysfunction correlated positively with global connectivity in beta (r = 0.47) and negatively with the mean path length at beta (r = -0.45); alterations in working memory were negatively correlated with the mean path length at beta r = -0.45. CONCLUSIONS PD patients present alterations in the FC in all frequencies, those with MCI show less connectivity in the alpha and delta frequencies. The neural networks of the patients show a random topology, with a similar organization between patients with and without MCI. In PD-MCI patients, alterations in executive function and working memory are related to beta integration.
Collapse
Affiliation(s)
- Alejandro Armando Peláez Suárez
- Movement Disorders and Neurodegeneration Clinic, International Center for Neurological Restoration, Playa, Havana 11300, Cuba; (I.P.I.); (E.C.F.)
| | - Sheila Berrillo Batista
- Department of Clinical Neurophysiology, International Center for Neurological Restoration, Playa, Havana 11300, Cuba;
| | - Ivonne Pedroso Ibáñez
- Movement Disorders and Neurodegeneration Clinic, International Center for Neurological Restoration, Playa, Havana 11300, Cuba; (I.P.I.); (E.C.F.)
| | - Enrique Casabona Fernández
- Movement Disorders and Neurodegeneration Clinic, International Center for Neurological Restoration, Playa, Havana 11300, Cuba; (I.P.I.); (E.C.F.)
| | | | - Lilia Morales Chacón
- Department of Clinical Neurophysiology, International Center for Neurological Restoration, Playa, Havana 11300, Cuba;
| |
Collapse
|
9
|
Pal A, Pegwal N, Behari M, Sharma R. High delta and gamma EEG power in resting state characterise dementia in Parkinson’s patients. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Pascarelli MT, Del Percio C, De Pandis MF, Ferri R, Lizio R, Noce G, Lopez S, Rizzo M, Soricelli A, Nobili F, Arnaldi D, Famà F, Orzi F, Buttinelli C, Giubilei F, Salvetti M, Cipollini V, Franciotti R, Onofri M, Fuhr P, Gschwandtner U, Ransmayr G, Aarsland D, Parnetti L, Farotti L, Marizzoni M, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Yener G, Emek-Savaş DD, Triggiani AI, Paul Taylor J, McKeith I, Stocchi F, Vacca L, Hampel H, Frisoni GB, Bonanni L, Babiloni C. Abnormalities of resting-state EEG in patients with prodromal and overt dementia with Lewy bodies: Relation to clinical symptoms. Clin Neurophysiol 2020; 131:2716-2731. [PMID: 33039748 DOI: 10.1016/j.clinph.2020.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 06/29/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Here we tested if cortical sources of resting state electroencephalographic (rsEEG) rhythms may differ in sub-groups of patients with prodromal and overt dementia with Lewy bodies (DLB) as a function of relevant clinical symptoms. METHODS We extracted clinical, demographic and rsEEG datasets in matched DLB patients (N = 60) and control Alzheimer's disease (AD, N = 60) and healthy elderly (Nold, N = 60) seniors from our international database. The eLORETA freeware was used to estimate cortical rsEEG sources. RESULTS As compared to the Nold group, the DLB and AD groups generally exhibited greater spatially distributed delta source activities (DLB > AD) and lower alpha source activities posteriorly (AD > DLB). As compared to the DLB "controls", the DLB patients with (1) rapid eye movement (REM) sleep behavior disorders showed lower central alpha source activities (p < 0.005); (2) greater cognitive deficits exhibited higher parietal and central theta source activities as well as higher central, parietal, and occipital alpha source activities (p < 0.01); (3) visual hallucinations pointed to greater parietal delta source activities (p < 0.005). CONCLUSIONS Relevant clinical features were associated with abnormalities in spatial and frequency features of rsEEG source activities in DLB patients. SIGNIFICANCE Those features may be used as neurophysiological surrogate endpoints of clinical symptoms in DLB patients in future cross-validation prospective studies.
Collapse
Affiliation(s)
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Susanna Lopez
- Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, Aldo Moro University of Bari, Bari, Italy
| | - Marco Rizzo
- Oasi Research Institute - IRCCS, Troina, Italy
| | - Andrea Soricelli
- IRCCS SDN, Napoli, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Flavio Nobili
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Dario Arnaldi
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Orzi
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy; Neuromed: IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Virginia Cipollini
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Raffaella Franciotti
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marco Onofri
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology 2, Med Campus III, Faculty of Medicine, Johannes Kepler University, Kepler University Hospital, Krankenhausstr. 9, A-4020 Linz, Austria
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College University, London, UK
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Italy
| | - Lucia Farotti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Carlo De Lena
- Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Derya Durusu Emek-Savaş
- Department of Psychology and Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | | | | | - Ian McKeith
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Vacca
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Harald Hampel
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Brain and Spine Institute (ICM), François Lhermitte Building, France
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; San Raffaele of Cassino, Cassino, FR, Italy.
| |
Collapse
|
11
|
The Role of EEG in the Diagnosis, Prognosis and Clinical Correlations of Dementia with Lewy Bodies-A Systematic Review. Diagnostics (Basel) 2020; 10:diagnostics10090616. [PMID: 32825520 PMCID: PMC7555753 DOI: 10.3390/diagnostics10090616] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022] Open
Abstract
Despite improvements in diagnostic criteria for dementia with Lewy bodies (DLB), the ability to discriminate DLB from Alzheimer’s disease (AD) and other dementias remains suboptimal. Electroencephalography (EEG) is currently a supportive biomarker in the diagnosis of DLB. We performed a systematic review to better clarify the diagnostic and prognostic role of EEG in DLB and define the clinical correlates of various EEG features described in DLB. MEDLINE, EMBASE, and PsycINFO were searched using search strategies for relevant articles up to 6 August 2020. We included 43 studies comparing EEG in DLB with other diagnoses, 42 of them included a comparison of DLB with AD, 10 studies compared DLB with Parkinson’s disease dementia, and 6 studies compared DLB with other dementias. The studies were visual EEG assessment (6), quantitative EEG (35) and event-related potential studies (2). The most consistent observation was the slowing of the dominant EEG rhythm (<8 Hz) assessed visually or through quantitative EEG, which was observed in ~90% of patients with DLB and only ~10% of patients with AD. Other findings based on qualitative rating, spectral power analyses, connectivity, microstate and machine learning algorithms were largely heterogenous due to differences in study design, EEG acquisition, preprocessing and analysis. EEG protocols should be standardized to allow replication and validation of promising EEG features as potential biomarkers in DLB.
Collapse
|
12
|
Babiloni C, Pascarelli MT, Lizio R, Noce G, Lopez S, Rizzo M, Ferri R, Soricelli A, Nobili F, Arnaldi D, Famà F, Orzi F, Buttinelli C, Giubilei F, Salvetti M, Cipollini V, Bonanni L, Franciotti R, Onofrj M, Stirpe P, Fuhr P, Gschwandtner U, Ransmayr G, Aarsland D, Parnetti L, Farotti L, Marizzoni M, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Yener G, Emek-Savaş DD, Triggiani AI, Taylor JP, McKeith I, Stocchi F, Vacca L, Hampel H, Frisoni GB, De Pandis MF, Del Percio C. Abnormal cortical neural synchronization mechanisms in quiet wakefulness are related to motor deficits, cognitive symptoms, and visual hallucinations in Parkinson's disease patients: an electroencephalographic study. Neurobiol Aging 2020; 91:88-111. [DOI: 10.1016/j.neurobiolaging.2020.02.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/31/2020] [Accepted: 02/28/2020] [Indexed: 11/25/2022]
|
13
|
Güntekin B, Aktürk T, Yıldırım E, Yılmaz NH, Hanoğlu L, Yener G. Abnormalities in auditory and visual cognitive processes are differentiated with theta responses in patients with Parkinson's disease with and without dementia. Int J Psychophysiol 2020; 153:65-79. [PMID: 32339563 DOI: 10.1016/j.ijpsycho.2020.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 11/25/2022]
Abstract
The research on the abnormalities of event-related oscillations in Parkinson's disease (PD) was mostly studied with cognitively normal patients. The present study aims to show the adverse effects of cognitive decline in PD patients via the EEG-Brain Oscillations approach by comparing the electrophysiological responses in two modalities, i.e. auditory, and visual in which PD group show deficit. We conducted a study in which we analyzed event-related theta power and phase-locking during auditory and visual oddball paradigm. Cognitively normal PD (PDCN) patients (N = 15), PD with mild cognitive impairment (PDMCI) patients (N = 22), PD dementia (PDD) patients (N = 11) and healthy controls (HC) (N = 17) were included in the study. Neuropsychological assessments were applied to all participants. There was a gradual decrease in scores of neuropsychological tests (HC, PDCN, PDMCI, PDD, respectively). Most of the neuropsychological test scores of the participants were highly correlated with the theta power and theta phase locking values, especially over frontal-central areas. HC had higher theta phase-locking and power in comparison to PDMCI and PDD. The differentiation between HC and PDCN was specific to frontal-central areas. Theta power and theta phase-locking were decreased overall locations in PDMCI and PDD both during visual and auditory oddball paradigms compared with PDCN. The results indicate that theta responses in PD patients decreased gradually as the cognitive decline increased. We can conclude that complex abnormalities in their neurotransmitter and neuronal signal systems that occur with the progression of the disease could be responsible for these results.
Collapse
Affiliation(s)
- Bahar Güntekin
- Istanbul Medipol University, School of Medicine, Department of Biophysics, Istanbul, Turkey; REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul Medipol University, Istanbul, Turkey.
| | - Tuba Aktürk
- Istanbul Medipol University, Vocational School, Program of Electroneurophysiology, Istanbul, Turkey; Istanbul Medipol University, Graduate School of Health Sciences, Department of Neuroscience, Istanbul, Turkey
| | - Ebru Yıldırım
- Istanbul Medipol University, Vocational School, Program of Electroneurophysiology, Istanbul, Turkey; Istanbul Medipol University, Graduate School of Health Sciences, Department of Neuroscience, Istanbul, Turkey
| | - Nesrin Helvacı Yılmaz
- Istanbul Medipol University, School of Medicine, Department of Neurology, Istanbul, Turkey
| | - Lütfü Hanoğlu
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., Istanbul Medipol University, Istanbul, Turkey; Istanbul Medipol University, School of Medicine, Department of Neurology, Istanbul, Turkey
| | - Görsev Yener
- Dokuz Eylül University Medical School, Department of Neurology, Izmir, Turkey; Dokuz Eylül University, Brain Dynamics Multidisciplinary Research Center, Izmir, Turkey
| |
Collapse
|
14
|
Carmona Arroyave JA, Tobón Quintero CA, Suárez Revelo JJ, Ochoa Gómez JF, García YB, Gómez LM, Pineda Salazar DA. Resting functional connectivity and mild cognitive impairment in Parkinson’s disease. An electroencephalogram study. FUTURE NEUROLOGY 2019. [DOI: 10.2217/fnl-2018-0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective: Parkinson’s disease (PD) is characterized by cognitive deficits. There is not clarity about electroencephalogram (EEG) connectivity related to the cognitive profile of patients. Our objective was to evaluate connectivity over resting EEG in nondemented PD. Methods: PD subjects with and without mild cognitive impairment (MCI) were assessed using coherence from resting EEG for local, intra and interhemispheric connectivity. Results: PD subjects without MCI (PD-nMCI) had lower intra and interhemispheric coherence in alpha2 compared with controls. PD with MCI (PD-MCI) showed higher intra and posterior interhemispheric coherence in alpha2 and beta1, respectively, in comparison to PD-nMCI. PD-MCI presented lower frontal coherence in beta frequencies compared with PD-nMCI. Conclusion: EEG coherence measures indicate distinct cortical activity in PD with and without MCI.
Collapse
Affiliation(s)
- Jairo Alexander Carmona Arroyave
- Neuroscience Group, Medical School, University of Antioquia, SIU, Calle 62 No. 52–59, Medellín, Colombia
- Neuropsychology & Behavior Group (GRUNECO), Medical School, University of Antioquia, SIU – Área Asistencial, Calle 62 No. 52–59, Medellín, Colombia
| | - Carlos Andrés Tobón Quintero
- Neuroscience Group, Medical School, University of Antioquia, SIU, Calle 62 No. 52–59, Medellín, Colombia
- Neuropsychology & Behavior Group (GRUNECO), Medical School, University of Antioquia, SIU – Área Asistencial, Calle 62 No. 52–59, Medellín, Colombia
| | - Jasmín Jimena Suárez Revelo
- Neuroscience Group, Medical School, University of Antioquia, SIU, Calle 62 No. 52–59, Medellín, Colombia
- Bioinstrumentation & Clinical Engineering Research Group (GIBIC), Bioengineering Program, University of Antioquia, Calle 70 No. 52–21, Medellín, Colombia
| | - John Fredy Ochoa Gómez
- Neuroscience Group, Medical School, University of Antioquia, SIU, Calle 62 No. 52–59, Medellín, Colombia
- Bioinstrumentation & Clinical Engineering Research Group (GIBIC), Bioengineering Program, University of Antioquia, Calle 70 No. 52–21, Medellín, Colombia
| | - Yamile Bocanegra García
- Neuroscience Group, Medical School, University of Antioquia, SIU, Calle 62 No. 52–59, Medellín, Colombia
- Neuropsychology & Behavior Group (GRUNECO), Medical School, University of Antioquia, SIU – Área Asistencial, Calle 62 No. 52–59, Medellín, Colombia
| | - Leonardo Moreno Gómez
- Neurology Unit, Pablo Tobón Uribe Hospital, Calle 78B No. 69–240, Medellín, Colombia
| | - David Antonio Pineda Salazar
- Neuroscience Group, Medical School, University of Antioquia, SIU, Calle 62 No. 52–59, Medellín, Colombia
- Neuropsychology & Behavior Group (GRUNECO), Medical School, University of Antioquia, SIU – Área Asistencial, Calle 62 No. 52–59, Medellín, Colombia
- Neuropsychology & Behavior Group (GRUNECO), Psychology Department, University of San Buenaventura, Carrera 56 C No. 51–110, Medellín, Colombia
| |
Collapse
|
15
|
Mostile G, Giuliano L, Monastero R, Luca A, Cicero CE, Donzuso G, Dibilio V, Baschi R, Terranova R, Restivo V, Sofia V, Zappia M, Nicoletti A. Electrocortical networks in Parkinson's disease patients with Mild Cognitive Impairment. The PaCoS study. Parkinsonism Relat Disord 2019; 64:156-162. [PMID: 30981665 DOI: 10.1016/j.parkreldis.2019.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Parkinson's Disease (PD) is frequently associated with cognitive dysfunction ranging from Mild Cognitive Impairment (PD-MCI) to dementia. Few electrophysiological studies are available evaluating potential pathogenetic mechanisms linked to cognitive impairment in PD since its initial phases. The objective of the study is to analyze electrocortical networks related with cognitive decline in PD-MCI for identifying possible early electrophysiological markers of cognitive impairment in PD. METHODS From the PaCoS (Parkinson's disease Cognitive impairment Study) cohort, a sample of 102 subjects including 46 PD-MCI and 56 PD with normal cognition (PD-NC) was selected based on the presence of a neuropsychological assessment and at least one EEG recording. EEG signal epochs were analysed using Independent Component Analysis LORETA and spectral analysis by computing the Power Spectral Density (PSD) of site-specific signal epochs. RESULTS LORETA analysis revealed significant differences in PD-MCI patients compared to PD-NC, with a decreased network involving alpha activity over the occipital lobe, an increased network involving beta activity over the frontal lobe associated with a reduction over the parietal lobe, an increased network involving theta and delta activity over the frontal lobe and a reduction of networks involving theta and delta activity in the parietal lobe. Quantitative EEG analysis showed a significant decrease of alpha PSD over the occipital regions and an increase of delta PSD over the left temporal region in PD-MCI as compared to PD-NC. CONCLUSION Electrocortical abnormalities detected in PD-MCI patients may represent the instrumental counterpart of early cognitive decline in PD.
Collapse
Affiliation(s)
- Giovanni Mostile
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Loretta Giuliano
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Roberto Monastero
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Neurology, University of Palermo, Via La Loggia 1, 90129, Palermo, Italy
| | - Antonina Luca
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Calogero Edoardo Cicero
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Giulia Donzuso
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Valeria Dibilio
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Roberta Baschi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Neurology, University of Palermo, Via La Loggia 1, 90129, Palermo, Italy
| | - Roberta Terranova
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Vincenzo Restivo
- Department of Sciences for Health Promotion and Mother-Child Care, University of Palermo, Via Del Vespro 133, 90127, Palermo, Italy
| | - Vito Sofia
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Mario Zappia
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Alessandra Nicoletti
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via S. Sofia 78, 95123, Catania, Italy.
| |
Collapse
|
16
|
Babiloni C, Del Percio C, Lizio R, Noce G, Lopez S, Soricelli A, Ferri R, Pascarelli MT, Catania V, Nobili F, Arnaldi D, Famà F, Orzi F, Buttinelli C, Giubilei F, Bonanni L, Franciotti R, Onofrj M, Stirpe P, Fuhr P, Gschwandtner U, Ransmayr G, Fraioli L, Parnetti L, Farotti L, Pievani M, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Yener G, Emek-Savaş DD, Triggiani AI, Taylor JP, McKeith I, Stocchi F, Vacca L, Frisoni GB, De Pandis MF. Levodopa may affect cortical excitability in Parkinson's disease patients with cognitive deficits as revealed by reduced activity of cortical sources of resting state electroencephalographic rhythms. Neurobiol Aging 2019; 73:9-20. [DOI: 10.1016/j.neurobiolaging.2018.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
|
17
|
Choi MR, Kim JY, Yi ES. Development and validation of exercise rehabilitation program for cognitive function and activity of daily living improvement in mild dementia elderly. J Exerc Rehabil 2018; 14:207-212. [PMID: 29740553 PMCID: PMC5931155 DOI: 10.12965/jer.1836176.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/05/2018] [Indexed: 11/22/2022] Open
Abstract
We investigated the effect of exercise rehabilitation based on fine motor movement for the elderly with mild dementia. Using electroencephalogram (EEG), the change of brain wave of them based on fine motor movement and comparing the improvement level of cognitive ability and performance capability in daily living activity was recorded. The subjects were the elderly with mild dementia living in a sanatorium in Incheon city. Mini-Mental Status Examination, activity of daily living (ADL), and the influence on depression were examined. After 8-week exercise program, significant difference in cognitive function and ADL was observed, however, and there was no significant difference in depression. In the EEG, there was a significant difference in α-wave. This study suggests the chance to remind the necessity of exercise programs for improving cognitive function and ADL of the elderly with dementia.
Collapse
Affiliation(s)
- Mi-Ri Choi
- Department of Exercise Rehabilitation & Welfare, College of Health Science, Gachon University, Incheon, Korea
| | - Ji-Youn Kim
- Exercise Rehabilitation Convergence Institute, Gachon University, Incheon, Korea
| | - Eun-Surk Yi
- Department of Exercise Rehabilitation & Welfare, College of Health Science, Gachon University, Incheon, Korea
| |
Collapse
|
18
|
Babiloni C, Del Percio C, Lizio R, Noce G, Cordone S, Lopez S, Soricelli A, Ferri R, Pascarelli MT, Nobili F, Arnaldi D, Famà F, Aarsland D, Orzi F, Buttinelli C, Giubilei F, Onofrj M, Stocchi F, Stirpe P, Fuhr P, Gschwandtner U, Ransmayr G, Caravias G, Garn H, Sorpresi F, Pievani M, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Başar E, Yener G, Emek-Savaş DD, Triggiani AI, Franciotti R, Frisoni GB, Bonanni L, De Pandis MF. Abnormalities of Cortical Neural Synchronization Mechanisms in Subjects with Mild Cognitive Impairment due to Alzheimer's and Parkinson's Diseases: An EEG Study. J Alzheimers Dis 2018. [PMID: 28621693 DOI: 10.3233/jad-160883] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this retrospective and exploratory study was that the cortical sources of resting state eyes-closed electroencephalographic (rsEEG) rhythms might reveal different abnormalities in cortical neural synchronization in groups of patients with mild cognitive impairment due to Alzheimer's disease (ADMCI) and Parkinson's disease (PDMCI) as compared to healthy subjects. Clinical and rsEEG data of 75 ADMCI, 75 PDMCI, and 75 cognitively normal elderly (Nold) subjects were available in an international archive. Age, gender, and education were carefully matched in the three groups. The Mini-Mental State Evaluation (MMSE) was matched between the ADMCI and PDMCI groups. Individual alpha frequency peak (IAF) was used to determine the delta, theta, alpha1, alpha2, and alpha3 frequency band ranges. Fixed beta1, beta2, and gamma bands were also considered. eLORETA estimated the rsEEG cortical sources. Receiver operating characteristic curve (ROC) classified these sources across individuals. Results showed that compared to the Nold group, the posterior alpha2 and alpha3 source activities were more abnormal in the ADMCI than the PDMCI group, while the parietal delta source activities were more abnormal in the PDMCI than the ADMCI group. The parietal delta and alpha sources correlated with MMSE score and correctly classified the Nold and diseased individuals (area under the ROC = 0.77-0.79). In conclusion, the PDMCI and ADMCI patients showed different features of cortical neural synchronization at delta and alpha frequencies underpinning brain arousal and vigilance in the quiet wakefulness. Future prospective cross-validation studies will have to test these rsEEG markers for clinical applications and drug discovery.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy.,Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy.,Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Giuseppe Noce
- Department of Integrated Imaging, IRCCS SDN, Naples, Italy
| | - Susanna Cordone
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy
| | - Andrea Soricelli
- Department of Integrated Imaging, IRCCS SDN, Naples, Italy.,Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Raffaele Ferri
- Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy
| | - Maria Teresa Pascarelli
- Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy
| | - Flavio Nobili
- Clinical Neurology, dept of Neuroscience (DiNOGMI), University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Dario Arnaldi
- Clinical Neurology, dept of Neuroscience (DiNOGMI), University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Francesco Famà
- Clinical Neurology, dept of Neuroscience (DiNOGMI), University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College University, London, UK
| | - Francesco Orzi
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Paola Stirpe
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology and Psychiatry and Faculty of Medicine, Johannes Kepler University Linz, General Hospital of the City of Linz, Linz, Austria
| | - Georg Caravias
- Department of Neurology and Psychiatry and Faculty of Medicine, Johannes Kepler University Linz, General Hospital of the City of Linz, Linz, Austria
| | - Heinrich Garn
- AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | | | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabrizia D'Antonio
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Italy
| | - Carlo De Lena
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, University of Istanbul-Medipol, Istanbul, Turkey
| | - Erol Başar
- Department of Neurosciences and Department of Neurology, Dokuz Eylül University Medical School, Izmir, Turkey
| | - Görsev Yener
- Department of Psychology and Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Derya Durusu Emek-Savaş
- Department of Psychology and Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | | | - Raffaella Franciotti
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | |
Collapse
|
19
|
Güntekin B, Hanoğlu L, Güner D, Yılmaz NH, Çadırcı F, Mantar N, Aktürk T, Emek-Savaş DD, Özer FF, Yener G, Başar E. Cognitive Impairment in Parkinson's Disease Is Reflected with Gradual Decrease of EEG Delta Responses during Auditory Discrimination. Front Psychol 2018. [PMID: 29515489 PMCID: PMC5826339 DOI: 10.3389/fpsyg.2018.00170] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease that is characterized by loss of dopaminergic neurons in the substantia nigra. Mild Cognitive impairment (MCI) and dementia may come along with the disease. New indicators are necessary for detecting patients that are likely to develop dementia. Electroencephalogram (EEG) Delta responses are one of the essential electrophysiological indicators that could show the cognitive decline. Many research in literature showed an increase of delta responses with the increased cognitive load. Furthermore, delta responses were decreased in MCI and Alzheimer disease in comparison to healthy controls during cognitive paradigms. There was no previous study that analyzed the delta responses in PD patients with cognitive deficits. The present study aims to fulfill this important gap. 32 patients with Parkinson’s disease (12 of them were without any cognitive deficits, 10 of them were PD with MCI, and 10 of them were PD with dementia) and 16 healthy subjects were included in the study. Auditory simple stimuli and Auditory Oddball Paradigms were applied. The maximum amplitudes of each subject’s delta response (0.5–3.5 Hz) in 0–600 ms were measured for each electrode and for each stimulation. There was a significant stimulation × group effect [F(df = 6,88) = 3,21; p < 0.015; ηp2 = 0.180], which showed that the difference between groups was specific to the stimulation. Patients with Parkinson’s disease (including PD without cognitive deficit, PD with MCI, and PD with dementia) had reduced delta responses than healthy controls upon presentation of target stimulation (p < 0.05, for all comparisons). On the other hand, this was not the case for non-target and simple auditory stimulation. Furthermore, delta responses gradually decrease according to the cognitive impairment in patients with PD. Conclusion: The results of the present study showed that cognitive decline in PD could be represented with decreased event related delta responses during cognitive stimulations. Furthermore, the present study once more strengthens the hypothesis that decrease of delta oscillatory responses could be the candidate of a general electrophysiological indicator for cognitive impairment.
Collapse
Affiliation(s)
- Bahar Güntekin
- Department of Biophysics, School of International Medicine, Istanbul Medipol University, Istanbul, Turkey.,REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Lütfü Hanoğlu
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey.,Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Dilan Güner
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine Research, Istanbul University, Istanbul, Turkey
| | - Nesrin H Yılmaz
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Fadime Çadırcı
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey.,Department of Neuroscience, Institute of Medical Science, Istanbul Medipol University, Istanbul, Turkey
| | - Nagihan Mantar
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey.,Department of Neuroscience, Institute of Medical Science, Istanbul Medipol University, Istanbul, Turkey
| | - Tuba Aktürk
- REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey.,Department of Neuroscience, Institute of Medical Science, Istanbul Medipol University, Istanbul, Turkey
| | - Derya D Emek-Savaş
- Department of Psychology, Faculty of Letters, Dokuz Eylül University, Izmir, Turkey
| | - Fahriye F Özer
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Department of Neurology, Koç University Hospital, Istanbul, Turkey
| | - Görsev Yener
- Department of Neurology, Dokuz Eylül University School of Medicine, Izmir, Turkey.,Brain Dynamics Multidisciplinary Research Center, Dokuz Eylül University, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Erol Başar
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| |
Collapse
|
20
|
Babiloni C, Del Percio C, Lizio R, Noce G, Lopez S, Soricelli A, Ferri R, Nobili F, Arnaldi D, Famà F, Aarsland D, Orzi F, Buttinelli C, Giubilei F, Onofrj M, Stocchi F, Stirpe P, Fuhr P, Gschwandtner U, Ransmayr G, Garn H, Fraioli L, Pievani M, Frisoni GB, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Başar E, Yener G, Emek-Savaş DD, Triggiani AI, Franciotti R, Taylor JP, Vacca L, De Pandis MF, Bonanni L. Abnormalities of resting-state functional cortical connectivity in patients with dementia due to Alzheimer's and Lewy body diseases: an EEG study. Neurobiol Aging 2017; 65:18-40. [PMID: 29407464 DOI: 10.1016/j.neurobiolaging.2017.12.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 11/30/2022]
Abstract
Previous evidence showed abnormal posterior sources of resting-state delta (<4 Hz) and alpha (8-12 Hz) rhythms in patients with Alzheimer's disease with dementia (ADD), Parkinson's disease with dementia (PDD), and Lewy body dementia (DLB), as cortical neural synchronization markers in quiet wakefulness. Here, we tested the hypothesis of additional abnormalities in functional cortical connectivity computed in those sources, in ADD, considered as a "disconnection cortical syndrome", in comparison with PDD and DLB. Resting-state eyes-closed electroencephalographic (rsEEG) rhythms had been collected in 42 ADD, 42 PDD, 34 DLB, and 40 normal healthy older (Nold) participants. Exact low-resolution brain electromagnetic tomography (eLORETA) freeware estimated the functional lagged linear connectivity (LLC) from rsEEG cortical sources in delta, theta, alpha, beta, and gamma bands. The area under receiver operating characteristic (AUROC) curve indexed the classification accuracy between Nold and diseased individuals (only values >0.7 were considered). Interhemispheric and intrahemispheric LLCs in widespread delta sources were abnormally higher in the ADD group and, unexpectedly, normal in DLB and PDD groups. Intrahemispheric LLC was reduced in widespread alpha sources dramatically in ADD, markedly in DLB, and moderately in PDD group. Furthermore, the interhemispheric LLC in widespread alpha sources showed lower values in ADD and DLB than PDD groups. At the individual level, AUROC curves of LLC in alpha sources exhibited better classification accuracies for the discrimination of ADD versus Nold individuals (0.84) than for DLB versus Nold participants (0.78) and PDD versus Nold participants (0.75). Functional cortical connectivity markers in delta and alpha sources suggest a more compromised neurophysiological reserve in ADD than DLB, at both group and individual levels.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy; Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy.
| | | | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy; Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Giuseppe Noce
- Department of Integrated Imaging, IRCCS SDN, Naples, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy
| | - Andrea Soricelli
- Department of Integrated Imaging, IRCCS SDN, Naples, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Raffaele Ferri
- Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy
| | - Flavio Nobili
- Clinical Neurology, Department of Neuroscience (DiNOGMI), University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Dario Arnaldi
- Clinical Neurology, Department of Neuroscience (DiNOGMI), University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Francesco Famà
- Clinical Neurology, Department of Neuroscience (DiNOGMI), University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College University, London, UK
| | - Francesco Orzi
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Paola Stirpe
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology and Psychiatry and Faculty of Medicine, Johannes Kepler University Linz, General Hospital of the City of Linz, Linz, Austria
| | - Heinrich Garn
- AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | | | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Fabrizia D'Antonio
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Rome, Italy
| | - Carlo De Lena
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, University of Istanbul-Medipol, Istanbul, Turkey
| | - Erol Başar
- IBG, Departments of Neurology and Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Görsev Yener
- IBG, Departments of Neurology and Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Derya Durusu Emek-Savaş
- Department of Psychology and Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | | | - Raffaella Franciotti
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Laura Vacca
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy; Casa di Cura Privata del Policlinico (CCPP) Milano SpA, Milan, Italy
| | | | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
21
|
Abstract
This chapter describes the visual problems likely to be encountered in Parkinson's disease (PD) and whether such signs are useful in differentiating the parkinsonian syndromes. Visual dysfunction in PD may involve visual acuity, contrast sensitivity, color discrimination, pupil reactivity, saccadic and pursuit eye movements, motion perception, visual fields, and visual processing speeds. In addition, disturbance of visuospatial orientation, facial recognition problems, rapid eye movement (REM) sleep behavior disorder, and chronic visual hallucinations may be present. Problems affecting pupil reactivity, stereopsis, pursuit eye movement, and visuomotor adaptation, when accompanied by REM sleep behavior disorder, could be early features of PD. Dementia associated with PD is associated with enhanced eye movement problems, visuospatial deficits, and visual hallucinations. Visual dysfunction may be a useful diagnostic feature in differentiating PD from other parkinsonian symptoms, visual hallucinations, visuospatial dysfunction, and variation in saccadic eye movement problems being particularly useful discriminating features.
Collapse
|
22
|
Rusterholz T, Achermann P, Dürr R, Koenig T, Tarokh L. Global field synchronization in gamma range of the sleep EEG tracks sleep depth: Artifact introduced by a rectangular analysis window. J Neurosci Methods 2017; 284:21-26. [PMID: 28411116 DOI: 10.1016/j.jneumeth.2017.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/22/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. NEW METHOD Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. RESULTS Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. COMPARISON WITH EXISTING METHOD(S) Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. CONCLUSIONS We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range.
Collapse
Affiliation(s)
- Thomas Rusterholz
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland; University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Peter Achermann
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland; University of Zurich and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland; University of Zurich, Zurich Center for Integrative Human Physiology, Zurich, Switzerland; University of Zurich, Zurich Center for Interdisciplinary Sleep Research, Zurich, Switzerland.
| | - Roland Dürr
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Thomas Koenig
- University Hospital of Psychiatry Bern, Translational Research Center, University of Bern, Switzerland
| | - Leila Tarokh
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland; University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, USA
| |
Collapse
|
23
|
Babiloni C, Del Percio C, Lizio R, Noce G, Cordone S, Lopez S, Soricelli A, Ferri R, Pascarelli MT, Nobili F, Arnaldi D, Aarsland D, Orzi F, Buttinelli C, Giubilei F, Onofrj M, Stocchi F, Stirpe P, Fuhr P, Gschwandtner U, Ransmayr G, Caravias G, Garn H, Sorpresi F, Pievani M, Frisoni GB, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Başar E, Yener G, Emek-Savaş DD, Triggiani AI, Franciotti R, De Pandis MF, Bonanni L. Abnormalities of cortical neural synchronization mechanisms in patients with dementia due to Alzheimer's and Lewy body diseases: an EEG study. Neurobiol Aging 2017; 55:143-158. [PMID: 28454845 DOI: 10.1016/j.neurobiolaging.2017.03.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/15/2022]
Abstract
The aim of this retrospective exploratory study was that resting state eyes-closed electroencephalographic (rsEEG) rhythms might reflect brain arousal in patients with dementia due to Alzheimer's disease dementia (ADD), Parkinson's disease dementia (PDD), and dementia with Lewy body (DLB). Clinical and rsEEG data of 42 ADD, 42 PDD, 34 DLB, and 40 healthy elderly (Nold) subjects were available in an international archive. Demography, education, and Mini-Mental State Evaluation score were not different between the patient groups. Individual alpha frequency peak (IAF) determined the delta, theta, alpha 1, alpha 2, and alpha 3 frequency bands. Fixed beta 1, beta 2, and gamma bands were also considered. rsEEG cortical sources were estimated by means of the exact low-resolution brain electromagnetic source tomography and were then classified across individuals, on the basis of the receiver operating characteristic curves. Compared to Nold, IAF showed marked slowing in PDD and DLB and moderate slowing in ADD. Furthermore, all patient groups showed lower posterior alpha 2 source activities. This effect was dramatic in ADD, marked in DLB, and moderate in PDD. These groups also showed higher occipital delta source activities, but this effect was dramatic in PDD, marked in DLB, and moderate in ADD. The posterior delta and alpha sources allowed good classification accuracy (approximately 0.85-0.90) between the Nold subjects and patients, and between ADD and PDD patients. In quiet wakefulness, delta and alpha sources unveiled different spatial and frequency features of the cortical neural synchronization underpinning brain arousal in ADD, PDD, and DLB patients. Future prospective cross-validation studies should test these rsEEG markers for clinical applications and drug discovery.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy; Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy.
| | | | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy; Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Giuseppe Noce
- Department of Integrated Imaging, IRCCS SDN, Naples, Italy
| | - Susanna Cordone
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy
| | - Andrea Soricelli
- Department of Integrated Imaging, IRCCS SDN, Naples, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Raffaele Ferri
- Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Maria Teresa Pascarelli
- Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Flavio Nobili
- Department of Neuroscience (DiNOGMI), Clinical Neurology, University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience (DiNOGMI), Clinical Neurology, University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College University, London, UK
| | - Francesco Orzi
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Paola Stirpe
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
| | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology and Psychiatry and Faculty of Medicine, Johannes Kepler University Linz, General Hospital of the City of Linz, Linz, Austria
| | - Georg Caravias
- Department of Neurology and Psychiatry and Faculty of Medicine, Johannes Kepler University Linz, General Hospital of the City of Linz, Linz, Austria
| | - Heinrich Garn
- AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | | | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Fabrizia D'Antonio
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Rome, Italy
| | - Carlo De Lena
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, University of Istanbul-Medipol, Istanbul, Turkey
| | - Erol Başar
- Department of Neurosciences, Dokuz Eylül University Medical School, Izmir, Turkey; Department of Neurology, Dokuz Eylül University Medical School, Izmir, Turkey
| | - Görsev Yener
- Department of Psychology, Dokuz Eylül University, Izmir, Turkey; Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Derya Durusu Emek-Savaş
- Department of Psychology, Dokuz Eylül University, Izmir, Turkey; Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | | | - Raffaella Franciotti
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
24
|
Quantitative EEG and Cognitive Decline in Parkinson's Disease. PARKINSONS DISEASE 2016; 2016:9060649. [PMID: 27148466 PMCID: PMC4842380 DOI: 10.1155/2016/9060649] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Cognitive decline is common with the progression of Parkinson's disease (PD). Different candidate biomarkers are currently studied for the risk of dementia in PD. Several studies have shown that quantitative EEG (QEEG) is a promising predictor of PD-related cognitive decline. In this paper we briefly outline the basics of QEEG analysis and analyze the recent publications addressing the predictive value of QEEG in the context of cognitive decline in PD. The MEDLINE database was searched for relevant publications from January 01, 2005, to March 02, 2015. Twenty-four studies reported QEEG findings in various cognitive states in PD. Spectral and connectivity markers of QEEG could help to discriminate between PD patients with different level of cognitive decline. QEEG variables correlate with tools for cognitive assessment over time and are associated with significant hazard ratios to predict PD-related dementia. QEEG analysis shows high test-retest reliability and avoids learning effects associated with some neuropsychological testing; it is noninvasive and relatively easy to repeat.
Collapse
|
25
|
Kitsune GL, Cheung CHM, Brandeis D, Banaschewski T, Asherson P, McLoughlin G, Kuntsi J. A Matter of Time: The Influence of Recording Context on EEG Spectral Power in Adolescents and Young Adults with ADHD. Brain Topogr 2015; 28:580-90. [PMID: 25200165 PMCID: PMC4475242 DOI: 10.1007/s10548-014-0395-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/30/2014] [Indexed: 11/24/2022]
Abstract
Elevated theta or theta/beta ratio is often reported in attention deficit hyperactivity disorder (ADHD), but the consistency across studies and the relation to hypoarousal are increasingly questioned. Reports of elevated delta related to maturational lag and of attenuated beta activity are less well replicated. Some critical inconsistencies could relate to differences in recording context. We examined if resting-state EEG power or global field synchronization (GFS) differed between recordings made at the beginning and end of a 1.5 h testing session in 76 adolescents and young adults with ADHD, and 85 controls. In addition, we aimed to examine the effect of IQ on any potential group differences. Both regional and midline electrodes yielded group main effects for delta, trends in theta, but no differences in alpha or theta/beta ratio. An additional group difference in beta was detected when using regions. Group by time interactions in delta and theta became significant when controlling for IQ. The ADHD group had higher delta and theta power at time-1, but not at time-2, whereas beta power was elevated only at time-2. GFS did not differ between groups or condition. We show some ADHD-control differences on EEG spectral power varied with recording time within a single recording session, with both IQ and electrode selection having a small but significant influence on observed differences. Our findings demonstrate the effect of recording context on resting-state EEG, and highlight the importance of accounting for these variables to ensure consistency of results in future studies.
Collapse
Affiliation(s)
- Glenn L. Kitsune
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Celeste H. M. Cheung
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
- Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Philip Asherson
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Gráinne McLoughlin
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Jonna Kuntsi
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| |
Collapse
|
26
|
Cromarty RA, Elder GJ, Graziadio S, Baker M, Bonanni L, Onofrj M, O'Brien JT, Taylor JP. Neurophysiological biomarkers for Lewy body dementias. Clin Neurophysiol 2015; 127:349-359. [PMID: 26183755 PMCID: PMC4727506 DOI: 10.1016/j.clinph.2015.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 06/05/2015] [Accepted: 06/23/2015] [Indexed: 11/07/2022]
Abstract
Biomarkers are needed to improve Lewy body dementia (LBD) diagnosis and measure treatment response. There is substantial heterogeneity in neurophysiology biomarker methodologies limiting comparison. However, there is tentative evidence to suggest neurophysiological approaches may show promise as potential biomarkers of LBD.
Objective Lewy body dementias (LBD) include both dementia with Lewy bodies (DLB) and Parkinson’s disease with dementia (PDD), and the differentiation of LBD from other neurodegenerative dementias can be difficult. Currently, there are few biomarkers which might assist early diagnosis, map onto LBD symptom severity, and provide metrics of treatment response. Traditionally, biomarkers in LBD have focussed on neuroimaging modalities; however, as biomarkers need to be simple, inexpensive and non-invasive, neurophysiological approaches might also be useful as LBD biomarkers. Methods In this review, we searched PubMED and PsycINFO databases in a semi-systematic manner in order to identify potential neurophysiological biomarkers in the LBDs. Results We identified 1491 studies; of these, 37 studies specifically examined neurophysiological biomarkers in LBD patients. We found that there was substantial heterogeneity with respect to methodologies and patient cohorts. Conclusion Generally, many of the findings have yet to be replicated, although preliminary findings reinforce the potential utility of approaches such as quantitative electroencephalography and motor cortical stimulation paradigms. Significance Various neurophysiological techniques have the potential to be useful biomarkers in the LBDs. We recommend that future studies focus on maximising the diagnostic specificity and sensitivity of the most promising neurophysiological biomarkers.
Collapse
Affiliation(s)
- Ruth A Cromarty
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - Greg J Elder
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Sara Graziadio
- Institute of Neuroscience, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mark Baker
- Institute of Neuroscience, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura Bonanni
- Clinica Neurologica, Dipartimento di Neuroscienze e Imaging, Università "G.D'Annunzio" Chieti-Pescara, Italy
| | - Marco Onofrj
- Clinica Neurologica, Dipartimento di Neuroscienze e Imaging, Università "G.D'Annunzio" Chieti-Pescara, Italy
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - John-Paul Taylor
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
27
|
Armstrong R, Kergoat H. Oculo-visual changes and clinical considerations affecting older patients with dementia. Ophthalmic Physiol Opt 2015; 35:352-76. [DOI: 10.1111/opo.12220] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 05/19/2015] [Indexed: 12/18/2022]
Affiliation(s)
| | - Hélène Kergoat
- École d'optométrie; Université de Montréal; Montreal Canada
| |
Collapse
|
28
|
Abstract
In the last decade, the brain's oscillatory responses have invaded the literature. The studies on delta (0.5-3.5Hz) oscillatory responses in humans upon application of cognitive paradigms showed that delta oscillations are related to cognitive processes, mainly in decision making and attentional processes. The present manuscript comprehensively reviews the studies on delta oscillatory responses upon cognitive stimulation in healthy subjects and in different pathologies, namely Alzheimer's disease, Mild Cognitive Impairment (MCI), bipolar disorder, schizophrenia and alcoholism. Further delta oscillatory response upon presentation of faces, facial expressions, and affective pictures are reviewed. The relationship between pre-stimulus delta activity and post-stimulus evoked and event-related responses and/or oscillations is discussed. Cross-frequency couplings of delta oscillations with higher frequency windows are also included in the review. The conclusion of this review includes several important remarks, including that delta oscillatory responses are involved in cognitive and emotional processes. A decrease of delta oscillatory responses could be a general electrophysiological marker for cognitive dysfunction (Alzheimer's disease, MCI, bipolar disorder, schizophrenia and alcoholism). The pre-stimulus activity (phase or amplitude changes in delta activity) has an effect on post-stimulus EEG responses.
Collapse
Affiliation(s)
- Bahar Güntekin
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul 34156, Turkey.
| | - Erol Başar
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul 34156, Turkey
| |
Collapse
|
29
|
Devergnas A, Pittard D, Bliwise D, Wichmann T. Relationship between oscillatory activity in the cortico-basal ganglia network and parkinsonism in MPTP-treated monkeys. Neurobiol Dis 2014; 68:156-66. [PMID: 24768805 DOI: 10.1016/j.nbd.2014.04.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/08/2014] [Accepted: 04/12/2014] [Indexed: 11/26/2022] Open
Abstract
Parkinsonism is associated with changes in oscillatory activity patterns and increased synchronization of neurons in the basal ganglia and cortex in patients and animal models of Parkinson's disease, but the relationship between these changes and the severity of parkinsonian signs remains unclear. We examined this relationship by studying changes in local field potentials (LFPs) in the internal pallidal segment (GPi) and the subthalamic nucleus (STN), and in encephalographic signals (EEG) from the primary motor cortex (M1) in Rhesus monkeys which were rendered progressively parkinsonian by repeated systemic injections of small doses of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Observations during wakefulness and sleep (defined by EEG and video records) were analyzed separately. The severity of parkinsonism correlated with increases in spectral power at frequencies below 15.5Hz in M1 and GPi and reductions in spectral power at frequencies above 15.6Hz with little change in STN. The severity of parkinsonism also correlated with increases in the coherence between M1 EEG and basal ganglia LFPs in the low frequency band. Levodopa treatment reduced low-frequency activity and increased high-frequency activity in all three areas, but did not affect coherence. The state of arousal also affected LFP and EEG signals in all three structures, particularly in the STN. These results suggest that parkinsonism-associated changes in alpha and low-beta band oscillatory activity can be detected early in the parkinsonian state in M1 and GPi. Interestingly, oscillations detectable in STN LFP signals (including oscillations in the beta-band) do not appear to correlate strongly with the severity of mild-to-moderate parkinsonism in these animals. Levodopa-induced changes in oscillatory M1 EEG and basal ganglia LFP patterns do not necessarily represent a normalization of abnormalities caused by dopamine depletion.
Collapse
Affiliation(s)
- Annaelle Devergnas
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, GA 30329, USA.
| | - Damien Pittard
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Donald Bliwise
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Neurology, Emory University, Atlanta, GA 30322, USA; Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
30
|
Michels L, Lüchinger R, Koenig T, Martin E, Brandeis D. Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory. PLoS One 2012; 7:e39447. [PMID: 22792176 PMCID: PMC3391196 DOI: 10.1371/journal.pone.0039447] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 05/21/2012] [Indexed: 12/26/2022] Open
Abstract
In humans, theta band (5–7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-)dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was –in contrast to EEG power– positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and synchronization and that these opposite correlations with different distributions undergo similar and significant neuronal developments with brain maturation.
Collapse
Affiliation(s)
- Lars Michels
- Center for MR-Research, University Children's Hospital, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
31
|
Babiloni C, De Pandis MF, Vecchio F, Buffo P, Sorpresi F, Frisoni GB, Rossini PM. Cortical sources of resting state electroencephalographic rhythms in Parkinson's disease related dementia and Alzheimer's disease. Clin Neurophysiol 2011; 122:2355-64. [PMID: 21924950 DOI: 10.1016/j.clinph.2011.03.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 03/03/2011] [Accepted: 03/26/2011] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Here we test the hypothesis that cortical source mapping of resting state electroencephalographic (EEG) rhythms could characterize neurodegenerative disorders inducing cognitive impairment such as Parkinson's disease related dementia (PDD) and Alzheimer's disease (AD). METHODS To address this issue, eyes-closed resting state EEG rhythms were recorded in 13 PDD, 20 AD, and 20 normal elderly (Nold) subjects. Age, gender, and education were carefully matched across the three groups. Mini Mental State Evaluation (MMSE) score probed subjects' global cognitive status, and was matched between the PDD and AD groups. EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), and beta2 (20-30 Hz). EEG cortical sources were estimated by low resolution brain electromagnetic source tomography (LORETA). RESULTS With respect to the Nold and AD groups, the PPD group was characterized by peculiar abnormalities of central delta sources and posterior cortical sources of theta and beta1 rhythms. With respect to the Nold group, the PDD and AD groups mainly pointed to lower posterior cortical sources of alpha1 rhythms, which were positively correlated to MMSE score across all PDD and AD subjects as a whole (the lower the alpha sources, the lower the MMSE score). This alpha decrease was greater in the AD than PPD patients. CONCLUSIONS The results suggest that topography and frequency of eyes-closed resting state cortical EEG rhythms distinguished PDD and AD groups. SIGNIFICANCE We report the existence of different effects of neurodegeneration on the cortical neural synchronization mechanisms generating resting state EEG rhythms in PDD and AD patients.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | |
Collapse
|