1
|
Lee SE, Lee AY, Park WJ, Jun DH, Kwon NS, Baek KJ, Kim YG, Yun HY. Mouse LGI3 gene: expression in brain and promoter analysis. Gene 2006; 372:8-17. [PMID: 16545924 DOI: 10.1016/j.gene.2005.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 08/18/2005] [Accepted: 09/07/2005] [Indexed: 11/21/2022]
Abstract
Leucine-rich glioma inactivated 3 (LGI3) is a member of LGI/epitempin family of which the first member, LGI1/epitempin, was shown to be mutated in glioma and autosomal dominant lateral temporal epilepsy. Similar to LGI1, LGI3 is expressed predominantly in brain and its function is unknown. In this study, we examined the expression of mouse LGI3 (mLGI3) in adult and developing brain and analyzed the 5'-upstream transcriptional regulatory regions of mLGI3 gene. In situ hybridization showed that mLGI3 was expressed in widespread areas with selective regional variation in adult brain. In developing brain, mLGI3 mRNA was expressed at low level during embryo stages and markedly increased in broad areas after birth. Analysis of the 5'- and 3'-ends of mLGI3 mRNA identified a single transcription start site and two alternative 3'-ends. Luciferase reporter analysis using Neuro-2a cells and electrophoretic mobility shift assays identified a neuronal restrictive silencer element (NRSE; -2573 approximately -2553) and a phorbol ester-sensitive AP-2 element with repressor activity (-44 approximately -33) among multiple positive and negative regulatory regions. Since NRSE and AP-2 are implicated in neuron-specific gene expression and developmental regulation of many genes in brain, respectively, these results suggested that NRSE and AP-2 might play important roles in regulation of mLGI3 expression in brain.
Collapse
Affiliation(s)
- Sang Eun Lee
- Department of Biochemistry, College of Medicine, Chung-Ang University, 221 Heuksuk-dong, Dongjak-koo, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Kamiya H, Zhang W, Sima AAF. C-peptide prevents nociceptive sensory neuropathy in type 1 diabetes. Ann Neurol 2005; 56:827-35. [PMID: 15497155 DOI: 10.1002/ana.20295] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We examined the effects of C-peptide replacement on unmyelinated fiber function in the hind paw, sural nerve C-fiber morphometry, sciatic nerve neurotrophins, and the expression of neurotrophic receptors and content of neuropeptides in dorsal root ganglia in type 1 diabetic BB/Wor-rats. C-peptide replacement from onset of diabetes had no effect on hyperglycemia, but it significantly prevented progressive thermal hyperalgesia and prevented C-fiber atrophy, degeneration, and loss. These findings were associated with preventive effects on impaired availability of nerve growth factor and neurotrophin 3 in the sciatic nerve and significant prevention of perturbed expression of insulin, insulin growth factor-1, nerve growth factor, and neurotrophin 3 receptors in dorsal root ganglion cells. These beneficial effects translated into prevention of the decreased content of dorsal root ganglia nociceptive peptides such as substance P and calcitonin gene-related peptide. From these findings we conclude that replacement of insulinomimetic C-peptide prevents abnormalities of neurotrophins, their receptors, and nociceptive neuropeptides in type 1 BB/Wor-rats, resulting in the prevention of C-fiber pathology and nociceptive sensory nerve dysfunction. The data indicate that perturbed insulin/C-peptide action plays an important pathogenetic role in nociceptive sensory neuropathy and that C-peptide replacement may be of benefit in treating painful diabetic neuropathy in insulin-deficient diabetic conditions.
Collapse
Affiliation(s)
- Hideki Kamiya
- Department of Pathology, Wayne State University, School of Medicine, Detroit, MI, USA
| | | | | |
Collapse
|
3
|
Tam J, Rosenberg L, Maysinger D. INGAP peptide improves nerve function and enhances regeneration in streptozotocin-induced diabetic C57BL/6 mice. FASEB J 2004; 18:1767-9. [PMID: 15345684 DOI: 10.1096/fj.04-1894fje] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INGAP peptide comprises the core active sequence of Islet Neogenesis Associated Protein (INGAP), a pancreatic cytokine that can induce new islet formation and restore euglycemia in diabetic rodents. The ability of INGAP peptide in vitro to enhance nerve growth from sensory ganglia suggests its potential utility in peripheral nerve disorders. In this study, INGAP peptide was administered alone or in combination with insulin to streptozotocin-induced diabetic mice exhibiting signs of peripheral neuropathy. Following a 2-wk treatment period, thermal hypoalgesia in diabetic mice was significantly improved in groups that received INGAP peptide, without development of hyperalgesia. Explanted dorsal root ganglia (DRG) from these groups showed enhanced nerve outgrowth and evidence of increased mitochondrial activity. Western blotting experiments revealed attenuation of neurofilament hyperphosphorylation, up-regulation of beta-tubulin and actin, and increased phosphorylation of the transcription factor STAT3 in DRG. These findings suggest that INGAP peptide can activate some of the signaling pathways implicated in nerve regeneration in sensory ganglia, thereby providing a means of improvement of nociceptive dysfunction in the peripheral nervous system.
Collapse
Affiliation(s)
- Joseph Tam
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
4
|
Murakawa Y, Zhang W, Pierson CR, Brismar T, Ostenson CG, Efendic S, Sima AAF. Impaired glucose tolerance and insulinopenia in the GK-rat causes peripheral neuropathy. Diabetes Metab Res Rev 2002; 18:473-83. [PMID: 12469361 DOI: 10.1002/dmrr.326] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies indicate that impaired glucose tolerance (IGT) in man is a causative factor in idiopathic sensory neuropathy, and that insulinopenia may contribute substantially to the severity of diabetic peripheral neuropathy. The effect of sustained IGT and progressive insulinopenia in the absence of overt hyperglycemia on peripheral nerve abnormalities was examined in the Goto-Kakizaki (GK)-rat. METHODS Two and eighteen-month-old GK rats with decreased glucose tolerance and overt insulinopenia, respectively, were examined with respect to nerve function, structure, morphometry and molecular integrity, and were compared to age-matched control rats. RESULTS Both 2-(p < 0.001) and 18-month-old (p < 0.001) GK rats showed reduced body weight. Blood glucose levels following glucose tolerance tests were elevated in both the 2-month and the 18-month-old GK rats. Fasting plasma insulin levels in the 2-month GK rats were increased threefold (p < 0.05) but decreased by 71% (p < 0.001) in the 18-month GK rats. The two-month GK rats showed a normal nerve conduction velocity, whereas in the 18-month GK rats it was reduced to 76% (p < 0.001) of control values. No morphometric abnormalities were found in the 2-month GK rats, whereas the 18-month GK rats showed loss of small myelinated fibers (p < 0.001), atrophy and loss of unmyelinated axons (p < 0.05) and an increased (p < 0.01) frequency of regenerating fibers. In the older GK rats, both mRNA and protein expression of nerve growth factor (NGF) in the sciatic nerve were significantly reduced (p < 0.001 and p < 0.05), and NGFR TrkA (high affinity NGF receptor) and NGFRp75 (low affinity NGF-receptor) protein expression was reduced in dorsal root ganglia (DRG) (both p < 0.05). These changes were accompanied by significantly reduced protein expressions of substance P (SP) and calcitonin gene-related protein (CGRP) in DRG's (both p < 0.001) as well as a 40% (p < 0.001) decrease in SP and a 62% (p < 0.001) decrease in CGRP-positive DRG neurons. In the sciatic nerve, SP and CGRP protein expression was decreased by 71% (p < 0.01) and 79% (p < 0.01), respectively. CONCLUSION IGT combined with hyperinsulinemia for 2 months have no detectable effect on peripheral nerve function or structure. In contrast, IGT and subsequent insulinopenia result in a functional and structural neuropathy associated with impaired NGF support and neuropeptide synthesis. We suggest that these abnormalities are mainly due to insulinopenia rather than hyperglycemia.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Calcitonin Gene-Related Peptide/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Neuropathies/etiology
- Diabetic Neuropathies/genetics
- Diabetic Neuropathies/metabolism
- Disease Models, Animal
- Ganglia, Spinal/metabolism
- Glucose Tolerance Test
- Hyperinsulinism/complications
- Hyperinsulinism/genetics
- Hyperinsulinism/metabolism
- Male
- Matched-Pair Analysis
- Nerve Growth Factor/genetics
- Nerve Growth Factor/metabolism
- Peripheral Nerves/physiopathology
- Peripheral Nerves/ultrastructure
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Strains
- Rats, Wistar
- Receptor, Insulin/metabolism
- Receptor, Nerve Growth Factor/genetics
- Receptor, Nerve Growth Factor/metabolism
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Substance P/metabolism
Collapse
Affiliation(s)
- Yuichi Murakawa
- Department of Pathology, Wayne State University, School of Medicine, Detroit, MI, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Sugimoto K, Murakawa Y, Sima AAF. Expression and localization of insulin receptor in rat dorsal root ganglion and spinal cord. J Peripher Nerv Syst 2002; 7:44-53. [PMID: 11939351 DOI: 10.1046/j.1529-8027.2002.02005.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression and localization of the insulin receptor (IR) was examined in rat dorsal root ganglia (DRG) and spinal cord using Western blotting, in situ hybridization and immunocytochemistry. Western blotting showed that the molecular weight of the IR beta subunit was higher in PNS than that found in CNS. Both IR mRNA and protein expressions were highest in small-sized sensory DRG neurons and myelinated sensory root fibers expressed higher levels of IR protein than myelinated anterior root fibers. In the spinal cord, IR immunoreactive neurons were present in lateral lamina V and in lamina X, suggesting the presence of IR in nociceptive pathways. Electronmicroscopy of DRGs revealed a polarized localization of the IR in abaxonal Schwann cell membranes, outer mesaxons in close vicinity to tight junctions of both myelinating and non-myelinating Schwann cells and to plasma membranes of sensory neurons. From these findings, we speculate that insulin may play a role in sensory fibers involved in nociceptive function often perturbed in diabetic neuropathy. The high expression of IR localizing to tight junctions of dorsal root mesaxons of DRGs may suggest a regulatory role on barrier functions compensating for the lack of a blood-nerve barrier in dorsal root ganglia. This is consistent with the colocalization of IR with tight junctions of the paranodal barrier and endoneurial endothelial cells in peripheral nerve.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Ganglia, Spinal/chemistry
- Ganglia, Spinal/cytology
- Ganglia, Spinal/physiology
- Gene Expression/physiology
- In Situ Hybridization
- Male
- Microscopy, Immunoelectron
- Nerve Fibers, Myelinated/chemistry
- Nerve Fibers, Myelinated/ultrastructure
- Neurons, Afferent/chemistry
- Neurons, Afferent/ultrastructure
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
- Receptor, Insulin/analysis
- Receptor, Insulin/genetics
- Schwann Cells/chemistry
- Schwann Cells/ultrastructure
- Spinal Cord/chemistry
- Spinal Cord/cytology
- Spinal Cord/physiology
- Spinal Nerve Roots/chemistry
- Spinal Nerve Roots/cytology
- Spinal Nerve Roots/physiology
Collapse
Affiliation(s)
- Kazuhiro Sugimoto
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
6
|
Rolland AP, Mumper RJ. Plasmid delivery to muscle: Recent advances in polymer delivery systems. Adv Drug Deliv Rev 1998; 30:151-172. [PMID: 10837608 DOI: 10.1016/s0169-409x(97)00113-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Preclinical studies involving intramuscular injection of plasmid into animals have revealed at least four significant variables that effect levels of gene expression (i.e., >fivefold effect over controls), including the formulation, injection technique, species and pretreatment of the muscle with myotoxic agents to induce muscle damage. The uptake of plasmid formulated in saline has been shown to be a saturable process, most likely via a receptor-mediated event involving the T tubules and caveolae. Pharmacokinetic studies have demonstrated that the bioavailability of injected plasmid to muscle cells is very low, due to rapid and extensive plasmid degradation by extracellular nucleases. We have developed protective, interactive, non-condensing (PINC) delivery systems designed to complex plasmids and to (i) protect plasmids from rapid nuclease degradation, (ii) disperse and retain intact plasmid in the muscle and (iii) facilitate the uptake of plasmid by muscle cells. PINC systems result in up to at least a one log increase in both the extent and levels of gene expression over plasmid formulated in saline. We have combined the PINC delivery systems with two different muscle-specific expression plasmids. After direct intramuscular injection of these gene medicines, we have shown both local myotrophic and neurotrophic effects of expressed human insulin-like growth factor (hIGF-I) and the secretion of biologically active human growth hormone (hGH) into the systemic circulation.
Collapse
Affiliation(s)
- AP Rolland
- GeneMedicine, Inc., 8301 New Trails Drive, The Woodlands, TX 77381-4248, USA
| | | |
Collapse
|
7
|
Heacock AM, Agranoff BW. Protein kinase inhibitors block neurite outgrowth from explants of goldfish retina. Neurochem Res 1997; 22:1179-85. [PMID: 9342720 DOI: 10.1023/a:1021916509858] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A role for protein phosphorylation in the process of neurite outgrowth has been inferred from many studies of the effects of protein kinase inhibitors and activators on cultured neurotumor cells and primary neuronal cells from developing brain or ganglia. Here we re-examine this issue, using a culture system derived from a fully differentiated neuronal system undergoing axonal regeneration--the explanted goldfish retina following optic nerve crush. Of the relatively non-selective protein kinase inhibitors employed, H7, staurosporine and K252a were found to block neurite outgrowth, whereas HA1004 had no effect, a result which appears to rule out a critical role for protein kinase A. The more selective protein kinase C inhibitors, sphingosine, calphostin C and Ro-31-8220 were all inhibitory, as was prolonged treatment with phorbol ester and the protein phosphatase inhibitor okadaic acid. These results are in support of a role for protein kinase C in axonal regrowth.
Collapse
Affiliation(s)
- A M Heacock
- Neuroscience Laboratory, University of Michigan, Ann Arbor 48104-1687, USA
| | | |
Collapse
|
8
|
Sokolowski BH. Quantitative analysis of long-term survival and neuritogenesis in vitro: cochleovestibular ganglion of the chick embryo in BDNF, NT-3, NT-4/5, and insulin. Exp Neurol 1997; 145:1-15. [PMID: 9184104 DOI: 10.1006/exnr.1997.6444] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dynamics of survival and growth were examined for cochleovestibular ganglion (CVG) cells maintained in long-term cultures. CVG cells were explanted from chick embryos after 90 h of incubation into a defined-medium containing BDNF, NT-3, or NT-4/5 and an insulin, transferrin, selenium, and progesterone supplement. Explant survival and neuritogenesis was measured for 23 to 24 days in vitro. All three neurotrophins prolonged CVG survival in a dose-dependent manner although insulin acted as a cofactor. In 0.872 microM insulin-containing medium the ED50 for BDNF and NT-3 was 100 pg/ml, whereas the ED50 for NT-4/5 was 600-1200 pg/ml. However, at later ages in vitro, survival decreased with concentrations of BDNF greater than 2 ng/ml. In insulin-free medium, concentrations of 5-200 ng/ml of BDNF or 30-200 ng/ml of NT-4/5 maintained the survival of explants at a rate that was equivalent to or less than the survival rate of cultures treated with insulin but not with neurotrophin. In contrast, NT-3-treated explants in insulin-free medium did not survive the duration of the experiment. Dose-dependent effects of BDNF and NT-3 on explant neuritogenesis were reflected as an initial delay in outgrowth, whereas NT-4/5 had no effect. Insulin regulation of neuritogenesis was suggested when outgrowth decreased in the presence of an antibody to the insulin receptor. These data suggest that while all three of these neurotrophins protect the CVG from death the long-term consequences of cofactors and certain dose levels should be considered when treating CVG cells in vivo.
Collapse
Affiliation(s)
- B H Sokolowski
- University of South Florida, Department of Surgery/Otolaryngology, Tampa 33612, USA
| |
Collapse
|
9
|
Xu YY, Bhavani K, Wands JR, de la Monte SM. Ethanol inhibits insulin receptor substrate-1 tyrosine phosphorylation and insulin-stimulated neuronal thread protein gene expression. Biochem J 1995; 310 ( Pt 1):125-32. [PMID: 7646434 PMCID: PMC1135863 DOI: 10.1042/bj3100125] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neuronal thread proteins (NTPs) are molecules that accumulate in the brains of patients with Alzheimer's disease, and may play a key role in both normal and neurodegenerative neuritic sprouting. In this investigation we determined whether NTP expression is up-regulated by insulin, an important neurotrophic factor that stimulates differentiation-associated neurite outgrowth, and studied the effects of ethanol, a known inhibitor of growth factor receptor tyrosine phosphorylation, on NTP expression and insulin-mediated signal transduction cascade in neuronal [primitive neuroectodermal tumour cell line 2; (PNET2)] cells. PNET2 cells were treated with 50 m-units/ml insulin in the presence or absence of 100 mM ethanol for 0.2-96 h, and cell proliferation and expression of NTP molecules were investigated by metabolic labelling, immunoprecipitation and immunohistochemical staining. Insulin stimulation resulted in an immediate increase in the levels of three (38, 18 and 15 kDa) of five NTP species (the others were of 26 and 21 kDa), followed by a decline in expression within 120 min; however, studies performed up to 96 h of culture demonstrated up-regulation by insulin of all five NTP species. Ethanol either abolished or severely muted the short- and long-term insulin-mediated upregulation of NTP expression, and substantially reduced insulin-mediated neuronal differentiation. The effects of ethanol on NTP gene expression were associated with impaired insulin-mediated tyrosine phosphorylation of both the insulin receptor beta subunit and the insulin receptor substrate-1 (IRS-1), resulting in decreased association of phosphatidylinositol 3-kinase with IRS-1. The findings suggest that ethanol may inhibit NTP expression associated with central nervous system neuronal differentiation by uncoupling the IRS-1-mediated insulin signal transduction pathway.
Collapse
Affiliation(s)
- Y Y Xu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
10
|
Ohmichi M, Zhu G, Saltiel AR. Nerve growth factor activates calcium-insensitive protein kinase C-epsilon in PC-12 rat pheochromocytoma cells. Biochem J 1993; 295 ( Pt 3):767-72. [PMID: 8240290 PMCID: PMC1134627 DOI: 10.1042/bj2950767] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Protein kinase C (PKC) family members were examined in PC-12 rat pheochromocytoma cells to evaluate their role in the action of nerve growth factor (NGF). Immunoblot analysis of whole cell lysates using antibodies against various PKC isoforms revealed that PC-12 cells contained PKC-alpha, -delta, -epsilon and zeta. Assay of the protein kinase activity in these different anti-PKC immunoprecipitates demonstrated that NGF stimulated the kinase activity of PKC-epsilon, but not PKC-alpha, -delta and -zeta. Both histone phosphorylation and autophosphorylation of PKC-epsilon were increased by treatment of PC-12 cells with NGF. This increased phosphorylation observed in vitro is rapid, occurring maximally at 2.5 min and declining thereafter. Moreover, this effect of NGF is dose-dependent over physiological concentrations of the growth factor. Although the mechanistic basis for this specificity in PKC activation is not clear, NGF acutely stimulated the production of diacylglycerol without causing corresponding changes in intracellular Ca2+ concentrations. These results suggest that NGF may selectively stimulate the Ca(2+)-insensitive epsilon isoform of PKC by a phosphatidylinositol-independent mechanism.
Collapse
Affiliation(s)
- M Ohmichi
- Department of Physiology, University of Michigan School of Medicine, Ann Arbor 48109
| | | | | |
Collapse
|
11
|
Ishii DN, Glazner GW, Whalen LR. Regulation of peripheral nerve regeneration by insulin-like growth factors. Ann N Y Acad Sci 1993; 692:172-82. [PMID: 8215021 DOI: 10.1111/j.1749-6632.1993.tb26215.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D N Ishii
- Department of Physiology, Colorado State University, Fort Collins 80523
| | | | | |
Collapse
|
12
|
Wang C, Li Y, Wible B, Angelides KJ, Ishii DN. Effects of insulin and insulin-like growth factors on neurofilament mRNA and tubulin mRNA content in human neuroblastoma SH-SY5Y cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 13:289-300. [PMID: 1320719 DOI: 10.1016/0169-328x(92)90212-t] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Insulin-like growth factors (IGFs) are implicated in the development of the vertebrate neural circuitry, and increase neurite growth in vitro and in vivo. The construction of the cytoskeleton is necessary for growth of axons and dendrites, and the neurofilament (NF) 68 kDa and 170 kDa proteins assemble to help form major fibrillar elements of the neurite cytoskeleton. We report that physiological concentrations of insulin, IGF-I or IGF-II increased the contents of 68 kDa NF, 170 kDa NF, alpha-tubulin, and beta-tubulin mRNAs, relative to total RNA, in cultured human neuroblastoma SH-SY5Y cells. In contrast, the relative contents of histone 3.3 mRNA, and poly(A)+ RNA were not increased. Ligand concentrations which increased NF mRNAs were very similar to those which increased neurite outgrowth. Although each gene was evidently independently regulated, the 68 kDa NF, 170 kDa NF, alpha-tubulin, and beta-tubulin mRNAs were nevertheless all transiently elevated over approximately the same time interval in response to insulin. These data, when considered together with studies by others with nerve growth factor, show that the 68 kDa and 170 kDa NF mRNAs are elevated in a biochemical pathway activated in common during neurite outgrowth directed by insulin, IGF-I, IGF-II, and nerve growth factor.
Collapse
Affiliation(s)
- C Wang
- Department of Physiology, Colorado State University, Fort Collins 80523
| | | | | | | | | |
Collapse
|
13
|
Feldman EL, Randolph AE. Mannose 6-phosphate potentiates insulin-like growth factor II effects in cultured human neuroblastoma cells. Brain Res 1991; 562:111-6. [PMID: 1799864 DOI: 10.1016/0006-8993(91)91194-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Insulin-like growth factor II (IGF-II) and mannose 6-phosphate (man-6-P) bind to distinct sites on the same receptor. In the present study, we examined the effects of man-6-P on the growth promoting effects of IGF-II on SH-SY5Y cultured human neuroblastoma cells. Man-6-P alone increased cell number and neurite outgrowth by approximately 50%; as previously observed, IGF-II increased cell number and neurite outgrowth by approximately 110 and 30%, respectively. However, when cells were grown in the presence of both ligands, cell number increased by 330% and neurite outgrowth by 130%. These results suggest that man-6-P can potentiate the known growth promoting effects of IGF-II on human neuroblastoma cells. Furthermore, they indicate that the IGF-II/man-6-P receptor may serve as a means of integrating distinct growth promoting signals in neuronal cells.
Collapse
Affiliation(s)
- E L Feldman
- University of Michigan, Neuroscience Laboratory, Ann Arbor 48104-1687
| | | |
Collapse
|
14
|
McManaman JL, Crawford FG. Skeletal muscle proteins stimulate cholinergic differentiation of human neuroblastoma cells. J Neurochem 1991; 57:258-66. [PMID: 2051167 DOI: 10.1111/j.1471-4159.1991.tb02123.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extracts of rat skeletal muscle contain substances that enhance the development of choline acetyltransferase (ChAT) in the cholinergic human neuroblastoma cell line LA-N-2. The ChAT enhancing activity in muscle extract was purified to homogeneity by preparative gel electrophoresis and reverse-phase HPLC. The active factor is biochemically and immunologically identical to ChAT development factor, (CDF), the skeletal muscle factor that enhances ChAT activity in enriched cultures of embryonic rat motoneurons and rescues motoneurons from naturally occurring cell death in vivo. CDF increases the specific ChAT activity of LA-N-2 cells fivefold after 6 days in culture, but does not affect their growth or metabolic activity. Basic fibroblast growth factor also increases ChAT activity in LA-N-2 cells and its effect is additive with that of CDF. In contrast, neither insulin-like growth factor-1, epidermal growth factor, nor nerve growth factor affected the ChAT activity of LA-N-2 cells. Our study demonstrates for the first time that CDF can directly affect the development of neuronal properties in a homogeneous population of cells, and that the effects of CDF are separate from those of other types of trophic factors.
Collapse
Affiliation(s)
- J L McManaman
- Wagner ALS Research Laboratory, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
15
|
Ishii DN, Wang C, Li Y. Second messengers mediating gene expression essential to neurite formation directed by insulin and insulin-like growth factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 293:361-78. [PMID: 1767737 DOI: 10.1007/978-1-4684-5949-4_32] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D N Ishii
- Physiology Department, Colorado State University, Fort Collins 80523
| | | | | |
Collapse
|
16
|
Couldwell WT, Antel JP, Apuzzo ML, Yong VW. Inhibition of growth of established human glioma cell lines by modulators of the protein kinase-C system. J Neurosurg 1990; 73:594-600. [PMID: 2398390 DOI: 10.3171/jns.1990.73.4.0594] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The protein kinase-C (PKC) second messenger system contributes to regulation of cell growth and differentiation. This study was undertaken to examine the effects of modulators of the PKC enzyme system on the state of differentiation and proliferation rates of human gliomas in vitro. The administration of the PKC-activating phorbol esters 4-beta-phorbol-12,13-dibutyrate (PDB) and phorbol-12-myristate-13-acetate (PMA) resulted in a dose-related inhibition of growth of human glioma cell lines in vitro as measured by 3H-thymidine uptake. The synthetic nonphorbol PKC activator (SC-9) produced an even more pronounced decrease of 3H-thymidine uptake. Diacylglycerol, an endogenous activator of the system, applied externally, transiently decreased the proliferation, in concordance with its short-lived existence in vivo. Conversely, the administration of 4-alpha-phorbol-12,13-didecanoate (alpha-PDD), a phorbol ester that binds but does not activate the enzyme, had no effect on the proliferation rate. At the dosages that maximally decreased proliferation, there was no evidence of direct glioma cell lysis induced by these agents as measured by a chromium-release assay. Immunocytochemical analysis and cytofluorometric measurement of glial fibrillary acidic protein (GFAP) staining in the treated cultures revealed an increase in GFAP staining over control cultures. In contrast to the response of glioma cells, nonmalignant human adult astrocytes treated with the PKC activators responded by increasing their proliferation rate. The authors postulate that the diametrically opposed effects of PKC activators on nonmalignant astrocytes versus glioma growth may be due to a high intrinsic PKC activity in glioma cells, with resultant down-regulation of enzyme activity following the administration of the pharmacological activators.
Collapse
Affiliation(s)
- W T Couldwell
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital, Quebec, Canada
| | | | | | | |
Collapse
|
17
|
Chakrabarti S, Sima AA, Lee J, Brachet P, Dicou E. Nerve growth factor (NGF), proNGF and NGF receptor-like immunoreactivity in BB rat retina. Brain Res 1990; 523:11-5. [PMID: 2169962 DOI: 10.1016/0006-8993(90)91630-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nerve growth factor (NGF) and NGF precursor (proNGF)-like material were localized immunohistochemically in diabetic and non-diabetic adult rat retina using affinity-purified immunoglobulins to mature NGF and to synthetic peptides that reproduce sequences of the proNGF. Immunoreactivity for NGF and proNGF was detected in retinal ganglion cells, Müller cells, retinal pigment epithelium and areas adjacent to the internal limiting membrane. Immunolocalization of the NGF receptor using a monoclonal antibody (MC192) revealed positive staining of retinal pigment epithelium and Müller cells but not of ganglion cells. The staining intensity and distribution of NGF, proNGF, and NGF receptor-like immunoreactivity were similar in retinas of diabetic rats. These results suggest that NGF is synthesized endogenously in the retina by both neuronal and non-neuronal cell constituents, and that diabetes has no detectable effect on NGF/NGF receptor distribution and possibly on NGF biosynthesis.
Collapse
Affiliation(s)
- S Chakrabarti
- Neuropathology Research Laboratory, University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
18
|
Hepler JE, Lund PK. Molecular biology of the insulin-like growth factors. Relevance to nervous system function. Mol Neurobiol 1990; 4:93-127. [PMID: 2076220 DOI: 10.1007/bf02935586] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J E Hepler
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill 27599
| | | |
Collapse
|
19
|
Fernyhough P, Mill JF, Roberts JL, Ishii DN. Stabilization of tubulin mRNAs by insulin and insulin-like growth factor I during neurite formation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1989; 6:109-20. [PMID: 2693875 DOI: 10.1016/0169-328x(89)90044-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neurotrophic factors may increase axon and dendrite growth in part by regulating the content of cytoskeletal elements such as microtubules, which are comprised of tubulin subunits. The mechanism by which insulin, insulin-like growth factors (IGFs), and nerve growth factor (NGF) can increase the relative abundance of tubulin mRNAs as a prelude to neurite formation was studied. Insulin significantly increased the abundance of tubulin mRNAs relative to total RNA in cultured human neuroblastoma SH-SY5Y cells. This increase was not the result of a generalized elevation of all transcripts, because tubulin mRNAs were elevated relative to poly(A)+ RNA as well. Moreover, whereas polymerases I and III were elevated in activity, polymerase II was not. Tubulin mRNAs were stabilized against degradation in the presence of actinomycin D by both insulin and IGF-I. In contrast, actin and histone 3.3 mRNAs were neither increased nor stabilized. Insulin did not alter alpha- or beta-tubulin gene transcription rates in nuclear run-off experiments, and did increase the relative synthesis of tubulin proteins. These results suggest that tubulin mRNA levels are increased mainly through selective stabilization by insulin and IGFs. Because NGF is known to stabilize tubulin mRNA levels also, stabilization of tubulin mRNAs is suggested to be a common event in the pathway leading to neurite elongation directed by neuritogenic polypeptides.
Collapse
Affiliation(s)
- P Fernyhough
- Department of Physiology, Colorado State University, Fort Collins 80523
| | | | | | | |
Collapse
|
20
|
Chan BL, Chao MV, Saltiel AR. Nerve growth factor stimulates the hydrolysis of glycosylphosphatidylinositol in PC-12 cells: a mechanism of protein kinase C regulation. Proc Natl Acad Sci U S A 1989; 86:1756-60. [PMID: 2538812 PMCID: PMC286783 DOI: 10.1073/pnas.86.6.1756] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Treatment of PC-12 pheochromocytoma cells with nerve growth factor (NGF) results in the differentiation of these cells into a sympathetic neuron-like phenotype. Although the initial intracellular signals elicited by NGF remain unknown, some of the cellular effects of NGF are similar to those of other growth factors, such as insulin. We have investigated the involvement of a newly identified inositol-containing glycolipid in signal transduction for the actions of NGF. NGF stimulates the rapid generation of a species of diacylglycerol that is labeled with [3H]myristate but not with [3H]arachidonate. NGF stimulates [3H]myristate- or [32P]phosphate-labeled phosphatidic acid production over the same time course. Although NGF alone has no effect on the turnover of inositol phospholipids, it does stimulate the hydrolysis of glycosylphosphatidylinositol. The NGF-dependent cleavage of this lipid is accompanied by an increase in the accumulation of its polar head group, an inositol phosphate glycan, which is generated within 30-60 sec of NGF treatment. In an unresponsive PC-12 mutant cell line, neither the diacylglycerol nor inositol phosphate glycan response is detected. A possible role for the NGF-stimulated diacylglycerol is suggested by the inhibition of NGF-dependent c-fos induction by staurosporin, a potent inhibitor of protein kinase C. These results suggest that, like insulin, some of the cellular effects of NGF may be mediated by the phospholipase C-catalyzed hydrolysis of glycosylphosphatidylinositol.
Collapse
Affiliation(s)
- B L Chan
- Laboratory of Viral Oncology, Rockefeller University, New York, NY
| | | | | |
Collapse
|
21
|
Sima AA, Bril V, Nathaniel V, McEwen TA, Brown MB, Lattimer SA, Greene DA. Regeneration and repair of myelinated fibers in sural-nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. N Engl J Med 1988; 319:548-55. [PMID: 3136331 DOI: 10.1056/nejm198809013190905] [Citation(s) in RCA: 242] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is reason to believe that diabetic neuropathy may be related to the accumulation of sorbitol in nerve tissue through an aldose reductase pathway from glucose. Short-term treatment with aldose reductase inhibitors improves nerve conduction in subjects with diabetes, but the effects of long-term treatment on the neuropathologic changes of diabetic neuropathy are unknown. To determine whether more prolonged aldose reductase inhibition reverses the underlying lesions that accompany symptomatic diabetic peripheral polyneuropathy, we performed a randomized, placebo-controlled, double-blind trial of the investigational aldose reductase inhibitor sorbinil (250 mg per day). Sural-nerve biopsy specimens obtained at base line and after one year from 16 diabetic patients with neuropathy were analyzed morphometrically in detail and compared with selected electrophysiologic and clinical indexes. In contrast to patients who received placebo, the 10 sorbinil-treated patients had a decrease of 41.8 +/- 8.0 percent in nerve sorbitol content (P less than 0.01) and a 3.8-fold increase in the percentage of regenerating myelinated nerve fibers (P less than 0.001), reflected by a 33 percent increase in the number of myelinated fibers per unit of cross-sectional area of nerve (P = 0.04). They also had quantitative improvement in terms of the degree of paranodal demyelination, segmental demyelination, and myelin wrinkling. The increase in the number of fibers was accompanied by electrophysiologic and clinical evidence of improved nerve function. We conclude that sorbinil, as a metabolic intervention targeted against a specific biochemical consequence of hyperglycemia, can improve the neuropathologic lesions of diabetic neuropathy.
Collapse
Affiliation(s)
- A A Sima
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Hall FL, Fernyhough P, Ishii DN, Vulliet PR. Suppression of nerve growth factor-directed neurite outgrowth in PC12 cells by sphingosine, an inhibitor of protein kinase C. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68948-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
Recio-Pinto E, Ishii DN. Insulin and insulinlike growth factor receptors regulating neurite formation in cultured human neuroblastoma cells. J Neurosci Res 1988; 19:312-20. [PMID: 3288762 DOI: 10.1002/jnr.490190306] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The functional role of brain insulin and insulinlike growth factor (IGF) receptors is being sought. Recently it has been found that these ligands are members of a newly identified family of neuritogenic polypeptides. We studied the relationship between 125I-insulin and 125I-IGF binding and their capacity to enhance neurite formation in cultured human neuroblastoma SH-SY5Y cells. The binding of 125I-insulin was temperature-dependent and heterogeneous. The Scatchard plot and dissociation rate were both consistent with the presence of two types of sites. There appeared to be about 900 high affinity sites per cell with a Kd of about 3 nM. This compared favorably with the half-maximal concentration of 4 nM for enhancement of neurite formation. The type I IGF sites were also present. Physiologic concentrations of insulin clearly enhanced neurite formation through the insulin sites, whereas physiologic concentrations of IGF-I and IGF-II enhanced through the IGF sites. Cross-occupancy of sites was observed at supraphysiologic concentrations, providing a reasonable explanation for the broad dose-response curves for these ligands. These results support the suggestion that one function of insulin and IGF receptors in neural tissues may be to modulate neurite formation.
Collapse
Affiliation(s)
- E Recio-Pinto
- Department of Anesthesiology, Medical College, Cornell University, New York, New York
| | | |
Collapse
|
24
|
Yong VW, Sekiguchi S, Kim MW, Kim SU. Phorbol ester enhances morphological differentiation of oligodendrocytes in culture. J Neurosci Res 1988; 19:187-94. [PMID: 3367393 DOI: 10.1002/jnr.490190203] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of phorbol esters have been attributed to the activation of the enzyme protein kinase C. While much has been described for the actions of phorbol esters on neurons and synaptic transmission, sparse data exist on the effects of phorbol esters on oligodendrocytes, the cells that make and maintain myelin in the central nervous system. In this report, we show that 10 and 100 nM of a phorbol ester, 4 beta-phorbol-12,13-dibutyrate, extensively enhanced process formation by cultured bovine oligodendrocytes. This effect was blocked by two inhibitors of protein kinase C, sodium heparin and polymixin B. We propose the hypothesis that activation of protein kinase C is an important process that leads to the differentiation of oligodendrocytes and the formation of myelin in vivo.
Collapse
Affiliation(s)
- V W Yong
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
25
|
Recio-Pinto E, Ishii D. Insulin and related growth factors: effects on the nervous system and mechanism for neurite growth and regeneration. Neurochem Int 1988; 12:397-414. [DOI: 10.1016/0197-0186(88)90021-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Greene DA, Lattimer SA, Sima AA. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med 1987; 316:599-606. [PMID: 3027558 DOI: 10.1056/nejm198703053161007] [Citation(s) in RCA: 659] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During the past decade, our appreciation of the original experiments with myo-inositol supplementation in diabetic rats has greatly expanded. The effects of myo-inositol on nerve conduction are now explained by concepts that were largely unappreciated in 1976, including the fundamental role of phosphoinositide metabolism in cell regulation and the importance of the activity of sodium-potassium-ATPase in nerve conduction. Aldose reductase inhibitors firmly link defects in myo-inositol metabolism to activation of the polyol pathway in diabetes; the resulting "sorbitol-myo-inositol hypothesis" has been extended from its application to the lenses and peripheral nerves to most of the tissues involved with diabetic complications. These biochemical mechanisms provide a new framework within which to explore the complex interactions between hyperglycemia and the vascular, genetic, and environmental variables in the pathogenesis of diabetic complications. It is anticipated that these endeavors will result in the appearance of new classes of therapeutic agents, the first of which--the aldose reductase inhibitors--has emerged from the laboratory and is now undergoing extensive clinical testing. These efforts are very likely to result in the appearance of new treatment methods that may dramatically lighten the burden of chronic complications in patients with diabetes.
Collapse
|
27
|
Greene DA, Lattimer SA. Altered sorbitol and myo-inositol metabolism as the basis for defective protein kinase C and (Na,K)-ATPase regulation in diabetic neuropathy. Ann N Y Acad Sci 1986; 488:334-40. [PMID: 3034118 DOI: 10.1111/j.1749-6632.1986.tb46569.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
GREENE DOUGLASA, LATTIMER SARAHA. Altered Sorbitol and myo-Inositol Metabolism as the Basis for Defective Protein Kinase C and (Na,K)-ATPase Regulation in Diabetic Neuropathy. Ann N Y Acad Sci 1986. [DOI: 10.1111/j.1749-6632.1986.tb54415.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Hama T, Huang KP, Guroff G. Protein kinase C as a component of a nerve growth factor-sensitive phosphorylation system in PC12 cells. Proc Natl Acad Sci U S A 1986; 83:2353-7. [PMID: 3458200 PMCID: PMC323295 DOI: 10.1073/pnas.83.8.2353] [Citation(s) in RCA: 146] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The treatment of PC12 cells with either nerve growth factor or phorbol 12-myristate 13-acetate caused a decrease in the phosphorylation of a soluble 100-kDa protein (Nsp100). After treatment with nerve growth factor, the activity of Ca2+/phospholipid-dependent protein kinase (protein kinase C) in the cytosol was increased. When the cytosol from untreated PC12 cells was preincubated with purified protein kinase C and its cofactors, the phosphorylation of Nsp100 was decreased. The preincubation of cytosol from nerve growth factor-treated PC12 cells with protein kinase C did not decrease Nsp100 phosphorylation further. Moreover, preincubation of partially purified Nsp100 kinase with protein kinase C decreased its ability to phosphorylate Nsp100. These results suggest that the binding of nerve growth factor to its receptor on PC12 cells causes an increase in the activity of protein kinase C in the cytosol and phosphorylation of Nsp100 kinase, which in turn lowers its ability to phosphorylate Nsp100.
Collapse
|