1
|
Jiang T, Wei F, Xie K. Clinical significance of pancreatic ductal metaplasia. J Pathol 2022; 257:125-139. [PMID: 35170758 DOI: 10.1002/path.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/08/2022]
Abstract
Pancreatic ductal metaplasia (PDM) is the stepwise replacement of differentiated somatic cells with ductal or ductal-like cells in the pancreas. PDM is usually triggered by cellular and environmental insults. PDM development may involve all cell lineages of the pancreas, and acinar cells with the highest plasticity are the major source of PDM. Pancreatic progenitor cells are also involved as cells of origin or transitional intermediates. PDM is heterogeneous at the histological, cellular, and molecular levels and only certain subsets of PDM develop further into pancreatic intraepithelial neoplasia (PanIN) and then pancreatic ductal adenocarcinoma (PDAC). The formation and evolution of PDM is regulated at the cellular and molecular levels through a complex network of signaling pathways. The key molecular mechanisms that drive PDM formation and its progression into PanIN/PDAC remain unclear, but represent key targets for reversing or inhibiting PDM. Alternatively, PDM could be a source of pancreas regeneration, including both exocrine and endocrine components. Cellular aging and apoptosis are obstacles to PDM-to-PanIN progression or pancreas regeneration. Functional identification of the cellular and molecular events driving senescence and apoptosis in PDM and its progression would help not only to restrict the development of PDM into PanIN/PDAC, but may also facilitate pancreatic regeneration. This review systematically assesses recent advances in the understanding of PDM physiology and pathology, with a focus on its implications for enhancing regeneration and prevention of cancer. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Fang Wei
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| |
Collapse
|
2
|
Li X, He J, Xie K. Molecular signaling in pancreatic ductal metaplasia: emerging biomarkers for detection and intervention of early pancreatic cancer. Cell Oncol (Dordr) 2022; 45:201-225. [PMID: 35290607 DOI: 10.1007/s13402-022-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal metaplasia (PDM) is the transformation of potentially various types of cells in the pancreas into ductal or ductal-like cells, which eventually replace the existing differentiated somatic cell type(s). PDM is usually triggered by and manifests its ability to adapt to environmental stimuli and genetic insults. The development of PDM to atypical hyperplasia or dysplasia is an important risk factor for pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDA). Recent studies using genetically engineered mouse models, cell lineage tracing, single-cell sequencing and others have unraveled novel cellular and molecular insights in PDM formation and evolution. Those novel findings help better understand the cellular origins and functional significance of PDM and its regulation at cellular and molecular levels. Given that PDM represents the earliest pathological changes in PDA initiation and development, translational studies are beginning to define PDM-associated cell and molecular biomarkers that can be used to screen and detect early PDA and to enable its effective intervention, thereby truly and significantly reducing the dreadful mortality rate of PDA. This review will describe recent advances in the understanding of PDM biology with a focus on its underlying cellular and molecular mechanisms, and in biomarker discovery with clinical implications for the management of pancreatic regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China.
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Sca-1 is a marker for cell plasticity in murine pancreatic epithelial cells and induced by IFN-β in vitro. Pancreatology 2022; 22:294-303. [PMID: 35120820 DOI: 10.1016/j.pan.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/16/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Sca-1 is a surface marker for murine hematopoietic stem cells (HSCs) and type-I interferon is a key regulator for Lin-Sca-1+ HSCs expansion through Ifnar/Stat-1/Sca-1-signaling. In this study we aimed to characterize the role and regulation of Sca-1+ cells in pancreatic regeneration. METHODS To characterize Sca-1 in vivo, immunohistochemistry and immunofluorescence staining of Sca-1 was conducted in normal pancreas, in cerulein-mediated acute pancreatitis, and in Kras-triggered cancerous lesions. Ifnar/Stat-1/Sca-1-signaling was studied in type-I IFN-treated epithelial explants of adult wildtype, Ifnar-/-, and Stat-1-/- mice. Sca-1 induction was analyzed by gene expression and FACS analysis. After isolation of pancreatic epithelial Lin-Sca-1+cells, pancreatosphere-formation and immunofluorescence-assays were carried out to investigate self-renewal and differentiation capabilities. RESULTS Sca-1+ cells were located in periacinar and periductal spaces and showed an enrichment during cerulein-induced acute pancreatitis (23.2/100 μm2 ± 4.9 SEM) and in early inflammation-mediated carcinogenic lesions of the pancreas of KrasG12D mice (35.8/100 μm2 ± SEM 1.9) compared to controls (3.6/100 μm2 ± 1.3 SEM). Pancreatic Lin-Sca-1+ cells displayed a small population of 1.46% ± 0.12 SEM in FACS. In IFN-β treated pancreatic epithelial explants, Sca-1 expression was increased, and Lin-Sca-1+ cells were enriched in vitro (from 1.49% ± 0.36 SEM to 3.85% ± 0.78 SEM). Lin-Sca-1+ cells showed a 12 to 51-fold higher capacity for clonal self-renewal compared to Lin-Sca-1- cells and generated cells express markers of the acinar and ductal compartment. CONCLUSIONS Pancreatic Sca-1+ cells enriched during parenchymal damage showed a significant capacity for cell renewal and in vitro plasticity, suggesting that corresponding to the type I interferon-dependent regulation of Lin-Sca-1+ hematopoietic stem cells, pancreatic Sca-1+ cells also employ type-I-interferon for regulating progenitor-cell-homeostasis.
Collapse
|
4
|
Li S, Xie K. Ductal metaplasia in pancreas. Biochim Biophys Acta Rev Cancer 2022; 1877:188698. [DOI: 10.1016/j.bbcan.2022.188698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
|
5
|
EMT and Stemness-Key Players in Pancreatic Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11081136. [PMID: 31398893 PMCID: PMC6721598 DOI: 10.3390/cancers11081136] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Metastasis and tumor progression are the major cause of death in patients suffering from pancreatic ductal adenocarcinoma. Tumor growth and especially dissemination are typically associated with activation of an epithelial-to-mesenchymal transition (EMT) program. This phenotypic transition from an epithelial to a mesenchymal state promotes migration and survival both during development and in cancer progression. When re-activated in pathological contexts such as cancer, this type of developmental process confers additional stemness properties to specific subsets of cells. Cancer stem cells (CSCs) are a subpopulation of cancer cells with stem-like features that are responsible for the propagation of the tumor as well as therapy resistance and cancer relapse, but also for circulating tumor cell release and metastasis. In support of this concept, EMT transcription factors generate cells with stem cell properties and mediate chemoresistance. However, their role in pancreatic ductal adenocarcinoma metastasis remains controversial. As such, a better characterization of CSC populations will be crucial in future development of therapies targeting these cells. In this review, we will discuss the latest updates on the mechanisms common to pancreas development and CSC-mediated tumor progression.
Collapse
|
6
|
Afelik S, Rovira M. Pancreatic β-cell regeneration: Facultative or dedicated progenitors? Mol Cell Endocrinol 2017; 445:85-94. [PMID: 27838399 DOI: 10.1016/j.mce.2016.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/21/2016] [Accepted: 11/08/2016] [Indexed: 12/19/2022]
Abstract
The adult pancreas is only capable of limited regeneration. Unlike highly regenerative tissues such as the skin, intestinal crypts and hematopoietic system, no dedicated adult stem cells or stem cell niche have so far been identified within the adult pancreas. New β cells have been shown to form in the adult pancreas, in response to high physiological demand or experimental β-cell ablation, mostly by replication of existing β cells. The possibility that new β cells are formed from other sources is currently a point of major controversy. Under particular injury conditions, fully differentiated pancreatic duct and acinar cells have been shown to dedifferentiate into a progenitor-like state, however the extent, to which ductal, acinar or other endocrine cells contribute to restoring pancreatic β-cell mass remains to be resolved. In this review we focus on regenerative events in the pancreas with emphasis on the restoration of β-cell mass. We present an overview of regenerative responses noted within the different pancreatic lineages, following injury. We also highlight the intrinsic plasticity of the adult pancreas that allows for inter-conversion of fully differentiated pancreatic lineages through manipulation of few genes or growth factors. Taken together, evidence from a number of studies suggest that differentiated pancreatic lineages could act as facultative progenitor cells, but the extent to which these contribute to β-cell regeneration in vivo is still a matter of contention.
Collapse
Affiliation(s)
- Solomon Afelik
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, 840 South Wood Street, CSB 920 (Rm 502), Chicago, IL 60612, USA.
| | - Meritxell Rovira
- Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
7
|
Beer RL, Parsons MJ, Rovira M. Centroacinar cells: At the center of pancreas regeneration. Dev Biol 2016; 413:8-15. [PMID: 26963675 DOI: 10.1016/j.ydbio.2016.02.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
The process of regeneration serves to heal injury by replacing missing cells. Understanding regeneration can help us replace cell populations lost during disease, such as the insulin-producing β cells lost in diabetic patients. Centroacinar cells (CACs) are a specialized ductal pancreatic cell type that act as progenitors to replace β cells in the zebrafish. However, whether CACs contribute to β-cell regeneration in adult mammals remains controversial. Here we review the current understanding of the role of CACs as endocrine progenitors during regeneration in zebrafish and mammals.
Collapse
Affiliation(s)
- Rebecca L Beer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States.
| | - Michael J Parsons
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States; Department of Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Meritxell Rovira
- Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
8
|
Morvaridi S, Dhall D, Greene MI, Pandol SJ, Wang Q. Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis. Sci Rep 2015; 5:16759. [PMID: 26567630 PMCID: PMC4645184 DOI: 10.1038/srep16759] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic and inflammatory microenvironment that is formed primarily by activated, myofibroblast-like, stellate cells. Although the stellate cells are thought to contribute to tumorigenesis, metastasis and drug resistance of PDAC, the signaling events involved in activation of the stellate cells are not well defined. Functioning as transcription co-factors, Yes-associated protein (YAP) and its homolog transcriptional co-activator with PDZ-binding motif (TAZ) modulate the expression of genes involved in various aspects of cellular functions, such as proliferation and mobility. Using human tissues we show that YAP and TAZ expression is restricted to the centroacinar and ductal cells of normal pancreas, but is elevated in cancer cells. In particular, YAP and TAZ are expressed at high levels in the activated stellate cells of both chronic pancreatitis and PDAC patients as well as in the islets of Langerhans in chronic pancreatitis tissues. Of note, YAP is up regulated in both acinar and ductal cells following induction of acute and chronic pancreatitis in mice. These findings indicate that YAP and TAZ may play a critical role in modulating pancreatic tissue regeneration, neoplastic transformation, and stellate cell functions in both PDAC and pancreatitis.
Collapse
Affiliation(s)
- Susan Morvaridi
- Department of Medicine; Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Pancreatic Research Program; Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Deepti Dhall
- Department of Pathology and Laboratory Medicine; Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Mark I. Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Stephen J. Pandol
- Department of Medicine; Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Pancreatic Research Program; Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Qiang Wang
- Department of Medicine; Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Pancreatic Research Program; Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
9
|
Delaspre F, Beer RL, Rovira M, Huang W, Wang G, Gee S, Vitery MDC, Wheelan SJ, Parsons MJ. Centroacinar Cells Are Progenitors That Contribute to Endocrine Pancreas Regeneration. Diabetes 2015; 64:3499-509. [PMID: 26153247 PMCID: PMC4587647 DOI: 10.2337/db15-0153] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/24/2015] [Indexed: 12/17/2022]
Abstract
Diabetes is associated with a paucity of insulin-producing β-cells. With the goal of finding therapeutic routes to treat diabetes, we aim to find molecular and cellular mechanisms involved in β-cell neogenesis and regeneration. To facilitate discovery of such mechanisms, we use a vertebrate organism where pancreatic cells readily regenerate. The larval zebrafish pancreas contains Notch-responsive progenitors that during development give rise to adult ductal, endocrine, and centroacinar cells (CACs). Adult CACs are also Notch responsive and are morphologically similar to their larval predecessors. To test our hypothesis that adult CACs are also progenitors, we took two complementary approaches: 1) We established the transcriptome for adult CACs. Using gene ontology, transgenic lines, and in situ hybridization, we found that the CAC transcriptome is enriched for progenitor markers. 2) Using lineage tracing, we demonstrated that CACs do form new endocrine cells after β-cell ablation or partial pancreatectomy. We concluded that CACs and their larval predecessors are the same cell type and represent an opportune model to study both β-cell neogenesis and β-cell regeneration. Furthermore, we show that in cftr loss-of-function mutants, there is a deficiency of larval CACs, providing a possible explanation for pancreatic complications associated with cystic fibrosis.
Collapse
Affiliation(s)
- Fabien Delaspre
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | - Rebecca L Beer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | - Meritxell Rovira
- Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Wei Huang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | - Guangliang Wang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | - Stephen Gee
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | | | - Sarah J Wheelan
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD Department of Oncology, Johns Hopkins University, Baltimore, MD
| | - Michael J Parsons
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD Department of Surgery, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
10
|
Reversing the intractable nature of pancreatic cancer by selectively targeting ALDH-high, therapy-resistant cancer cells. PLoS One 2013; 8:e78130. [PMID: 24194908 PMCID: PMC3806801 DOI: 10.1371/journal.pone.0078130] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/17/2013] [Indexed: 12/19/2022] Open
Abstract
Human pancreatic ductal adenocarcinoma (PDAC) is a cancer with a dismal prognosis. The efficacy of PDAC anticancer therapies is often short-lived; however, there is little information on how this disease entity so frequently gains resistance to treatment. We adopted the concept of cancer stem cells (CSCs) to explain the mechanism of resistance and evaluated the efficacy of a candidate anticancer drug to target these therapy-resistant CSCs. We identified a subpopulation of cells in PDAC with CSC features that were enriched for aldehyde dehydrogenase (ALDH), a marker expressed in certain stem/progenitor cells. These cells were also highly resistant to, and were further enriched by, treatment with gemcitabine. Similarly, surgical specimens from PDAC patients showed that those who had undergone preoperative chemo-radiation therapy more frequently displayed cancers with ALDH strongly positive subpopulations compared with untreated patients. Importantly, these ALDH-high cancer cells were sensitive to disulfiram, an ALDH inhibitor, when tested in vitro. Furthermore, in vivo xenograft studies showed that the effect of disulfiram was additive to that of low-dose gemcitabine when applied in combination. In conclusion, human PDAC-derived cells that express high levels of ALDH show CSC features and have a key role in the development of resistance to anticancer therapies. Disulfiram can be used to suppress this therapy-resistant subpopulation.
Collapse
|
11
|
Cleveland MH, Sawyer JM, Afelik S, Jensen J, Leach SD. Exocrine ontogenies: on the development of pancreatic acinar, ductal and centroacinar cells. Semin Cell Dev Biol 2012; 23:711-9. [PMID: 22743232 DOI: 10.1016/j.semcdb.2012.06.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023]
Abstract
This review summarizes our current understanding of exocrine pancreas development, including the formation of acinar, ductal and centroacinar cells. We discuss the transcription factors associated with various stages of exocrine differentiation, from multipotent progenitor cells to fully differentiated acinar and ductal cells. Within the branching epithelial tree of the embryonic pancreas, this involves the progressive restriction of multipotent pancreatic progenitor cells to either a central "trunk" domain giving rise to the islet and ductal lineages, or a peripheral "tip" domain giving rise to acinar cells. This review also discusses the soluble morphogens and other signaling pathways that influence these events. Finally, we examine centroacinar cells as an enigmatic pancreatic cell type whose lineage remains uncertain, and whose possible progenitor capacities continue to be explored.
Collapse
Affiliation(s)
- Megan H Cleveland
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| | | | | | | | | |
Collapse
|
12
|
Abstract
Pancreas oganogenesis comprises a coordinated and highly complex interplay of signaling events and transcriptional networks that guide a step-wise process of organ development from early bud specification all the way to the final mature organ state. Extensive research on pancreas development over the last few years, largely driven by a translational potential for pancreatic diseases (diabetes, pancreatic cancer, and so on), is markedly advancing our knowledge of these processes. It is a tenable goal that we will one day have a clear, complete picture of the transcriptional and signaling codes that control the entire organogenetic process, allowing us to apply this knowledge in a therapeutic context, by generating replacement cells in vitro, or perhaps one day to the whole organ in vivo. This review summarizes findings in the past 5 years that we feel are amongst the most significant in contributing to the deeper understanding of pancreas development. Rather than try to cover all aspects comprehensively, we have chosen to highlight interesting new concepts, and to discuss provocatively some of the more controversial findings or proposals. At the end of the review, we include a perspective section on how the whole pancreas differentiation process might be able to be unwound in a regulated fashion, or redirected, and suggest linkages to the possible reprogramming of other pancreatic cell-types in vivo, and to the optimization of the forward-directed-differentiation of human embryonic stem cells (hESC), or induced pluripotential cells (iPSC), towards mature β-cells.
Collapse
|
13
|
Wang Y, Rovira M, Yusuff S, Parsons MJ. Genetic inducible fate mapping in larval zebrafish reveals origins of adult insulin-producing β-cells. Development 2011; 138:609-17. [PMID: 21208992 DOI: 10.1242/dev.059097] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Notch-signaling pathway is known to be fundamental in controlling pancreas differentiation. We now report on using Cre-based fate mapping to indelibly label pancreatic Notch-responsive cells (PNCs) at larval stages and follow their fate in the adult pancreas. We show that the PNCs represent a population of progenitors that can differentiate to multiple lineages, including adult ductal cells, centroacinar cells (CACs) and endocrine cells. These endocrine cells include the insulin-producing β-cells. CACs are a functional component of the exocrine pancreas; however, our fate-mapping results indicate that CACs are more closely related to endocrine cells by lineage as they share a common progenitor. The majority of the exocrine pancreas consists of the secretory acinar cells; however, we only detect a very limited contribution of PNCs to acinar cells. To explain this observation we re-examined early events in pancreas formation. The pancreatic anlage that gives rise to the exocrine pancreas is located in the ventral gut endoderm (called the ventral bud). Ptf1a is a gene required for exocrine pancreas development and is first expressed as the ventral bud forms. We used transgenic marker lines to observe both the domain of cells expressing ptf1a and cells responding to Notch signaling. We do not detect any overlap in expression and demonstrate that the ventral bud consists of two cell populations: a ptf1-expressing domain and a Notch-responsive progenitor core. As pancreas organogenesis continues, the ventral bud derived PNCs align along the duct, remain multipotent and later in development differentiate to form secondary islets, ducts and CACs.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
14
|
Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc Natl Acad Sci U S A 2009; 107:75-80. [PMID: 20018761 DOI: 10.1073/pnas.0912589107] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The question of whether dedicated progenitor cells exist in adult vertebrate pancreas remains controversial. Centroacinar cells and terminal duct (CA/TD) cells lie at the junction between peripheral acinar cells and the adjacent ductal epithelium, and are frequently included among cell types proposed as candidate pancreatic progenitors. However these cells have not previously been isolated in a manner that allows formal assessment of their progenitor capacities. We have found that a subset of adult CA/TD cells are characterized by high levels of ALDH1 enzymatic activity, related to high-level expression of both Aldh1a1 and Aldh1a7. This allows their isolation by FACS using a fluorogenic ALDH1 substrate. FACS-isolated CA/TD cells are relatively depleted of transcripts associated with differentiated pancreatic cell types. In contrast, they are markedly enriched for transcripts encoding Sca1, Sdf1, c-Met, Nestin, and Sox9, markers previously associated with progenitor populations in embryonic pancreas and other tissues. FACS-sorted CA/TD cells are uniquely able to form self-renewing "pancreatospheres" in suspension culture, even when plated at clonal density. These spheres display a capacity for spontaneous endocrine and exocrine differentiation, as well as glucose-responsive insulin secretion. In addition, when injected into cultured embryonic dorsal pancreatic buds, these adult cells display a unique capacity to contribute to both the embryonic endocrine and exocrine lineages. Finally, these cells demonstrate dramatic expansion in the setting of chronic epithelial injury. These findings suggest that CA/TD cells are indeed capable of progenitor function and may contribute to the maintenance of tissue homeostasis in adult mouse pancreas.
Collapse
|
15
|
Abstract
With more widespread use of imaging, cystic neoplasms of the pancreas are being diagnosed with increased frequency. Serous cystadenomas are the most common type of cystic neoplasm of the pancreas and have a natural history and malignant potential different than that of other cystic neoplasms. Although characteristic findings on imaging may be supportive, definitive diagnosis of these lesions often cannot be made by imaging alone. Endoscopic ultrasound with fine needle aspiration and cyst aspiration may facilitate the diagnosis, and after definitive diagnosis, patients with lesions that are small and asymptomatic may be followed with serial imaging. If definitive diagnosis cannot be made or if the patient is symptomatic, resection is warranted. In addition, large (> 4 cm) serous cystadenomas should be resected in appropriate surgical candidates given their propensity for growth and developing symptoms.
Collapse
Affiliation(s)
- Jennifer A Wargo
- Harvard Medical School, Massachusetts General Hospital, White 506, 55 Fruit St., Boston, MA 02114, USA.
| | | | | |
Collapse
|
16
|
Parsons MJ, Pisharath H, Yusuff S, Moore JC, Siekmann AF, Lawson N, Leach SD. Notch-responsive cells initiate the secondary transition in larval zebrafish pancreas. Mech Dev 2009; 126:898-912. [PMID: 19595765 DOI: 10.1016/j.mod.2009.07.002] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/23/2009] [Accepted: 07/02/2009] [Indexed: 11/28/2022]
Abstract
Zebrafish provide a highly versatile model in which to study vertebrate development. Many recent studies have elucidated early events in the organogenesis of the zebrafish pancreas; however, several aspects of early endocrine pancreas formation in the zebrafish are not homologous to the mammalian system. To better identify mechanisms of islet formation in the zebrafish, with true homology to those observed in mammals, we have temporally and spatially characterized zebrafish secondary islet formation. As is the case in the mouse, we show that Notch inhibition leads to precocious differentiation of endocrine tissues. Furthermore, we have used transgenic fish expressing fluorescent markers under the control of a Notch-responsive element to observe the precursors of these induced endocrine cells. These pancreatic Notch-responsive cells represent a novel population of putative progenitors that are associated with larval pancreatic ductal epithelium, suggesting functional homology between secondary islet formation in zebrafish and the secondary transition in mammals. We also show that Notch-responsive cells persist in the adult pancreas and possess the classical characteristics of centroacinar cells, a cell type believed to be a multipotent progenitor cell in adult mammalian pancreas.
Collapse
Affiliation(s)
- Michael J Parsons
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Yoshida T, Shiraki N, Baba H, Goto M, Fujiwara S, Kume K, Kume S. Expression patterns of epiplakin1 in pancreas, pancreatic cancer and regenerating pancreas. Genes Cells 2008; 13:667-78. [PMID: 18498355 DOI: 10.1111/j.1365-2443.2008.01196.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epiplakin1 (Eppk1) is a plakin family gene with its function remains largely unknown, although the plakin genes are known to function in interconnecting cytoskeletal filaments and anchoring them at plasma membrane-associated adhesive junction. Here we analyzed the expression patterns of Eppk1 in the developing and adult pancreas in the mice. In the embryonic pancreas, Eppk1+/Pdx1+ and Eppk1+/Sox9+ pancreatic progenitor cells were observed in early pancreatic epithelium. Since Pdx1 expression overlapped with that of Sox9 at this stage, these multipotent progenitor cells are Eppk1+/Pdx1+/Sox9+ cells. Then Eppk1 expression becomes confined to Ngn3+ or Sox9+ endocrine progenitor cells, and p48+ exocrine progenitor cells, and then restricted to the duct cells and a cells at birth. In the adult pancreas, Eppk1 is expressed in centroacinar cells (CACs) and in duct cells. Eppk1 is observed in pancreatic intraepithelial neoplasia (PanIN), previously identified as pancreatic ductal adenocarcinoma (PDAC) precursor lesions. In addition, the expansion of Eppk1-positive cells occurs in a caerulein-induced acute pancreatitis, an acinar cell regeneration model. Furthermore, in the partial pancreatectomy (Px) regeneration model using mice, Eppk1 is expressed in "ducts in foci", a tubular structure transiently induced. These results suggest that Eppk1 serves as a useful marker for detecting pancreatic progenitor cells in developing and regenerating pancreas.
Collapse
Affiliation(s)
- Tetsu Yoshida
- Division of Stem Cell Biology, Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Molero X, Adell T, Skoudy A, Padilla MA, Gómez JA, Chalaux E, Malagelada JR, Real FX. Pancreas transcription factor 1alpha expression is regulated in pancreatitis. Eur J Clin Invest 2007; 37:791-801. [PMID: 17888090 DOI: 10.1111/j.1365-2362.2007.01856.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Expression of acinar cell-specific genes requires the pancreas transcription factor 1alpha (Ptf1alpha). p48 is the only component of Ptf1alpha that is involved in both acinar gene regulation and pancreatic ontogenesis. MATERIALS AND METHODS To determine whether Ptf1alpha/p48 expression is regulated during pancreatitis, acute pancreatitis was induced in rats by repeated caerulein injections; early chronic pancreatitis by the combined administration of caerulein and cyclosporin A; and focal pancreas fibrosis by trinitrobenzene sulfonic acid infusion into the pancreatic duct. AR42J cells were used to examine caerulein effects on acinar cells. Ptf1alpha/p48 expression was examined using immunohistochemistry, Western blotting, and qRT-PCR methods. RESULTS In acute pancreatitis, Ptf1alpha/p48 decreased markedly within 6 h as determined by Western blotting and immunohistochemistry. After 24 h, Ptf1alpha/p48 increased continuously and normalized at day six. In contrast, pancreas amylase reached a nadir at 48 h, when Ptf1alpha/p48 had largely recovered. In the early chronic pancreatitis model Ptf1alpha/p48 levels did not completely recover even at day 14, and this was associated with a failure to restore normal histology and amylase content. qRT-PCR showed that p48 mRNA were reduced after pancreatitis induction and were followed by a decrease in elastase mRNA. In the focal pancreas fibrosis model, Ptf1alpha/p48 expression was undetectable in areas with substantial acinar cell loss and tubular complexes. Caerulein did not affect Ptf1alpha/p48 expression in AR42J cells. CONCLUSIONS Ptf1alpha/p48 protein and mRNA levels are regulated in acute and chronic experimental pancreatitis. Inability to re-express Ptf1alpha/p48 after injury may preclude acinar cell differentiation and appropriate pancreatic regeneration.
Collapse
Affiliation(s)
- X Molero
- Research Institute, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu T, Wang C, Wan C, Xiong J, Zhou F. Proliferation and differentiation of duct epithelial cells after partial pancreatectomy in rats. ACTA ACUST UNITED AC 2006; 26:567-9. [PMID: 17219970 DOI: 10.1007/s11596-006-0522-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The proliferation and differentiation of pancreatic duct epithelial cells in remnant pancreas during regeneration after partial pancreatectomy in rats were studied, and the source of pancreatic stem cells was characterized. Partial (90 %) pancreatectomy was performed on 4- to 5-week-old Sprague-Dawley rats, and different duct epithelial cells and acinar cells were detected by immunohistrochemical stain method and scored using 5-bromo-2'-deoxyuridine (BrdU) labeling index (LI) at various time points after partial pancreatectomy. It was found that at 24 h after partial pancreatectomy proliferation started in the main, large and small duct cells, and persisted in small duct cells to day 5. There was significant difference between the experimental group and the control group (P<0.001). Acinar cells positive for BrdU were greatly increased and reached the peak LI on day 5. The destroyed lobular architecture almost totally recovered on day 7, and the newly islet cells appeared around the pancreatic ducts. These results suggest that regeneration after partial pancreatectomy is involved in proliferation and differentiation of pancreatic stem cells, and pancreatic stem cells may locate in the pancreatic ductules.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | | | |
Collapse
|
20
|
Suzuki T, Kadoya Y, Sato Y, Handa K, Takahashi T, Kakita A, Yamashina S. The expression of pancreatic endocrine markers in centroacinar cells of the normal and regenerating rat pancreas: their possible transformation to endocrine cells. ACTA ACUST UNITED AC 2004; 66:347-58. [PMID: 14692690 DOI: 10.1679/aohc.66.347] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To determine the progenitor nature of centroacinar cells (CACs), we attempted to compare the expression pattern of endocrine cell markers and PDX-1 (pancreatic duodenal homeobox gene 1) in CACs of both the quiescent and the regenerating rat pancreas. In the normal pancreas, most CACs were relatively small cells with sparse cytoplasm and oval or elongated nuclei. In addition, we noticed a distinct population of a small number of large cells with round nuclei in the centroacinar region. By immunohistochemistry, 0.21% and 0.3% of CACs in normal rat pancreas were respectively found positive for glucagon and insulin, being large CACs and designated as GL-CAC and IL-CAC. They also exhibited the mRNA of each hormone by in situ hybridization (ISH). The ISH signal for glucagon but not insulin was also detected in a subset of small CACs (designated GS-CAC). The expression of PDX-1 was also observed in subsets of small and large CACs (PS-CAC and PL-CAC, respectively). After a 90% pancreatectomy, the relative frequency for GS-CACs, but not those for other CACs, was significantly reduced in two days after surgery. On day 7 after surgery, the number of GS-CACs recovered to preoperative levels, whereas GL-CACs, IL-CACs, PS-CAC, and PL-CAC gradually increased to about double in number. From these results, a portion of CACs was suggested to differentiated into endocrine cells. A possible cell lineage is discussed for endocrine neogenesis during pancreatic regeneration.
Collapse
Affiliation(s)
- Tetsutaro Suzuki
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio-Donahue CA, Sriuranpong V, Iso T, Meszoely IM, Wolfe MS, Hruban RH, Ball DW, Schmid RM, Leach SD. Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 2003; 3:565-76. [PMID: 12842085 DOI: 10.1016/s1535-6108(03)00140-5] [Citation(s) in RCA: 496] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Notch signaling regulates cell fate decisions in a wide variety of adult and embryonic tissues. Here we show that Notch pathway components and Notch target genes are upregulated in invasive pancreatic cancer, as well as in pancreatic cancer precursors from both mouse and human. In mouse pancreas, ectopic Notch activation results in accumulation of nestin-positive precursor cells and expansion of metaplastic ductal epithelium, previously identified as a precursor lesion for pancreatic cancer. Notch is also activated as a direct consequence of EGF receptor activation in exocrine pancreas and is required for TGF alpha-induced changes in epithelial differentiation. These findings suggest that Notch mediates the tumor-initiating effects of TG alpha by expanding a population of undifferentiated precursor cells.
Collapse
Affiliation(s)
- Yoshiharu Miyamoto
- Departments of Surgery, Oncology, and Pathology, The Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Taguchi M, Yamaguchi T, Otsuki M. Induction of PDX-1-positive cells in the main duct during regeneration after acute necrotizing pancreatitis in rats. J Pathol 2002; 197:638-46. [PMID: 12210084 DOI: 10.1002/path.1134] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pancreatic regeneration involves two pathways; proliferation and differentiation of pancreatic progenitor cells, which probably exist in pancreatic ductal epithelium, and replication of pre-existing differentiated acinar, islet, and ductal epithelial cells. During pancreatic development, differentiated cells arise from the ductal progenitor cells expressing the pancreatic/duodenal homeobox-1 (PDX-1) homeodomain transcription factor. The aims of this study were to characterize cell proliferation and differentiation during regeneration after acute necrotizing pancreatitis and to evaluate the role of PDX-1-positive stem cells. Necrotizing pancreatitis was induced in rats by retrograde intraductal infusion of sodium taurocholate. Cell types were classified into five categories: main, large, and small ductal epithelial cells, tubular complexes and acinar cells. Each category was scored using a 5-bromo-2'-deoxyuridine (BrdU) labelling index (LI) at various time points after induction of pancreatitis. Tissue sections were also immunostained for PDX-1 to determine the source of pancreatic stem cells. Acinar necrosis was observed at 24 h after induction of pancreatitis and most lobules were filled with tubular complexes on day 5. Subsequently, newly formed acinar cells were observed on day 7, but the lobular architecture returned to normal appearance on day 28. Proliferation started in the main and large ducts at 24 h; marked mitotic activity was evident in small ductal epithelial cells and tubular complexes on day 3, and in acinar cells on day 7. At 24 h after induction of pancreatitis, epithelial cells of the main duct with PDX-1-positive nuclei were greatly increased, simultaneously with the peak LI of BrdU. These results suggest that regeneration after necrotizing pancreatitis involves proliferation and differentiation of pancreatic progenitor cells, and that ductal epithelial cells with PDX-1-positive nuclei may contribute to the differentiation of pancreatic stem cells in the main duct.
Collapse
Affiliation(s)
- Masashi Taguchi
- Third Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | | | | |
Collapse
|
23
|
Bardeesy N, Morgan J, Sinha M, Signoretti S, Srivastava S, Loda M, Merlino G, DePinho RA. Obligate roles for p16(Ink4a) and p19(Arf)-p53 in the suppression of murine pancreatic neoplasia. Mol Cell Biol 2002; 22:635-43. [PMID: 11756558 PMCID: PMC139752 DOI: 10.1128/mcb.22.2.635-643.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epithelial tumors of the pancreas exhibit a wide spectrum of histologies with varying propensities for metastasis and tissue invasion. The histogenic relationship among these tumor types is not well established; moreover, the specific role of genetic lesions in the progression of these malignancies is largely undefined. Transgenic mice with ectopic expression of transforming growth factor alpha (TGF-alpha) in the pancreatic acinar cells develop tubular metaplasia, a potential premalignant lesion of the pancreatic ductal epithelium. To evaluate the cooperative interactions between TGF-alpha and signature mutations in pancreatic tumor genesis and progression, TGFalpha transgenic mice were crossed onto Ink4a/Arf and/or p53 mutant backgrounds. These compound mutant mice developed a novel pancreatic neoplasm, serous cystadenoma (SCA), presenting as large epithelial tumors bearing conspicuous gross and histological resemblances to their human counterpart. TGFalpha animals heterozygous for both the Ink4a/Arf and the p53 mutation showed a dramatically increased incidence of SCA, indicating synergistic interaction of these alleles. Inactivation of p16(Ink4a) by loss of heterozygosity, intragenic mutation, or promoter hypermethylation was a common feature in these SCAs, and correspondingly, none of the tumors expressed wild-type p16(Ink4a). All tumors sustained loss of p53 or Arf, generally in a mutually exclusive fashion. The tumor incidence data and molecular profiles establish a pathogenic role for the dual inactivation of p16(Ink4a) and p19(Arf)-p53 in the development of SCA in mice, demonstrating that p16(Ink4a) is a murine tumor suppressor. This genetically defined model provides insights into the molecular pathogenesis of SCA and serves as a platform for dissection of cell-specific programs of epithelial tumor suppression.
Collapse
MESH Headings
- Animals
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cystadenoma, Serous/etiology
- Cystadenoma, Serous/genetics
- Cystadenoma, Serous/metabolism
- Cystadenoma, Serous/pathology
- Endothelial Growth Factors/metabolism
- Genes, Tumor Suppressor
- Genes, p53
- Humans
- Ligases/genetics
- Lymphokines/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Mutant Strains
- Mice, Transgenic
- Mutation
- Pancreatic Neoplasms/etiology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Phenotype
- Transforming Growth Factor alpha/genetics
- Tumor Suppressor Protein p14ARF/genetics
- Tumor Suppressor Proteins
- Ubiquitin-Protein Ligases
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
- Von Hippel-Lindau Tumor Suppressor Protein
Collapse
Affiliation(s)
- Nabeel Bardeesy
- Department of Adult Oncology, Dana-Farber Cancer Institute, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Song SY, Gannon M, Washington MK, Scoggins CR, Meszoely IM, Goldenring JR, Marino CR, Sandgren EP, Coffey RJ, Wright CV, Leach SD. Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor alpha. Gastroenterology 1999; 117:1416-26. [PMID: 10579983 DOI: 10.1016/s0016-5085(99)70292-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The progenitor cells responsible for transforming growth factor (TGF)-alpha-induced pancreatic ductal metaplasia and neoplasia remain uncharacterized. During pancreatic development, differentiated cell types arise from ductal progenitor cells expressing the Pdx1 homeodomain transcription factor. The aims of this study were, first, to evaluate the role of Pdx1-expressing stem cells in MT-TGFalpha transgenic mice, and second, to further characterize cell proliferation and differentiation in this model. METHODS To assess Pdx1 gene expression in normal and metaplastic epithelium, we performed in vivo reporter gene analysis using heterozygous Pdx1(lacZ/+) and bigenic Pdx1(lacZ/+)/MT-TGFalpha mice. RESULTS Pdx1(lacZ/+)/MT-TGFalpha bigenics showed up-regulated Pdx1 expression in premalignant metaplastic ductal epithelium. In addition to Pdx1 gene activation, TGF-alpha-induced metaplastic epithelium demonstrated a pluripotent differentiation capacity, as evidenced by focal expression of Pax6 and initiation of islet cell neogenesis. The majority of Pdx1-positive epithelial cells showed no expression of insulin, similar to the pattern observed during embryonic development. CONCLUSIONS Overexpression of TGF-alpha induces expansion of a Pdx1-expressing epithelium characterized by focal expression of Pax6 and initiation of islet neogenesis. These findings suggest that premalignant events induced by TGF-alpha in mouse pancreas may recapitulate a developmental program active during embryogenesis.
Collapse
Affiliation(s)
- S Y Song
- Department of Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center and Nashville VAMC, Nashville, TN 37232-2736, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
This study was performed to determine whether pancreatic parenchymal epithelial cells in human chronic pancreatitis tissues retain a biologically significant capability to proliferate and, if so, within which epithelial compartment proliferation occurs. The techniques of immediate per-operative in vitro labelling with bromodeoxyuridine (BrdU) and conventional immunohistochemistry for Ki-67 antigen expression were used to identify proliferating cells. Concordance between the two techniques was confirmed in all tissues examined. In normal pancreas, proliferation was restricted to acinar epithelial cells, with no activity in the ductules. In chronic pancreatitis of both chronic obstructive and chronic calcifying types, the number of proliferating cells in the acini was significantly increased. A small population of proliferating cells was also apparent within ductules in chronic calcifying pancreatitis, but not in chronic obstructive pancreatitis. This investigation has shown that loss of parenchymal epithelium occurring in chronic pancreatitis is not caused by a primary failure of pancreatic 'stem-cell' proliferation, but is due to disproportionate attrition of differentiated parenchymal epithelial cells by a mechanism, possibly stromal in origin, which remains hitherto unidentified. The presence of proliferating ductular cells in chronic calcifying pancreatitis, but not chronic obstructive pancreatitis, suggests that distinct pathogenic processes may be operating in the former condition, which is classically regarded as secondary to ductal obstruction by stones, and in this single respect might be considered to be identical to chronic obstructive pancreatitis. Preservation of 'stem-cell' function supports the belief that regeneration of pancreatic parenchymal tissue could be a feasible proposition if biologically appropriate management strategies were developed to treat chronic calcifying pancreatitis.
Collapse
Affiliation(s)
- S D Slater
- Department of Histopathology, Royal Postgraduate Medical School, Hammersmith Hospital, London, U.K
| | | | | |
Collapse
|