1
|
Wong YL, Lautenschläger I, Zitta K, Schildhauer C, Parczany K, Röcken C, Steinfath M, Weiler N, Albrecht M. Adverse effects of hydroxyethyl starch (HES 130/0.4) on intestinal barrier integrity and metabolic function are abrogated by supplementation with Albumin. J Transl Med 2016; 14:60. [PMID: 26920368 PMCID: PMC4769564 DOI: 10.1186/s12967-016-0810-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/07/2016] [Indexed: 12/29/2022] Open
Abstract
Background Volume resuscitation with hydroxyethyl starch (HES) is controversially discussed and we recently showed that HES perfusion impairs endothelial and epithelial intestinal barrier integrity. Here we investigated whether Albumin containing HES solutions are superior to HES alone in maintaining intestinal barrier function. Methods An isolated perfused model of the mouse small intestine was used to investigate the effects of: (i) 3 % Albumin (Alb), (ii) 3 % HES or (iii) 1.5 % HES/1.5 % Albumin (HES/Alb). Intestinal morphology, cell damage, metabolic functions, fluid shifts and endothelial/epithelial barrier permeability were evaluated. Potentially involved signaling mechanisms (Erk1/2, Akt and Stat5 phosphorylation) were screened. Results HES induced histomorphological damage (p < 0.01 vs. Alb), by trend elevated the amount of luminal intestinal fatty acid binding protein and reduced galactose uptake (p < 0.001 vs. Alb). Luminal and lymphatic flow rates were increased (p < 0.001 vs. Alb), while vascular flow was decreased (p < 0.001 vs. Alb) during HES perfusion. HES also increased the vascular to luminal FITC-dextran transfer (p < 0.001 vs. Alb), pointing towards a fluid shift from the vascular to the luminal and lymphatic compartments during HES perfusion. Addition of Alb (HES/Alb) reversed all adverse effects of HES (p < 0.05 vs. HES), restored barrier integrity (p < 0.05 vs. HES) and improved metabolic function of the intestine (p < 0.001 vs. HES; p < 0.05 vs. Alb). Mechanistically, HES/Alb perfusion resulted in an increased phosphorylation of Erk1/2 and Akt kinases (p < 0.001 vs. HES), while Stat5 remained unchanged. Conclusions Albumin supplementation abrogates the adverse effects of HES in the intestine and underlying mechanism may function via phosphorylation of Erk1/2 and Akt. Albumin containing HES solutions are superior to HES alone and may improve the suitability of HES in the clinic. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0810-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuk Lung Wong
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Schwanenweg 21, 24105, Kiel, Germany.
| | - Ingmar Lautenschläger
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Schwanenweg 21, 24105, Kiel, Germany.
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Schwanenweg 21, 24105, Kiel, Germany.
| | - Christin Schildhauer
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Schwanenweg 21, 24105, Kiel, Germany.
| | - Kerstin Parczany
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Schwanenweg 21, 24105, Kiel, Germany.
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany.
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Schwanenweg 21, 24105, Kiel, Germany.
| | - Norbert Weiler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Schwanenweg 21, 24105, Kiel, Germany.
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Schwanenweg 21, 24105, Kiel, Germany.
| |
Collapse
|
2
|
Ferrari LF, Levine JD, Green PG. Mechanisms mediating nitroglycerin-induced delayed-onset hyperalgesia in the rat. Neuroscience 2016; 317:121-9. [PMID: 26779834 DOI: 10.1016/j.neuroscience.2016.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 12/22/2022]
Abstract
Nitroglycerin (glycerol trinitrate, GTN) induces headache in migraineurs, an effect that has been used both diagnostically and in the study of the pathophysiology of this neurovascular pain syndrome. An important feature of this headache is a delay from the administration of GTN to headache onset that, because of GTN's very rapid metabolism, cannot be due to its pharmacokinetic profile. It has recently been suggested that activation of perivascular mast cells, which has been implicated in the pathophysiology of migraine, may contribute to this delay. We reported that hyperalgesia induced by intradermal GTN has a delay to onset of ∼ 30 min in male and ∼ 45 min in female rats. This hyperalgesia was greater in females, was prevented by pretreatment with the anti-migraine drug, sumatriptan, as well as by chronic pretreatment with the mast cell degranulator, compound 48/80. The acute administration of GTN and compound 48/80 both induced hyperalgesia that was prevented by pretreatment with octoxynol-9, which attenuates endothelial function, suggesting that GTN and mast cell-mediated hyperalgesia are endothelial cell-dependent. Furthermore, A-317491, a P2X3 antagonist, which inhibits endothelial cell-dependent hyperalgesia, also prevents GTN and mast cell-mediated hyperalgesia. We conclude that delayed-onset mechanical hyperalgesia induced by GTN is mediated by activation of mast cells, which in turn release mediators that stimulate endothelial cells to release ATP, to act on P2X3, a ligand-gated ion channel, in perivascular nociceptors. A role of the mast and endothelial cell in GTN-induced hyperalgesia suggests potential novel risk factors and targets for the treatment of migraine.
Collapse
Affiliation(s)
- L F Ferrari
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, United States
| | - J D Levine
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Department of Dental Science and Medicine, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, United States.
| | - P G Green
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Department of Preventative & Restorative, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, United States
| |
Collapse
|
3
|
Ferrari LF, Bogen O, Green P, Levine JD. Contribution of Piezo2 to endothelium-dependent pain. Mol Pain 2015; 11:65. [PMID: 26497944 PMCID: PMC4619430 DOI: 10.1186/s12990-015-0068-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 12/11/2022] Open
Abstract
Background We evaluated the role of a mechanically-gated ion channel, Piezo2, in mechanical stimulation-induced enhancement of hyperalgesia produced by the pronociceptive vasoactive mediator endothelin-1, an innocuous mechanical stimulus-induced enhancement of hyperalgesia that is vascular endothelial cell dependent. We also evaluated its role in a preclinical model of a vascular endothelial cell dependent painful peripheral neuropathy. Results The local administration of oligodeoxynucleotides antisense to Piezo2 mRNA, at the site of nociceptive testing in the rat’s hind paw, but not intrathecally at the central terminal of the nociceptor, prevented innocuous stimulus-induced enhancement of hyperalgesia produced by endothelin-1 (100 ng). The mechanical hyperalgesia induced by oxaliplatin (2 mg/kg. i.v.), which was inhibited by impairing endothelial cell function, was similarly attenuated by local injection of the Piezo2 antisense. Polymerase chain reaction analysis demonstrated for the first time the presence of Piezo2 mRNA in endothelial cells. Conclusions These results support the hypothesis that Piezo2 is a mechano-transducer in the endothelial cell where it contributes to stimulus-dependent hyperalgesia, and a model of chemotherapy-induced painful peripheral neuropathy.
Collapse
Affiliation(s)
- Luiz F Ferrari
- Division of Neuroscience, Department of Medicine, University of California, San Francisco, 521 Parnassus Avenue, San Francisco, CA, 94143-0440, USA.
| | - Oliver Bogen
- Division of Neuroscience, Department of Medicine, University of California, San Francisco, 521 Parnassus Avenue, San Francisco, CA, 94143-0440, USA.
| | - Paul Green
- Division of Neuroscience, Department of Medicine, University of California, San Francisco, 521 Parnassus Avenue, San Francisco, CA, 94143-0440, USA.
| | - Jon D Levine
- Division of Neuroscience, Department of Medicine, University of California, San Francisco, 521 Parnassus Avenue, San Francisco, CA, 94143-0440, USA.
| |
Collapse
|
4
|
Wong YL, Lautenschläger I, Dombrowsky H, Zitta K, Bein B, Krause T, Goldmann T, Frerichs I, Steinfath M, Weiler N, Albrecht M. Hydroxyethyl starch (HES 130/0.4) impairs intestinal barrier integrity and metabolic function: findings from a mouse model of the isolated perfused small intestine. PLoS One 2015; 10:e0121497. [PMID: 25799493 PMCID: PMC4370845 DOI: 10.1371/journal.pone.0121497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/02/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The application of hydroxyethyl starch (HES) for volume resuscitation is controversially discussed and clinical studies have suggested adverse effects of HES substitution, leading to increased patient mortality. Although, the intestine is of high clinical relevance and plays a crucial role in sepsis and inflammation, information about the effects of HES on intestinal function and barrier integrity is very scarce. We therefore evaluated the effects of clinically relevant concentrations of HES on intestinal function and barrier integrity employing an isolated perfused model of the mouse small intestine. METHODS An isolated perfused model of the mouse small intestine was established and intestines were vascularly perfused with a modified Krebs-Henseleit buffer containing 3% Albumin (N=7) or 3% HES (130/0.4; N=7). Intestinal metabolic function (galactose uptake, lactate-to-pyruvate ratio), edema formation (wet-to-dry weight ratio), morphology (histological and electron microscopical analysis), fluid shifts within the vascular, lymphatic and luminal compartments, as well as endothelial and epithelial barrier permeability (FITC-dextran translocation) were evaluated in both groups. RESULTS Compared to the Albumin group, HES perfusion did not significantly change the wet-to-dry weight ratio and lactate-to-pyruvate ratio. However, perfusing the small intestine with 3% HES resulted in a significant loss of vascular fluid (p<0.01), an increased fluid accumulation in the intestinal lumen (p<0.001), an enhanced translocation of FITC-dextran from the vascular to the luminal compartment (p<0.001) and a significantly impaired intestinal galactose uptake (p<0.001). Morphologically, these findings were associated with an aggregation of intracellular vacuoles within the intestinal epithelial cells and enlarged intercellular spaces. CONCLUSION A vascular perfusion with 3% HES impairs the endothelial and epithelial barrier integrity as well as metabolic function of the small intestine.
Collapse
Affiliation(s)
- Yuk Lung Wong
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
- Division of Barrier Integrity, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Ingmar Lautenschläger
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
- Division of Barrier Integrity, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Heike Dombrowsky
- Division of Barrier Integrity, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Berthold Bein
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thorsten Krause
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Torsten Goldmann
- Division of Clinical and Experimental Pathology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Inez Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Norbert Weiler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
5
|
Homocysteine-induced attenuation of vascular endothelium-dependent hyperalgesia in the rat. Neuroscience 2014; 284:678-684. [PMID: 25451284 DOI: 10.1016/j.neuroscience.2014.10.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 11/21/2022]
Abstract
We have recently demonstrated a role of the vascular endothelium in peripheral pain mechanism by disrupting endothelial cell function using intravascular administration of octoxynol-9, a non-selective membrane active agent. As an independent test of the role of endothelial cells in pain mechanisms, we evaluated the effect of homocysteine, an agent that damages endothelial cell function. Mechanical stimulus-induced enhancement of endothelin-1 hyperalgesia in the gastrocnemius muscle of the rat was first prevented then enhanced by intravenous administration of homocysteine, but was only inhibited by its precursor, methionine. Both homocysteine and methionine significantly attenuated mechanical hyperalgesia in two models of ergonomic muscle pain, induced by exposure to vibration, and by eccentric exercise, and cutaneous mechanical hyperalgesia in an ischemia-reperfusion injury model of Complex Regional Pain Syndrome type I, all previously shown responsive to octoxynol-9. This study provides independent support for a role of the endothelial cell in pain syndromes thought to have a vascular basis, and suggests that substances that are endothelial cell toxins can enhance vascular pain.
Collapse
|
6
|
Joseph EK, Green PG, Levine JD. ATP release mechanisms of endothelial cell-mediated stimulus-dependent hyperalgesia. THE JOURNAL OF PAIN 2014; 15:771-7. [PMID: 24793242 PMCID: PMC4264525 DOI: 10.1016/j.jpain.2014.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/25/2014] [Accepted: 04/08/2014] [Indexed: 01/06/2023]
Abstract
UNLABELLED Endothelin-1 (ET-1) acts on endothelial cells to enhance mechanical stimulation-induced release of adenosine triphosphate (ATP), which in turn can act on sensory neurons innervating blood vessels to contribute to vascular pain, a phenomenon we have referred to as stimulus-dependent hyperalgesia (SDH). In the present study, we evaluated the role of the major classes of ATP release mechanisms to SDH: vesicular exocytosis, plasma membrane-associated ATP synthase, ATP-binding cassette transporters, and ion channels. Inhibitors of vesicular exocytosis (ie, monensin, brefeldin A, and bafilomycin), plasma membrane-associated ATPase (ie, oligomycin and pigment epithelium-derived factor peptide 34-mer), and connexin ion channels (carbenoxolone and flufenamic acid) but not ATP-binding cassette transporter (ie, dipyridamole, nicardipine, or CFTRinh-172) attenuated SDH. This study reports a role of ATP in SDH and suggests novel targets for the treatment of vascular pain syndromes. PERSPECTIVE ET-1 acts on endothelial cells to produce mechanical stimulation-induced hyperalgesia. Inhibitors of 3 different ATP release mechanisms attenuated this SDH. This study provides support for a role of ATP in SDH and suggests novel targets for the treatment of vascular pain syndromes.
Collapse
Affiliation(s)
- Elizabeth K Joseph
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, San Francisco, California
| | - Paul G Green
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, San Francisco, California
| | - Jon D Levine
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, San Francisco, California.
| |
Collapse
|
7
|
Chen X, Green PG, Levine JD. Does the antihyperalgesic disruptor of endothelial cells, octoxynol-9, alter nociceptor function? J Neurophysiol 2014; 112:463-6. [PMID: 24790171 DOI: 10.1152/jn.00034.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vasoactive mediator, endothelin-1, elicits a novel form of hyperalgesia, stimulation-dependent hyperalgesia. Acting on its cognate receptor on the vascular endothelial cell, endothelin-1 produces a state in which mechanical stimulation now elicits release of pronociceptive mediators from endothelium that, in turn, acts at receptors on sensory neurons. The only evidence that octoxynol-9, a surface-active agent that attenuates both endothelial cell function and stimulus-dependent hyperalgesia, does not affect nociceptors is indirect (i.e., octoxynol-9 treatment did not affect behavioral nociceptive threshold or hyperalgesia induced by agents that act directly on nociceptors). To help address the question of whether the attenuation of stimulation-dependent hyperalgesia by octoxynol-9 treatment is due to alteration of nociceptor function, we used in vivo single-fiber electrophysiological recordings. Consistent with our previous behavioral observations, we observed no significant effect of octoxynol-9 on mechanical threshold in nociceptors, their response to sustained suprathreshold mechanical stimulation, conduction velocity, and change in mechanical threshold in response to the direct-acting hyperalgesic agent, PGE2. Although octoxynol-9 did not produce a biologically meaningful change in parameters of nociceptor function, we cannot exclude the possibility of a type II error. However, our data provide preliminary evidence of no effect of octoxynol-9 on nociceptors and are consistent with the suggestion that the primary action of octoxynol-9 in our studies is due to its action on the endothelium.
Collapse
Affiliation(s)
- Xiaojie Chen
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, California; Division of Neuroscience, University of California, San Francisco, California
| | - Paul G Green
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, California; Division of Neuroscience, University of California, San Francisco, California
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, California; Department of Medicine, University of California, San Francisco, California; and Division of Neuroscience, University of California, San Francisco, California
| |
Collapse
|
8
|
Vascular endothelial cells mediate mechanical stimulation-induced enhancement of endothelin hyperalgesia via activation of P2X2/3 receptors on nociceptors. J Neurosci 2013; 33:2849-59. [PMID: 23407944 DOI: 10.1523/jneurosci.3229-12.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endothelin-1 (ET-1) is unique among a broad range of hyperalgesic agents in that it induces hyperalgesia in rats that is markedly enhanced by repeated mechanical stimulation at the site of administration. Antagonists to the ET-1 receptors, ET(A) and ET(B), attenuated both initial as well as stimulation-induced enhancement of hyperalgesia (SIEH) by endothelin. However, administering antisense oligodeoxynucleotide to attenuate ET(A) receptor expression on nociceptors attenuated ET-1 hyperalgesia but had no effect on SIEH, suggesting that this is mediated via a non-neuronal cell. Because vascular endothelial cells are both stretch sensitive and express ET(A) and ET(B) receptors, we tested the hypothesis that SIEH is dependent on endothelial cells by impairing vascular endothelial function with octoxynol-9 administration; this procedure eliminated SIEH without attenuating ET-1 hyperalgesia. A role for protein kinase Cε (PKCε), a second messenger implicated in the induction and maintenance of chronic pain, was explored. Intrathecal antisense for PKCε did not inhibit either ET-1 hyperalgesia or SIEH, suggesting no role for neuronal PKCε; however, administration of a PKCε inhibitor at the site of testing selectively attenuated SIEH. Compatible with endothelial cells releasing ATP in response to mechanical stimulation, P2X(2/3) receptor antagonists eliminated SIEH. The endothelium also appears to contribute to hyperalgesia in two ergonomic pain models (eccentric exercise and hindlimb vibration) and in a model of endometriosis. We propose that SIEH is produced by an effect of ET-1 on vascular endothelial cells, sensitizing its release of ATP in response to mechanical stimulation; ATP in turn acts at the nociceptor P2X(2/3) receptor.
Collapse
|
9
|
Oliveira FM, Dos Santos EM, Alves AC, Campana-Pereira MA, Ramaldes GA, Cardoso VN, Ruiz-de-Souza V, Gontijo CM. Digestion, Absorption and Tissue Distribution of Ovalbumin and Palmitoyl-ovalbumin: Impact on Immune Responses Triggered by Orally Administered Antigens. Scand J Immunol 2007; 65:139-47. [PMID: 17257218 DOI: 10.1111/j.1365-3083.2006.01884.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous work in this laboratory has demonstrated that ovalbumin coupled to palmitoyl residues (palmitoyl-Ova) does not induce oral tolerance. The present study sought to determine whether this coupling affects digestion, absorption and transfer of antigen. Ova and palmitoyl-Ova were shown to be digested differently in vitro by proteolytic enzymes and presented different tissue distribution kinetics after being labelled with (99m)technetium and orally administered to animals. Palmitoyl-Ova remained longer in the stomach, while native Ova was quickly transferred to the gut and other organs. After 3 h, higher levels of palmitoyl-Ova were found in the blood, Peyer's patches, mesenteric lymph nodes, liver and, especially, the spleen, which appears to be essential for immunization with palmitoyl-Ova. In fact, splenectomized mice treated orally with palmitoyl-Ova became tolerant, while tolerance to Ova was not affected. Thus, palmitoyl coupling was demonstrated to affect antigen digestion, absorption and transport. This is the first time that the spleen has been shown to be required for oral immunization with palmitoyl-Ova.
Collapse
Affiliation(s)
- F M Oliveira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, UFMG, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Tomita M, Nagira M, Haga M, Hayashi M. Clarification of the mechanism of structural change induced by reoxygenation following the induction of lipid peroxidation in Caco-2 cell monolayers. Drug Metab Pharmacokinet 2005; 17:83-91. [PMID: 15618656 DOI: 10.2133/dmpk.17.83] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, we established a system for assessing ischemia/reperfusion injury, specifically the opening of tight junctions (TJ), caused by reoxygenation following the induction of lipid peroxidation by tertiary-butylhydroperoxide (t-BuOOH), using the human intestinal epithelial cell line Caco-2 in order to focus on the barrier function of the epithelium independent of the vascular compartment. In the present study, we attempted to identify factors involved in the structural changes induced by reoxygenation using 0.5 mM t-BuOOH in Caco-2 cell monolayers. Glutathione (GSH) and N-acetylcystein, a precursor of GSH, inhibited the opening of TJ evoked by reoxygenation following the induction of lipid peroxidation by 0.5 mM of t-BuOOH. Tiron, as a cell permeable superoxide anion scavenger and deferoxamine, an iron-chelating agent ameliorated the opening in a dose-dependent manner. Also, Tiron suppressed the apical-to-basal and basal-to-apical permeability of the increased Rhodamine123 by reoxygenation in a concentration-dependent manner. These results collectively suggest that superoxide anion and iron ions play an important role or contribute to structural changes such as the opening of TJ induced by reoxygenation following the induction of lipid peroxidation by 0.5 mM t-BuOOH.
Collapse
Affiliation(s)
- Mikio Tomita
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan.
| | | | | | | |
Collapse
|
11
|
Abstract
The intestine constitutes the largest interface between a person and his or her environment, and an intact intestinal barrier is thus essential in maintaining health and preventing tissue injury and several diseases. The intestinal barrier has various immunological and non-immunological components. The epithelial barrier is one of the most important non-immunological components. Hyperpermeability of this barrier is believed to contribute to the pathogenesis of several gastrointestinal disorders including inflammatory bowel disease, celiac disease and food allergy. Hence, assessing barrier integrity is of the utmost importance. One of the more quantitative gauges for this assessment is transepithelial permeability of various molecular probes, among which sugars are commonly used. Measures of intestinal permeability might also be useful as markers for assessment of prognosis and follow up in various gastrointestinal disorders. The present article is a review of the normal and abnormal functioning of the intestinal barrier, the diseases that can result from loss of barrier integrity, and some promising agents and strategies for restoring barrier normality and integrity.
Collapse
Affiliation(s)
- Ashkan Farhadi
- Department of Internal Medicine (Section of Gastroenterology and Nutrition), Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
12
|
Sun Z, Olanders K, Lasson A, Dib M, Annborn M, Andersson K, Wang X, Andersson R. Effective treatment of gut barrier dysfunction using an antioxidant, a PAF inhibitor, and monoclonal antibodies against the adhesion molecule PECAM-1. J Surg Res 2002; 105:220-33. [PMID: 12121711 DOI: 10.1006/jsre.2001.6342] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Oxygen free radicals (OFRs), platelet activating factor (PAF), cell adhesion molecules, and transmigration of polymorphonuclear leukocytes through the gut barrier are probably all essential in the development of gut barrier dysfunction following intestinal ischemia and reperfusion (I/R). Pretreatment and early treatment of I/R with the OFRs-scavenger (NAC), the PAF inhibitor lexipafant, and monoclonal antibodies against the adhesion molecule PECAM-1 (anti-PECAM-1-Mab) have been reported to be effective in the prevention or recovery of gut barrier dysfunction and result in a decrease in cytokine levels. Less is known about the effect of treatment inserted during the late stage of I/R. The objective of this study was to evaluate the potential therapeutic value of single or combination therapy with NAC, lexipafant, and anti-PECAM-1-MAb administered late during intestinal I/R in the rat. METHODS NAC, lexipafant, and anti-PECAM-1-MAb were administrated, alone or in combination, after 3 h of reperfusion following 40 min of superior mesenteric arterial ischemia in the rat. Intestinal endothelial and epithelial barrier permeability, myeloperoxidase (MPO) activity, interleukin-1 beta (IL-1 beta), and protease inhibitor levels were evaluated after 12 h of reperfusion. RESULTS Intestinal endothelial and epithelial permeability significantly increased in rats with I/R and saline treatment. Proteolytic activity in plasma was indicated by low levels of the three measured plasma protease inhibitors. Intestinal mucosal MPO content increased significantly. These changes were, to different degrees, reduced by late inserted treatment with NAC, lexipafant, or anti-PECAM-1-MAb. Alterations in systemic levels of IL-1 beta paralleled the changes found in gut barrier permeability and leukocyte trapping. Systemic antithrombin III levels and increased barrier permeability in remote organs were partly restored, especially by multimodal therapy. CONCLUSION Treatment with NAC, lexipafant, and/or monoclonal antibodies against PECAM-1, inserted at a later stage of I/R, reduced the severity of I/R-associated intestinal dysfunction and decreased the systemic concentrations of IL-1 beta, local leukocyte recruitment (MPO), and partly restored plasma protease inhibitor levels.
Collapse
Affiliation(s)
- Zhengwu Sun
- Department of Surgery, Lund University Hospital, Lund University, S-221 85 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sun Z, Wang X, Lasson A, Börjesson A, Leveau P, Haraldsen P, Andersson R. Roles of platelet-activating factor, interleukin-1beta and interleukin-6 in intestinal barrier dysfunction induced by mesenteric arterial ischemia and reperfusion. J Surg Res 1999; 87:90-100. [PMID: 10527709 DOI: 10.1006/jsre.1999.5746] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Platelet-activating factor (PAF), cytokines, proteases, and other factors are probably involved in the development of gut barrier dysfunction following intestinal ischemia and reperfusion (I/R), although the act underlying pathophysiological mechanisms has not yet been fully clarified. The aim of the present study was to clarify the relationship of intestinal barrier integrity to systemic levels of interleukin-1beta, interleukin-6, and protease inhibitor levels and local leukocyte accumulation in a rat model of intestinal ischemia for 40 min followed by 3 or 12 h reperfusion, with or without treatment with a PAF inhibitor. METHODS Myeloperoxidase (MPO) content in the small intestinal mucosa, serum levels of interleukin-1beta and -6, and plasma protease inhibitors, and intestinal endothelial and epithelial permeability were assessed, with or without treatment with the PAF antagonist lexipafant. RESULTS Intestinal I/R resulted in intestinal barrier dysfunction with pronounced plasma leakage to the intestinal lumen, the leakage being aggravated following a longer reperfusion period. Proteolytic plasma activity was evident by low levels of the plasma protease inhibitors measured. MPO content increased significantly after I/R, as did serum levels of interleukin-1beta and -6, without difference between the two periods of reperfusion. Treatment with the PAF inhibitor lexipafant partly, though not fully, restored the changes caused by I/R. CONCLUSION PAF seems to be involved in the release of cytokines, such as interleukin-1 and -6, consumption of protease inhibitors, and impaired intestinal barrier integrity seen following intestinal I/R. Treatment with a PAF antagonist was effective in restoring the changes caused by intestinal I/R, though not reaching complete normal levels.
Collapse
Affiliation(s)
- Z Sun
- Department of Surgery, Lund University Hospital, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|