1
|
Rao J, Peng T, Li N, Wang Y, Yan C, Wang K, Qiu F. Nephrotoxicity induced by natural compounds from herbal medicines - a challenge for clinical application. Crit Rev Toxicol 2022; 52:757-778. [PMID: 36815678 DOI: 10.1080/10408444.2023.2168178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Herbal medicines (HMs) have long been considered safe and effective without serious toxic and side effects. With the continuous use of HMs, more and more attention has been paid to adverse reactions and toxic events, especially the nephrotoxicity caused by natural compounds in HMs. The composition of HMs is complex and various, especially the mechanism of toxic components has been a difficult and hot topic. This review comprehensively summarizes the kidney toxicity characterization and mechanism of nephrotoxic natural compounds (organic acids, alkaloids, glycosides, terpenoids, phenylpropanoids, flavonoids, anthraquinones, cytotoxic proteins, and minerals) from different sources. Recommendations for the prevention and treatment of HMs-induced kidney injury were provided. In vitro and in vivo models for evaluating nephrotoxicity and the latest biomarkers are also included in this investigation. More broadly, this review may provide theoretical basis for safety evaluation and further comprehensive development and utilization of HMs in the future.
Collapse
Affiliation(s)
- Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Ting Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Caiqin Yan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
2
|
Fang ZE, Wang C, Niu M, Liu T, Ren L, Li Q, Li Z, Wei Z, Lin L, Mu W, Gao Y, Xiao X, Bai Z. Integration of Transcriptomic and Metabolomic Data to Compare the Hepatotoxicity of Neonatal and Adult Mice Exposed to Aristolochic Acid I. Front Genet 2022; 13:840961. [PMID: 35401701 PMCID: PMC8992794 DOI: 10.3389/fgene.2022.840961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Aristolochic acid (AA) is a group of structurally related compounds what have been used to treat various diseases in recent decades. Aristolochic acid I (AAI), an important ingredient, has been associated with tumorigenesis. Recently, some studies indicated that AAI could induce liver injury in mice of different age, but comprehensive mechanisms of AAI-induced differences in liver injury in various age groups have not yet been elucidated. This study aims to evaluate the causal relationship between AAI-induced liver injury and age based on neonatal mice and adult mice. A survival experiment indicated that all neonatal mice survived. Moreover, the adult mice in the high-dose AAI group all died, whereas half of the adult mice in the low-dose AAI group died. In observation experiments, AAI induced more severe liver injury in neonatal mice than adult mice under long-term than short-term exposure. Furthermore, integrated metabolomics and transcriptomics indicated that AAI disturbing steroid hormone biosynthesis, arachidonic acid metabolism, the drug metabolism-cytochrome P450 pathway and glycerophospholipid metabolism induced neonatal mice liver injury. The important role of age in AAI-induced liver injury was illustrated in our study. This study also lays a solid foundation for scientific supervision of AA safety.
Collapse
Affiliation(s)
- Zhi-E Fang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunyu Wang
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Niu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting Liu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lutong Ren
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiang Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhiyong Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ziying Wei
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Lin
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenqing Mu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaohe Xiao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Bárta F, Dedíková A, Bebová M, Dušková Š, Mráz J, Schmeiser HH, Arlt VM, Hodek P, Stiborová M. Co-Exposure to Aristolochic Acids I and II Increases DNA Adduct Formation Responsible for Aristolochic Acid I-Mediated Carcinogenicity in Rats. Int J Mol Sci 2021; 22:ijms221910479. [PMID: 34638820 PMCID: PMC8509051 DOI: 10.3390/ijms221910479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
The plant extract aristolochic acid (AA), containing aristolochic acids I (AAI) and II (AAII) as major components, causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases associated with upper urothelial cancer. Recently (Chemical Research in Toxicology 33(11), 2804–2818, 2020), we showed that the in vivo metabolism of AAI and AAII in Wistar rats is influenced by their co-exposure (i.e., AAI/AAII mixture). Using the same rat model, we investigated how exposure to the AAI/AAII mixture can influence AAI and AAII DNA adduct formation (i.e., AA-mediated genotoxicity). Using 32P-postlabelling, we found that AA-DNA adduct formation was increased in the livers and kidneys of rats treated with AAI/AAII mixture compared to rats treated with AAI or AAII alone. Measuring the activity of enzymes involved in AA metabolism, we showed that enhanced AA-DNA adduct formation might be caused partially by both decreased AAI detoxification as a result of hepatic CYP2C11 inhibition during treatment with AAI/AAII mixture and by hepatic or renal NQO1 induction, the key enzyme predominantly activating AA to DNA adducts. Moreover, our results indicate that AAII might act as an inhibitor of AAI detoxification in vivo. Consequently, higher amounts of AAI might remain in liver and kidney tissues, which can be reductively activated, resulting in enhanced AAI DNA adduct formation. Collectively, these results indicate that AAII present in the plant extract AA enhances the genotoxic properties of AAI (i.e., AAI DNA adduct formation). As patients suffering from AAN and BEN are always exposed to the plant extract (i.e., AAI/AAII mixture), our findings are crucial to better understanding host factors critical for AAN- and BEN-associated urothelial malignancy.
Collapse
Affiliation(s)
- František Bárta
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic; (F.B.); (A.D.); (M.B.); (P.H.); (M.S.)
| | - Alena Dedíková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic; (F.B.); (A.D.); (M.B.); (P.H.); (M.S.)
| | - Michaela Bebová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic; (F.B.); (A.D.); (M.B.); (P.H.); (M.S.)
| | - Šárka Dušková
- Centre of Occupational Health, National Institute of Public Health, Šrobárova 48, 100 42 Prague 10, Czech Republic; (Š.D.); (J.M.)
| | - Jaroslav Mráz
- Centre of Occupational Health, National Institute of Public Health, Šrobárova 48, 100 42 Prague 10, Czech Republic; (Š.D.); (J.M.)
| | - Heinz H. Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Volker M. Arlt
- Department of Analytical, Environmental and Forensic Sciences Division, King’s College London, 150 Stamford Street, London SE1 9NH, UK
- Toxicology Department, GAB Consulting GmbH, Heinrich-Fuchs-Str. 96, 69126 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-432018-0
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic; (F.B.); (A.D.); (M.B.); (P.H.); (M.S.)
| | - Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic; (F.B.); (A.D.); (M.B.); (P.H.); (M.S.)
| |
Collapse
|
4
|
Human Family 1-4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Arch Toxicol 2021; 95:395-472. [PMID: 33459808 DOI: 10.1007/s00204-020-02971-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic activation of drugs, natural products, physiological compounds, and general chemicals by the catalytic activity of cytochrome P450 enzymes belonging to Families 1-4. The data were collected from > 5152 references. The total number of data entries of reactions catalyzed by P450s Families 1-4 was 7696 of which 1121 (~ 15%) were defined as bioactivation reactions of different degrees. The data were divided into groups of General Chemicals, Drugs, Natural Products, and Physiological Compounds, presented in tabular form. The metabolism and bioactivation of selected examples of each group are discussed. In most of the cases, the metabolites are directly toxic chemicals reacting with cell macromolecules, but in some cases the metabolites formed are not direct toxicants but participate as substrates in succeeding metabolic reactions (e.g., conjugation reactions), the products of which are final toxicants. We identified a high level of activation for three groups of compounds (General Chemicals, Drugs, and Natural Products) yielding activated metabolites and the generally low participation of Physiological Compounds in bioactivation reactions. In the group of General Chemicals, P450 enzymes 1A1, 1A2, and 1B1 dominate in the formation of activated metabolites. Drugs are mostly activated by the enzyme P450 3A4, and Natural Products by P450s 1A2, 2E1, and 3A4. Physiological Compounds showed no clearly dominant enzyme, but the highest numbers of activations are attributed to P450 1A, 1B1, and 3A enzymes. The results thus show, perhaps not surprisingly, that Physiological Compounds are infrequent substrates in bioactivation reactions catalyzed by P450 enzyme Families 1-4, with the exception of estrogens and arachidonic acid. The results thus provide information on the enzymes that activate specific groups of chemicals to toxic metabolites.
Collapse
|
5
|
Dedı Ková A, Bárta F, Martínek V, Kotalík K, Dušková Š, Mráz J, Arlt VM, Stiborová M, Hodek P. In Vivo Metabolism of Aristolochic Acid I and II in Rats Is Influenced by Their Coexposure. Chem Res Toxicol 2020; 33:2804-2818. [PMID: 32894017 DOI: 10.1021/acs.chemrestox.0c00198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The plant extract aristolochic acid (AA), containing aristolochic acid I (AAI) and II (AAII) as major components, causes aristolochic acid nephropathy and Balkan endemic nephropathy, unique renal diseases associated with upper urothelial cancer. Differences in the metabolic activation and detoxification of AAI and AAII and their effects on the metabolism of AAI/AAII mixture in the plant extract might be of great importance for an individual's susceptibility in the development of AA-mediated nephropathies and malignancies. Here, we investigated in vivo metabolism of AAI and AAII after ip administration to Wistar rats as individual compounds and as AAI/AAII mixture using high performance liquid chromatography/electrospray ionization mass spectrometry. Experimental findings were supported by theoretical calculations using density functional theory. We found that exposure to AAI/AAII mixture affected the generation of their oxidative and reductive metabolites formed during Phase I biotransformation and excreted in rat urine. Several Phase II metabolites of AAI and AAII found in the urine of exposed rats were also analyzed. Our results indicate that AAI is more efficiently metabolized in rats in vivo than AAII. Whereas AAI is predominantly oxidized during in vivo metabolism, its reduction is the minor metabolic pathway. In contrast, AAII is mainly metabolized by reduction. The oxidative reaction only occurs if aristolactam II, the major reductive metabolite of AAII, is enzymatically hydroxylated, forming aristolactam Ia. In AAI/AAII mixture, the metabolism of AAI and AAII is influenced by the presence of both AAs. For instance, the reductive metabolism of AAI is increased in the presence of AAII while the presence of AAI decreased the reductive metabolism of AAII. These results suggest that increased bioactivation of AAI in the presence of AAII also leads to increased AAI genotoxicity, which may critically impact AAI-mediated carcinogenesis. Future studies are needed to explain the underlying mechanism(s) for this phenomenon.
Collapse
Affiliation(s)
- Alena Dedı Ková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840 Prague, Czech Republic
| | - František Bárta
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840 Prague, Czech Republic
| | - Václav Martínek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840 Prague, Czech Republic
| | - Kevin Kotalík
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840 Prague, Czech Republic
| | - Šárka Dušková
- Centre of Occupational Health, National Institute of Public Health, Šrobárova 48, 100 42 Prague 10, Czech Republic
| | - Jaroslav Mráz
- Centre of Occupational Health, National Institute of Public Health, Šrobárova 48, 100 42 Prague 10, Czech Republic
| | - Volker Manfred Arlt
- Department of Analytical, Environmental and Forensic Sciences Division, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840 Prague, Czech Republic
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840 Prague, Czech Republic
| |
Collapse
|
6
|
Nahálková J. Linking TPPII to the protein interaction and signalling networks. Comput Biol Chem 2020; 87:107291. [PMID: 32702546 DOI: 10.1016/j.compbiolchem.2020.107291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 01/18/2023]
Abstract
Tripeptidyl peptidase II (TPPII) is primarily considered a house-keeping exopeptidase, which contributes to the functions of the ubiquitin-proteasome system by the maintenance of the cellular amino acid homeostasis. Although functionally well-characterised in vitro and using the mammalian cell models, less is known about the molecular mechanisms of its involvement in the signalling and metabolic pathways, which mediate its cellular functions. The present protein-protein interaction network analysis identified these mechanisms involved in the adaptive and innate immunity, the metabolism of the glucose, cancer cell growth, apoptosis, cell cycle and DNA damage responses. The interaction network constructed based on the publicly available protein-protein interaction data was extended by the application GeneMania, which was further used for the pathway enrichment, the protein function prediction and the protein node prioritisation analysis. The analysis suggested that the molecular mechanisms linked to the adaptive and innate immunity (ID, Kit receptor, BCR, IL-2 and G-CSF signalling; the regulation of NFκB), the aerobic glycolysis (ID and IL-2 signalling), tumorigenesis (TGF-β and p53 signalling; the top priority nodes MAPKs, mTOR regulation), diabetes (Kit receptor signalling; the top priority node GSK3β) and neurodegeneration (the control of mTOR and Aβ peptide degradation) are controlling the resulting TPPII interaction network. The uncharacterized interactions with two lung cancer suppressors (DOK3, DENND2D), a protein involved in the increased risk of the lung cancer in smokers (CYP1A1) and a protein implicated in asthmatic reactions (CHIA) suggest potential roles of TPPII in the lung cancer pathology. The interactions with methyltransferase CARNMT1, which modifies di- and tripeptides and the xenobiotic processing enzyme CYP1A1, are additional candidates for the breakthrough in new functions discovery of TPPII.
Collapse
Affiliation(s)
- Jarmila Nahálková
- Biochemworld Co., Biochemistry, Molecular & Cell Biology Unit, Snickar-Anders väg 17, 74394, Skyttorp, Uppsala County, Sweden.
| |
Collapse
|
7
|
Sidorenko VS. Biotransformation and Toxicities of Aristolochic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:139-166. [PMID: 32383120 DOI: 10.1007/978-3-030-41283-8_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Environmental and iatrogenic exposures contribute significantly to human diseases, including cancer. The list of known human carcinogens has recently been extended by the addition of aristolochic acids (AAs). AAs occur primarily in Aristolochia herbs, which are used extensively in folk medicines, including Traditional Chinese Medicine. Ingestion of AAs results in chronic renal disease and cancer. Despite importation bans imposed by certain countries, herbal remedies containing AAs are readily available for purchase through the internet. With recent advancements in mass spectrometry, next generation sequencing, and the development of integrated organs-on-chips, our knowledge of cancers associated with AA exposure, and of the mechanisms involved in AA toxicities, has significantly improved. DNA adduction plays a central role in AA-induced cancers; however, significant gaps remain in our knowledge as to how cellular enzymes promote activation of AAs and how the reactive species selectively bind to DNA and kidney proteins. In this review, I describe pathways for AAs biotransformation, adduction, and mutagenesis, emphasizing novel methods and ideas contributing to our present understanding of AA toxicities in humans.
Collapse
Affiliation(s)
- Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
8
|
Sborchia M, Keun HC, Phillips DH, Arlt VM. The Impact of p53 on Aristolochic Acid I-Induced Gene Expression In Vivo. Int J Mol Sci 2019; 20:ijms20246155. [PMID: 31817608 PMCID: PMC6940885 DOI: 10.3390/ijms20246155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
Exposure to aristolochic acid (AA) is linked to kidney disease and urothelial cancer in humans. The major carcinogenic component of the AA plant extract is aristolochic acid I (AAI). The tumour suppressor p53 is frequently mutated in AA-induced tumours. We previously showed that p53 protects from AAI-induced renal proximal tubular injury, but the underlying mechanism(s) involved remain to be further explored. In the present study, we investigated the impact of p53 on AAI-induced gene expression by treating Trp53(+/+), Trp53(+/-), and Trp53(-/-) mice with 3.5 mg/kg body weight (bw) AAI daily for six days. The Clariom™ S Assay microarray was used to elucidate gene expression profiles in mouse kidneys after AAI treatment. Analyses in Qlucore Omics Explorer showed that gene expression in AAI-exposed kidneys is treatment-dependent. However, gene expression profiles did not segregate in a clear-cut manner according to Trp53 genotype, hence further investigations were performed by pathway analysis with MetaCore™. Several pathways were significantly altered to varying degrees for AAI-exposed kidneys. Apoptotic pathways were modulated in Trp53(+/+) kidneys; whereas oncogenic and pro-survival pathways were significantly altered for Trp53(+/-) and Trp53(-/-) kidneys, respectively. Alterations of biological processes by AAI in mouse kidneys could explain the mechanisms by which p53 protects from or p53 loss drives AAI-induced renal injury in vivo.
Collapse
Affiliation(s)
- Mateja Sborchia
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London SE1 9NH, UK; (M.S.); (D.H.P.)
| | - Hector C. Keun
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, UK;
| | - David H. Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London SE1 9NH, UK; (M.S.); (D.H.P.)
| | - Volker M. Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London SE1 9NH, UK; (M.S.); (D.H.P.)
- Correspondence:
| |
Collapse
|
9
|
Sborchia M, De Prez EG, Antoine MH, Bienfait L, Indra R, Valbuena G, Phillips DH, Nortier JL, Stiborová M, Keun HC, Arlt VM. The impact of p53 on aristolochic acid I-induced nephrotoxicity and DNA damage in vivo and in vitro. Arch Toxicol 2019; 93:3345-3366. [PMID: 31602497 PMCID: PMC6823306 DOI: 10.1007/s00204-019-02578-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022]
Abstract
Exposure to aristolochic acid (AA) is associated with human nephropathy and urothelial cancer. The tumour suppressor TP53 is a critical gene in carcinogenesis and frequently mutated in AA-induced urothelial tumours. We investigated the impact of p53 on AAI-induced nephrotoxicity and DNA damage in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with 3.5 mg/kg body weight (bw) AAI daily for 2 or 6 days. Renal histopathology showed a gradient of intensity in proximal tubular injury from Trp53(+/+) to Trp53(-/-) mice, especially after 6 days. The observed renal injury was supported by nuclear magnetic resonance (NMR)-based metabonomic measurements, where a consistent Trp53 genotype-dependent trend was observed for urinary metabolites that indicate aminoaciduria (i.e. alanine), lactic aciduria (i.e. lactate) and glycosuria (i.e. glucose). However, Trp53 genotype had no impact on AAI-DNA adduct levels, as measured by 32P-postlabelling, in either target (kidney and bladder) or non-target (liver) tissues, indicating that the underlying mechanisms of p53-related AAI-induced nephrotoxicity cannot be explained by differences in AAI genotoxicity. Performing gas chromatography-mass spectrometry (GC-MS) on kidney tissues showed metabolic pathways affected by AAI treatment, but again Trp53 status did not clearly impact on such metabolic profiles. We also cultured primary mouse embryonic fibroblasts (MEFs) derived from Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice and exposed them to AAI in vitro (50 µM for up to 48 h). We found that Trp53 genotype impacted on the expression of NAD(P)H:quinone oxidoreductase (Nqo1), a key enzyme involved in AAI bioactivation. Nqo1 induction was highest in Trp53(+/+) MEFs and lowest in Trp53(-/-) MEFs; and it correlated with AAI-DNA adduct formation, with lowest adduct levels being observed in AAI-exposed Trp53(-/-) MEFs. Overall, our results clearly demonstrate that p53 status impacts on AAI-induced renal injury, but the underlying mechanism(s) involved remain to be further explored. Despite the impact of p53 on AAI bioactivation and DNA damage in vitro, such effects were not observed in vivo.
Collapse
Affiliation(s)
- Mateja Sborchia
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| | - Eric G De Prez
- Laboratory of Experimental Nephrology, Department of Experimental Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Marie-Hélène Antoine
- Laboratory of Experimental Nephrology, Department of Experimental Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Lucie Bienfait
- Department of Pathology, Erasme University Hospital, 1070, Brussels, Belgium
| | - Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University Prague, 128 40, Prague, Czech Republic
| | - Gabriel Valbuena
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| | - Joëlle L Nortier
- Laboratory of Experimental Nephrology, Department of Experimental Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University Prague, 128 40, Prague, Czech Republic
| | - Hector C Keun
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK.
| |
Collapse
|
10
|
Wen B, Gorycki P. Bioactivation of herbal constituents: mechanisms and toxicological relevance. Drug Metab Rev 2019; 51:453-497. [DOI: 10.1080/03602532.2019.1655570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bo Wen
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| | - Peter Gorycki
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
11
|
Kapelyukh Y, Henderson CJ, Scheer N, Rode A, Wolf CR. Defining the Contribution of CYP1A1 and CYP1A2 to Drug Metabolism Using Humanized CYP1A1/1A2 and Cyp1a1/Cyp1a2 Knockout Mice. Drug Metab Dispos 2019; 47:907-918. [PMID: 31147315 PMCID: PMC6657216 DOI: 10.1124/dmd.119.087718] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022] Open
Abstract
Cytochrome P450s CYP1A1 and CYP1A2 can metabolize a broad range of foreign compounds and drugs. However, these enzymes have significantly overlapping substrate specificities. To establish their relative contribution to drug metabolism in vivo, we used a combination of mice humanized for CYP1A1 and CYP1A2 together with mice nulled at the Cyp1a1 and Cyp1a2 gene loci. CYP1A2 was constitutively expressed in the liver, and both proteins were highly inducible by 2,3,7,8-tetrachlorodibenzodioxin (TCDD) in a number of tissues, including the liver, lung, kidney, and small intestine. Using the differential inhibition of the human enzymes by quinidine, we developed a method to distinguish the relative contribution of CYP1A1 or CYP1A2 in the metabolism of drugs and foreign compounds. Both enzymes made a significant contribution to the hepatic metabolism of the probe compounds 7-methoxy and 7-ehthoxyresorufin in microsomal fractions from animals treated with TCDD. This enzyme kinetic approach allows modeling of the CYP1A1, CYP1A2, and non-CYP1A contribution to the metabolism of any substrate at any substrate, inhibitor, or enzyme concentration and, as a consequence, can be integrated into a physiologically based pharmacokinetics model. The validity of the model can then be tested in humanized mice in vivo. SIGNIFICANCE STATEMENT: Human CYP1A1 and CYP1A2 are important in defining the efficacy and toxicity/carcinogenicity of drugs and foreign compounds. In light of differences in substrate specificity and sensitivity to inhibitors, it is of central importance to understand their relative role in foreign compound metabolism. To address this issue, we have generated mice humanized or nulled at the Cyp1a gene locus and, through the use of these mouse lines and selective inhibitors, developed an enzyme kinetic-based model to enable more accurate prediction of the fate of new chemicals in humans and which can be validated in vivo using mice humanized for cytochrome P450-mediated metabolism.
Collapse
Affiliation(s)
- Y Kapelyukh
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (Y.K., C.J.H., C.R.W.) and Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.)
| | - C J Henderson
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (Y.K., C.J.H., C.R.W.) and Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.)
| | - N Scheer
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (Y.K., C.J.H., C.R.W.) and Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.)
| | - A Rode
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (Y.K., C.J.H., C.R.W.) and Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.)
| | - C R Wolf
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (Y.K., C.J.H., C.R.W.) and Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.)
| |
Collapse
|
12
|
Bissig KD, Han W, Barzi M, Kovalchuk N, Ding L, Fan X, Pankowicz FP, Zhang QY, Ding X. P450-Humanized and Human Liver Chimeric Mouse Models for Studying Xenobiotic Metabolism and Toxicity. Drug Metab Dispos 2018; 46:1734-1744. [PMID: 30093418 DOI: 10.1124/dmd.118.083303] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
Preclinical evaluation of drug candidates in experimental animal models is an essential step in drug development. Humanized mouse models have emerged as a promising alternative to traditional animal models. The purpose of this mini-review is to provide a brief survey of currently available mouse models for studying human xenobiotic metabolism. Here, we describe both genetic humanization and human liver chimeric mouse models, focusing on the advantages and limitations while outlining their key features and applications. Although this field of biomedical science is relatively young, these humanized mouse models have the potential to transform preclinical drug testing and eventually lead to a more cost-effective and rapid development of new therapies.
Collapse
Affiliation(s)
- Karl-Dimiter Bissig
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Weiguo Han
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Mercedes Barzi
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Nataliia Kovalchuk
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Liang Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xiaoyu Fan
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Francis P Pankowicz
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Qing-Yu Zhang
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xinxin Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| |
Collapse
|
13
|
DNA Adducts Formed by Aristolochic Acid Are Unique Biomarkers of Exposure and Explain the Initiation Phase of Upper Urothelial Cancer. Int J Mol Sci 2017; 18:ijms18102144. [PMID: 29036902 PMCID: PMC5666826 DOI: 10.3390/ijms18102144] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
Aristolochic acid (AA) is a plant alkaloid that causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases frequently associated with upper urothelial cancer (UUC). This review summarizes the significance of AA-derived DNA adducts in the aetiology of UUC leading to specific A:T to T:A transversion mutations (mutational signature) in AAN/BEN-associated tumours, which are otherwise rare in individuals with UCC not exposed to AA. Therefore, such DNA damage produced by AA-DNA adducts is one rare example of the direct association of exposure and cancer development (UUC) in humans, confirming that the covalent binding of carcinogens to DNA is causally related to tumourigenesis. Although aristolochic acid I (AAI), the major component of the natural plant extract AA, might directly cause interstitial nephropathy, enzymatic activation of AAI to reactive intermediates capable of binding to DNA is a necessary step leading to the formation of AA-DNA adducts and subsequently AA-induced malignant transformation. Therefore, AA-DNA adducts can not only be utilized as biomarkers for the assessment of AA exposure and markers of AA-induced UUC, but also be used for the mechanistic evaluation of its enzymatic activation and detoxification. Differences in AA metabolism might be one of the reasons for an individual’s susceptibility in the multi-step process of AA carcinogenesis and studying associations between activities and/or polymorphisms of the enzymes metabolising AA is an important determinant to identify individuals having a high risk of developing AA-mediated UUC.
Collapse
|
14
|
Arlt VM, Meinl W, Florian S, Nagy E, Barta F, Thomann M, Mrizova I, Krais AM, Liu M, Richards M, Mirza A, Kopka K, Phillips DH, Glatt H, Stiborova M, Schmeiser HH. Impact of genetic modulation of SULT1A enzymes on DNA adduct formation by aristolochic acids and 3-nitrobenzanthrone. Arch Toxicol 2017; 91:1957-1975. [PMID: 27557898 PMCID: PMC5364269 DOI: 10.1007/s00204-016-1808-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/04/2016] [Indexed: 02/06/2023]
Abstract
Exposure to aristolochic acid (AA) causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN). Conflicting results have been found for the role of human sulfotransferase 1A1 (SULT1A1) contributing to the metabolic activation of aristolochic acid I (AAI) in vitro. We evaluated the role of human SULT1A1 in AA bioactivation in vivo after treatment of transgenic mice carrying a functional human SULT1A1-SULT1A2 gene cluster (i.e. hSULT1A1/2 mice) and Sult1a1(-/-) mice with AAI and aristolochic acid II (AAII). Both compounds formed characteristic DNA adducts in the intact mouse and in cytosolic incubations in vitro. However, we did not find differences in AAI-/AAII-DNA adduct levels between hSULT1A1/2 and wild-type (WT) mice in all tissues analysed including kidney and liver despite strong enhancement of sulfotransferase activity in both kidney and liver of hSULT1A1/2 mice relative to WT, kidney and liver being major organs involved in AA metabolism. In contrast, DNA adduct formation was strongly increased in hSULT1A1/2 mice compared to WT after treatment with 3-nitrobenzanthrone (3-NBA), another carcinogenic aromatic nitro compound where human SULT1A1/2 is known to contribute to genotoxicity. We found no differences in AAI-/AAII-DNA adduct formation in Sult1a1(-/-) and WT mice in vivo. Using renal and hepatic cytosolic fractions of hSULT1A1/2, Sult1a1(-/-) and WT mice, we investigated AAI-DNA adduct formation in vitro but failed to find a contribution of human SULT1A1/2 or murine Sult1a1 to AAI bioactivation. Our results indicate that sulfo-conjugation catalysed by human SULT1A1 does not play a role in the activation pathways of AAI and AAII in vivo, but is important in 3-NBA bioactivation.
Collapse
Affiliation(s)
- Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Walter Meinl
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Simone Florian
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Eszter Nagy
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Frantisek Barta
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840, Prague 2, Czech Republic
| | - Marlies Thomann
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Iveta Mrizova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840, Prague 2, Czech Republic
| | - Annette M Krais
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
- Division of Occupational and Environmental Medicine, Lund University, 221 85, Lund, Sweden
| | - Maggie Liu
- Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Meirion Richards
- Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Amin Mirza
- Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - David H Phillips
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, 14558, Nuthetal, Germany
- Department of Food Safety, Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840, Prague 2, Czech Republic
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
15
|
Stiborová M, Arlt VM, Schmeiser HH. Balkan endemic nephropathy: an update on its aetiology. Arch Toxicol 2016; 90:2595-2615. [PMID: 27538407 PMCID: PMC5065591 DOI: 10.1007/s00204-016-1819-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 02/02/2023]
Abstract
Balkan endemic nephropathy (BEN) is a unique, chronic renal disease frequently associated with upper urothelial cancer (UUC). It only affects residents of specific farming villages located along tributaries of the Danube River in Bosnia-Herzegovina, Croatia, Macedonia, Serbia, Bulgaria, and Romania where it is estimated that ~100,000 individuals are at risk of BEN, while ~25,000 have the disease. This review summarises current findings on the aetiology of BEN. Over the last 50 years, several hypotheses on the cause of BEN have been formulated, including mycotoxins, heavy metals, viruses, and trace-element insufficiencies. However, recent molecular epidemiological studies provide a strong case that chronic dietary exposure to aristolochic acid (AA) a principal component of Aristolochia clematitis which grows as a weed in the wheat fields of the endemic regions is the cause of BEN and associated UUC. One of the still enigmatic features of BEN that need to be resolved is why the prevalence of BEN is only 3-7 %. This suggests that individual genetic susceptibilities to AA exist in humans. In fact dietary ingestion of AA along with individual genetic susceptibility provides a scenario that plausibly can explain all the peculiarities of BEN such as geographical distribution and high risk of urothelial cancer. For the countries harbouring BEN implementing public health measures to avoid AA exposure is of the utmost importance because this seems to be the best way to eradicate this once mysterious disease to which the residents of BEN villages have been completely and utterly at mercy for so long.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic.
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environmental and Health, King's College London, 150 Stamford Street, London, SE1 9NH, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry (E030), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
16
|
Dračínská H, Bárta F, Levová K, Hudecová A, Moserová M, Schmeiser HH, Kopka K, Frei E, Arlt VM, Stiborová M. Induction of cytochromes P450 1A1 and 1A2 suppresses formation of DNA adducts by carcinogenic aristolochic acid I in rats in vivo. Toxicology 2016; 344-346:7-18. [PMID: 26845733 PMCID: PMC4804751 DOI: 10.1016/j.tox.2016.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 02/05/2023]
Abstract
Aristolochic acid I (AAI) is a natural plant alkaloid causing aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. One of the most efficient enzymes reductively activating AAI to species forming AAI-DNA adducts is cytosolic NAD(P)H quinone oxidoreductase 1. AAI is also either reductively activated or oxidatively detoxified to 8-hydroxyaristolochic acid (AAIa) by microsomal cytochrome P450 (CYP) 1A1 and 1A2. Here, we investigated which of these two opposing CYP1A1/2-catalyzed reactions prevails in AAI metabolism in vivo. The formation of AAI-DNA adducts was analyzed in liver, kidney and lung of rats treated with AAI, Sudan I, a potent inducer of CYP1A1/2, or AAI after pretreatment with Sudan I. Compared to rats treated with AAI alone, levels of AAI-DNA adducts determined by the (32)P-postlabeling method were lower in liver, kidney and lung of rats treated with AAI after Sudan I. The induction of CYP1A1/2 by Sudan I increased AAI detoxification to its O-demethylated metabolite AAIa, thereby reducing the actual amount of AAI available for reductive activation. This subsequently resulted in lower AAI-DNA adduct levels in the rat in vivo. Our results demonstrate that CYP1A1/2-mediated oxidative detoxification of AAI is the predominant role of these enzymes in rats in vivo, thereby suppressing levels of AAI-DNA adducts.
Collapse
Affiliation(s)
- Helena Dračínská
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - František Bárta
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Kateřina Levová
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Alena Hudecová
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Michaela Moserová
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Eva Frei
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King's College London, London, United Kingdom
| | - Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| |
Collapse
|
17
|
Milichovský J, Bárta F, Schmeiser HH, Arlt VM, Frei E, Stiborová M, Martínek V. Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1. Int J Mol Sci 2016; 17:213. [PMID: 26861298 PMCID: PMC4783945 DOI: 10.3390/ijms17020213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/13/2016] [Accepted: 01/21/2016] [Indexed: 12/21/2022] Open
Abstract
Aristolochic acid I (AAI) is a plant drug found in Aristolochia species that causes aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is activated via nitroreduction producing genotoxic N-hydroxyaristolactam, which forms DNA adducts. The major enzymes responsible for the reductive bioactivation of AAI are NAD(P)H quinone oxidoreductase and cytochromes P450 (CYP) 1A1 and 1A2. Using site-directed mutagenesis we investigated the possible mechanisms of CYP1A1/1A2/1B1-catalyzed AAI nitroreduction. Molecular modelling predicted that the hydroxyl groups of serine122/threonine124 (Ser122/Thr124) amino acids in the CYP1A1/1A2-AAI binary complexes located near to the nitro group of AAI, are mechanistically important as they provide the proton required for the stepwise reduction reaction. In contrast, the closely related CYP1B1 with no hydroxyl group containing residues in its active site is ineffective in catalyzing AAI nitroreduction. In order to construct an experimental model, mutant forms of CYP1A1 and 1A2 were prepared, where Ser122 and Thr124 were replaced by Ala (CYP1A1-S122A) and Val (CYP1A2-T124V), respectively. Similarly, a CYP1B1 mutant was prepared in which Ala133 was replaced by Ser (CYP1B1-A133S). Site-directed mutagenesis was performed using a quickchange approach. Wild and mutated forms of these enzymes were heterologously expressed in Escherichia coli and isolated enzymes characterized using UV-vis spectroscopy to verify correct protein folding. Their catalytic activity was confirmed with CYP1A1, 1A2 and 1B1 marker substrates. Using (32)P-postlabelling we determined the efficiency of wild-type and mutant forms of CYP1A1, 1A2, and 1B1 reconstituted with NADPH:CYP oxidoreductase to bioactivate AAI to reactive intermediates forming covalent DNA adducts. The S122A and T124V mutations in CYP1A1 and 1A2, respectively, abolished the efficiency of CYP1A1 and 1A2 enzymes to generate AAI-DNA adducts. In contrast, the formation of AAI-DNA adducts was catalyzed by CYP1B1 with the A133S mutation. Our experimental model confirms the importance of the hydroxyl group possessing amino acids in the active center of CYP1A1 and 1A2 for AAI nitroreduction.
Collapse
Affiliation(s)
- Jan Milichovský
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-12843 Prague 2, Czech Republic.
| | - František Bárta
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-12843 Prague 2, Czech Republic.
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London SE1 9NH, UK.
| | - Eva Frei
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-12843 Prague 2, Czech Republic.
| | - Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-12843 Prague 2, Czech Republic.
| | - Václav Martínek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-12843 Prague 2, Czech Republic.
| |
Collapse
|
18
|
Stiborová M, Bárta F, Levová K, Hodek P, Schmeiser HH, Arlt VM, Martínek V. A Mechanism of O-Demethylation of Aristolochic Acid I by Cytochromes P450 and Their Contributions to This Reaction in Human and Rat Livers: Experimental and Theoretical Approaches. Int J Mol Sci 2015; 16:27561-75. [PMID: 26593908 PMCID: PMC4661905 DOI: 10.3390/ijms161126047] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 01/30/2023] Open
Abstract
Aristolochic acid I (AAI) is a plant alkaloid causing aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is detoxified by cytochrome P450 (CYP)-mediated O-demethylation to 8-hydroxyaristolochic acid I (aristolochic acid Ia, AAIa). We previously investigated the efficiencies of human and rat CYPs in the presence of two other components of the mixed-functions-oxidase system, NADPH:CYP oxidoreductase and cytochrome b₅, to oxidize AAI. Human and rat CYP1A are the major enzymes oxidizing AAI. Other CYPs such as CYP2C, 3A4, 2D6, 2E1, and 1B1, also form AAIa, but with much lower efficiency than CYP1A. Based on velocities of AAIa formation by examined CYPs and their expression levels in human and rat livers, here we determined the contributions of individual CYPs to AAI oxidation in these organs. Human CYP1A2 followed by CYP2C9, 3A4 and 1A1 were the major enzymes contributing to AAI oxidation in human liver, while CYP2C and 1A were most important in rat liver. We employed flexible in silico docking methods to explain the differences in AAI oxidation in the liver by human CYP1A1, 1A2, 2C9, and 3A4, the enzymes that all O-demethylate AAI, but with different effectiveness. We found that the binding orientations of the methoxy group of AAI in binding centers of the CYP enzymes and the energies of AAI binding to the CYP active sites dictate the efficiency of AAI oxidation. Our results indicate that utilization of experimental and theoretical methods is an appropriate study design to examine the CYP-catalyzed reaction mechanisms of AAI oxidation and contributions of human hepatic CYPs to this metabolism.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, Prague 2 CZ-12843, Czech Republic.
| | - František Bárta
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, Prague 2 CZ-12843, Czech Republic.
| | - Kateřina Levová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, Prague 2 CZ-12843, Czech Republic.
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, Prague 2 CZ-12843, Czech Republic.
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London SE1 9NH, UK.
| | - Václav Martínek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, Prague 2 CZ-12843, Czech Republic.
| |
Collapse
|
19
|
Arlt VM, Krais AM, Godschalk RW, Riffo-Vasquez Y, Mrizova I, Roufosse CA, Corbin C, Shi Q, Frei E, Stiborova M, van Schooten FJ, Phillips DH, Spina D. Pulmonary Inflammation Impacts on CYP1A1-Mediated Respiratory Tract DNA Damage Induced by the Carcinogenic Air Pollutant Benzo[a]pyrene. Toxicol Sci 2015; 146:213-25. [PMID: 25911668 PMCID: PMC4517052 DOI: 10.1093/toxsci/kfv086] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pulmonary inflammation can contribute to the development of lung cancer in humans. We investigated whether pulmonary inflammation alters the genotoxicity of polycyclic aromatic hydrocarbons (PAHs) in the lungs of mice and what mechanisms are involved. To model nonallergic acute inflammation, mice were exposed intranasally to lipopolysaccharide (LPS; 20 µg/mouse) and then instilled intratracheally with benzo[a]pyrene (BaP; 0.5 mg/mouse). BaP-DNA adduct levels, measured by (32)P-postlabeling analysis, were approximately 3-fold higher in the lungs of LPS/BaP-treated mice than in mice treated with BaP alone. Pulmonary Cyp1a1 enzyme activity was decreased in LPS/BaP-treated mice relative to BaP-treated mice suggesting that pulmonary inflammation impacted on BaP-induced Cyp1a1 activity in the lung. Our results showed that Cyp1a1 appears to be important for BaP detoxification in vivo and that the decrease of pulmonary Cyp1a1 activity in LPS/BaP-treated mice results in a decrease of pulmonary BaP detoxification, thereby enhancing BaP genotoxicity (ie, DNA adduct formation) in the lung. Because less BaP was detoxified by Cyp1a1 in the lungs of LPS/BaP-treated mice, more BaP circulated via the blood to extrapulmonary tissues relative to mice treated with BaP only. Indeed, we observed higher BaP-DNA adduct levels in livers of LPS/BaP-treated mice compared with BaP-treated mice. Our results indicate that pulmonary inflammation could be a critical determinant in the induction of genotoxicity in the lung by PAHs like BaP. Cyp1a1 appears to be involved in both BaP bioactivation and detoxification although the contribution of other enzymes to BaP-DNA adduct formation in lung and liver under inflammatory conditions remains to be explored.
Collapse
Affiliation(s)
- Volker M Arlt
- *Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King's College London, London SE1 9NH, United Kingdom,
| | - Annette M Krais
- *Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King's College London, London SE1 9NH, United Kingdom
| | - Roger W Godschalk
- Department of Toxicology, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Iveta Mrizova
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague 2, Czech Republic
| | - Candice A Roufosse
- Department of Histopathology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London W12 0HS, United Kingdom, and
| | - Charmaine Corbin
- *Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King's College London, London SE1 9NH, United Kingdom
| | - Quan Shi
- Department of Toxicology, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Eva Frei
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague 2, Czech Republic
| | - Frederik-Jan van Schooten
- Department of Toxicology, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - David H Phillips
- *Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King's College London, London SE1 9NH, United Kingdom
| | - Domenico Spina
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| |
Collapse
|
20
|
Krais AM, Mühlbauer KR, Kucab JE, Chinbuah H, Cornelius MG, Wei QX, Hollstein M, Phillips DH, Arlt VM, Schmeiser HH. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts. Toxicol In Vitro 2015; 29:34-43. [PMID: 25230394 PMCID: PMC4258613 DOI: 10.1016/j.tiv.2014.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/31/2014] [Accepted: 09/05/2014] [Indexed: 01/08/2023]
Abstract
We compared mouse embryonic stem (ES) cells and fibroblasts (MEFs) for their ability to metabolically activate the environmental carcinogens benzo[a]pyrene (BaP), 3-nitrobenzanthrone (3-NBA) and aristolochic acid I (AAI), measuring DNA adduct formation by (32)P-postlabelling and expression of xenobiotic-metabolism genes by quantitative real-time PCR. At 2 μM, BaP induced Cyp1a1 expression in MEFs to a much greater extent than in ES cells and formed 45 times more adducts. Nqo1 mRNA expression was increased by 3-NBA in both cell types but induction was higher in MEFs, as was adduct formation. For AAI, DNA binding was over 450 times higher in MEFs than in ES cells, although Nqo1 and Cyp1a1 transcriptional levels did not explain this difference. We found higher global methylation of DNA in ES cells than in MEFs, which suggests higher chromatin density and lower accessibility of the DNA to DNA damaging agents in ES cells. However, AAI treatment did not alter DNA methylation. Thus mouse ES cells and MEFs have the metabolic competence to activate a number of environmental carcinogens, but MEFs have lower global DNA methylation and higher metabolic capacity than mouse ES cells.
Collapse
Affiliation(s)
- Annette M Krais
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Karl-Rudolf Mühlbauer
- Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jill E Kucab
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Helena Chinbuah
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Michael G Cornelius
- Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Quan-Xiang Wei
- Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monica Hollstein
- Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany; Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - David H Phillips
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Heinz H Schmeiser
- Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Arlt VM, Henderson CJ, Wolf CR, Stiborová M, Phillips DH. The Hepatic Reductase Null (HRN™) and Reductase Conditional Null (RCN) mouse models as suitable tools to study metabolism, toxicity and carcinogenicity of environmental pollutants. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00116h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This review describes the applicability of the Hepatic Reductase Null (HRN) and Reductase Conditional Null (RCN) mouse models to study carcinogen metabolism.
Collapse
Affiliation(s)
- Volker M. Arlt
- Analytical and Environmental Sciences Division
- MRC-PHE Centre for Environment and Health
- King's College London
- London SE1 9NH
- UK
| | - Colin J. Henderson
- Division of Cancer Research
- Medical Research Institute
- Jacqui Wood Cancer Centre
- University of Dundee
- Dundee DD1 9SY
| | - C. Roland Wolf
- Division of Cancer Research
- Medical Research Institute
- Jacqui Wood Cancer Centre
- University of Dundee
- Dundee DD1 9SY
| | - Marie Stiborová
- Department of Biochemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - David H. Phillips
- Analytical and Environmental Sciences Division
- MRC-PHE Centre for Environment and Health
- King's College London
- London SE1 9NH
- UK
| |
Collapse
|
22
|
Wohak LE, Krais AM, Kucab JE, Stertmann J, Øvrebø S, Seidel A, Phillips DH, Arlt VM. Carcinogenic polycyclic aromatic hydrocarbons induce CYP1A1 in human cells via a p53-dependent mechanism. Arch Toxicol 2014; 90:291-304. [PMID: 25398514 PMCID: PMC4748000 DOI: 10.1007/s00204-014-1409-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/04/2014] [Indexed: 01/09/2023]
Abstract
The tumour suppressor gene TP53 is mutated in more than 50 % of human tumours, making it one of the most important cancer genes. We have investigated the role of TP53 in cytochrome P450 (CYP)-mediated metabolic activation of three polycyclic aromatic hydrocarbons (PAHs) in a panel of isogenic colorectal HCT116 cells with differing TP53 status. Cells that were TP53(+/+), TP53(+/−), TP53(−/−), TP53(R248W/+) or TP53(R248W/−) were treated with benzo[a]pyrene (BaP), dibenz[a,h]anthracene and dibenzo[a,l]pyrene, and the formation of DNA adducts was measured by 32P-postlabelling analysis. Each PAH formed significantly higher DNA adduct levels in TP53(+/+) cells than in the other cell lines. There were also significantly lower levels of PAH metabolites in the culture media of these other cell lines. Bypass of the need for metabolic activation by treating cells with the corresponding reactive PAH-diol-epoxide metabolites resulted in similar adduct levels in all cell lines, which confirms that the influence of p53 is on the metabolism of the parent PAHs. Western blotting showed that CYP1A1 protein expression was induced to much greater extent in TP53(+/+) cells than in the other cell lines. CYP1A1 is inducible via the aryl hydrocarbon receptor (AHR), but we did not find that expression of AHR was dependent on p53; rather, we found that BaP-induced CYP1A1 expression was regulated through p53 binding to a p53 response element in the CYP1A1 promoter region, thereby enhancing its transcription. This study demonstrates a new pathway for CYP1A1 induction by environmental PAHs and reveals an emerging role for p53 in xenobiotic metabolism.
Collapse
Affiliation(s)
- Laura E Wohak
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.,Section of Molecular Carcinogenesis, Institute of Cancer Research, Sutton, Surrey, UK
| | - Annette M Krais
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Jill E Kucab
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Julia Stertmann
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Steinar Øvrebø
- Department of Biological and Chemical Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Albrecht Seidel
- Biochemical Institute for Environmental Carcinogens, Prof. Dr. Gernot Grimmer-Foundation, Grosshansdorf, Germany
| | - David H Phillips
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
23
|
Malik A, Bissinger R, Calabrò S, Faggio C, Jilani K, Lang F. Aristolochic acid induced suicidal erythrocyte death. Kidney Blood Press Res 2014; 39:408-19. [PMID: 25412628 DOI: 10.1159/000368454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Aristolochic Acid, a component of Aristolochia plants, has been shown to cause acute kidney injury, renal aristolochic acid nephropathy, Balkan endemic nephropathy, and urothelial carcinoma. Aristolochic acid nephropathy may be associated with severe anemia. The anemia could theoretically be due to stimulation of eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with translocation of phosphatidylserine to the erythrocyte cell membrane surface. Signalling involved in the stimulation of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)]i) and formation of ceramide. METHODS Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca(2+)]i from Fluo3 fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. RESULTS A 48 hours exposure to Aristolochic Acid (≥ 75 µg/ml) was followed by a significant decrease of forward scatter and increase of annexin-V-binding. The effects were paralleled by a significant increase of [Ca(2+)]i and significantly blunted, but not abrogated by removal of extracellular Ca(2+). Aristolochic Acid further significantly increased ceramide abundance. CONCLUSIONS Aristolochic Acid triggers eryptosis, an effect at least in part due to entry of extracellular Ca(2+) and ceramide formation.
Collapse
Affiliation(s)
- Abaid Malik
- Department of Physiology, University of Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Stiborová M, Bárta F, Levová K, Hodek P, Frei E, Arlt VM, Schmeiser HH. The influence of ochratoxin A on DNA adduct formation by the carcinogen aristolochic acid in rats. Arch Toxicol 2014; 89:2141-58. [PMID: 25209566 DOI: 10.1007/s00204-014-1360-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/28/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED Exposure to the plant nephrotoxin and carcinogen aristolochic acid (AA) leads to the development of AA nephropathy, Balkan endemic nephropathy (BEN) and upper urothelial carcinoma (UUC) in humans. Beside AA, exposure to ochratoxin A (OTA) was linked to BEN. Although OTA was rejected as a factor for BEN/UUC, there is still no information whether the development of AA-induced BEN/UUC is influenced by OTA exposure. Therefore, we studied the influence of OTA on the genotoxicity of AA (AA-DNA adduct formation) in vivo. AA-DNA adducts were formed in liver and kidney of rats treated with AA or AA combined with OTA, but no OTA-related DNA adducts were detectable in rats treated with OTA alone or OTA combined with AA. Compared to rats treated with AA alone, AA-DNA adduct levels were 5.4- and 1.6-fold higher in liver and kidney, respectively, of rats treated with AA combined with OTA. Although AA and OTA induced NAD(P)H quinone oxidoreductase (NQO1) activating AA to DNA adducts, their combined treatment did not lead to either higher NQO1 enzyme activity or higher AA-DNA adduct levels in ex vivo incubations. Oxidation of AA I (8-methoxy-6-nitrophenanthro[3,4-d]-1,3-dioxole-5-carboxylic acid) to its detoxification metabolite, 8-hydroxyaristolochic acid, was lower in microsomes from rats treated with AA and OTA, and this was paralleled by lower activities of cytochromes P450 1A1/2 and/or 2C11 in these microsomes. Our results indicate that a decrease in AA detoxification after combined exposure to AA and OTA leads to an increase in AA-DNA adduct formation in liver and kidney of rats.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic.
| | - František Bárta
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic
| | - Kateřina Levová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic
| | - Eva Frei
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environmental and Health, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry (E030), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
25
|
Stiborová M, Frei E, Schmeiser HH, Arlt VM, Martínek V. Mechanisms of enzyme-catalyzed reduction of two carcinogenic nitro-aromatics, 3-nitrobenzanthrone and aristolochic acid I: Experimental and theoretical approaches. Int J Mol Sci 2014; 15:10271-95. [PMID: 24918288 PMCID: PMC4100152 DOI: 10.3390/ijms150610271] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/30/2014] [Accepted: 05/30/2014] [Indexed: 01/14/2023] Open
Abstract
This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA) and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI), to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why human NAD(P)H quinone oxidoreductase (NQO1) and cytochromes P450 (CYP) 1A1 and 1A2 have the potential to reductively activate both nitro-aromatics. The results also contributed to the elucidation of the molecular mechanisms of these reactions. The contribution of conjugation enzymes such as N,O-acetyltransferases (NATs) and sulfotransferases (SULTs) to the activation of 3-NBA and AAI was also examined. The results indicated differences in the abilities of 3-NBA and AAI metabolites to be further activated by these conjugation enzymes. The formation of DNA adducts generated by both carcinogens during their reductive activation by the NOQ1 and CYP1A1/2 enzymes was investigated with pure enzymes, enzymes present in subcellular cytosolic and microsomal fractions, selective inhibitors, and animal models (including knock-out and humanized animals). For the theoretical approaches, flexible in silico docking methods as well as ab initio calculations were employed. The results summarized in this review demonstrate that a combination of experimental and theoretical approaches is a useful tool to study the enzyme-mediated reaction mechanisms of 3-NBA and AAI reduction.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843, Prague 2, Czech Republic.
| | - Eva Frei
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Heinz H Schmeiser
- Radiopharmaceutical Chemistry E030, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environmental & Health, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Václav Martínek
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843, Prague 2, Czech Republic.
| |
Collapse
|