1
|
Ding C, Wu Y, Zhan C, Naseem A, Chen L, Li H, Yang B, Liu Y. Research progress on the role and inhibitors of Keap1 signaling pathway in inflammation. Int Immunopharmacol 2024; 141:112853. [PMID: 39159555 DOI: 10.1016/j.intimp.2024.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Inflammation is a protective mechanism against endogenous and exogenous pathogens. It is a typical feature of numerous chronic diseases and their complications. Keap1 is an essential target in oxidative stress and inflammatory diseases. Among them, the Keap1-Nrf2-ARE pathway (including Keap1-Nrf2-HO-1) is the most significant pathway of Keap1 targets, which participates in the control of inflammation in multiple organs (including renal inflammation, lung inflammation, liver inflammation, neuroinflammation, etc.). Identifying new Keap1 inhibitors is crucial for new drug discovery. However, most drugs have specificity issues as they covalently bind to cysteine residues of Keap1, causing off-target effects. Therefore, direct inhibition of Keap1-Nrf2 PPIs is a new research idea. Through non-electrophilic and non-covalent binding, its inhibitors have better specificity and ability to activate Nrf2, and targeting therapy against Keap1-Nrf2 PPIs has become a new method for drug development in chronic diseases. This review summarizes the members and downstream genes of the Keap1-related pathway and their roles in inflammatory disease models. In addition, we summarize all the research progress of anti-inflammatory drugs targeting Keap1 from 2010 to 2024, mainly describing their biological functions, molecular mechanisms of action, and therapeutic roles in inflammatory diseases.
Collapse
Affiliation(s)
- Chao Ding
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Ying Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Chaochao Zhan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
2
|
Zhang M, Gao J, Kulyar MF, Luo W, Zhang G, Yang X, Zhang T, Gao H, Peng Y, Zhang J, Altaf M, Algharib SA, Zhou D, He J. Antioxidant and renal protective effects of Nano-selenium on adenine-induced acute renal failure in canines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117274. [PMID: 39536559 DOI: 10.1016/j.ecoenv.2024.117274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Acute renal failure is a common clinical disease in canines, affecting antioxidant levels and decreasing the body's resistance. This study aims to explore the therapeutic mechanism of Nano-selenium in acute renal failure. The histopathological and imaging changes of kidney tissue were observed with the gene and protein expression levels of Keap1, Nrf2, HO-1, and NQO1 in the kidney. According to our findings, adding nano-selenium can effectively reduce the concentration of CRE and BUN in blood and kidney tissues. It increased the activity of GSH-PX and SOD by an effective reduction of MDA. Through pathological and imaging observations, it was found that adding nano-selenium could improve the kidney tissue structure of acute renal failure. The results of the RT-qPCR experiment showed that after the addition of nano-selenium, the mRNA expression of the Keap1 gene decreased significantly. In contrast, the mRNA expression of the Nrf2, HO-1, and NQO1 genes increased significantly. The experimental results were further verified by western blot and immunohistochemical analysis. Hence, the nano-selenium intervention improved kidney function and increased antioxidant levels in canines suffering from acute renal failure with the involvement of the Keap1-Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Mengdi Zhang
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control/College of Animal Science, Tarim University, Alar, Xinjiang 843300, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jindong Gao
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control/College of Animal Science, Tarim University, Alar, Xinjiang 843300, China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control/College of Animal Science, Tarim University, Alar, Xinjiang 843300, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guodong Zhang
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control/College of Animal Science, Tarim University, Alar, Xinjiang 843300, China
| | - Xiaoqi Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tianguang Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haihang Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuxuan Peng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiabin Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Muhammad Altaf
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Samah Attia Algharib
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, QG 13736, Egypt
| | - Donghai Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jianzhong He
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control/College of Animal Science, Tarim University, Alar, Xinjiang 843300, China.
| |
Collapse
|
3
|
Wang F, Huang X, Wang S, Wu D, Zhang M, Wei W. The main molecular mechanisms of ferroptosis and its role in chronic kidney disease. Cell Signal 2024; 121:111256. [PMID: 38878804 DOI: 10.1016/j.cellsig.2024.111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The term ferroptosis, coined in 2012, has been widely applied in various disease research fields. Ferroptosis is a newly regulated form of cell death distinct from apoptosis, necrosis, and autophagy, the mechanisms of which have been extensively studied. Chronic kidney disease, characterized by renal dysfunction, is a common disease severely affecting human health, with its occurrence and development influenced by multiple factors and leading to dysfunction in multiple systems. It often lacks obvious clinical symptoms in the early stages, and thus, diagnosis is typically made in the later stages, complicating treatment. While research on ferroptosis and acute kidney injury has made continuous progress, studies on the association between ferroptosis and chronic kidney disease remain limited. This review aims to summarize chronic kidney disease, investigate the mechanism and regulation of ferroptosis, and attempt to elucidate the role of ferroptosis in the occurrence and development of chronic kidney disease.
Collapse
Affiliation(s)
- Fulin Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xuesong Huang
- Department of Urology, Jilin People's Hospital, Jilin, China
| | - Shaokun Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Dawei Wu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | | | - Wei Wei
- Department of Urology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Bondi CD, Hartman HL, Tan RJ. NRF2 in kidney physiology and disease. Physiol Rep 2024; 12:e15961. [PMID: 38418382 PMCID: PMC10901725 DOI: 10.14814/phy2.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024] Open
Abstract
The role of NRF2 in kidney biology has received considerable interest over the past decade. NRF2 transcriptionally controls genes responsible for cellular protection against oxidative and electrophilic stress and has anti-inflammatory functions. NRF2 is expressed throughout the kidney and plays a role in salt and water handling. In disease, animal studies show that NRF2 protects against tubulointerstitial damage and reduces interstitial fibrosis and tubular atrophy, and may slow progression of polycystic kidney disease. However, the role of NRF2 in proteinuric glomerular diseases is controversial. Although the NRF2 inducer, bardoxolone methyl (CDDO-Me), increases glomerular filtration rate in humans, it has not been shown to slow disease progression in diabetic kidney disease and Alport syndrome. Furthermore, bardoxolone methyl was associated with negative effects on fluid retention, proteinuria, and blood pressure. Several animal studies replicate findings of worsened proteinuria and a more rapid progression of kidney disease, although considerable controversy exists. It is clear that further study is needed to better understand the effects of NRF2 in the kidney. This review summarizes the available data to clarify the promise and risks associated with targeting NRF2 activity in the kidney.
Collapse
Affiliation(s)
- Corry D. Bondi
- Renal‐Electrolyte Division, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Hannah L. Hartman
- Renal‐Electrolyte Division, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Roderick J. Tan
- Renal‐Electrolyte Division, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Mu S, Tian Q, Shen L. NOP16 promotes hepatocellular carcinoma progression and triggers EMT through the Keap1-Nrf2 signaling pathway. Technol Health Care 2024; 32:2463-2483. [PMID: 38251077 PMCID: PMC11322705 DOI: 10.3233/thc-231256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Nucleolar protein 16 (NOP16) is present in the protein complex of the nucleolus. The NOP16 promoter contains a c-Myc binding site, and the transcriptional regulation by c-Myc directly regulates NOP16 expression levels. OBJECTIVE Dysregulation of NOP 16 is currently reported in only a small number of cancers. In this study, the expression profile of NOP 16 in hepatocellular carcinoma (LIHC) and its clinical significance were analyzed. METHODS NOP16 expression in hepatocellular carcinoma (LIHC) and its relationship with the clinical characters of LIHC were examined using the Cancer Genome Atlas (TCGA), the Gene Expression comprehensive database (GEO), Kaplan-Meier survival analysis, univariate Cox analysis, multivariate Cox analysis, ROC curve analysis of KEGG enrichment, GSEA enrichment, in vitro experiments (e.g., siRNA interference of NOP16 expression in hepatoma cells, Keap1-Nrf2 pathway, cell cycle, cell apoptosis and Transwell assays), and LIHC single-cell sequencing (scRNA). RESULTS Pan-cancer analysis revealed that NOP16 was highly expressed in 20 cancer types, including LIHC, and high NOP16 expression was an independent adverse prognostic factor in LIHC patients. The expression levels of NOP16 mRNA and protein were significantly increased in tumour tissues of LIHC patients compared to normal tissues. The functions of co-expressed genes were primarily enriched in the cell cycle and reactive oxygen species metabolism. The experimental results showed that knockdown of NOP16 activated the Keap/Nrf2 signalling pathway and inhibited the invasion, migration, and EMT progression of LIHC cells. LIHC scRNA-seq data showed that NOP16 was primarily expressed in T lymphocytes. CONCLUSIONS NOP16 promoted cancer development in LIHC and caused an imbalance in Keap/Nrf2 signalling, which subsequently caused the aberrant expression of genes typical for EMT, cell cycle progression and apoptosis. NOP16 is a potential prognostic marker and therapeutic target for hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Shangdong Mu
- Department of Oncology, Health Science Center, 3201 Hospital of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Qiusi Tian
- Department of Neurosurgery, Health Science Center, 3201 Hospital of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Liangyu Shen
- Department of Anesthesia, Operation Center, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Al-Kuraishy HM, Al-Gareeb AI, Eldahshan OA, Abdelkhalek YM, El Dahshan M, Ahmed EA, Sabatier JM, Batiha GES. The possible role of nuclear factor erythroid-2-related factor 2 activators in the management of Covid-19. J Biochem Mol Toxicol 2024; 38:e23605. [PMID: 38069809 DOI: 10.1002/jbt.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/06/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | | | - Magdy El Dahshan
- Department of Internal Medicine, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, Marseille, France
| | - Gaber E-S Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt
| |
Collapse
|
7
|
Wu Q, Yang Y, Lin C. Exploration of Diagnostic Markers Associated with Inflammation in Chronic Kidney Disease Based on WGCNA and Machine Learning. Crit Rev Immunol 2024; 44:15-25. [PMID: 38618725 DOI: 10.1615/critrevimmunol.2024051277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Chronic kidney disease (CKD) is a common disorder related to inflammatory pathways; its effective management remains limited. This study aimed to use bioinformatics analysis to find diagnostic markers that might be therapeutic targets for CKD. CKD microarray datasets were screened from the GEO database and the differentially expressed genes (DEGs) in CKD dataset GSE98603 were analyzed. Gene set variation analysis (GSVA) was used to explore the activity scores of the inflammatory pathways and samples. Algorithms such as weighted gene co-expression network analysis (WGCNA) and Lasso were used to screen CKD diagnostic markers related to inflammation. Then functional enrichment analysis of inflammation-related DEGs was performed. ROC curves were conducted to examine the diagnostic value of inflammation-related hub-genes. Lastly, quantitative real-time PCR further verified the prediction of bioinformatics. A total of 71 inflammation-related DEGs were obtained, of which 5 were hub genes. Enrichment analysis showed that these genes were significantly enriched in inflammation-related pathways (NF-κB, JAK-STAT, and MAPK signaling pathways). ROC curves showed that the 5 CKD diagnostic markers (TIGD7, ACTA2, ACTG2, MAP4K4, and HOXA11) also exhibited good diagnostic value. In addition, TIGD7, ACTA2, ACTG2, and HOXA11 expression was downregulated while MAP4K4 expression was upregulated in LPS-induced HK-2 cells. The present study identified TIGD7, ACTA2, ACTG2, MAP4K4, and HOXA11 as reliable CKD diagnostic markers, thereby providing a basis for further understanding of CKD in clinical treatments.
Collapse
Affiliation(s)
- Qianjia Wu
- Department of Nephrology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yang Yang
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University
| | - Chongze Lin
- Department of Nephrology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
8
|
Xu C, Liu X, Zhai X, Wang G, Qin W, Cheng Z, Chen Z. CDDO-Me ameliorates podocyte injury through anti-oxidative stress and regulation of actin cytoskeleton in adriamycin nephropathy. Biomed Pharmacother 2023; 167:115617. [PMID: 37801905 DOI: 10.1016/j.biopha.2023.115617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
Podocyte injury is the common initiating event in focal segmental glomerulosclerosis (FSGS). Oxidative stress and inflammation mediate podocyte injury in FSGS. NRF2 pathway regulates the constitutive and inducible transcription of various genes that encode antioxidant proteins and anti-inflammatory proteins and have pivotal roles in the defense against cellular oxidative stress. In this study, we used adriamycin-induced nephropathy (ADR) in mice as a model of FSGS to confirm that CDDO-Me treatment ameliorated adriamycin-induced kidney damage by improving renal function and kidney histology. CDDO-Me inhibited the level of oxidative stress, inflammation, and apoptosis in adriamycin-induced podocyte injury by activating NRF2 pathway in vivo and in vitro. Furthermore, CDDO-Me stabled the cytoskeleton by regulating NRF2/srGAP2a pathway. Together, these findings show that by activating NRF2 pathway, CDDO-Me could be a therapeutic strategy to prevent the adverse effects of adriamycin-induced podocyte injury.
Collapse
Affiliation(s)
- Cheng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; Department of Nephrology, The Second Hospital of Jilin University, Nanguan District, Changchun 130041, Jilin, China
| | - Xing Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiuwen Zhai
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Gang Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Weisong Qin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zheng Cheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Zhaohong Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
9
|
Simões E Silva AC, Oliveira EA, Cheung WW, Mak RH. Redox Signaling in Chronic Kidney Disease-Associated Cachexia. Antioxidants (Basel) 2023; 12:antiox12040945. [PMID: 37107320 PMCID: PMC10136196 DOI: 10.3390/antiox12040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Redox signaling alterations contribute to chronic kidney disease (CKD)-associated cachexia. This review aims to summarize studies about redox pathophysiology in CKD-associated cachexia and muscle wasting and to discuss potential therapeutic approaches based on antioxidant and anti-inflammatory molecules to restore redox homeostasis. Enzymatic and non-enzymatic systems of antioxidant molecules have been studied in experimental models of kidney diseases and patients with CKD. Oxidative stress is increased by several factors present in CKD, including uremic toxins, inflammation, and metabolic and hormone alterations, leading to muscle wasting. Rehabilitative nutritional and physical exercises have shown beneficial effects for CKD-associated cachexia. Anti-inflammatory molecules have also been tested in experimental models of CKD. The importance of oxidative stress has been shown by experimental studies in which antioxidant therapies ameliorated CKD and its associated complications in the 5/6 nephrectomy model. Treatment of CKD-associated cachexia is a challenge and further studies are necessary to investigate potential therapies involving antioxidant therapy.
Collapse
Affiliation(s)
- Ana Cristina Simões E Silva
- Department of Pediatrics, Division of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Eduardo A Oliveira
- Department of Pediatrics, Division of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Wai W Cheung
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert H Mak
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Baiken Y, Markhametova Z, Ashimova A, Zhulamanova A, Nogaibayeva A, Kozina L, Matkarimov B, Aituov B, Gaipov A, Myngbay A. Elevated Levels of Plasma Collagen Triple Helix Repeat Containing 1 (CTHRC1) Is Strongly Associated with eGFR and Albuminuria in Chronic Kidney Disease. Medicina (B Aires) 2023; 59:medicina59040651. [PMID: 37109608 PMCID: PMC10146339 DOI: 10.3390/medicina59040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Chronic kidney disease (CKD) has various etiologies, making it impossible to fully understand its complex pathophysiology. Elevated levels of plasma creatinine, proteinuria, and albuminuria and declined eGFR are traits observed in CKD patients. The current study attempts to highlight the collagen triple helix repeat containing 1 (CTHRC1) protein as a putative blood biomarker for CKD in addition to existing recognized indicators of CKD progression. Methods: A total of 26 CKD patients and 18 healthy controls were enrolled in this study. Clinical characteristics and complete blood and biochemical analyses were collected, and human ELISA kits were used to detect possible CKD biomarkers. Results: The study’s findings showed that CTHRC1 correlates with key clinical markers of kidney function such as 24 h urine total protein, creatinine, urea, and uric acid. In addition, CTHRC1 demonstrated a strong significant difference (p ≤ 0.0001) between the CKD and control group. Conclusions: Our research demonstrates that the plasma level of CTHRC1 can distinguish between those with CKD and healthy patients. Plasma CTHRC1 levels may aid in the diagnosis of CKD given the current state of knowledge, and these results call for further investigation in a wider, more diverse patient group.
Collapse
|
11
|
Lin DW, Hsu YC, Chang CC, Hsieh CC, Lin CL. Insights into the Molecular Mechanisms of NRF2 in Kidney Injury and Diseases. Int J Mol Sci 2023; 24:ijms24076053. [PMID: 37047024 PMCID: PMC10094034 DOI: 10.3390/ijms24076053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin de Porres Hospital, Chiayi 600, Taiwan
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ching-Chuan Hsieh
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
12
|
Cytoprotective Effect of Pteryxin on Insulinoma MIN6 Cells Due to Antioxidant Enzymes Expression via Nrf2/ARE Activation. Antioxidants (Basel) 2023; 12:antiox12030693. [PMID: 36978941 PMCID: PMC10045797 DOI: 10.3390/antiox12030693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The low-level antioxidant activity of pancreatic islets causes type 1 diabetes due to oxidative stress, which is also the cause of failure in the pancreatic islets’ isolation and cell transplantation. In our previous study, pteryxin was found to be a natural product as a nuclear factor-erythroid-2-related factor (Nrf2) activator. This study focused on elucidation that the potentiality of pteryxin can activate the antioxidant enzymes, even under oxidative stress, by hydrogen peroxide (H2O2). Pteryxin treated with mouse insulinoma MIN6 cells was enhanced the antioxidant gene expressions in the ARE (antioxidant response element) region for HO-1 (Heme Oxygenase-1), GCLC (Glutamate-cysteine ligase catalytic subunit), SOD1 (Super Oxide dismutase1), and Trxr1 (Thioredoxin reductase1), and those enzymes were also expressed during the nuclei transference of cytoplasmic Nrf2. In fact, the cells exposed to H2O2 concentrations of a half-cell lethal in the presence of pteryxin were then induced main antioxidant enzymes, HO-1, GCLC, and Trxr1 in the ARE region. The increased glutathione (GSH) levels associated with the GCLC expression also suggested to be cytoprotective against oxidative stress by activating the redox-metabolizing enzymes involving their increased antioxidant activity in the cells. In addition, Akt is a modulator for Nrf2, which may be responsible for the Nrf2 activation. These results allowed us to consider whether pteryxin or its synthesized congeners, an Nrf2 activator, is a potential preservative agent against islet isolation during cell transplantation.
Collapse
|
13
|
RTA dh404 Induces Cell Cycle Arrest, Apoptosis, and Autophagy in Glioblastoma Cells. Int J Mol Sci 2023; 24:ijms24044006. [PMID: 36835414 PMCID: PMC9962315 DOI: 10.3390/ijms24044006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
RTA dh404 is a novel synthetic oleanolic acid derivative that has been reported to possess anti-allergic, neuroprotective, antioxidative, and anti-inflammatory properties, and exerts therapeutic effects on various cancers. Although CDDO and its derivatives have anticancer effects, the actual anticancer mechanism has not been fully explored. Therefore, in this study, glioblastoma cell lines were exposed to different concentrations of RTA dh404 (0, 2, 4, and 8 µM). Cell viability was evaluated using the PrestoBlue™ reagent assay. The role of RTA dh404 in cell cycle progression, apoptosis, and autophagy was analyzed using flow cytometry and Western blotting. The expression of cell cycle-, apoptosis-, and autophagy-related genes was detected by next-generation sequencing. RTA dh404 reduces GBM8401 and U87MG glioma cell viability. RTA dh404 treated cells had a significant increase in the percentage of apoptotic cells and caspase-3 activity. In addition, the results of the cell cycle analysis showed that RTA dh404 arrested GBM8401 and U87MG glioma cells at the G2/M phase. Autophagy was observed in RTA dh404-treated cells. Subsequently, we found that RTA dh404-induced cell cycle arrest, apoptosis, and autophagy were related to the regulation of associated genes using next-generation sequencing. Our data indicated that RTA dh404 causes G2/M cell cycle arrest and induces apoptosis and autophagy by regulating the expression of cell cycle-, apoptosis-, and autophagy-related genes in human glioblastoma cells, suggesting that RTA dh404 is a potential drug candidate for the treatment of glioblastoma.
Collapse
|
14
|
Kim YK, Ning X, Munir KM, Davis SN. Emerging drugs for the treatment of diabetic nephropathy. Expert Opin Emerg Drugs 2022; 27:417-430. [PMID: 36472144 DOI: 10.1080/14728214.2022.2155632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Diabetic nephropathy remains a significant economic and social burden on both the individual patient and health-care systems as the prevalence of diabetes increases in the general population. The complex pathophysiology of diabetic kidney disease poses a challenge in the development of effective medical treatments for the disease. However, the multiple facets of diabetic nephropathy also offer a variety of potential strategies to manage this condition. AREAS COVERED We retrieved PubMed, Cochrane Library, Scopus, Google Scholar, and ClinicalTrials.gov records to identify studies and articles focused on new pharmacologic advances to treat diabetic nephropathy. EXPERT OPINION RAAS blockers have remained the mainstay of therapy for DM nephropathy for many years, with only recent advancements with SGLT2 inhibitors and nonsteroidal MRAs. Better understanding of the long-term renal effects of ambient hyperglycemia, ranging from hemodynamic changes to increased production of oxidative and pro-inflammatory substances, has evolved our approach to the treatment of diabetic nephropathy. With continuing research for new therapeutics as well as combination therapy, the medical community may be able to better ease the burden of diabetic kidney disease.
Collapse
Affiliation(s)
- Yoon Kook Kim
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Xinyuan Ning
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Kashif M Munir
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Stephen N Davis
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Ishizaki Y, Sasaki KI, Yoshikawa T, Nakayoshi T, Sasaki M, Ohtsuka M, Hatada-Katakabe S, Takata Y, Fukumoto Y. RTA-dh404 decreased oxidative stress in mice ischemic limbs and augmented efficacy of therapeutic angiogenesis by intramuscular injection of adipose-derived regenerative cells in the limbs. Eur J Pharmacol 2022; 938:175422. [PMID: 36442622 DOI: 10.1016/j.ejphar.2022.175422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Although an intramuscular injection of angiogenic cells to ischemic limbs with peripheral artery disease is a therapeutic option to rescue patients by augmenting neovascularization in the limbs, oxidative stress in the limbs may accelerate apoptosis of the injected cells and thereby reduce the therapeutic effect. In this study involving mice with ischemic lower limbs, whether daily oral administration of RTA-dh404, which is an activator of nuclear factor erythroid 2-related factor 2 (Nrf2) with antioxidant activity, could reduce oxidative stress in the limbs and suppress apoptosis of adipose-derived regenerative cells (ADRCs) injected in the limbs, eventually augmenting neovascularization in the limbs, was evaluated. The tissue expression of Nrf2 and concentrations of total antioxidant capacity and superoxide dismutase in the mice ischemic limbs were higher in the RTA-dh404-treated mice than in the control treated mice, and oxidative stress in the limbs of the RTA-dh404 treated mice was decreased. The day after an intramuscular injection of human ADRCs into ischemic lower limbs of immunodeficient mice, the number of apoptotic ADRCs in the ischemic limbs was decreased by approximately 25% in the RTA-dh404-treated mice compared to the control mice. Fourteen days after cell injection, neovascularization and the salvage ratio were increased by approximately 10% and 63%, respectively, in the ischemic limbs in the RTA-dh404-treated mice compared to the control mice. Pretreatment of ischemic limbs by daily oral administration of RTA-dh404 may augment the effect of therapeutic angiogenesis using an intramuscular injection of ADRCs into the ischemic limbs.
Collapse
Affiliation(s)
- Yuta Ishizaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ken-Ichiro Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan.
| | - Takahiro Yoshikawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takaharu Nakayoshi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Motoki Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masanori Ohtsuka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sachiko Hatada-Katakabe
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yuki Takata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
16
|
Kaseda S, Sannomiya Y, Horizono J, Kuwazuru J, Suico MA, Ogi S, Sasaki R, Sunamoto H, Fukiya H, Nishiyama H, Kamura M, Niinou S, Koyama Y, Nara F, Shuto T, Onuma K, Kai H. Novel Keap1-Nrf2 Protein-Protein Interaction Inhibitor UBE-1099 Ameliorates Progressive Phenotype in Alport Syndrome Mouse Model. KIDNEY360 2022; 3:687-699. [PMID: 35721612 PMCID: PMC9136903 DOI: 10.34067/kid.0004572021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/29/2021] [Indexed: 06/15/2023]
Abstract
BACKGROUND Bardoxolone methyl activates nuclear factor erythroid 2-related factor 2 (Nrf2) via covalent binding and irreversible inhibition of Kelch-like ECH-associated protein 1 (Keap1), the negative regulator of Nrf2. Ongoing clinical trials of bardoxolone methyl show promising effects for patients with CKD. However, the direct inhibition of Keap1-Nrf2 protein-protein interaction (PPI) as an approach to activate Nrf2 is less explored. METHODS We developed a noncovalent Nrf2 activator UBE-1099, which highly selectively inhibits Keap1-Nrf2 PPI, and evaluated its efficacy on the progressive phenotype in an Alport syndrome mouse model (Col4a5-G5X). RESULTS Similar to bardoxolone methyl, UBE-1099 transiently increased proteinuria and reduced plasma creatinine in Alport mice. Importantly, UBE-1099 improved the glomerulosclerosis, renal inflammation, and fibrosis, and prolonged the life span of Alport mice. UBE-1099 ameliorated the dysfunction of Nrf2 signaling in the renal tissue of Alport mice. Moreover, transcriptome analysis in the glomerulus showed that UBE-1099 induced the expression of genes associated with the cell cycle and cytoskeleton, which may explain its unique mechanism of improvement such as glomerular morphologic change. CONCLUSIONS UBE-1099 significantly ameliorates the progressive phenotype in Alport mice. Our results revealed the efficacy of Keap1-Nrf2 PPI inhibitor for glomerulosclerosis and present a potential therapeutic drug for CKD.
Collapse
Affiliation(s)
- Shota Kaseda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate School “HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program,” Kumamoto University, Kumamoto, Japan
| | - Yuya Sannomiya
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Horizono
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Kuwazuru
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sayaka Ogi
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Ryoko Sasaki
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetoshi Sunamoto
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Hirohiko Fukiya
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Hayato Nishiyama
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Misato Kamura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate School “HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program,” Kumamoto University, Kumamoto, Japan
| | - Saki Niinou
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuimi Koyama
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Futoshi Nara
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhiro Onuma
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate School “HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program,” Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
17
|
Fatty acid nitroalkene reversal of established lung fibrosis. Redox Biol 2021; 50:102226. [PMID: 35150970 PMCID: PMC8844680 DOI: 10.1016/j.redox.2021.102226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue fibrosis occurs in response to dysregulated metabolism, pro-inflammatory signaling and tissue repair reactions. For example, lungs exposed to environmental toxins, cancer therapies, chronic inflammation and other stimuli manifest a phenotypic shift to activated myofibroblasts and progressive and often irreversible lung tissue scarring. There are no therapies that stop or reverse fibrosis. The 2 FDA-approved anti-fibrotic drugs at best only slow the progression of fibrosis in humans. The present study was designed to test whether a small molecule electrophilic nitroalkene, nitro-oleic acid (NO2-OA), could reverse established pulmonary fibrosis induced by the intratracheal administration of bleomycin in C57BL/6 mice. After 14 d of bleomycin-induced fibrosis development in vivo, lungs were removed, sectioned and precision-cut lung slices (PCLS) from control and bleomycin-treated mice were cultured ex vivo for 4 d with either vehicle or NO2-OA (5 μM). Biochemical and morphological analyses showed that over a 4 d time frame, NO2-OA significantly inhibited pro-inflammatory mediator and growth factor expression and reversed key indices of fibrosis (hydroxyproline, collagen 1A1 and 3A1, fibronectin-1). Quantitative image analysis of PCLS immunohistology reinforced these observations, revealing that NO2-OA suppressed additional hallmarks of the fibrotic response, including alveolar epithelial cell loss, myofibroblast differentiation and proliferation, collagen and α-smooth muscle actin expression. NO2-OA also accelerated collagen degradation by resident macrophages. These effects occurred in the absence of the recognized NO2-OA modulation of circulating and migrating immune cell activation. Thus, small molecule nitroalkenes may be useful agents for reversing pathogenic fibrosis of lung and other organs. Small molecule electrophiles, pleiotropic anti-inflammatory and anti-fibrotic drugs. NO2-OA inhibits activated myofibroblasts, induces dedifferentiation to fibroblasts. NO2-OA activates extracellular matrix degradation by macrophages. NO2-OA promotes proliferation of alveolar type 1 and 2 epithelial cells. NO2-OA reverses established lung fibrosis in murine lung slices.
Collapse
|
18
|
Stenvinkel P, Chertow GM, Devarajan P, Levin A, Andreoli SP, Bangalore S, Warady BA. Chronic Inflammation in Chronic Kidney Disease Progression: Role of Nrf2. Kidney Int Rep 2021; 6:1775-1787. [PMID: 34307974 PMCID: PMC8258499 DOI: 10.1016/j.ekir.2021.04.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in the management of chronic kidney disease (CKD), morbidity and mortality rates in these patients remain high. Although pressure-mediated injury is a well-recognized mechanism of disease progression in CKD, emerging data indicate that an intermediate phenotype involving chronic inflammation, oxidative stress, hypoxia, senescence, and mitochondrial dysfunction plays a key role in the etiology, progression, and pathophysiology of CKD. A variety of factors promote chronic inflammation in CKD, including oxidative stress and the adoption of a proinflammatory phenotype by resident kidney cells. Regulation of proinflammatory and anti-inflammatory factors through NF-κB- and nuclear factor, erythroid 2 like 2 (Nrf2)-mediated gene transcription, respectively, plays a critical role in the glomerular and tubular cell response to kidney injury. Chronic inflammation contributes to the decline in glomerular filtration rate (GFR) in CKD. Whereas the role of chronic inflammation in diabetic kidney disease (DKD) has been well-elucidated, there is now substantial evidence indicating unresolved inflammatory processes lead to fibrosis and eventual end-stage kidney disease (ESKD) in several other diseases, such as Alport syndrome, autosomal-dominant polycystic kidney disease (ADPKD), IgA nephropathy (IgAN), and focal segmental glomerulosclerosis (FSGS). In this review, we aim to clarify the mechanisms of chronic inflammation in the pathophysiology and disease progression across the spectrum of kidney diseases, with a focus on Nrf2.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Department of Renal Medicine M99, Karolinska University Hospital at Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Glenn M Chertow
- Division of Nephrology, Stanford University, Stanford, California, USA
| | - Prasad Devarajan
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Adeera Levin
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Sharon P Andreoli
- Department of Pediatrics, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Sripal Bangalore
- Division of Cardiology, New York University, New York, New York, USA
| | - Bradley A Warady
- Division of Pediatric Nephrology, Children's Mercy Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
19
|
Nicholas SB. Novel Anti-inflammatory and Anti-fibrotic Agents for Diabetic Kidney Disease-From Bench to Bedside. Adv Chronic Kidney Dis 2021; 28:378-390. [PMID: 34922694 DOI: 10.1053/j.ackd.2021.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
Chronic low-grade inflammation, now coined by the new paradigm as "metaflammation" or "metainflammation", has been linked to chronic kidney disease and its progression. In diabetes, altered metabolism denotes factors associated with the metabolic syndrome and hyperglycemia, among others. The interplay among hyperglycemia, oxidative stress, and inflammation in the pathogenesis of diabetic kidney disease (DKD) has been broadly explored. Identification of mediators of inflammatory processes involving macrophage infiltration, production of inflammasomes, release of cytokines, and activation of pertinent signaling pathways including mitogen-activated protein kinase, Jun N-terminal kinase, Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway (JAK/STAT), and apoptosis signal-regulating kinase 1 signaling mechanisms have enabled the development of therapeutic agents for DKD. This review describes the evidence supporting the contribution of the inflammatory response and fibrotic changes and focuses on selected, novel, promising drugs as well as repurposed drugs that have made it to phase 2, 3, or 4 of clinical trials in adults with type 2 diabetes mellitus and their potential to become an important part of our armamentarium to improve the management of DKD. Importantly, drugs that solely target inflammatory processes may be insufficient to fully optimize care of patients with DKD because of the complex nature of the disease.
Collapse
|
20
|
Chertow GM, Appel GB, Andreoli S, Bangalore S, Block GA, Chapman AB, Chin MP, Gibson KL, Goldsberry A, Iijima K, Inker LA, Knebelmann B, Mariani LH, Meyer CJ, Nozu K, O'Grady M, Silva AL, Stenvinkel P, Torra R, Warady BA, Pergola PE. Study Design and Baseline Characteristics of the CARDINAL Trial: A Phase 3 Study of Bardoxolone Methyl in Patients with Alport Syndrome. Am J Nephrol 2021; 52:180-189. [PMID: 33789284 DOI: 10.1159/000513777] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Alport syndrome is a rare genetic disorder that affects as many as 60,000 persons in the USA and a total of 103,000 persons (<5 per 10,000) in the European Union [1, 2]. It is the second most common inherited cause of kidney failure and is characterized by progressive loss of kidney function that often leads to end-stage kidney disease. Currently, there are no approved disease-specific agents for therapeutic use. We designed a phase 3 study (CARDINAL; NCT03019185) to evaluate the safety, tolerability, and efficacy of bardoxolone methyl in patients with Alport syndrome. METHODS The CARDINAL phase 3 study is an international, multicenter, double-blind, placebo-controlled, randomized registrational trial. Eligible patients were of ages 12-70 years with confirmed genetic or histologic diagnosis of Alport syndrome, eGFR 30-90 mL/min/1.73 m2, and urinary albumin to creatinine ratio (UACR) ≤3,500 mg/g. Patients with B-type natriuretic peptide values >200 pg/mL at baseline or with significant cardiovascular histories were excluded. Patients were randomized 1:1 to bardoxolone methyl or placebo, with stratification by baseline UACR. RESULTS A total of 371 patients were screened, and 157 patients were randomly assigned to receive bardoxolone methyl (n = 77) or placebo (n = 80). The average age at screening was 39.2 years, and 23 (15%) were <18 years of age. Of the randomized population, 146 (93%) had confirmed genetic diagnosis of Alport syndrome, and 62% of patients had X-linked mode of inheritance. Mean baseline eGFR was 62.7 mL/min/1.73 m2, and the geometric mean UACR was 141.0 mg/g. The average annual rate of eGFR decline prior to enrollment in the study was -4.9 mL/min/1.73 m2 despite 78% of the patient population receiving ACE inhibitor (ACEi) or ARB therapy. DISCUSSION/CONCLUSION CARDINAL is one of the largest interventional, randomized controlled trials in Alport syndrome conducted to date. Despite the use of ACEi or ARB, patients were experiencing significant loss of kidney function prior to study entry.
Collapse
Affiliation(s)
- Glenn M Chertow
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Gerald B Appel
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Sharon Andreoli
- Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sripal Bangalore
- Cardiovascular Clinical Research Center, New York University School of Medicine, New York, New York, USA
| | - Geoffrey A Block
- Department of Clinical Research and Medical Affairs, US Renal Care, Inc., Plano, Texas, USA
| | - Arlene B Chapman
- Section of Nephrology, University of Chicago, Chicago, Illinois, USA
| | - Melanie P Chin
- Department of Product Development, Reata Pharmaceuticals, Plano, Texas, USA
| | - Keisha L Gibson
- University of North Carolina Kidney Center at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Angie Goldsberry
- Department of Product Development, Reata Pharmaceuticals, Plano, Texas, USA
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Lesley A Inker
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Bertrand Knebelmann
- Department of Nephrology, Necker Hospital, AP-HP, Université de Paris, Paris, France
| | - Laura H Mariani
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Colin J Meyer
- Department of Product Development, Reata Pharmaceuticals, Plano, Texas, USA
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Megan O'Grady
- Department of Product Development, Reata Pharmaceuticals, Plano, Texas, USA
| | - Arnold L Silva
- Boise Kidney and Hypertension Institute, Meridian, Idaho, USA
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Roser Torra
- Inherited Kidney Disorders, Nephrology Department, Fundacio Puigvert, Instituto de Investigacion Carlos III, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Bradley A Warady
- Division of Pediatric Nephrology, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | | |
Collapse
|
21
|
Nuclear factor erythroid 2-related factor 2 as a treatment target of kidney diseases. Curr Opin Nephrol Hypertens 2021; 29:128-135. [PMID: 31592832 DOI: 10.1097/mnh.0000000000000556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor which regulates a wider range of downstream pathways than previously thought. This review focuses on the novel findings about the internal regulatory mechanisms of Nrf2, the expanding understanding of its role in maintaining cellular homeostasis and the attempts to broaden the clinical application of its activators. RECENT FINDINGS Nrf2 is in charge of the maintenance of cellular homeostasis under stress and there exist the internal regulatory mechanisms for Nrf2 which have recently been elucidated. New downstream pathways of Nrf2 have been discovered, including the defense against ferroptosis, the latest concept of cell death. Several Nrf2 activators are at various stages of clinical development and are being tested in clinical trials for chronic kidney disease (CKD) including diabetic kidney disease, Alport syndrome, autosomal dominant polycystic kidney disease and focal segmental glomerulosclerosis. SUMMARY Nrf2 has been gathering attention as an emerging treatment target of chronic diseases which have oxidative stress and inflammation as their pathogenesis including CKD. Basic and clinical studies are under way to establish its role as a target for treatment of those diseases.
Collapse
|
22
|
Guerrero-Hue M, Rayego-Mateos S, Vázquez-Carballo C, Palomino-Antolín A, García-Caballero C, Opazo-Rios L, Morgado-Pascual JL, Herencia C, Mas S, Ortiz A, Rubio-Navarro A, Egea J, Villalba JM, Egido J, Moreno JA. Protective Role of Nrf2 in Renal Disease. Antioxidants (Basel) 2020; 10:antiox10010039. [PMID: 33396350 PMCID: PMC7824104 DOI: 10.3390/antiox10010039] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the fastest-growing causes of death and is predicted to become by 2040 the fifth global cause of death. CKD is characterized by increased oxidative stress and chronic inflammation. However, therapies to slow or prevent CKD progression remain an unmet need. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that plays a key role in protection against oxidative stress and regulation of the inflammatory response. Consequently, the use of compounds targeting Nrf2 has generated growing interest for nephrologists. Pre-clinical and clinical studies have demonstrated that Nrf2-inducing strategies prevent CKD progression and protect from acute kidney injury (AKI). In this article, we review current knowledge on the protective mechanisms mediated by Nrf2 against kidney injury, novel therapeutic strategies to induce Nrf2 activation, and the status of ongoing clinical trials targeting Nrf2 in renal diseases.
Collapse
Affiliation(s)
- Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Sandra Rayego-Mateos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Cristina Vázquez-Carballo
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
| | - Alejandra Palomino-Antolín
- Research Unit, Hospital Universitario Santa Cristina, IIS-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (A.P.-A.); (J.E.)
- Departament of Pharmacology and Therapeutics, Medicine Faculty, Instituto Teófilo Hernando, Autónoma University, 28029 Madrid, Spain
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Lucas Opazo-Rios
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Carmen Herencia
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
| | - Sebastián Mas
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Alberto Ortiz
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Red Nacional Investigaciones Nefrológicas (REDINREN), 28040 Madrid, Spain
| | - Alfonso Rubio-Navarro
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Javier Egea
- Research Unit, Hospital Universitario Santa Cristina, IIS-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (A.P.-A.); (J.E.)
- Departament of Pharmacology and Therapeutics, Medicine Faculty, Instituto Teófilo Hernando, Autónoma University, 28029 Madrid, Spain
| | - José Manuel Villalba
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain;
| | - Jesús Egido
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain;
- Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-957-218-039
| |
Collapse
|
23
|
Kanda H, Yamawaki K. Bardoxolone methyl: drug development for diabetic kidney disease. Clin Exp Nephrol 2020; 24:857-864. [PMID: 32594372 PMCID: PMC7497696 DOI: 10.1007/s10157-020-01917-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
Bardoxolone methyl activates the Keap1/Nrf2 system that plays an important role in defense responses against oxidative stress. Importantly, bardoxolone methyl has demonstrated increases in estimated glomerular filtration rate (eGFR) in patients with diabetic kidney disease (DKD) in clinical studies. However, an overseas Phase 3 study of bardoxolone methyl in patients with stage G4 DKD was prematurely terminated due to an increased risk for heart failure, which was considered to have been caused by early-onset fluid overload. Subsequently, a Japanese Phase 2 study demonstrated, for the first time, that bardoxolone methyl directly improves GFR, which is a true indicator of kidney function, using the inulin clearance method. In Japan, bardoxolone methyl was designated for the treatment of DKD under the Priority Review and Designation (SAKIGAKE Designation) System established by the Ministry of Health, Labour and Welfare. A Japanese Phase 3 study, with endpoints such as a ≥ 30% decrease in eGFR, is currently ongoing to assess the efficacy and safety of bardoxolone methyl in more than 1,000 patients with stages G3 and G4 DKD who have no identified risk factors.
Collapse
Affiliation(s)
- Hironori Kanda
- Nephrology R&D Unit, R&D Division, Kyowa Kirin Co., Ltd. Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.
| | - Kengo Yamawaki
- Nephrology R&D Unit, R&D Division, Kyowa Kirin Co., Ltd. Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| |
Collapse
|
24
|
Huang X, Wu J, Liu X, Wu H, Fan J, Yang X. The protective role of Nrf2 against aristolochic acid-induced renal tubular epithelial cell injury. Toxicol Mech Methods 2020; 30:580-589. [PMID: 32660364 DOI: 10.1080/15376516.2020.1795765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aristolochic acid nephropathy is a rapidly progressive tubulointerstitial disease induced by aristolochic acid (AA) and effective treatment is lacking. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been proven to be protective in acute kidney injury and chronic kidney disease progression. But its role in AA-induced renal tubular epithelial cell injury has not been determined. This study aimed to investigate the role of Nrf2 in AA-induced renal tubular epithelial cell injury in vitro. NRK-52E cells were incubated with 5-50 μM AA to evaluate cell viability, reactive oxygen species (ROS) production, cell apoptosis/necrosis, and Nrf2 signaling pathway protein levels. We found that AA reduced cell viability and induced cell apoptosis in a time-dependent manner, accompanied by increased production of intracellular ROS. Meanwhile, the expression of Nrf2 signaling pathway proteins was significantly decreased. Downregulation of Nrf2 by Nrf2 siRNA decreased its downstream antioxidant proteins HO-1 and NQO1 and resulted in increased AA-induced ROS production and cell death. On the contrary, overexpression of Nrf2 increased HO-1 and NQO1 expression and resulted in decreased cell death. In conclusion, Nrf2 plays an important role in AA-induced injury. Enhanced Nrf2 signaling pathway could ameliorate AA-induced renal tubular epithelial cell injury, while downregulation of Nrf2 signaling exacerbated the injury.
Collapse
Affiliation(s)
- Xuan Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Juan Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China.,Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Xinhui Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Haishan Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Xiao Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| |
Collapse
|
25
|
Abstract
Covering: up to 2020The transcription factor NRF2 is one of the body's major defense mechanisms, driving transcription of >300 antioxidant response element (ARE)-regulated genes that are involved in many critical cellular processes including redox regulation, proteostasis, xenobiotic detoxification, and primary metabolism. The transcription factor NRF2 and natural products have an intimately entwined history, as the discovery of NRF2 and much of its rich biology were revealed using natural products both intentionally and unintentionally. In addition, in the last decade a more sinister aspect of NRF2 biology has been revealed. NRF2 is normally present at very low cellular levels and only activated when needed, however, it has been recently revealed that chronic, high levels of NRF2 can lead to diseases such as diabetes and cancer, and may play a role in other diseases. Again, this "dark side" of NRF2 was revealed and studied largely using a natural product, the quassinoid, brusatol. In the present review, we provide an overview of NRF2 structure and function to orient the general reader, we will discuss the history of NRF2 and NRF2-activating compounds and the biology these have revealed, and we will delve into the dark side of NRF2 and contemporary issues related to the dark side biology and the role of natural products in dissecting this biology.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
26
|
Irazabal MV, Torres VE. Reactive Oxygen Species and Redox Signaling in Chronic Kidney Disease. Cells 2020; 9:cells9061342. [PMID: 32481548 PMCID: PMC7349188 DOI: 10.3390/cells9061342] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) remains a worldwide public health problem associated with serious complications and increased mortality rates. Accumulating evidence indicates that elevated intracellular levels of reactive oxygen species (ROS) play a major role in the pathogenesis of CKD. Increased intracellular levels of ROS can lead to oxidation of lipids, DNA, and proteins, contributing to cellular damage. On the other hand, ROS are also important secondary messengers in cellular signaling. Consequently, normal kidney cell function relies on the "right" amount of ROS. Mitochondria and NADPH oxidases represent major sources of ROS in the kidney, but renal antioxidant systems, such as superoxide dismutase, catalase, or glutathione peroxidase counterbalance ROS-mediated injury. This review discusses the main sources of ROS and antioxidant systems in the kidney, and redox signaling pathways leading to inflammation and fibrosis, which result in abnormal kidney function and CKD progression. We further discuss the important role of the nuclear factor erythroid 2-related factor 2 (Nrf2) in regulating antioxidant responses, and other mechanisms of redox signaling.
Collapse
Affiliation(s)
- Maria V. Irazabal
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA;
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-(507)-293-6388; Fax: +1-(507)-266-9315
| | - Vicente E. Torres
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA;
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
27
|
Potential Benefits of Nrf2/Keap1 Targeting in Pancreatic Islet Cell Transplantation. Antioxidants (Basel) 2020; 9:antiox9040321. [PMID: 32316115 PMCID: PMC7222398 DOI: 10.3390/antiox9040321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
Permanent pancreatic islet cell destruction occurs in type 1 diabetes mellitus (T1DM) through the infiltration of inflammatory cells and cytokines. Loss of β-cell integrity secondary to oxidation leads to an inability to appropriately synthesize and secrete insulin. Allogenic islet cell transplantation (ICT) has risen as a therapeutic option to mitigate problematic hypoglycemia. Nevertheless, during the process of transplantation, islet cells are exposed to oxidatively caustic conditions that severely decrease the islet cell yield. Islet cells are at a baseline disadvantage to sustain themselves during times of metabolic stress as they lack a robust anti-oxidant defense system, glycogen stores, and vascularity. The Nrf2/Keap1 system is a master regulator of antioxidant genes that has garnered attention as pharmacologic activators have shown a protective response and a low side effect profile. Herein, we present the most recently studied Nrf2/Keap1 activators in pancreas for application in ICT: Dh404, dimethyl fumarate (DMF), and epigallocatechin gallate (EGCG). Furthermore, we discuss that Nrf2/Keap1 is a potential target to ameliorate oxidative stress at every step of the Edmonton Protocol.
Collapse
|
28
|
Randomized Clinical Trial on the Effect of Bardoxolone Methyl on GFR in Diabetic Kidney Disease Patients (TSUBAKI Study). Kidney Int Rep 2020; 5:879-890. [PMID: 32518870 PMCID: PMC7271944 DOI: 10.1016/j.ekir.2020.03.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Bardoxolone methyl significantly increases estimated glomerular filtration rate (eGFR) in patients with chronic kidney disease (CKD). However, the phase 3 study, Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes Mellitus: the Occurrence of Renal Events (BEACON), was terminated prematurely because bardoxolone methyl increased the risk for early-onset fluid overload in patients with identifiable risk factors for heart failure (elevated baseline B-type natriuretic peptide levels >200 pg/ml and prior history of hospitalization for heart failure). The Phase 2 Study of Bardoxolone Methyl in Patients with Chronic Kidney Disease and Type 2 Diabetes (TSUBAKI) study aimed to determine if patients without risk factors can mitigate the risk for fluid overload and whether changes in eGFR with bardoxolone methyl reflect true increases in GFR. Methods This phase 2, randomized, multicenter, double-blind, placebo-controlled study enrolled patients with type 2 diabetes and stage 3-4 CKD. Patients were randomized 1:1 to bardoxolone methyl (n = 41) or placebo (n = 41) (cohort G3), or 2:1 to bardoxolone methyl (n = 24) or placebo (n = 14) (cohort G4), administered orally once daily for 16 weeks using a dose-titration scheme. The primary efficacy endpoint was change from baseline in GFR measured by inulin clearance at week 16 in the cohort G3. Results A total of 40 patients were evaluated for the prespecified primary efficacy analysis. Mean change (95% confidence interval [CI]) from baseline in GFR was 5.95 (2.29 to 9.60) and -0.69 (-3.83 to 2.45) ml/min per 1.73 m2 for patients randomized to bardoxolone methyl and placebo, respectively, with a significant intergroup difference of 6.64 ml/min per 1.73 m2 (P = 0.008). Increases in the albumin/creatinine ratio were observed in the bardoxolone methyl group vs the placebo group. The most common adverse events (≥15% in either group) were viral upper respiratory tract infection, increased alanine aminotransferase, increased aspartate aminotransferase, increased γ-glutamyltransferase, and constipation. Peripheral edema was reported by 4 patients receiving bardoxolone methyl and by 1 patient receiving placebo; all events were mild and self-limiting. No patient died or experienced heart failure. The study discontinuation rate was higher in the bardoxolone methyl group (cohort G3, n = 8; cohort G4, n = 7) than the placebo group (cohort G3, n = 1; cohort G4, n = 0). Conclusion Bardoxolone methyl significantly increased measured GFR, and further investigation is ongoing to evaluate whether it provides clinical benefit without major safety concerns in selected patients with CKD.
Collapse
|
29
|
Schmidlin CJ, Dodson MB, Zhang DD. Filtering through the role of NRF2 in kidney disease. Arch Pharm Res 2020; 43:361-369. [PMID: 31372933 PMCID: PMC6994339 DOI: 10.1007/s12272-019-01177-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
Kidney disease affects ~ 10% of the population worldwide, resulting in millions of deaths each year. Mechanistically, oxidative stress is a major driver of various kidney diseases, and promotes the progression from acute to chronic injury, as well as renal cancer development. NRF2, the master regulator of redox balance, has been shown to protect against kidney disease through its negation of reactive oxygen species (ROS). However, many kidney diseases exhibit high levels of ROS as a result of decreased NRF2 protein levels and transcriptional activity. Many studies have tested the strategy of using NRF2 inducing compounds to alleviate ROS to prevent or slow down the progression of kidney diseases. Oppositely, in specific subsets of renal cancer, NRF2 is constitutively activated and contributes to tumor burden and overall poor prognosis; therefore, there has been a recent interest in studies investigating the benefits of NRF2 inhibition. In this review, we summarize recent literature investigating the role of NRF2 and oxidative stress in various kidney diseases, and how pharmacological modification of NRF2 signaling could play a protective role.
Collapse
Affiliation(s)
- Cody J Schmidlin
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Matthew B Dodson
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA.
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
30
|
Chen Y, He L, Yang Y, Chen Y, Song Y, Lu X, Liang Y. The inhibition of Nrf2 accelerates renal lipid deposition through suppressing the ACSL1 expression in obesity-related nephropathy. Ren Fail 2020; 41:821-831. [PMID: 31488013 PMCID: PMC6735294 DOI: 10.1080/0886022x.2019.1655450] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Obesity has become a worldwide epidemic, and the incidence of obesity is increasing year by year. Obesity-related nephropathy (ORN) is a common kidney complication of obesity. Long-chain acyl-CoA synthetases-1, (ACSL1), is a key enzyme in the oxidative metabolism of fatty acids in mitochondria and ACSL1 may play a direct role in renal lipid deposition and promote the progress of ORN. In this study, we focus on the renoprotective role of ACSL1 in ORN. Methods: Electron microscopy, immunohistochemical (IHC) staining, Western blot, and real-time PCR were used to detect the expression of ACSL1and Nrf2 in ORN patients, ob/ob mice and palmitic acid (PA)-treated HK-2 cells. Oil red staining and Elisa Kit were used to detect the intracellular FFA and TG contents in ob/ob mice and PA-treated HK-2 cells. Dihydroethidium (DHE) staining and the MDA/SOD measurement were used to detect the ROS production. In order to demonstrate the role of ACSL1 and the interaction between ACSL1 and Nrf2 in ORN, related siRNA and plasmid were transfected into HK-2 cells. Results: More ROS production and renal lipid deposition have been found in ORN patients, ob/ob mice and PA-treated HK-2 cells. Compared with control, all the expression of ACSL1and Nrf2 were down-regulated in ORN patients, ob/ob mice and PA-treated HK-2 cells. The Nrf2 could regulate the expression of ACSL1 and the ACSL1 played the direct role in renal lipid deposition. Conclusions: The Nrf2 is inhibited in ORN, resulting more ROS production and oxidative stress. Increased oxidative stress will suppress the expression of ACSL1, which could increase the intracellular FFA and TG contents, ultimately leading to renal lipid deposition in renal tubulars and accelerating the development of ORN.
Collapse
Affiliation(s)
- Yinyin Chen
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| | - Liyu He
- Key Lab of Kidney Disease and Blood Purification in Hunan, Department of Nephrology, The Second Xiangya Hospital Central South University , Changsha , Hunan , People's Republic of China
| | - Yiya Yang
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| | - Ying Chen
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| | - Yanran Song
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| | - Xi Lu
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| | - Yumei Liang
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| |
Collapse
|
31
|
Adelusi TI, Du L, Hao M, Zhou X, Xuan Q, Apu C, Sun Y, Lu Q, Yin X. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomed Pharmacother 2020; 123:109732. [PMID: 31945695 DOI: 10.1016/j.biopha.2019.109732] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Hyperglycemia/oxidative stress has been implicated in the initiation and progression of diabetic complications while the components of Keap1/Nrf2/ARE signaling are being exploited as therapeutic targets for the treatment/management of these pathologies. Antioxidant agents like drugs, nutraceuticals and pure compounds that target the proteins of this pathway and their downstream genes hold the therapeutic strength to put the progression of this disease at bay. Here, we elucidate how the modulation of Keap1/Nrf2/ARE had been exploited for the treatment/management of end-stage diabetic kidney complication (diabetic nephropathy) by looking into (1) Nrf2 nuclear translocation and phosphorylation by some protein kinases at specific amino acid sequences and (2) Keap1 downregulation/Keap1-Nrf2 protein-protein inhibition (PPI) as potential therapeutic mechanisms exploited by Nrf2 activators for the modulation of diabetic nephropathy biomarkers (Collagen IV, Laminin, TGF-β1 and Fibronectin) that ultimately lead to the amelioration of this disease progression. Furthermore, we brought to limelight the relationship between diabetic nephropathy and Keap1/Nrf2/ARE and finally elucidate how the modulation of this signaling pathway could be further explored to create novel therapeutic milestones.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Meng Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Xuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Chowdhury Apu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
32
|
Lian FZ, Cheng P, Ruan CS, Ling XX, Wang XY, Pan M, Chen ML, Shen AZ, Gao S. Xin-Ji-Er-Kang ameliorates kidney injury following myocardial infarction by inhibiting oxidative stress via Nrf2/HO-1 pathway in rats. Biomed Pharmacother 2019; 117:109124. [DOI: 10.1016/j.biopha.2019.109124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
|
33
|
Kadıoğlu E, Tekşen Y, Koçak C, Koçak FE. Beneficial effects of bardoxolone methyl, an Nrf2 activator, on crush-related acute kidney injury in rats. Eur J Trauma Emerg Surg 2019; 47:241-250. [PMID: 31471671 DOI: 10.1007/s00068-019-01216-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to investigate the effects of bardoxolone methyl (BM), a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, on acute kidney injury in a rat model of crush syndrome model. METHODS Sixty-four rats were separated equally into eight groups, sham (sterile saline ip), crush, crush + vehicle (DMSO ip), and crush + BM (10 mg/kg ip) (n = 8). All groups were also divided as 3 and 24 h after decompression. Crush injury was induced by 6 h of direct compression to both hind limbs of the rats with blocks weighing 3.6 kg on each side, followed by 3 and 24 h of decompression. Kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), tumor necrotizing factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) concentrations, tissue total oxidant status (TOS) and total antioxidant status (TAS) were measured in the kidneys. Serum creatine kinase (CK), blood urea nitrogen (BUN) and creatinine concentrations were also measured. Glomerular and tubular structures were examined histopathologically. Bcl-2 was measured using immunohistochemistry. Apoptosis was assessed using the TUNEL method. RESULTS BM treatment reduced KIM-1, NGAL, TNF-α, TGF-β1, TOS concentrations, and increased TAS concentrations in the kidneys 3 and 24 h after decompression. Serum CK, BUN and creatinine concentrations were also reduced with BM. BM treatment decreased apoptosis in crush-related AKI. The Nrf2 activator BM reversed the crush-induced changes in the experimental rats. CONCLUSION BM treatment prevented the progression of crush-related AKI in rats possibly through its cytoprotective effects of being an antioxidant, anti-inflammatory and anti-apoptotic agent.
Collapse
Affiliation(s)
- Emine Kadıoğlu
- Department of Emergency Medicine, Faculty of Medicine, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kutahya, Turkey
| | - Yasemin Tekşen
- Department of Pharmacology, Faculty of Medicine, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kutahya, Turkey.
| | - Cengiz Koçak
- Department of Pathology, Faculty of Medicine, Uşak University, Bir Eylül Kampüsü, 64000, Uşak, Turkey
| | - Fatma Emel Koçak
- Department of Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kutahya, Turkey
| |
Collapse
|
34
|
Nagasu H, Sogawa Y, Kidokoro K, Itano S, Yamamoto T, Satoh M, Sasaki T, Suzuki T, Yamamoto M, Wigley WC, Proksch JW, Meyer CJ, Kashihara N. Bardoxolone methyl analog attenuates proteinuria-induced tubular damage by modulating mitochondrial function. FASEB J 2019; 33:12253-12263. [PMID: 31431054 PMCID: PMC6902727 DOI: 10.1096/fj.201900217r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multiple clinical studies have shown that bardoxolone methyl, a potent activator of nuclear factor erythroid 2–related factor 2 (Nrf2), is effective in increasing glomerular filtration rate in patients with chronic kidney disease. However, whether an Nrf2 activator can protect tubules from proteinuria-induced tubular damage via anti-inflammatory and antioxidative stress mechanisms is unknown. Using an Institute of Cancer Research–derived glomerulonephritis (ICGN) mouse model of nephrosis, we examined the effects of dihydro-CDDO-trifluoroethyl amide (dh404), a rodent-tolerable bardoxolone methyl analog, in protecting the tubulointerstitium; dh404 markedly suppressed tubular epithelial cell damage in the renal interstitium of ICGN mice. The tubular epithelial cells of ICGN mice showed a decrease in the size and number of mitochondria, as well as the breakdown of the crista structure, whereas the number and ultrastructure of mitochondria were maintained by the dh404 treatment. To further determine the effect of dh404 on mitochondrial function, we used human proximal tubular cells in vitro. Stimulation with albumin and free fatty acid increased mitochondrial reactive oxygen species (ROS). However, dh404 administration diminished mitochondrial ROS. Our data show that dh404 significantly reduced proteinuria-induced tubular cell mitochondrial damage, suggesting that improved redox balance and mitochondrial function and suppression of inflammation underlie the cytoprotective mechanism of Nrf2 activators, including bardoxolone methyl, in diabetic kidney disease.—Nagasu, H., Sogawa, Y., Kidokoro, K., Itano, S., Yamamoto, T., Satoh, M., Sasaki, T., Suzuki, T., Yamamoto, M., Wigley, W. C., Proksch, J. W., Meyer, C. J., Kashihara, N. Bardoxolone methyl analog attenuates proteinuria-induced tubular damage by modulating mitochondrial function.
Collapse
Affiliation(s)
- Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yuji Sogawa
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Seiji Itano
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Toshiya Yamamoto
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Minoru Satoh
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tamaki Sasaki
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
35
|
Tolvaptan activates the Nrf2/HO-1 antioxidant pathway through PERK phosphorylation. Sci Rep 2019; 9:9245. [PMID: 31239473 PMCID: PMC6592894 DOI: 10.1038/s41598-019-45539-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/07/2019] [Indexed: 12/30/2022] Open
Abstract
Tolvaptan, a vasopressin type 2 receptor antagonist initially developed to increase free-water diuresis, has been approved for the treatment of autosomal dominant polycystic kidney disease in multiple countries. Furthermore, tolvaptan has been shown to improve the renal functions in rodent models of chronic kidney disease (CKD); however, the underlying molecular mechanisms remain unknown. CKD is characterized by increased levels of oxidative stress, and an antioxidant transcription factor—nuclear factor erythroid 2-related factor 2 (Nrf2)—has been gaining attention as a therapeutic target. Therefore, we investigated the effects of tolvaptan and a well-known Nrf2 activator, bardoxolone methyl (BARD) on Nrf2. To determine the role of tolvaptan, we used a renal cortical collecting duct (mpkCCD) cell line and mouse kidneys. Tolvaptan activated Nrf2 and increased mRNA and protein expression of antioxidant enzyme heme oxygenase-1 (HO-1) in mpkCCD cells and the outer medulla of mouse kidneys. In contrast to BARD, tolvaptan regulated the antioxidant systems via a unique mechanism. Tolvaptan activated the Nrf2/HO-1 antioxidant pathway through phosphorylation of protein kinase RNA-like endoplasmic reticulum kinase (PERK). As a result, tolvaptan and BARD could successfully generate synergistic activating effects on Nrf2/HO-1 antioxidant pathway, suggesting that this combination therapy can contribute to the treatment of CKD.
Collapse
|
36
|
Rizk DV, Silva AL, Pergola PE, Toto R, Warnock DG, Chin MP, Goldsberry A, O'Grady M, Meyer CJ, McCullough PA. Effects of Bardoxolone Methyl on Magnesium in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease. Cardiorenal Med 2019; 9:316-325. [PMID: 31170712 DOI: 10.1159/000500612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Treatment with bardoxolone methyl (Bard) in a multinational phase 3 trial, Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes (BEACON), resulted in increases in estimated glomerular filtration rate with concurrent reductions in serum magnesium. We analyzed data from several trials to characterize reductions in magnesium with Bard. METHODS BEACON randomized patients (n = 2,185) with type 2 diabetes (T2DM) and stage 4 chronic kidney disease (CKD) 1:1 to receive Bard (20 mg) or placebo once daily. In a separate open-label study, magnesium levels from 24-hour urine and sublingual epithelial cell samples were analyzed in patients with stage 3b-4 CKD and T2DM administered 20 mg Bard for 56 consecutive days. RESULTS BEACON patients randomized to Bard experienced significant reductions in serum magnesium from baseline relative to patients randomized to placebo (-0.17 mEq/L, 95% CI -0.18 to -0.60 mEq/L; p < 0.001). A separate study showed intracellular and urinary magnesium levels were unchanged with Bard treatment. CONCLUSIONS Bard treatment results in significant decreases in serum magnesium that are not associated with changes in intracellular and urinary magnesium levels, indicating that magnesium decreases are not due to renal magnesium wasting or total body magnesium depletion. Importantly, the decreases in serum magnesium with Bard are not associated with adverse effects on QT interval.
Collapse
Affiliation(s)
- Dana V Rizk
- Department of Medicine, Nephrology Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arnold L Silva
- Boise Kidney and Hypertension Institute, Meridian, Idaho, USA
| | | | - Robert Toto
- Internal Medicine and Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David G Warnock
- Department of Medicine, Nephrology Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Melanie P Chin
- Product Development, Reata Pharmaceuticals, Irving, Texas, USA
| | | | - Megan O'Grady
- Product Development, Reata Pharmaceuticals, Irving, Texas, USA
| | - Colin J Meyer
- Product Development, Reata Pharmaceuticals, Irving, Texas, USA
| | - Peter A McCullough
- Baylor Heart and Vascular Institute, Baylor Jack and Jane Hamilton Heart and Vascular Hospital, The Heart Hospital, Baylor University Medical Center, Dallas, Texas, USA,
| |
Collapse
|
37
|
Chin MP, Rich S, Goldsberry A, O Apos Grady M, Meyer CJ. Effects of Bardoxolone Methyl on QT Interval in Healthy Volunteers. Cardiorenal Med 2019; 9:326-333. [PMID: 31158840 DOI: 10.1159/000500736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bardoxolone methyl has been shown to increase eGFR in several clinical trials, including a phase 3 trial in patients with type 2 diabetes and stage 4 CKD (BEACON), which was terminated early due to an increase in heart failure events in bardoxolone methyl-treated patients. A separate, "thorough QT" study was conducted in parallel with BEACON to evaluate the cardiovascular safety of bardoxolone methyl in healthy subjects. METHODS Subjects in the "thorough QT" study were randomized to receive bardoxolone methyl 20 mg (therapeutic dose) or 80 mg (supratherapeutic dose), placebo, or moxifloxacin (400 mg; an active comparator). ECG results and supine blood pressure measurements were analyzed. The effects of bardoxolone methyl on QT interval changes from baseline were quantified compared to the effect of placebo by calculating mean, time-matched, placebo-corrected, baseline-adjusted QTcF values (ΔΔQTcF) after 6 days of daily administration of bardoxolone methyl. RESULTS The study was halted early due to emerging safety information from the BEACON trial; however, 142/179 patients received all doses of the study drug and completed the study. For both bardoxolone methyl-treated groups (20 and 80 mg), the upper limits of the 2-sided 90% confidence interval for ΔΔQTcF were less than the significance limit (10 ms) at all time points. Changes in blood pressure were similar in all treatment groups, and no serious adverse events were reported. CONCLUSIONS In healthy subjects, treatment with 20 or 80 mg bardoxolone methyl did not affect the QTcF interval.
Collapse
Affiliation(s)
- Melanie P Chin
- Product Development, Reata Pharmaceuticals, Irving, Texas, USA
| | - Shannon Rich
- Product Development, Reata Pharmaceuticals, Irving, Texas, USA
| | | | | | - Colin J Meyer
- Product Development, Reata Pharmaceuticals, Irving, Texas, USA,
| |
Collapse
|
38
|
Effect of bardoxolone methyl on the urine albumin-to-creatinine ratio in patients with type 2 diabetes and stage 4 chronic kidney disease. Kidney Int 2019; 96:1030-1036. [PMID: 31377056 DOI: 10.1016/j.kint.2019.04.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/01/2019] [Accepted: 04/19/2019] [Indexed: 12/29/2022]
Abstract
Bardoxolone methyl attenuates inflammation by inducing nuclear factor erythroid-derived 2-related factor 2 and suppressing nuclear factor κB. The Bardoxolone Methyl Evaluation in Patients With Chronic Kidney Disease and Type 2 Diabetes (BEACON) trial was a phase 3 placebo-controlled, randomized, double-blind, parallel-group, international, multicenter trial in 2185 patients with type 2 diabetes mellitus and stage 4 chronic kidney disease. BEACON was terminated because of safety concerns, largely related to a significant increase in early heart failure events in patients randomized to bardoxolone methyl. Bardoxolone methyl resulted in increased estimated glomerular filtration rate (eGFR) and urine albumin-to-creatinine ratio. Herein, we present post hoc analyses characterizing the relation between the urine albumin-to-creatinine ratio and eGFR. The urine albumin-to-creatinine ratio and eGFR were assessed every four weeks through Week 12, followed by assessments every eight weeks thereafter, and 4 weeks after the last dose of bardoxolone methyl was administered. The initial increases in urine albumin-to-creatinine ratio observed in patients randomized to bardoxolone methyl were attenuated after six months. Multivariable regression analysis identified baseline eGFR and eGFR over time as the dominant factors associated with change in the urine albumin-to-creatinine ratio. Relative to placebo, bardoxolone methyl resulted in a significant decrease in albuminuria when indexed to eGFR (least-squared means: -0.035 [95% confidence interval -0.031 to -0.039]). Thus, among patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl, changes in albuminuria are directly related to changes in eGFR, challenging the conventional construct that increases in albuminuria universally reflect kidney injury and denote harm.
Collapse
|
39
|
Salvianolic Acid A Protects the Kidney against Oxidative Stress by Activating the Akt/GSK-3 β/Nrf2 Signaling Pathway and Inhibiting the NF- κB Signaling Pathway in 5/6 Nephrectomized Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2853534. [PMID: 31011401 PMCID: PMC6442489 DOI: 10.1155/2019/2853534] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
Abstract
Salvianolic acid A (SAA) is a bioactive polyphenol extracted from Salviae miltiorrhizae Bunge, which possesses a variety of pharmacological activities. In our previous study, we have demonstrated that SAA effectively attenuates kidney injury and inflammation in an established animal model of 5/6 nephrectomized (5/6Nx) rats. However, there has been limited research regarding the antioxidative effects of SAA on chronic kidney disease (CKD). Here, we examined the antioxidative effects and underlying mechanisms of SAA in 5/6Nx rats. The rats were injected with SAA (2.5, 5, and 10 mg·kg−1·d−1, ip) for 28 days. Biochemical, flow cytometry, and Western blot analyses showed that SAA significantly increased the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GPx), and catalase (CAT) and lowered the levels of malondialdehyde (MDA), reactive oxygen species (ROS), and NADPH oxidase 4 (NOX-4) in a dose-dependent manner in 5/6Nx rats and in H2O2-induced HK-2 cells in vitro. Moreover, SAA enhanced the activation of the protein kinase B/glycogen synthase kinase-3β/nuclear factor-erythroid-2-related factor 2 (Akt/GSK-3β/Nrf2) signaling pathway in a dose-dependent manner and subsequently increased the expression of heme oxygenase-1 (HO-1) in the kidney of 5/6Nx rats, which were consistent with those obtained in H2O2-induced HK-2 cells in vitro shown by Western blot analysis. Furthermore, SAA significantly increased the expression of intranuclear Nrf2 and HO-1 proteins compared to HK-2 cells stimulated by LPS on the one hand, which can be enhanced by QNZ to some extent; on the other hand, SAA significantly lowered the expression of p-NF-κB p65 and ICAM-1 proteins compared to HK-2 cells stimulated by H2O2, which can be abrogated by ML385 to some extent. In conclusion, our results demonstrated that SAA effectively protects the kidney against oxidative stress in 5/6Nx rats. One of the pivotal mechanisms for the protective effects of SAA on kidney injury was mainly related with its antioxidative roles by activating the Akt/GSK-3β/Nrf2 signaling pathway and inhibiting the NF-κB signaling pathway.
Collapse
|
40
|
Zhang HF, Wang YL, Gao C, Gu YT, Huang J, Wang JH, Wang JH, Zhang Z. Salvianolic acid A attenuates kidney injury and inflammation by inhibiting NF-κB and p38 MAPK signaling pathways in 5/6 nephrectomized rats. Acta Pharmacol Sin 2018; 39:1855-1864. [PMID: 29795135 PMCID: PMC6289371 DOI: 10.1038/s41401-018-0026-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022] Open
Abstract
Salvianolic acid A (SAA) is a minor phenolic carboxylic acid extracted from Salviae miltiorrhizae Bunge (Danshen). SAA exhibits a variety of pharmacological activities, such as antioxidative, anti-thrombotic, neuroprotective, and anti-fibrotic effects, as well as protection from myocardial ischemia and prevention of diabetes and other diseases. Furthermore, SAA has shown renal-protective effects in doxorubicin-induced nephropathy. However, there has been limited research regarding the effects of SAA and underlying mechanisms in chronic kidney disease (CKD). Here, we examined the effects and molecular mechanisms of SAA in an established animal model of 5/6 nephrectomized (5/6Nx) rats. The rats were injected with SAA (2.5, 5, and 10 mg/kg per day, intraperitoneally (ip)) for 28 days. SAA dose-dependently lowered the levels of urine protein, blood urea nitrogen, serum creatinine, plasma total cholesterol, and plasma triglycerides in 5/6Nx rats. Histological examination revealed that SAA dose-dependently attenuated renal pathological lesions, evidenced by reduced renal tubulointerstitial fibrosis by decreasing the expression levels of tumor growth factor-β1 and α-smooth muscle actin in 5/6Nx rats. Moreover, SAA dose-dependently inhibited the activation of nuclear factor-κB (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signaling pathways, subsequently attenuating the secretion of tumor necrosis factor-α and interleukin-1β and inhibiting the expression of monocyte chemotactic protein-1, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in kidneys of 5/6Nx rats. The above results were consistent with those obtained in lipopolysaccharide-induced HK-2 cells in vitro (a recognized in vitro inflammatory model). In conclusion, our results demonstrated that SAA effectively attenuates kidney injury in 5/6Nx rats. The therapeutic effects of SAA on kidney injury can be attributed to its anti-inflammatory activities through inhibition of the activation of the NF-κB and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Hong-Feng Zhang
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan-Li Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Cheng Gao
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan-Ting Gu
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jian Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jin-Hui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jia-Hong Wang
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Zhou Zhang
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
41
|
Affiliation(s)
- Robert D Toto
- Division of Nephrology, Department of Medicine, .,University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
42
|
Chin MP, Bakris GL, Block GA, Chertow GM, Goldsberry A, Inker LA, Heerspink HJL, O'Grady M, Pergola PE, Wanner C, Warnock DG, Meyer CJ. Bardoxolone Methyl Improves Kidney Function in Patients with Chronic Kidney Disease Stage 4 and Type 2 Diabetes: Post-Hoc Analyses from Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes Study. Am J Nephrol 2018; 47:40-47. [PMID: 29402767 DOI: 10.1159/000486398] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Increases in measured inulin clearance, measured creatinine clearance, and estimated glomerular filtration rate (eGFR) have been observed with bardoxolone methyl in 7 studies enrolling approximately 2,600 patients with type 2 diabetes (T2D) and chronic kidney disease (CKD). The largest of these studies was Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes (BEACON), a multinational, randomized, double-blind, placebo-controlled phase 3 trial which enrolled patients with T2D and CKD stage 4. The BEACON trial was terminated after preliminary analyses showed that patients randomized to bardoxolone methyl experienced significantly higher rates of heart failure events. We performed post-hoc analyses to characterize changes in kidney function induced by bardoxolone methyl. METHODS Patients in -BEACON (n = 2,185) were randomized 1: 1 to receive once-daily bardoxolone methyl (20 mg) or placebo. We compared the effects of bardoxolone methyl and placebo on a post-hoc composite renal endpoint consisting of ≥30% decline from baseline in eGFR, eGFR <15 mL/min/1.73 m2, and end-stage renal disease (ESRD) events (provision of dialysis or kidney transplantation). RESULTS Consistent with prior studies, patients randomized to bardoxolone methyl experienced mean increases in eGFR that were sustained through study week 48. Moreover, increases in eGFR from baseline were sustained 4 weeks after cessation of treatment. Patients randomized to bardoxolone methyl were significantly less likely to experience the composite renal endpoint (hazards ratio 0.48 [95% CI 0.36-0.64]; p < 0.0001). CONCLUSIONS Bardoxolone methyl preserves kidney function and may delay the onset of ESRD in patients with T2D and stage 4 CKD.
Collapse
Affiliation(s)
| | | | | | - Glenn M Chertow
- Stanford University School of Medicine, Stanford, California, USA
| | | | | | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | - David G Warnock
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
43
|
Pierantonelli I, Rychlicki C, Agostinelli L, Giordano DM, Gaggini M, Fraumene C, Saponaro C, Manghina V, Sartini L, Mingarelli E, Pinto C, Buzzigoli E, Trozzi L, Giordano A, Marzioni M, Minicis SD, Uzzau S, Cinti S, Gastaldelli A, Svegliati-Baroni G. Lack of NLRP3-inflammasome leads to gut-liver axis derangement, gut dysbiosis and a worsened phenotype in a mouse model of NAFLD. Sci Rep 2017; 7:12200. [PMID: 28939830 PMCID: PMC5610266 DOI: 10.1038/s41598-017-11744-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) represents the most common form of chronic liver injury and can progress to cirrhosis and hepatocellular carcinoma. A "multi-hit" theory, involving high fat diet and signals from the gut-liver axis, has been hypothesized. The role of the NLRP3-inflammasome, which senses dangerous signals, is controversial. Nlrp3-/- and wild-type mice were fed a Western-lifestyle diet with fructose in drinking water (HFHC) or a chow diet. Nlrp3-/--HFHC showed higher hepatic expression of PPAR γ2 (that regulates lipid uptake and storage) and triglyceride content, histological score of liver injury and greater adipose tissue inflammation. In Nlrp3-/--HFHC, dysregulation of gut immune response with impaired antimicrobial peptides expression, increased intestinal permeability and the occurrence of a dysbiotic microbiota led to bacterial translocation, associated with higher hepatic expression of TLR4 (an LPS receptor) and TLR9 (a receptor for double-stranded bacterial DNA). After antibiotic treatment, gram-negative species and bacterial translocation were reduced, and adverse effects restored both in liver and adipose tissue. In conclusion, the combination of a Western-lifestyle diet with innate immune dysfunction leads to NAFLD progression, mediated at least in part by dysbiosis and bacterial translocation, thus identifying new specific targets for NAFLD therapy.
Collapse
Affiliation(s)
- Irene Pierantonelli
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Chiara Rychlicki
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Agostinelli
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | | | - Melania Gaggini
- Cardiometabolic Risk Lab, Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
| | - Cristina Fraumene
- Porto Conte Ricerche, Parco Scientifico e Tecnologico della Sardegna, Alghero, Italy
| | - Chiara Saponaro
- Cardiometabolic Risk Lab, Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
| | - Valeria Manghina
- Porto Conte Ricerche, Parco Scientifico e Tecnologico della Sardegna, Alghero, Italy.,Department of Biomedical Sciences, Università di Sassari, Sassari, Italy
| | - Loris Sartini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Eleonora Mingarelli
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Claudio Pinto
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Emma Buzzigoli
- Cardiometabolic Risk Lab, Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
| | - Luciano Trozzi
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Samuele De Minicis
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Parco Scientifico e Tecnologico della Sardegna, Alghero, Italy.,Department of Biomedical Sciences, Università di Sassari, Sassari, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Obesity Center, Università Politecnica delle Marche, Ancona, Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Lab, Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
| | - Gianluca Svegliati-Baroni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy. .,Obesity Center, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
44
|
Nezu M, Suzuki N, Yamamoto M. Targeting the KEAP1-NRF2 System to Prevent Kidney Disease Progression. Am J Nephrol 2017; 45:473-483. [PMID: 28502971 DOI: 10.1159/000475890] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/14/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (NRF2) is a critical transcription factor for the antioxidative stress response and it activates a variety of cytoprotective genes related to redox and detoxification. NRF2 activity is regulated by the oxidative-stress sensor molecule Kelch-like ECH-associated protein 1 (KEAP1) that induces proteasomal degradation of NRF2 through ubiquitinating NRF2 under unstressed conditions. Because oxidative stress is a major pathogenic and aggravating factor for kidney diseases, the KEAP1-NRF2 system has been proposed to be a therapeutic target for renal protection. SUMMARY Oxidative-stress molecules, such as reactive oxygen species, accumulate in the kidneys of animal models for acute kidney injury (AKI), in which NRF2 is transiently and slightly activated. Genetic or pharmacological enhancement of NRF2 activity in the renal tubules significantly ameliorates damage related to AKI and prevents AKI progression to chronic kidney disease (CKD) by reducing oxidative stress. These beneficial effects of NRF2 activation highlight the KEAP1-NRF2 system as an important target for kidney disease treatment. However, a phase-3 clinical trial of a KEAP1 inhibitor for patients with stage 4 CKD and type-2 diabetes mellitus (T2DM) was terminated due to the occurrence of cardiovascular events. Because recent basic studies have accumulated positive effects of KEAP1 inhibitors in moderate stages of CKD, phase-2 trials have been restarted. The data from the ongoing projects demonstrate that a KEAP1 inhibitor improves the glomerular filtration rate in patients with stage 3 CKD and T2DM without safety concerns. Key Message: The KEAP1-NRF2 system is one of the most promising therapeutic targets for kidney disease, and KEAP1 inhibitors could be part of critical therapies for kidney disease.
Collapse
Affiliation(s)
- Masahiro Nezu
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
45
|
Mohabbulla Mohib M, Fazla Rabby S, Paran TZ, Mehedee Hasan M, Ahmed I, Hasan N, Abu Taher Sagor M, Mohiuddin S. Protective role of green tea on diabetic nephropathy—A review. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23312025.2016.1248166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Md. Mohabbulla Mohib
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - S.M. Fazla Rabby
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Tasfiq Zaman Paran
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md. Mehedee Hasan
- Department of Pharmacy, State University of Bangladesh, Dhaka 1205, Bangladesh
| | - Iqbal Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Nahid Hasan
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md. Abu Taher Sagor
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Sarif Mohiuddin
- Department of Anatomy, Pioneer Dental College and Hospital, Dhaka 1229, Bangladesh
| |
Collapse
|
46
|
Zhang ZH, Chen H, Vaziri ND, Mao JR, Zhang L, Bai X, Zhao YY. Metabolomic Signatures of Chronic Kidney Disease of Diverse Etiologies in the Rats and Humans. J Proteome Res 2016; 15:3802-3812. [PMID: 27636000 DOI: 10.1021/acs.jproteome.6b00583] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic kidney disease (CKD) has emerged as a major public health problem worldwide. It frequently progresses to end-stage renal disease, which is related to very high cost and mortality. Novel biomarkers can provide insight into the novel mechanism, facilitate early detection, and monitor progression of CKD and its response to therapeutic interventions. To identify potential biomarkers, we applied an UPLC-HDMS together with univariate and multivariate statistical analyses using plasma samples from patients with CKD of diverse etiologies (100 sera in discovery set and 120 sera in validation set) and two different rat models of CKD. Using comprehensive screening and validation workflow, we identified a panel of seven metabolites that were shared by all patients and animals regardless of the underlying cause of CKD. These included ricinoleic acid, stearic acid, cytosine, LPA(16:0), LPA(18:2), 3-methylhistidine, and argininic acid. The combination of these seven biomarkers enabled the discrimination of patients with CKD from healthy subjects with a sensitivity of 83.3% and a specificity of 96.7%. In addition, these biomarkers accurately reflected improvements in renal function in response to the therapeutic interventions. Our results indicated that the identified biomarkers may improve the diagnosis of CKD and provide a novel tool for monitoring of the progression of disease and response to treatment in CKD patients.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, the College of Life Sciences, Northwest University , No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine , MedSci 1, C352, UCI Campus, Irvine, California 92897, United States
| | - Jia-Rong Mao
- Department of Nephrology, Affiliated Hospital of Shaanxi Institute of Traditional Chinese Medicine , No. 2 Xihuamen, Xi'an, Shaanxi 710003, China
| | - Li Zhang
- Department of Nephrology, Xi'an No. 4 Hospital , No. 21 Jiefang Road, Xi'an, Shaanxi 710004, China
| | - Xu Bai
- Solution Centre, Waters Technologies (Shanghai) Ltd. , No. 1000 Jinhai Road, Shanghai 201203, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, the College of Life Sciences, Northwest University , No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.,Division of Nephrology and Hypertension, School of Medicine, University of California Irvine , MedSci 1, C352, UCI Campus, Irvine, California 92897, United States
| |
Collapse
|
47
|
Robles L, Vaziri ND, Li S, Masuda Y, Takasu C, Takasu M, Vo K, Farzaneh SH, Stamos MJ, Ichii H. Synthetic Triterpenoid RTA dh404 (CDDO-dhTFEA) Ameliorates Acute Pancreatitis. Pancreas 2016; 45:720-9. [PMID: 26495793 PMCID: PMC5847282 DOI: 10.1097/mpa.0000000000000518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Nuclear factor-erythroid-2-related factor (Nrf2) is a ubiquitous transcriptional factor that regulates expression of cellular antioxidant and detoxifying molecules. This study was undertaken to test the hypothesis that administration of the Nrf2 activator (dh404) may attenuate acute pancreatitis. METHODS Rats were treated with dh404 (1 mg/kg) 24 hours before induction of pancreatitis and for 3 days thereafter. Pancreatitis was induced with L-arginine (600 mg/100 g) or cerulein (40 μg/kg). Pancreases were processed for histology and malondialdehyde, whereas serum was analyzed for amylase. Islet extracted human pancreatic tissue from organ donors were used for in vitro studies. The tissues were incubated with dh404 at 0, 250, and 500 nM for 30 minutes, 60 minutes, 12 hours, and 24 hours. Nuclear factor-erythroid-2-related factor nuclear translocation and expression of Nrf2's target genes and inflammatory mediators were determined. RESULTS The dh404-treated rat pancreases demonstrated significantly less infiltration of inflammatory cells, destruction of acinar architecture, perilobar edema, and necrosis. Serum amylase and pancreatic malondialdehyde in the dh404-treated rats were significantly lower. dh404-treated human pancreatic tissue showed a significantly higher expression of antioxidant enzymes, lower expression of inflammatory mediators, and greater viability against oxidative stress. CONCLUSION Administration of dh404 attenuates acute pancreatitis by lowering oxidative stress and reducing proinflammatory mediators.
Collapse
Affiliation(s)
- Lourdes Robles
- From the Departments of Surgery and Medicine, University of California, Irvine, Orange, CA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Betulinic acid enhances TGF-β signaling by altering TGF-β receptors partitioning between lipid-raft/caveolae and non-caveolae membrane microdomains in mink lung epithelial cells. J Biomed Sci 2016; 23:30. [PMID: 26922801 PMCID: PMC4769553 DOI: 10.1186/s12929-016-0229-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/12/2016] [Indexed: 01/09/2023] Open
Abstract
Background TGF-β is a key modulator in the regulation of cell proliferation and migration, and is also involved in the process of cancer development and progression. Previous studies have indicated that TGF-β responsiveness is determined by TGF-β receptor partitioning between lipid raft/caveolae-mediated and clathrin-mediated endocytosis. Lipid raft/caveolae-mediated endocytosis facilitates TGF-β degradation and thus suppressing TGF-β responsiveness. By contrast, clathrin-mediated endocytosis results in Smad2/3-dependent endosomal signaling, thereby promoting TGF-β responsiveness. Because betulinic acid shares a similar chemical structure with cholesterol and has been reported to insert into the plasma membrane, we speculate that betulinic acid changes the fluidity of the plasma membrane and modulates the signaling pathway associated with membrane microdomains. We propose that betulinic acid modulates TGF-β responsiveness by changing the partitioning of TGF-β receptor between lipid-raft/caveolae and non-caveolae microdomain on plasma membrane. Methods We employed sucrose-density gradient ultracentrifugation and confocal microscopy to determine membrane localization of TGF-β receptors and used a luciferase assay to examine the effects of betulinic acid in TGF-β-stimulated promoter activation. In addition, we perform western blotting to test TGF-β-induced Smad2 phosphorylation and fibronectin production. Results and conclusions Betulinic acid induces translocation of TGF-β receptors from lipid raft/caveolae to non-caveolae microdomains without changing total level of TGF-β receptors. The betulinic acid-induced TGF-β receptors translocation is rapid and correlate with the TGF-β-induced PAI-1 reporter gene activation and growth inhibition in Mv1Lu cells. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0229-4) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Dinh CHL, Yu Y, Szabo A, Zhang Q, Zhang P, Huang XF. Bardoxolone Methyl Prevents High-Fat Diet-Induced Colon Inflammation in Mice. J Histochem Cytochem 2016; 64:237-55. [PMID: 26920068 DOI: 10.1369/0022155416631803] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 01/18/2016] [Indexed: 02/08/2023] Open
Abstract
Obesity induces chronic, low-grade inflammation, which increases the risk of colon cancer. We investigated the preventive effects of Bardoxolone methyl (BARD) on high-fat diet (HFD)-induced inflammation in a mouse colon. Male C57BL/6J mice (n=7) were fed a HFD (HFD group), HFD plus BARD (10 mg/kg) in drinking water (HFD/BARD group), or normal laboratory chow diet (LFD group) for 21 weeks. In HFD mice, BARD reduced colon thickness and decreased colon weight per length. This was associated with an increase in colon crypt depth and the number of goblet cells per crypt. BARD reduced the expression of F4/80 and CD11c but increased CD206 and IL-10, indicating an anti-inflammatory effect. BARD prevented an increase of the intracellular pro-inflammatory biomarkers (NF-қB, p NF-қB, IL-6, TNF-α) and cell proliferation markers (Cox2 and Ki67). BARD prevented fat deposition in the colon wall and prevented microbial population changes. Overall, we report the preventive effects of BARD on colon inflammation in HFD-fed mice through its regulation of macrophages, NF-қB, cytokines, Cox2 and Ki67, fat deposition and microflora.
Collapse
Affiliation(s)
- Chi H L Dinh
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia (CHLD, YY, AS, QZ, XH)
| | - Yinghua Yu
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia (CHLD, YY, AS, QZ, XH)
| | - Alexander Szabo
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia (CHLD, YY, AS, QZ, XH),ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia (AS)
| | - Qingsheng Zhang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia (CHLD, YY, AS, QZ, XH)
| | - Peng Zhang
- XuZhou Medical College, Jiangsu Province 221004, The People's Republic of China (PZ)
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia (CHLD, YY, AS, QZ, XH)
| |
Collapse
|
50
|
An integrated lipidomics and metabolomics reveal nephroprotective effect and biochemical mechanism of Rheum officinale in chronic renal failure. Sci Rep 2016; 6:22151. [PMID: 26903149 PMCID: PMC4763304 DOI: 10.1038/srep22151] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/08/2016] [Indexed: 02/08/2023] Open
Abstract
Chronic renal failure (CRF) is a major public health problem worldwide. Earlier studies have revealed salutary effects of rhubarb extracts in CRF. In this study, we employed lipidomic and metabolomic approaches to identify the plasma biomarkers and to determine the effect of treatment with petroleum ether, ethyl acetate and n-butanol extracts of rhubarb in a rat model of CRF with adenine-induced chronic tubulointerstitial nephropathy. In addition, clinical biochemistry, histological evaluation and pro-fibrotic protein expression were analyzed. Significant changes were found between the CRF and control groups representing characteristic phenotypes of rats with CRF. Treatment with the three rhubarb extracts improved renal injury and dysfunction, either fully or partially reversed the plasma metabolites abnormalities and attenuated upregulation of pro-fibrotic proteins including TGF-β1, α-SMA, PAI-1, CTGF, FN and collagen-1. The nephroprotective effect of ethyl acetate extract was better than other extracts. The differential metabolites were closely associated with glycerophospholipid, fatty acid and amino acid metabolisms. The results revealed a strong link between renal tubulointerstitial fibrosis and glycerophospholipid metabolism and L-carnitine metabolism in the development of CRF. Amelioration of CRF with the three rhubarb extracts was associated with the delayed development and/or reversal the disorders in key metabolites associated with adenine-induced CRF.
Collapse
|