1
|
Carlini A, Scarpi E, Bettini C, Ardizzoni A, Donati CM, Fabbri L, Ghetti F, Martini F, Ricci M, Sansoni E, Tenti MV, Morganti AG, Bruera E, Maltoni MC, Rossi R. Transdermal Fentanyl in Patients with Cachexia-A Scoping Review. Cancers (Basel) 2024; 16:3094. [PMID: 39272951 PMCID: PMC11394034 DOI: 10.3390/cancers16173094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Cachectic patients frequently require transdermal fentanyl (TDF) for pain management, but data on its efficacy and safety are scarce and inconsistent. This scoping review aims to analyze the evidence concerning TDF administration in patients with cachexia irrespective of the underlying pathology. The primary objective is to assess the analgesic efficacy and tolerability of TDF in cachectic patients. The secondary objective is to identify cachexia characteristics that may influence fentanyl pharmacokinetics (PK). A comprehensive search of PubMed, Embase, and Web of Science databases was conducted up to March 2024. The review included observational and clinical studies on cachectic patients with moderate to severe pain treated with TDF patches at any dosage or frequency. Phase 1 trials, animal studies, case reports, preclinical studies and conference abstracts were excluded. Nine studies were included: four studies reported that cachexia negatively impacted TDF efficacy, increasing required doses and lowering plasma concentrations; three studies found minimal or no impact of cachexia on TDF efficacy and PK; two studies suggested that cachexia might improve TDF outcomes. Study quality ranged from moderate to high, according to the National Institutes of Health (NIH) Quality Assessment Tool. The current evidence is insufficient to provide any definitive recommendations for TDF prescribing in cachectic patients.
Collapse
Affiliation(s)
- Andrea Carlini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Emanuela Scarpi
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Carla Bettini
- Palliative Care Unit, Azienda Unità Sanitaria Locale (AUSL) Romagna, 47121 Forlì, Italy
| | - Andrea Ardizzoni
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Costanza Maria Donati
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
| | - Laura Fabbri
- Palliative Care Unit, Azienda Unità Sanitaria Locale (AUSL) Romagna, 47121 Forlì, Italy
| | - Francesca Ghetti
- Palliative Care Unit, Azienda Unità Sanitaria Locale (AUSL) Romagna, 47121 Forlì, Italy
| | - Francesca Martini
- Palliative Care Unit, Azienda Unità Sanitaria Locale (AUSL) Romagna, 47121 Forlì, Italy
| | - Marianna Ricci
- Palliative Care Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Elisabetta Sansoni
- Palliative Care Unit, Azienda Unità Sanitaria Locale (AUSL) Romagna, 47121 Forlì, Italy
| | - Maria Valentina Tenti
- Palliative Care Unit, Azienda Unità Sanitaria Locale (AUSL) Romagna, 47121 Forlì, Italy
| | - Alessio Giuseppe Morganti
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
| | - Eduardo Bruera
- Department of Palliative Care, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marco Cesare Maltoni
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Romina Rossi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
| |
Collapse
|
2
|
Vake T, Snoj T, Čemažar M, Lampreht Tratar U, Stupan U, Seliškar A, Plut J, Kosjek T, Plešnik H, Štukelj M. Pharmacokinetics of single dose levobupivacaine after peri-incisional subcutaneous infiltration in anaesthetized domestic pigs. Lab Anim 2024:236772241259618. [PMID: 39157982 DOI: 10.1177/00236772241259618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Increasing use of pigs as models in translational research, and growing focus on animal welfare are leading to better use of effective analgesics and anaesthetics when painful procedures are performed. However, there is a gap in basic knowledge such as pharmacokinetics of different anaesthetics in these species. The main objective of our study was to determine the pharmacokinetics of levobupivacaine in domestic pigs. Twelve female grower pigs weighing 31.17 ± 4.6 kg were subjected to general anaesthesia and experimental surgery, at the end of which they received 1 mg/kg levobupivacaine via peri-incisional subcutaneous infiltration. Plasma samples were collected before administration of levobupivacaine and at 0.5, 1, 2, 4, 8, 12, 24 and 48 h thereafter. Concentrations of levobupivacaine were determined by liquid chromatography coupled with tandem mass spectrometry. Following single dose of levobupivacaine, all animals had measurable plasma concentrations 0.5 h after drug administration, with most peak concentrations observed at the 1-h time point. In all 12 animals, levobupivacaine was below the limit of quantification 48 h after drug administration. The mean maximum plasma concentration, area under the curve and half-life were determined to be 809.98 μg/l, 6552.46 μg/l h and 6.25 h, respectively. Plasma clearance, volume of distribution and weight-normalized volume of distribution were 4.41 l/h, 35.57 l and 1.23 l/kg, respectively. Peak plasma concentrations in our study were well below concentrations that were found to produce toxicity in pigs.
Collapse
Affiliation(s)
- Tilen Vake
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Slovenia
| | - Tomaž Snoj
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Slovenia
| | - Maja Čemažar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | | | - Urban Stupan
- Faculty of Medicine, University of Ljubljana, Slovenia
- University Medical Centre Ljubljana, Slovenia
| | - Alenka Seliškar
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Slovenia
| | - Jan Plut
- Clinic for Ruminants and Pigs, Veterinary Facuinlty, University of Ljubljana, Slovenia
| | - Tina Kosjek
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Helena Plešnik
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Marina Štukelj
- Clinic for Ruminants and Pigs, Veterinary Facuinlty, University of Ljubljana, Slovenia
| |
Collapse
|
3
|
Stroe MS, Huang MC, Annaert P, Leys K, Smits A, Allegaert K, Van Bockstal L, Valenzuela A, Ayuso M, Van Ginneken C, Van Cruchten S. Drug Disposition in Neonatal Göttingen Minipigs: Exploring Effects of Perinatal Asphyxia and Therapeutic Hypothermia. Drug Metab Dispos 2024; 52:824-835. [PMID: 38906699 DOI: 10.1124/dmd.124.001677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024] Open
Abstract
Asphyxiated neonates often undergo therapeutic hypothermia (TH) to reduce morbidity and mortality. Since both perinatal asphyxia (PA) and TH influence physiology, altered pharmacokinetics (PK) and pharmacodynamics (PD) are expected. Given that TH is the standard of care for PA with moderate to severe hypoxic-ischemic encephalopathy, disentangling the effect of PA versus TH on PK/PD is not possible in clinical settings. However, animal models can provide insights into this matter. The (neonatal) Göttingen Minipig, the recommended strain for nonclinical drug development, was selected as translational model. Four drugs-midazolam (MDZ), fentanyl (FNT), phenobarbital (PHB), and topiramate (TPM)-were intravenously administered under four conditions: control (C), therapeutic hypothermia (TH), hypoxia (H), and hypoxia plus TH (H+TH). Each group included six healthy male neonatal Göttingen Minipigs anesthetized for 24 hours. Blood samples were drawn at 0 (predose) and 0.5, 2, 2.5, 3, 4, 4.5, 6, 8, 12, and 24 hours post drug administration. Drug plasma concentrations were determined using validated bioanalytical assays. The PK parameters were estimated through compartmental and noncompartmental PK analysis. The study showed a statistically significant decrease in FNT clearance (CL; 66% decrease), with an approximately threefold longer half-life (t1/2) in the TH group. The H+TH group showed a 17% reduction in FNT CL, with a 62% longer t1/2 compared with the C group; however, it was not statistically significant. Although not statistically significant, trends toward lower CL and longer t1/2 were observed in the TH and H+TH groups for MDZ and PHB. Additionally, TPM demonstrated a 28% decrease in CL in the H group compared with controls. SIGNIFICANCE STATEMENT: The overarching goal of this study using the neonatal Göttingen Minipig model was to disentangle the effects of systemic hypoxia and TH on PK using four model drugs. Such insights can subsequently be used to inform and develop a physiologically based pharmacokinetic model, which is useful for drug exposure prediction in human neonates.
Collapse
Affiliation(s)
- Marina-Stefania Stroe
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Miao-Chan Huang
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Pieter Annaert
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Karen Leys
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Anne Smits
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Karel Allegaert
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Lieselotte Van Bockstal
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Allan Valenzuela
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Miriam Ayuso
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Chris Van Ginneken
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| | - Steven Van Cruchten
- Comparative Perinatal Development, University of Antwerp, Antwerp, Belgium (M.S.-S., L.V.B., A.V., M.A., C.V.G., S.V.C.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (M.-C.H., P.A., K.L.); BioNotus GCV, Niel, Belgium (P.A.); Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Departments of Development and Regeneration (A.S., K.A.) and Pharmaceutical and Pharmacological Sciences (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands (K.A.)
| |
Collapse
|
4
|
De Sutter PJ, Rossignol P, Breëns L, Gasthuys E, Vermeulen A. Predicting Volume of Distribution in Neonates: Performance of Physiologically Based Pharmacokinetic Modelling. Pharmaceutics 2023; 15:2348. [PMID: 37765316 PMCID: PMC10536587 DOI: 10.3390/pharmaceutics15092348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
The volume of distribution at steady state (Vss) in neonates is still often estimated through isometric scaling from adult values, disregarding developmental changes beyond body weight. This study aimed to compare the accuracy of two physiologically based pharmacokinetic (PBPK) Vss prediction methods in neonates (Poulin & Theil with Berezhkovskiy correction (P&T+) and Rodgers & Rowland (R&R)) with isometrical scaling. PBPK models were developed for 24 drugs using in-vitro and in-silico data. Simulations were done in Simcyp (V22) using predefined populations. Clinical data from 86 studies in neonates (including preterms) were used for comparison, and accuracy was assessed using (absolute) average fold errors ((A)AFEs). Isometric scaling resulted in underestimated Vss values in neonates (AFE: 0.61), and both PBPK methods reduced the magnitude of underprediction (AFE: 0.82-0.83). The P&T+ method demonstrated superior overall accuracy compared to isometric scaling (AAFE of 1.68 and 1.77, respectively), while the R&R method exhibited lower overall accuracy (AAFE: 2.03). Drug characteristics (LogP and ionization type) and inclusion of preterm neonates did not significantly impact the magnitude of error associated with isometric scaling or PBPK modeling. These results highlight both the limitations and the applicability of PBPK methods for the prediction of Vss in the absence of clinical data.
Collapse
|
5
|
De Rosa F, Giannatiempo B, Charlier B, Coglianese A, Mensitieri F, Gaudino G, Cozzolino A, Filippelli A, Piazza O, Dal Piaz F, Izzo V. Pharmacological Treatments and Therapeutic Drug Monitoring in Patients with Chronic Pain. Pharmaceutics 2023; 15:2088. [PMID: 37631302 PMCID: PMC10457775 DOI: 10.3390/pharmaceutics15082088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Pain is an unpleasant sensory and emotional experience that affects every aspect of a patient's life and which may be treated through different pharmacological and non-pharmacological approaches. Analgesics are the drugs most commonly used to treat pain, and in specific situations, the use of opioids may be considered with caution. These drugs, in fact, do not always induce optimal analgesia in patients, and several problems are associated with their use. The purpose of this narrative review is to describe the pharmacological approaches currently used for the management of chronic pain. We review several aspects, from the pain-scale-based methods currently available to assess the type and intensity of pain, to the most frequently administered drugs (non-narcotic analgesics and narcotic analgesics), whose pharmacological characteristics are briefly reported. Overall, we attempt to provide an overview of different pharmacological treatments while also illustrating the relevant guidelines and indications. We then report the strategies that may be used to reduce problems related to opioid use. Specifically, we focus our attention on therapeutic drug monitoring (TDM), a tool that could help clinicians select the most suitable drug and dose to be used for each patient. The actual potential of using TDM to optimize and personalize opioid-based pain treatments is finally discussed based on recent scientific reports.
Collapse
Affiliation(s)
- Federica De Rosa
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
| | - Bruno Giannatiempo
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
| | - Bruno Charlier
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
| | - Albino Coglianese
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pathology and Clinical Biochemistry, University of Salerno, 84084 Fisciano, Italy
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Giulia Gaudino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Armando Cozzolino
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Ornella Piazza
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Fabrizio Dal Piaz
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Viviana Izzo
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| |
Collapse
|
6
|
Bergerhoff M, Moosmann B. Novel Receptor-Binding-Based Assay for the Detection of Opioids in Human Urine Samples. Anal Chem 2023; 95:2723-2731. [PMID: 36706344 DOI: 10.1021/acs.analchem.2c03516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Consumption of opioids is a growing global health problem. The gold standard for drugs of abuse screening is immunochemical assays. However, this method comes with some disadvantages when screening for a wide variety of opioids. Detection of the binding of a compound at the human μ-opioid receptor (MOR) offers a promising alternative target. Here, we set up a urine assay to allow for detection of compounds that bind at the MOR, thus allowing the assay to be utilized as a screening tool for opioid intake. The assay is based on the incubation of MOR-containing cell membranes with the selective MOR-ligand DAMGO and urine. After filtration, the amount of DAMGO in the eluate is analyzed by liquid chromatography tandem mass spectroscopy (LC-MS/MS). The absence of DAMGO in the eluate corresponds to a competing MOR ligand in the urine sample, thus indicating opiate/opioid intake by the suspect. Sensitivity and specificity were determined by the analysis of 200 consecutive forensic routine casework urine samples. A pronounced displacement of DAMGO was observed in 29 of the 35 opiate/opioid-positive samples. Detection of fentanyl intake proved to be the most challenging aspect. Applying a cut-off value of, e.g., 10% DAMGO binding would lead to a sensitivity of 83% and a specificity of 95%. Consequently, the novel assay proved to be a promising screening tool for opiate/opioid presence in urine samples. The nontargeted approach and possible automation of the assay make it a promising alternative to conventional methods.
Collapse
Affiliation(s)
- Maja Bergerhoff
- Institute of Forensic Medicine, Forensic Toxicology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Bjoern Moosmann
- Institute of Forensic Medicine, Forensic Toxicology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| |
Collapse
|
7
|
Interactions of fentanyl with blood platelets and plasma proteins: platelet sensitivity to prasugrel metabolite is not affected by fentanyl under in vitro conditions. Pharmacol Rep 2023; 75:423-441. [PMID: 36646965 DOI: 10.1007/s43440-023-00447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Clinical trials indicate that fentanyl, like morphine, may impair intestinal absorption and thus decrease the efficacy of oral P2Y12 inhibitors, such as clopidogrel, ticagrelor, and prasugrel. However, the ability of fentanyl to directly negate or reduce the inhibitory effect of P2Y12 receptor antagonists on platelet function has not been established. A series of in vitro experiments was performed to investigate the ability of fentanyl to activate platelets, potentiate platelet response to ADP, and/or diminish platelet sensitivity to prasugrel metabolite (R-138727) in agonist-stimulated platelets. The selectivity and specificity of fentanyl toward major carrier proteins has been also studied. METHODS Blood was obtained from healthy volunteers (19 women and 12 men; mean age 40 ± 13 years). Platelet function was measured in whole blood, platelet-rich plasma and in suspensions of isolated platelets by flow cytometry, impedance and optical aggregometry. Surface plasmon resonance and molecular docking were employed to determine the binding kinetics of fentanyl to human albumin, α1-acid glycoprotein, apolipoprotein A-1 and apolipoprotein B-100. RESULTS When applied at therapeutic and supratherapeutic concentrations under various experimental conditions, fentanyl had no potential to stimulate platelet activation and aggregation, or potentiate platelet response to ADP, nor did it affect platelet susceptibility to prasugrel metabolite in ADP-stimulated platelets. In addition, fentanyl was found to interact with all the examined carrier proteins with dissociation constants in the order of 10-4 to 10-9 M. CONCLUSIONS It does not seem that the delayed platelet responsiveness to oral P2Y12 inhibitors, such as prasugrel, in patients undergoing percutaneous coronary intervention, results from direct interactions between fentanyl and blood platelets. Apolipoproteins, similarly to albumin and α1-acid glycoprotein, appear to be important carriers of fentanyl in blood.
Collapse
|
8
|
van Hoogdalem MW, Wexelblatt SL, Akinbi HT, Vinks AA, Mizuno T. A review of pregnancy-induced changes in opioid pharmacokinetics, placental transfer, and fetal exposure: Towards fetomaternal physiologically-based pharmacokinetic modeling to improve the treatment of neonatal opioid withdrawal syndrome. Pharmacol Ther 2021; 234:108045. [PMID: 34813863 DOI: 10.1016/j.pharmthera.2021.108045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling has emerged as a useful tool to study pharmacokinetics (PK) in special populations, such as pregnant women, fetuses, and newborns, where practical hurdles severely limit the study of drug behavior. PK in pregnant women is variable and everchanging, differing greatly from that in their nonpregnant female and male counterparts typically enrolled in clinical trials. PBPK models can accommodate pregnancy-induced physiological and metabolic changes, thereby providing mechanistic insights into maternal drug disposition and fetal exposure. Fueled by the soaring opioid epidemic in the United States, opioid use during pregnancy continues to rise, leading to an increased incidence of neonatal opioid withdrawal syndrome (NOWS). The severity of NOWS is influenced by a complex interplay of extrinsic and intrinsic factors, and varies substantially between newborns, but the extent of prenatal opioid exposure is likely the primary driver. Fetomaternal PBPK modeling is an attractive approach to predict in utero opioid exposure. To facilitate the development of fetomaternal PBPK models of opioids, this review provides a detailed overview of pregnancy-induced changes affecting the PK of commonly used opioids during gestation. Moreover, the placental transfer of these opioids is described, along with their disposition in the fetus. Lastly, the implementation of these factors into PBPK models is discussed. Fetomaternal PBPK modeling of opioids is expected to provide improved insights in fetal opioid exposure, which allows for prediction of postnatal NOWS severity, thereby opening the way for precision postnatal treatment of these vulnerable infants.
Collapse
Affiliation(s)
- Matthijs W van Hoogdalem
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Scott L Wexelblatt
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Henry T Akinbi
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
9
|
Pre- and Postnatal Maturation are Important for Fentanyl Exposure in Preterm and Term Newborns: A Pooled Population Pharmacokinetic Study. Clin Pharmacokinet 2021; 61:401-412. [PMID: 34773609 PMCID: PMC8891207 DOI: 10.1007/s40262-021-01076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 10/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Fentanyl is an opioid commonly used to prevent and treat severe pain in neonates; however, its use is off label and mostly based on bodyweight. Given the limited pharmacokinetic information across the entire neonatal age range, we characterized the pharmacokinetics of fentanyl across preterm and term neonates to individualize dosing. METHODS We pooled data from two previous studies on 164 newborns with a median gestational age of 29.0 weeks (range 23.9-42.3), birthweight of 1055 g (range 390-4245), and postnatal age (PNA) of 1 day (range 0-68). In total, 673 plasma samples upon bolus dosing (69 patients; median dose 2.1 μg/kg, median 2 boluses per patient) or continuous infusions (95 patients; median dose 1.1 μg/kg/h for 30 h) with and without boluses were used for population pharmacokinetic modeling in NONMEM® 7.4. RESULTS Clearance in neonates with birthweight of 2000 and 3000 g was 2.8- and 5.0-fold the clearance in a neonate with birthweight of 1000 g, respectively. Fentanyl clearance at PNA of 7, 14, and 21 days was 2.7-fold, 3.8-fold, and 4.6-fold the clearance at 1 day, respectively. Bodyweight-based dosing resulted in large differences in fentanyl concentrations. Depending on PNA and birthweight, fentanyl concentrations increased slowly after the start of therapy for both intermittent boluses and continuous infusion and reached a maximum concentration at 12-48 h. CONCLUSIONS As both prenatal and postnatal maturation are important for fentanyl exposure, we propose a birthweight- and PNA-based dosage regimen. To provide rapid analgesia in the first 24 h of treatment, additional loading doses need to be considered.
Collapse
|
10
|
Hydromorphone Compared to Fentanyl in Patients Receiving Extracorporeal Membrane Oxygenation. ASAIO J 2021; 67:443-448. [PMID: 33770000 DOI: 10.1097/mat.0000000000001253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fentanyl is commonly used in critically ill patients receiving extracorporeal membrane oxygenation (ECMO). Fentanyl's lipophilicity and protein binding may contribute to a sequestration of the drug in the ECMO circuit. Hydromorphone lacks these characteristics potentially leading to a more predictable drug delivery and improved pain and sedation management among ECMO patients. This study compared hydromorphone to fentanyl in patients receiving ECMO. This retrospective study included adult patients receiving ECMO for ≥48 hours. Patients were excluded if they required neuromuscular blockade, received both fentanyl and hydromorphone during therapy, or had opioid use before hospitalization. Baseline characteristics included patient demographics, ECMO indication and settings, and details regarding mechanical ventilation. The primary outcome was opioid requirements at 48 hours post cannulation described in morphine milligram equivalent (MME). Secondary endpoints included 24-hour opioid requirements, concurrent sedative use, and differences in pain and sedation scores. No differences were noted between the patients receiving fentanyl (n = 32) or hydromorphone (n = 20). Patients receiving hydromorphone required lower MME compared to fentanyl at 24 hours (88 [37-121] vs. 131 [137-227], p < 0.01) and 48 hours (168 [80-281] vs. 325 [270-449], p < 0.01). The proportion of within-goal pain and sedation scores between groups was similar at 24 and 48 hours. Sedative requirements did not differ between the groups. Patients receiving hydromorphone required less MME compared to fentanyl without any differences in sedative requirements, or agitation-sedation scores at 48 hours. Prospective studies should be completed to validate these findings.
Collapse
|
11
|
Gesseck AM, Poklis JL, Wolf CE, Xu J, Bashir A, Hendricks-Muñoz KD, Peace MR. A Case Study Evaluating the Efficacy of an Ad Hoc Hospital Collection Device for Fentanyl in Infant Oral Fluid. J Anal Toxicol 2020; 44:741-746. [PMID: 32591773 PMCID: PMC7549304 DOI: 10.1093/jat/bkaa069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/17/2020] [Accepted: 05/12/2020] [Indexed: 12/25/2022] Open
Abstract
Neonatal drug exposure is currently assessed using meconium, urine, blood, hair, or umbilical cord tissue/blood. Due to the invasiveness, challenges, and limitations of collection, and/or analytical difficulties of these matrices, oral fluid may be a more desirable matrix in diagnosing opioid exposure and risk for opioid withdrawal in neonatal abstinence syndrome. Traditional oral fluid collection devices are not viable options as they are too large for neonates' mouths and may contain chemicals on the collection pad. Unstimulated and stimulated infant oral fluid samples have been used for therapeutic drug monitoring as an alternative matrix to blood. The objective of this study was to assess the viability of a simple oral fluid collection system using a sterile foam-tipped swab rinsed in phosphate-buffered saline. Two infants were administered fentanyl for post-operative pain relief while hospitalized in the Neonatal Intensive Care Units at the Children's Hospital of Richmond of Virginia Commonwealth University. Oral fluid samples were collected at 16 h, 2 days, and/or 7 days following the start of intravenous infusion of fentanyl. Samples were analyzed by ultra-high-pressure liquid chromatography-tandem mass spectrometry for fentanyl and norfentanyl after solid-phase extraction. In one of the three samples tested, fentanyl and norfentanyl were detected at concentrations of 28 and 78 ng/mL, respectively. Based on the infusion rate, the theoretical oral fluid fentanyl concentration at steady state was calculated to be 33 ng/mL.
Collapse
Affiliation(s)
- Ashley M Gesseck
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, PO Box 84230, Richmond, VA 23284-0203, USA
- Department of Forensic Science, Virginia Commonwealth University, PO Box 843079, Richmond, VA 23284-3079, USA
| | - Justin L Poklis
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298-0613, USA
| | - Carl E Wolf
- Department of Forensic Science, Virginia Commonwealth University, PO Box 843079, Richmond, VA 23284-3079, USA
- Department of Pathology, Virginia Commonwealth University, PO Box 980662, Richmond, VA 23298-0662, USA
| | - Jie Xu
- Division of Neonatal Medicine, Department of Pediatrics, Children's Hospital of Richmond at VCU, Virginia Commonwealth University School of Medicine, PO Box 980646, Richmond, VA 23298-0646, USA
| | - Aamir Bashir
- Division of Neonatal Medicine, Department of Pediatrics, Children's Hospital of Richmond at VCU, Virginia Commonwealth University School of Medicine, PO Box 980646, Richmond, VA 23298-0646, USA
| | - Karen D Hendricks-Muñoz
- Division of Neonatal Medicine, Department of Pediatrics, Children's Hospital of Richmond at VCU, Virginia Commonwealth University School of Medicine, PO Box 980646, Richmond, VA 23298-0646, USA
| | - Michelle R Peace
- Department of Forensic Science, Virginia Commonwealth University, PO Box 843079, Richmond, VA 23284-3079, USA
| |
Collapse
|
12
|
Physiologically-Based Pharmacokinetic (PBPK) Modeling Providing Insights into Fentanyl Pharmacokinetics in Adults and Pediatric Patients. Pharmaceutics 2020; 12:pharmaceutics12100908. [PMID: 32977559 PMCID: PMC7598194 DOI: 10.3390/pharmaceutics12100908] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
Fentanyl is widely used for analgesia, sedation, and anesthesia both in adult and pediatric populations. Yet, only few pharmacokinetic studies of fentanyl in pediatrics exist as conducting clinical trials in this population is especially challenging. Physiologically-based pharmacokinetic (PBPK) modeling is a mechanistic approach to explore drug pharmacokinetics and allows extrapolation from adult to pediatric populations based on age-related physiological differences. The aim of this study was to develop a PBPK model of fentanyl and norfentanyl for both adult and pediatric populations. The adult PBPK model was established in PK-Sim® using data from 16 clinical studies and was scaled to several pediatric subpopulations. ~93% of the predicted AUClast values in adults and ~88% in pediatrics were within 2-fold of the corresponding value observed. The adult PBPK model predicted a fraction of fentanyl dose metabolized to norfentanyl of ~33% and a fraction excreted in urine of ~7%. In addition, the pediatric PBPK model was used to simulate differences in peak plasma concentrations after bolus injections and short infusions. The novel PBPK models could be helpful to further investigate fentanyl pharmacokinetics in both adult and pediatric populations.
Collapse
|
13
|
Maharaj AR, Wu H, Zimmerman KO, Speicher DG, Sullivan JE, Watt K, Al-Uzri A, Payne EH, Erinjeri J, Lin S, Harper B, Melloni C, Hornik CP. Dosing of Continuous Fentanyl Infusions in Obese Children: A Population Pharmacokinetic Analysis. J Clin Pharmacol 2020; 60:636-647. [PMID: 31814149 PMCID: PMC7591270 DOI: 10.1002/jcph.1562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Abstract
Differences in fentanyl pharmacokinetics (PK) between obese and nonobese adults have previously been reported; however, the impact of childhood obesity on fentanyl PK is relatively unknown. We developed a population pharmacokinetic (PopPK) model using opportunistically collected samples from a cohort of predominately obese children receiving fentanyl per the standard of care. Using a probability-based approach, we evaluated the ability of different continuous infusion strategies to provide steady-state concentrations (Css ) within an analgesic concentration range (1-3 ng/mL). Fifty-three samples from 32 children were used for PopPK model development. Median (range) age and body weight of study participants were 13 years (2-19 years) and 52 kg (16-164 kg), respectively. The majority of children (94%) were obese. A 2-compartment model allometrically scaled by total body weight provided an appropriate fit to the data. Estimated typical clearance was 32.5 L/h (scaled to 70 kg). A fixed dose rate infusion of 1 µg/kg/h was associated with probabilities between 49% and 58% for achieving Css within target; however, the risk of achieving Css > 3 ng/mL increased with increasing body weight (15% at 16 kg vs 43% at 164 kg). A proposed model-based infusion strategy maintained consistent probabilities across the examined weight range for achieving Css within (58%) and above (20%) target. Use of an allometric relationship between weight and clearance was appropriate for describing the PK of intravenous fentanyl in our cohort of predominately obese children. Our proposed model-derived continuous infusion strategy maximized the probability of achieving target Css in children of varying weights.
Collapse
Affiliation(s)
- Anil R. Maharaj
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Huali Wu
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kanecia O. Zimmerman
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - David G. Speicher
- Division of Pediatric Critical Care, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Janice E. Sullivan
- University of Louisville, Kosair Charities Pediatric Clinical Research Unit, and Norton Children’s Hospital, Louisville, KY, USA
| | - Kevin Watt
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Amira Al-Uzri
- Oregon Health and Science University, Portland, OR, USA
| | | | | | - Susan Lin
- The Emmes Company, LLC, Rockville, MD, USA
| | - Barrie Harper
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Chiara Melloni
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Christoph P. Hornik
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
14
|
Abstract
Fentanyl has been implicated as a major contributor to the increased number of opioid overdose deaths. Surprisingly, little is known about the pharmacogenetic influences on fentanyl pharmacokinetics or pharmacodynamics. Pharmacogenetic studies of fentanyl are based largely on small sample sizes and have examined the potential association of only a small number of high frequency variants in selected candidate genes primarily with postoperative pain. Few data are available on low frequency variants, variants from racially/ethnically diverse populations, or on other phenotypes. Given the genetic diversity of low frequency variants, DNA sequencing may be needed to determine whether pharmacogenetic differences may contribute to lethal opioid overdoses.
Collapse
|
15
|
Serum albumin saturation test based on non-esterified fatty acids imbalance for clinical employment. Clin Chim Acta 2019; 495:422-428. [PMID: 31082361 DOI: 10.1016/j.cca.2019.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 04/15/2019] [Accepted: 05/04/2019] [Indexed: 01/13/2023]
Abstract
Fatty acids are fundamental as energy and structural source to the human cells. They are not usually found free in human circulation. Alteration in fatty acids metabolism is linked to diseases such as diabetes, preeclampsia, heart disease, and some infectious diseases. Increased levels of non-esterified fatty acids (NEFA) may cause cell dysfunction and lipotoxicity. Since physiologically fatty acids are transported bound to albumin, we propose here a simple and cheap test that consists of albumin isoelectric focusing determination to measure the potential systemic NEFA cytotoxicity. For validation of this method, albumin isoelectric focusing in 51 serum samples from 40 critically ill patients and 11 controls was compared with NEFA/albumin ratios measured by HPLC. We called this approach an albumin saturation test. This test may indicate to physicians the potential NEFA lipotoxicity guiding them throughout better patient management. The albumin saturation test can point out serum albumin-NEFA saturation through a cheap assay that could be performed by any care facility.
Collapse
|
16
|
Affiliation(s)
- J A Jeevendra Martyn
- From the Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School - all in Boston
| | - Jianren Mao
- From the Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School - all in Boston
| | - Edward A Bittner
- From the Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School - all in Boston
| |
Collapse
|
17
|
Ingram N, Dishinger C, Wood J, Hutzler JM, Smith S, Huskin M. Effect of the Plasticizer DEHP in Blood Collection Bags on Human Plasma Fraction Unbound Determination for Alpha-1-Acid Glycoprotein (AAG) Binding Drugs. AAPS JOURNAL 2018; 21:5. [PMID: 30446887 DOI: 10.1208/s12248-018-0276-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/19/2018] [Indexed: 11/30/2022]
Abstract
Fraction unbound (fu) is a critical drug distribution parameter commonly utilized for modeling efficacious dosage and safety margin predictions. An over-estimation of fu for 13 chemically diverse small molecule drugs primarily bound to alpha-1-acid glycoprotein (AAG) in human plasma was discovered when in vitro results from our screening lab were compared to literature values. Di-(2-ethylhexyl) phthalate (DEHP), a plasticizer known to be used in the manufacture of blood collection bags, was extracted from plasma obtained through three common techniques that allowed contact with DEHP, and drug fu values in plasma from each collection method were estimated using the HTDialysis protein binding methodology. Additionally, fu of test compounds in plasma spiked with varying concentrations of DEHP (0-800 μM) was determined, and DEHP extractions were performed from plasma stored in Terumo bags over 7 days. Blood stored in Terumo bags, blood collected in Terumo bags, but immediately transferred to conical vials, and vacutainer-collected blood yielded DEHP concentrations of 300-1000 μM, 1-10 μM, and 0.1-2 μM, respectively. This finding corresponded with the fu of tested drugs in DEHP-spiked plasma increasing between 2- and 5-fold. Additionally, DEHP was discovered to leach from the Terumo bag, with concentrations increasing 10-fold over a 7-day test period. In summary, the presence of DEHP in commercially available blood collection bags confounds in vitro fu estimation for drugs that bind primarily to AAG. It is recommended that vacutainer-collected human plasma, which contains negligible DEHP, be used for the most accurate estimation of fu in human plasma.
Collapse
Affiliation(s)
- Nicholas Ingram
- Q2 Solutions, Bioanalytical and ADME Labs, 5225 Exploration Drive, Indianapolis, Indiana, 46241, USA
| | - Christopher Dishinger
- Q2 Solutions, Bioanalytical and ADME Labs, 5225 Exploration Drive, Indianapolis, Indiana, 46241, USA
| | - Jennifer Wood
- Q2 Solutions, Bioanalytical and ADME Labs, 5225 Exploration Drive, Indianapolis, Indiana, 46241, USA
| | - J Matthew Hutzler
- Q2 Solutions, Bioanalytical and ADME Labs, 5225 Exploration Drive, Indianapolis, Indiana, 46241, USA
| | - Sherri Smith
- H3 Biomedicine, Inc., Cambridge, Massachusetts, USA
| | - Michael Huskin
- Q2 Solutions, Bioanalytical and ADME Labs, 5225 Exploration Drive, Indianapolis, Indiana, 46241, USA.
| |
Collapse
|
18
|
Tse AH, Ling L, Lee A, Joynt GM. Altered Pharmacokinetics in Prolonged Infusions of Sedatives and Analgesics Among Adult Critically Ill Patients: A Systematic Review. Clin Ther 2018; 40:1598-1615.e2. [DOI: 10.1016/j.clinthera.2018.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022]
|
19
|
Pascoe PJ, Pypendop BH, Pavez Phillips JC, DiMaio Knych HK, Sanchez-Migallon Guzman D, Hawkins MG. Pharmacokinetics of fentanyl after intravenous administration in isoflurane-anesthetized red-tailed hawks (Buteo jamaicensis) and Hispaniolan Amazon parrots (Amazona ventralis). Am J Vet Res 2018; 79:606-613. [DOI: 10.2460/ajvr.79.6.606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Bista SR, Haywood A, Hardy J, Norris R, Hennig S. Exposure to Fentanyl After Transdermal Patch Administration for Cancer Pain Management. J Clin Pharmacol 2015; 56:705-13. [DOI: 10.1002/jcph.641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 09/11/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Sudeep R. Bista
- School of Pharmacy; Menzies Health Institute Queensland, Griffith University; Gold Coast Australia
- Mater Research Institute-The University of Queensland; Brisbane Australia
| | - Alison Haywood
- School of Pharmacy; Menzies Health Institute Queensland, Griffith University; Gold Coast Australia
- Mater Research Institute-The University of Queensland; Brisbane Australia
| | - Janet Hardy
- Mater Research Institute-The University of Queensland; Brisbane Australia
- Department of Palliative and Supportive Care; Mater Health Services; Brisbane Australia
| | - Ross Norris
- School of Pharmacy; Menzies Health Institute Queensland, Griffith University; Gold Coast Australia
- Mater Research Institute-The University of Queensland; Brisbane Australia
- St Vincent's Clinical School; University of New South Wales; New South Wales Australia
- SydPath; St Vincent's Hospital; Sydney Australia
| | - Stefanie Hennig
- School of Pharmacy; The University of Queensland; Brisbane Australia
| |
Collapse
|
21
|
Bista SR, Haywood A, Norris R, Good P, Tapuni A, Lobb M, Hardy J. Saliva versus Plasma for Pharmacokinetic and Pharmacodynamic Studies of Fentanyl in Patients with Cancer. Clin Ther 2015; 37:2468-75. [PMID: 26404396 DOI: 10.1016/j.clinthera.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 01/09/2023]
Abstract
PURPOSE Fentanyl is widely used to relieve cancer pain. However there is great interpatient variation in the dose required to relieve pain and little knowledge about the pharmacokinetic and pharmacodynamic (PK/PD) relationship of fentanyl and pain control. Patients with cancer are fragile and there is reluctance on the part of health professionals to take multiple plasma samples for PK/PD studies. The relationship between plasma and saliva fentanyl concentrations was investigated to determine whether saliva could be a valid substitute for plasma in PK/PD studies. METHODS One hundred sixty-three paired plasma and saliva samples were collected from 56 patients prescribed transdermal fentanyl (Durogesic, Janssen-Cilag Pty Limited, NSW, Australia) at varying doses (12-200 µg/h). Pain scores were recorded at the time of sampling. Fentanyl and norfentanyl concentrations in plasma and saliva were quantified using HPLC-MS/MS. FINDINGS Saliva concentrations of fentanyl (mean = 4.84 μg/L) were much higher than paired plasma concentrations of fentanyl (mean = 0.877 μg/L). Both plasma and saliva mean concentrations of fentanyl were well correlated with dose with considerable interpatient variation at each dose. The relationship between fentanyl and norfentanyl concentrations was poor in both plasma and saliva. No correlation was observed between fentanyl concentration in plasma and saliva (r(2) = 0.3743) or free fentanyl in plasma and total saliva concentrations (r(2) = 0.1374). Pain scores and fentanyl concentration in either of the matrices were also not correlated. IMPLICATIONS No predictive correlation was observed between plasma and saliva fentanyl concentration. However the detection of higher fentanyl concentrations in saliva than plasma, with a good correlation to dose, may allow saliva to be used as an alternative to plasma in PK/PD studies of fentanyl in patients with cancer.
Collapse
Affiliation(s)
- Sudeep R Bista
- School of Pharmacy, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.
| | - Alison Haywood
- School of Pharmacy, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Ross Norris
- School of Pharmacy, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia; SydPath, St Vincent's Hospital, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Phillip Good
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia; Department of Palliative and Supportive Care, Mater Health Services, Brisbane, Queensland, Australia; Palliative Care, St Vincent's Private Hospital, Brisbane, Queensland, Australia
| | - Angela Tapuni
- Department of Palliative and Supportive Care, Mater Health Services, Brisbane, Queensland, Australia
| | - Michael Lobb
- Mater Pathology Services, South Brisbane, Queensland, Australia
| | - Janet Hardy
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia; Department of Palliative and Supportive Care, Mater Health Services, Brisbane, Queensland, Australia
| |
Collapse
|