1
|
Sartore G, Piarulli F, Ragazzi E, Mallia A, Ghilardi S, Carollo M, Lapolla A, Banfi C. Circulating Factors as Potential Biomarkers of Cardiovascular Damage Progression Associated with Type 2 Diabetes. Proteomes 2024; 12:29. [PMID: 39449501 PMCID: PMC11503308 DOI: 10.3390/proteomes12040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Diabetes, particularly type 2 diabetes (T2D), is linked with an increased risk of developing coronary heart disease (CHD). The present study aimed to evaluate potential circulating biomarkers of CHD by adopting a targeted proteomic approach based on proximity extension assays (PEA). Methods: The study was based on 30 patients with both T2D and CHD (group DC), 30 patients with T2D without CHD (group DN) and 29 patients without diabetes but with a diagnosis of CHD (group NC). Plasma samples were analyzed using PEA, with an Olink Target 96 cardiometabolic panel expressed as normalized protein expression (NPX) units. Results: Lysosomal Pro-X carboxypeptidase (PRCP), Liver carboxylesterase 1 (CES1), Complement C2 (C2), and Intercellular adhesion molecule 3 (ICAM3) were lower in the DC and NC groups compared with the DN groups. Lithostathine-1-alpha (REG1A) and Immunoglobulin lambda constant 2 (IGLC2) were found higher in the DC group compared to DN and NC groups. ROC analysis suggested a significant ability of the six proteins to distinguish among the three groups (whole model test p < 0.0001, AUC 0.83-0.88), with a satisfactory discriminating performance in terms of sensitivity (77-90%) and specificity (70-90%). A possible role of IGLC2, PRCP, and REG1A in indicating kidney impairment was found, with a sensitivity of 92% and specificity of 83%. Conclusions: The identified panel of six plasma proteins, using a targeted proteomic approach, provided evidence that these parameters could be considered in the chronic evolution of T2D and its complications.
Collapse
Affiliation(s)
- Giovanni Sartore
- Department of Medicine-DIMED, University of Padova, 35122 Padova, Italy; (G.S.); (F.P.); (M.C.); (A.L.)
| | - Francesco Piarulli
- Department of Medicine-DIMED, University of Padova, 35122 Padova, Italy; (G.S.); (F.P.); (M.C.); (A.L.)
| | - Eugenio Ragazzi
- Studium Patavinum, University of Padova, 35122 Padova, Italy
| | - Alice Mallia
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.M.); (S.G.); (C.B.)
| | - Stefania Ghilardi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.M.); (S.G.); (C.B.)
| | - Massimo Carollo
- Department of Medicine-DIMED, University of Padova, 35122 Padova, Italy; (G.S.); (F.P.); (M.C.); (A.L.)
| | - Annunziata Lapolla
- Department of Medicine-DIMED, University of Padova, 35122 Padova, Italy; (G.S.); (F.P.); (M.C.); (A.L.)
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.M.); (S.G.); (C.B.)
| |
Collapse
|
2
|
Hou S, Liu H, Hu Y, Zhang J, Deng X, Li Z, Zhang Y, Li X, Li Y, Ma L, Yao J, Chen X. Discovery of a novel homocysteine thiolactone hydrolase and the catalytic activity of its natural variants. Protein Sci 2024; 33:e5098. [PMID: 38980003 PMCID: PMC11232049 DOI: 10.1002/pro.5098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
Homocysteine thiolactone (HTL), a toxic metabolite of homocysteine (Hcy) in hyperhomocysteinemia (HHcy), is known to modify protein structure and function, leading to protein damage through formation of N-Hcy-protein. HTL has been highly linked to HHcy-associated cardiovascular and neurodegenerative diseases. The protective role of HTL hydrolases against HTL-associated vascular toxicity and neurotoxicity have been reported. Although several endogeneous enzymes capable of hydrolyzing HTL have been identified, the primary enzyme responsible for its metabolism remains unclear. In this study, three human carboxylesterases were screened to explore new HTL hydrolase and human carboxylesterase 1 (hCES1) demonstrates the highest catalytic activity against HTL. Given the abundance of hCES1 in the liver and the clinical significance of its single-nucleotide polymorphisms (SNPs), six common hCES1 nonsynonymous coding SNP (nsSNPs) variants were examined and characterized for their kinetic parameters. Variants E220G and G143E displayed 7.3-fold and 13.2-fold lower catalytic activities than its wild-type counterpart. In addition, the detailed catalytic mechanism of hCES1 for HTL hydrolysis was computational investigated and elucidated by Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) method. The function of residues E220 and G143 in sustaining its hydrolytic activity of hCES1 was analyzed, and the calculated energy difference aligns well with experimental-derived results, supporting the validity of our computational insights. These findings provide insights into the potential protective role of hCES1 against HTL-associated toxicity, and warrant future studies on the possible association between specific genetic variants of hCES1 with impaired catalytic function and clinical susceptibility of HTL-associated cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Shurong Hou
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Huan Liu
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Yihui Hu
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Jie Zhang
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Xingyu Deng
- Shanghai Key Laboratory of New Drug DesignSchool of Pharmacy, East China University of Science and TechnologyShanghaiChina
| | - Zhenzhen Li
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Yun Zhang
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Xiaoxuan Li
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Yishuang Li
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Lei Ma
- Shanghai Key Laboratory of New Drug DesignSchool of Pharmacy, East China University of Science and TechnologyShanghaiChina
| | - Jianzhuang Yao
- School of Biological Science and Technology, University of JinanJinanChina
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
3
|
Xu N, Tang D, Liu H, Liu M, Wen Z, Jiang T, Yu F. In Situ Visualizing Carboxylesterase Activity in Type 2 Diabetes Mellitus Using an Activatable Endoplasmic Reticulum Targetable Proximity Labeling Far-Red Fluorescent Probe. Anal Chem 2024; 96:10724-10731. [PMID: 38952276 DOI: 10.1021/acs.analchem.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Carboxylesterase (CE), an enzyme widely present in organisms, is involved in various physiological and pathological processes. Changes in the levels of CEs in the liver may predict the presence of type 2 diabetes mellitus (T2DM). Here, a novel dicyanoisophorone (DCI)-based proximity-labeled far-red fluorescent probe DCI2F-Ac with endoplasmic reticulum targeting was proposed for real-time monitoring and imaging of the CEs activity. DCI2F-Ac featured very low cytotoxicity and biotoxicity and was highly selective and sensitive for CEs. Compared with traditional CEs probes, DCI2F-Ac was covalently anchored directly to CEs, thus effectively reducing the loss of in situ fluorescent signals due to diffusion. Through the "on-off" fluorescence signal readout, DCI2F-Ac was able to distinguish cell lines and screen for CEs inhibitors. In terms of endoplasmic reticulum (ER) stress, it was found that thapsigargin (Tg) induced upregulation of CEs levels but not tunicamycin (Tm), which was related to the calcium homeostasis of the ER. DCI2F-Ac could efficiently detect downregulated CEs in the livers of T2DM, and the therapeutic efficacy of metformin, acarbose, and a combination of these two drugs was assessed by tracking the fluctuation of CEs levels. The results showed that combining metformin and acarbose could restore CEs levels to near-normal levels with the best antidiabetic effect. Thus, the DCI2F-Ac probe provides a great opportunity to explore the untapped potential of CEs in liver metabolic disorders and drug efficacy assessment.
Collapse
Affiliation(s)
- Ningge Xu
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, School of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Dandan Tang
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, School of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Heng Liu
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, School of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Mengyue Liu
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, School of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zheng Wen
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, School of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, School of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
4
|
Chen H, Li K, Yuan L, Zhang XB. Design of a near-infrared fluoro-photoacoustic probe for rapid imaging of carboxylesterase in liver injury. Chem Commun (Camb) 2023; 59:10520-10523. [PMID: 37644758 DOI: 10.1039/d3cc03170e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Carboxylesterase (CE) is crucial in metabolizing ester-containing biomolecules and is particularly significant in liver metabolic diseases. Herein, we present the first activatable NIRF/PA dual-mode imaging probe QHD-CE for detection of CE in vitro and in vivo. QHD-CE displays excellent sensitivity and selectivity for CE with a high reaction efficiency (∼90 min). By utilizing QHD-CE, the dynamic changes of CE in drug-induced liver injury and diabetic mice models were monitored.
Collapse
Affiliation(s)
- Haoming Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Ke Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan Province, China
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
5
|
Shu Y, Huang C, Liu H, Hu F, Wen H, Liu J, Wang X, Shan C, Li W. A hemicyanine-based fluorescent probe for simultaneous imaging of Carboxylesterases and Histone deacetylases in hepatocellular carcinoma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121529. [PMID: 35797949 DOI: 10.1016/j.saa.2022.121529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Carboxylesterases (CESs) and Histone deacetylases (HDACs) are regarded as important signaling enzymes highly associated with the development and progression of multiple cancers, including hepatocellular carcinoma (HCC). In this work, a near-infrared (NIR) fluorescent probe named Lys-HXPI was designed and synthesized, which linked a hemicyanine dye and 6-acetamidohexanoic acid via an ester bond. Lys-HXPI displayed a remarkable increase with a NIR emission at 720 nm, a low detection limit (<10 nM) for HDAC1, HDAC 6, CES1 and CES2, as well as a high selectivity for the target enzymes over other relevant analytes. Furthermore, Lys-HXPI was used to image endogenous target enzymes in living cells, tumor-bearing nude mice and tissue slices. The ability of Lys-HXPI to simultaneous image CESs and HDACs was demonstrated with RT-qPCR and the confocal imaging in Hep G2 and MDA-MB-231. Taking advantage of NIR emission, the probe was also successfully applied to imaging Hep G2 tumor mice and tissue slices. Lys-HXPI is expected to be useful for the effective detecting of CESs and HDACs in complex biosystems.
Collapse
Affiliation(s)
- Yi Shu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chaoqun Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongjing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feiyang Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xinzhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Li X, Liu X, Meng Q, Wu X, Bing X, Guo N, Zhao X, Hou X, Wang B, Xia M, Li H. Circadian clock disruptions link oxidative stress and systemic inflammation to metabolic syndrome in obstructive sleep apnea patients. Front Physiol 2022; 13:932596. [PMID: 36105285 PMCID: PMC9466597 DOI: 10.3389/fphys.2022.932596] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: Obstructive sleep apnea (OSA) is an independent risk factor for metabolic syndrome (MetS). Recent studies have indicated that circadian clock genes were dysregulated in OSA. In addition, it is clear that the impairment of circadian clocks drives the progression of MetS. Therefore, we hypothesized that circadian rhythm disruption links OSA with MetS.Methods: A total of 118 participants, who underwent polysomnography (PSG) and were diagnosed as healthy snorers (control, n = 29) or OSA (n = 89) patients based on the apnea–hypopnea index (AHI), were enrolled in the present study. General information, anthropometric data, blood biochemical indicators, clock gene expressions, and levels of oxidative and inflammatory indicators were collected, determined, and compared in all the participants.Results: We found that Brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1) and Differentiated embryo chondrocyte 1 (Dec1) were upregulated, while Period 1 (Per1) was reduced in OSA patients. In addition, these changing trends were closely associated with the hypoxia indicator of AHI and have a significant impact on the presence of MetS components, such as hyperglycemia (Dec1 and Per1, p < 0.05 and 0.001, respectively), hypertension (Bmal1 and Dec1, p < 0.001 and 0.01, respectively), hyperlipidemia (Dec1, p < 0.01), and obesity (Dec1, p < 0.05). Notably, expressions of Dec1 correlated with IR and predicted the presence of MetS in OSA patients. Finally, we also observed that Dec1 expression was interrelated with levels of both oxidative indicators and inflammatory biomarkers (IL-6) in OSA.Conclusion: This study concluded that circadian clock disruptions, especially Dec1, link OSA with MetS in an oxidative and inflammatory-related manner. Circadian clock Dec1 can be used as a specific biomarker (p < 0.001) and therapeutic target in OSA combined with Mets patients.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xuejian Liu
- Department of Thyroid and Breast Surgery, Shandong Provincial Third Hospital, Jinan, China
| | - Qiu Meng
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xinhao Wu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Bing
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Na Guo
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xuening Zhao
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaozhi Hou
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Baowei Wang
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Hui Li, ; Ming Xia,
| | - Hui Li
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Hui Li, ; Ming Xia,
| |
Collapse
|
7
|
Liu SY, Zou X, Guo Y, Gao X. A highly sensitive and selective enzyme activated fluorescent probe for in vivo profiling of carboxylesterase 2. Anal Chim Acta 2022; 1221:340126. [DOI: 10.1016/j.aca.2022.340126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
|
8
|
Gao Y, Jiang X, Yang D, Guo W, Wang D, Gong K, Peng Y, Jiang H, Shi C, Duan Y, Chen Y, Han J, Yang X. Roxadustat, a Hypoxia-Inducible Factor 1α Activator, Attenuates Both Long- and Short-Term Alcohol-Induced Alcoholic Liver Disease. Front Pharmacol 2022; 13:895710. [PMID: 35620283 PMCID: PMC9127324 DOI: 10.3389/fphar.2022.895710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) is a worldwide healthcare problem featured by inflammation, reactive oxygen species (ROS), and lipid dysregulation. Roxadustat is used for chronic kidney disease anemia treatment. As a specific inhibitor of prolyl hydroxylase, it can maintain high levels of hypoxia-inducible factor 1α (HIF-1α), through which it can further influence many important pathways, including the three featured in ALD. However, its effects on ALD remain to be elucidated. In this study, we used chronic and acute ALD mouse models to investigate the protective effects of roxadustat in vivo. Our results showed that long- and short-term alcohol exposure caused rising activities of serum transaminases, liver lipid accumulation, and morphology changes, which were reversed by roxadustat. Roxadustat-reduced fatty liver was mainly contributed by the reducing sterol-responsive element-binding protein 1c (SREBP1c) pathway, and enhancing β-oxidation through inducing peroxisome proliferator-activated receptor α (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) expression. Long-term alcohol treatment induced the infiltration of monocytes/macrophages to hepatocytes, as well as inflammatory cytokine expression, which were also blocked by roxadustat. Moreover, roxadustat attenuated alcohol caused ROS generation in the liver of those two mouse models mainly by reducing cytochrome P450 2E1 (CYP2E1) and enhancing superoxidase dismutase 1 (SOD1) expression. In vitro, we found roxadustat reduced inflammation and lipid accumulation mainly via HIF-1α regulation. Taken together, our study demonstrates that activation of HIF-1α can ameliorate ALD, which is contributed by reduced hepatic lipid synthesis, inflammation, and oxidative stress. This study suggested that roxadustat could be a potential drug for ALD treatment.
Collapse
Affiliation(s)
- Yongyao Gao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaomeng Jiang
- Zhejiang Jianfeng Pharmaceutical Co., Ltd., Jinhua, China
| | - Daigang Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wentong Guo
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Dandan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ying Peng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hong Jiang
- Zhejiang Jianfeng Pharmaceutical Co., Ltd., Jinhua, China
| | - Cunyuan Shi
- Zhejiang Jianfeng Pharmaceutical Co., Ltd., Jinhua, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
9
|
Chen Y, Capello M, Rios Perez MV, Vykoukal JV, Roife D, Kang Y, Prakash LR, Katayama H, Irajizad E, Fleury A, Ferri-Borgogno S, Baluya DL, Dennison JB, Do KA, Fiehn O, Maitra A, Wang H, Chiao PJ, Katz MHG, Fleming JB, Hanash SM, Fahrmann JF. CES2 sustains HNF4α expression to promote pancreatic adenocarcinoma progression through an epoxide hydrolase-dependent regulatory loop. Mol Metab 2022; 56:101426. [PMID: 34971802 PMCID: PMC8841288 DOI: 10.1016/j.molmet.2021.101426] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Intra-tumoral expression of the serine hydrolase carboxylesterase 2 (CES2) contributes to the activation of the pro-drug irinotecan in pancreatic ductal adenocarcinoma (PDAC). Given other potential roles of CES2, we assessed its regulation, downstream effects, and contribution to tumor development in PDAC. METHODS Association between the mRNA expression of CES2 in pancreatic tumors and overall survival was assessed using The Cancer Genome Atlas. Cell viability, clonogenic, and anchorage-independent growth assays as well as an orthotopic mouse model of PDAC were used to evaluate the biological relevance of CES2 in pancreatic cancer. CES2-driven metabolic changes were determined by untargeted and targeted metabolomic analyses. RESULTS Elevated tumoral CES2 mRNA expression was a statistically significant predictor of poor overall survival in PDAC patients. Knockdown of CES2 in PDAC cells reduced cell viability, clonogenic capacity, and anchorage-independent growth in vitro and attenuated tumor growth in an orthotopic mouse model of PDAC. Mechanistically, CES2 was found to promote the catabolism of phospholipids resulting in HNF4α activation through a soluble epoxide hydrolase (sEH)-dependent pathway. Targeting of CES2 via siRNA or small molecule inhibitors attenuated HNF4α protein expression and reduced gene expression of classical/progenitor markers and increased basal-like markers. Targeting of the CES2-sEH-HNF4α axis using small molecule inhibitors of CES2 or sEH reduced cell viability. CONCLUSIONS We establish a novel regulatory loop between CES2 and HNF4α to sustain the progenitor subtype and promote PDAC progression and highlight the potential utility of CES2 or sEH inhibitors for the treatment of PDAC as part of non-irinotecan-containing regimens.
Collapse
Affiliation(s)
- Yihui Chen
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michela Capello
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayrim V Rios Perez
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jody V Vykoukal
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Roife
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ya'an Kang
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura R Prakash
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ehsan Irajizad
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alia Fleury
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sammy Ferri-Borgogno
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dodge L Baluya
- Departments of Center for Radiation Oncology Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer B Dennison
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim-Anh Do
- Departments of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Oliver Fiehn
- UC Davis Genome Center - Metabolomics, University of California, Davis, 95616, CA, USA
| | - Anirban Maitra
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA; Departments of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Departments of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul J Chiao
- Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew H G Katz
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Samir M Hanash
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johannes F Fahrmann
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Collins JM, Lu R, Wang X, Zhu HJ, Wang D. Transcriptional Regulation of Carboxylesterase 1 in Human Liver: Role of the Nuclear Receptor Subfamily 1 Group H Member 3 and Its Splice Isoforms. Drug Metab Dispos 2022; 50:43-48. [PMID: 34697082 PMCID: PMC8969197 DOI: 10.1124/dmd.121.000649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Carboxylesterase 1 (CES1) is the predominant carboxylesterase in the human liver, involved in metabolism of both xenobiotics and endogenous substrates. Genetic or epigenetic factors that alter CES1 activity or expression are associated with changes in drug response, lipid, and glucose homeostasis. However, the transcriptional regulation of CES1 in the human liver remains uncertain. By applying both the random forest and Sobol's Sensitivity Indices (SSI) to analyze existing liver RNA expression microarray data (GSE9588), we identified nuclear receptor subfamily 1 group H member 3 (NR1H3) liver X receptor (LXR)α as a key factor regulating constitutive CES1 expression. This model prediction was validated using small interfering RNA (siRNA) knockdown and CRISPR-mediated transcriptional activation of NR1H3 in Huh7 and HepG2 cells. We found that NR1H3's activation of CES1 is splice isoform-specific, namely that increased expression of the NR1H3-211 isoform increased CES1 expression whereas NR1H3-201 did not. Also, in human liver samples, expression of NR1H3-211 and CES1 are correlated, whereas NR1H3-201 and CES1 are not. This trend also occurs during differentiation of induced pluripotent stem cells (iPSCs) to hepatocytes, where only expression of the NR1H3-211 isoform parallels expression of CES1 Moreover, we found that treatment with the NR1H3 agonist T0901317 in HepG2 cells had no effect on CES1 expression. Overall, our results demonstrate a key role of NR1H3 in maintaining the constitutive expression of CES1 in the human liver. Furthermore, our results support that the effect of NR1H3 is splice isoform-specific and appears to be ligand independent. SIGNIFICANCE STATEMENT: Despite the central role of carboxylesterase 1 (CES1) in metabolism of numerous medications, little is known about its transcriptional regulation. This study identifies nuclear receptor subfamily 1 group H member 3 as a key regulator of constitutive CES1 expression and therefore is a potential target for future studies to understand interperson variabilities in CES1 activity and drug metabolism.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Rong Lu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Xinwen Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Hao-Jie Zhu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| |
Collapse
|
11
|
Sasikumar R, Vivek K, Jaiswal AK. Effect of spray drying conditions on the physical characteristics, amino acid profile, and bioactivity of blood fruit (
Haematocarpus
validus
Bakh.F. Ex Forman) seed protein isolate. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Raju Sasikumar
- Department of Agribusiness Management and Food Technology North Eastern Hill University (NEHU), Tura Campus Tura, West Garo Hills India
| | | | - Amit K. Jaiswal
- School of Food Science and Environmental Health College of Sciences and HealthTechnological University Dublin ‐ City Campus Grangegorman, Dublin Ireland
- Environmental Sustainability and Health Institute Technological University Dublin City Campus Grangegorman, Dublin Ireland
| |
Collapse
|
12
|
MANN SC, MORROW M, COYLE RP, COLEMAN SS, SADERUP A, ZHENG JH, ELLISON L, BUSHMAN LR, KISER JJ, MAWHINNEY S, ANDERSON PL, CASTILLO-MANCILLA JR. Lower Cumulative Antiretroviral Exposure in People Living With HIV and Diabetes Mellitus. J Acquir Immune Defic Syndr 2020; 85:483-488. [PMID: 33136749 PMCID: PMC7756101 DOI: 10.1097/qai.0000000000002460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE People living with HIV (PLWH) are living longer and developing more non-AIDS comorbidities, which negatively impact antiretroviral therapy (ART) adherence. Tenofovir diphosphate (TFV-DP) in dried blood spots (DBS) is a novel pharmacologic measure of cumulative ART adherence that is predictive of viral suppression and future viremia. However, the relationship between non-AIDS comorbidities and this adherence measure is unknown. We aimed to evaluate the association between 3 non-AIDS comorbidities (diabetes mellitus (DM), hypertension, and hyperlipidemia) and TFV-DP in DBS in PLWH. METHODS Blood for TFV-DP in DBS and HIV viral load was prospectively collected from PLWH on tenofovir disoproxil fumarate for up to 3 times over 48 weeks. Non-AIDS comorbidities were recorded. Mixed effect multivariable linear regression models were used to estimate the changes in TFV-DP concentrations in DBS according to the presence of comorbidities and to estimate the percent differences in TFV-DP concentrations between these groups. RESULTS A total of 1144 person-visits derived from 523 participants with available concentrations of TFV-DP in DBS were included in this analysis. In univariate analysis, no significant association between non-AIDS comorbidities (categorized as having 0, 1, 2, or 3 comorbidities) and the concentrations of TFV-DP in DBS was observed (P = 0.40). Participants who had DM had 25% lower (95% confidence interval: -36% to -12%; P < 0.001) TFV-DP in DBS than participants without DM after adjusting for age, gender, race, body mass index, estimated glomerular filtration rate, CD4 T-cell count, hematocrit, ART class, patient-level medication regimen complexity index, and 3-month self-reported adherence. CONCLUSIONS Diabetic PLWH have lower concentrations of TFV-DP in DBS compared with those without DM. Further research is required to identify the clinical implications and biological mechanisms underlying these findings.
Collapse
Affiliation(s)
- Sarah C. MANN
- Division of Infectious Diseases, School of Medicine, University of Colorado-AMC, Aurora, Colorado, United States
| | - Mary MORROW
- Department of Biostatistics and Bioinformatics, Colorado School of Public Health, Aurora, Colorado, United States
| | - Ryan P. COYLE
- Division of Infectious Diseases, School of Medicine, University of Colorado-AMC, Aurora, Colorado, United States
| | | | - Austin SADERUP
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-AMC, Aurora, Colorado, United States
| | - Jia-Hua ZHENG
- Colorado Antiviral Pharmacology Laboratory and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-AMC, Aurora, Colorado, United States
| | - Lucas ELLISON
- Colorado Antiviral Pharmacology Laboratory and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-AMC, Aurora, Colorado, United States
| | - Lane R. BUSHMAN
- Colorado Antiviral Pharmacology Laboratory and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-AMC, Aurora, Colorado, United States
| | - Jennifer J. KISER
- Colorado Antiviral Pharmacology Laboratory and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-AMC, Aurora, Colorado, United States
| | - Samantha MAWHINNEY
- Department of Biostatistics and Bioinformatics, Colorado School of Public Health, Aurora, Colorado, United States
| | - Peter L. ANDERSON
- Colorado Antiviral Pharmacology Laboratory and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-AMC, Aurora, Colorado, United States
| | - Jose R. CASTILLO-MANCILLA
- Division of Infectious Diseases, School of Medicine, University of Colorado-AMC, Aurora, Colorado, United States
| |
Collapse
|
13
|
Lan L, Ren X, Yang J, Liu D, Zhang C. Detection techniques of carboxylesterase activity: An update review. Bioorg Chem 2020; 94:103388. [DOI: 10.1016/j.bioorg.2019.103388] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
|
14
|
Shen Y, Shi Z, Yan B. Carboxylesterases: Pharmacological Inhibition Regulated Expression and Transcriptional Involvement of Nuclear Receptors and other Transcription Factors. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Yuanjun Shen
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh Department of Medicine, Pittsburgh, PA 15261, USA
| | - Zhanquan Shi
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
15
|
Yang X, Zhang X, Liu Y, Xi T, Xiong J. Insulin transcriptionally down-regulates carboxylesterases through pregnane X receptor in an Akt-dependent manner. Toxicology 2019; 422:60-68. [DOI: 10.1016/j.tox.2019.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/21/2019] [Accepted: 04/16/2019] [Indexed: 12/28/2022]
|
16
|
Yao H, Bai R, Ren T, Wang Y, Gu J, Guo Y. Enhanced Platelet Response to Clopidogrel in Zucker Diabetic Fatty Rats due to Impaired Clopidogrel Inactivation by Carboxylesterase 1 and Increased Exposure to Active Metabolite. Drug Metab Dispos 2019; 47:794-801. [PMID: 31092394 DOI: 10.1124/dmd.118.085126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/07/2019] [Indexed: 02/01/2023] Open
Abstract
Clopidogrel (Clop), a thienopyridine antiplatelet prodrug, is metabolized by cytochrome P450s (CYPs) to an active metabolite, Clop-AM, and hydrolyzed by carboxylesterase (CES)1 to the inactive Clop-acid. Patients with type 2 diabetes (T2DM) tend to have a poor response to Clop due to reduced generation of Clop-AM. Whether a similar response occurs in the Zucker diabetic fatty (ZDF) rat, a commonly used animal model of T2DM, has not been explored. In this work, we compared ZDF and control rats for hepatic CES1- and CYP-mediated Clop metabolism; pharmacokinetics of Clop, Clop-AM, and Clop-acid; and the antiplatelet efficacy of Clop. In contrast to clinical findings, Clop-treated ZDF rats displayed significantly less (50%) maximum platelet aggregation at 4 hours than control rats; the enhanced efficacy was accompanied by higher formation of Clop-AM and lower formation of Clop-acid. In vitro studies showed that hepatic levels of CES1 protein and activity and Ces1e mRNA were significantly lower in ZDF than in control rats, as were the mRNA levels of CYP2B1/2, CYP2C11, and CYP3A2, and levels of CYP2B6-, CYP2C19-, and CYP3A4-related proteins and enzymatic activities in liver microsomes of ZDF rats. Interestingly, liver microsomes of ZDF rats produced higher levels of Clop-AM than that of control rats despite their lower CYP levels, although the addition of fluoride ion, an esterase inhibitor, enhanced Clop-AM formation in control rats more than in ZDF rats. These results suggest that the reduction in CES1-based Clop inactivation indirectly enhances Clop efficacy in ZDF rats by making more Clop available for CYP-mediated Clop-AM formation.
Collapse
Affiliation(s)
- Hongwei Yao
- School of Life Sciences, Jilin University, Changchun, China
| | - Ruifeng Bai
- School of Life Sciences, Jilin University, Changchun, China
| | - Tianming Ren
- School of Life Sciences, Jilin University, Changchun, China
| | - Yani Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Jingkai Gu
- School of Life Sciences, Jilin University, Changchun, China
| | - Yingjie Guo
- School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
17
|
Chen F, Li DY, Zhang B, Sun JY, Sun F, Ji X, Qiu JC, Parker RB, Laizure SC, Xu J. Alterations of drug-metabolizing enzymes and transporters under diabetic conditions: what is the potential clinical significance? Drug Metab Rev 2018; 50:369-397. [PMID: 30221555 DOI: 10.1080/03602532.2018.1497645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - De-Yi Li
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Zhang
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jie-Yu Sun
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Sun
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Ji
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Robert B. Parker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S. Casey Laizure
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jing Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Wu L, Hafiz MZ, Guan Y, He S, Xiong J, Liu W, Yan B, Li X, Yang J. 17β-estradiol suppresses carboxylesterases by activating c-Jun/AP-1 pathway in primary human and mouse hepatocytes. Eur J Pharmacol 2018; 819:98-107. [DOI: 10.1016/j.ejphar.2017.11.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
|
19
|
Marczak MM, Yan B. Circadian rhythmicity: A functional connection between differentiated embryonic chondrocyte-1 (DEC1) and small heterodimer partner (SHP). Arch Biochem Biophys 2017; 631:11-18. [PMID: 28797635 DOI: 10.1016/j.abb.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/04/2017] [Accepted: 08/05/2017] [Indexed: 12/26/2022]
Abstract
Circadian rhythm misalignment has been increasingly recognized to pose health risk for a wide range of diseases, particularly metabolic disorders. The liver maintains metabolic homeostasis and expresses many circadian genes, such as differentiated embryo chondrocyte-1 (DEC1) and small heterodimer partner (SHP). DEC1 is established to repress transcription through E-box elements, and SHP belongs to the superfamily of nuclear receptors and has multiple E-box elements in its promoter. Importantly, DEC1 and SHP are inversely oscillated. This study was performed to test the hypothesis that the SHP gene is a target gene of DEC1. Cotransfection demonstrated that DEC1 repressed the SHP promoter and attenuated the transactivation of the classic circadian activator complex of Clock/Bmal1. Site-directed mutagenesis, electrophoretic mobility shift assay and chromatin immunoprecipitation established that the repression was achieved through the E-box in the proximal promoter. Transfection of DEC1 suppressed the expression of SHP. In circadian-inducing cells, the epileptic agent valproate inversely altered the expression of DEC1 and SHP. Both DEC1 and SHP are involved in energy balance and valproate is known to induce hepatic steatosis. Our findings collectively establish that DEC1 participates in the negative loop of SHP oscillating expression with potential implications in metabolic homeostasis.
Collapse
Affiliation(s)
- Marek M Marczak
- Department of Biomedical and Pharmaceutical Sciences, Center for Integrated Drug Development, University of Rhode Island, Kingston, RI 02881, United States
| | - Bingfang Yan
- Department of Biomedical and Pharmaceutical Sciences, Center for Integrated Drug Development, University of Rhode Island, Kingston, RI 02881, United States.
| |
Collapse
|
20
|
Pedersen BA, Wang W, Taylor JF, Khattab OS, Chen YH, Edwards RA, Yazdi PG, Wang PH. Hepatic proteomic analysis revealed altered metabolic pathways in insulin resistant Akt1(+/-)/Akt2(-/-) mice. Metabolism 2015; 64:1694-703. [PMID: 26455965 PMCID: PMC4641788 DOI: 10.1016/j.metabol.2015.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/19/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of this study was to identify liver proteome changes in a mouse model of severe insulin resistance and markedly decreased leptin levels. METHODS Two-dimensional differential gel electrophoresis was utilized to identify liver proteome changes in AKT1(+/-)/AKT2(-/-) mice. Proteins with altered levels were identified with tandem mass spectrometry. Ingenuity Pathway Analysis was performed for the interpretation of the biological significance of the observed proteomic changes. RESULTS 11 proteins were identified from 2 biological replicates to be differentially expressed by a ratio of at least 1.3 between age-matched insulin resistant (Akt1(+/-)/Akt2(-/-)) and wild type mice. Albumin and mitochondrial ornithine aminotransferase were detected from multiple spots, which suggest post-translational modifications. Enzymes of the urea cycle were common members of top regulated pathways. CONCLUSION Our results help to unveil the regulation of the liver proteome underlying altered metabolism in an animal model of severe insulin resistance.
Collapse
Affiliation(s)
- Brian A Pedersen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Weiwen Wang
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL, 33136
| | - Jared F Taylor
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Omar S Khattab
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
| | - Yu-Han Chen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Robert A Edwards
- Department of Pathology, University of California at Irvine, Irvine, CA 92697, USA
| | - Puya G Yazdi
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Ping H Wang
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|