1
|
CYP1B1 C4326G polymorphism and susceptibility to cervical cancer in Chinese Han women. Tumour Biol 2013; 34:3561-7. [DOI: 10.1007/s13277-013-0935-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022] Open
|
2
|
|
3
|
Sato K, Yamazoe Y. Unimolecular and Bimolecular Binding System for the Prediction of CYP2D6-Mediated Metabolism. Drug Metab Dispos 2011; 40:486-96. [DOI: 10.1124/dmd.111.043125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Ramesh M, Bharatam PV. CYP isoform specificity toward drug metabolism: analysis using common feature hypothesis. J Mol Model 2011; 18:709-20. [DOI: 10.1007/s00894-011-1105-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/20/2011] [Indexed: 02/02/2023]
|
5
|
Schyman P, Usharani D, Wang Y, Shaik S. Brain chemistry: how does P450 catalyze the O-demethylation reaction of 5-methoxytryptamine to yield serotonin? J Phys Chem B 2010; 114:7078-89. [PMID: 20405876 DOI: 10.1021/jp1008994] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory has been applied to elucidate the mechanism of the O-demethylation reaction that generates serotonin from 5-methoxytryptamine (5-MT); a process that is efficiently catalyzed by P450 CYP2D6. Two substrates, the neutral 5-MT and the protonated 5-MTH(+), were used to probe the reactivity of CYP2D6 compound I. Notably, the H-abstraction process is found to be slightly more facile for 5-MT. However, our DFT augmented by docking results show that the amino acid Glu216 in the active site holds the NH(3)(+) tail of the 5-MTH(+) substrate in an upright conformation and thereby controls the regioselectivity of the bond activation. Thus, the substrate protonation serves an important function in maximizing the yield of serotonin. This finding is in accord with experimental conclusions that 5-MTH(+) serves as the substrate for the CYP2D6 enzyme. The study further shows that the H-abstraction follows two-state reactivity (TSR), whereas the rebound path may involve more states due to the appearance of both Fe(IV) and Fe(III) electromers during the reaction of 5-MTH(+).
Collapse
Affiliation(s)
- Patric Schyman
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91940 Jerusalem, Israel
| | | | | | | |
Collapse
|
6
|
El-Shennawy GA, Elbialy AAA, Isamil AE, El Behery MM. Is genetic polymorphism of ER-α, CYP1A1, and CYP1B1 a risk factor for uterine leiomyoma? Arch Gynecol Obstet 2010; 283:1313-8. [PMID: 20559649 DOI: 10.1007/s00404-010-1550-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/01/2010] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Uterine leiomyoma is the most common benign smooth muscle tumor. OBJECTIVE This study was carried out to evaluate the association of ER-α, CYP1A1, and CYP1B1 polymorphisms with uterine leiomyoma in Egyptian women. METHODS The study population consisted of 160 patients with uterine leiomyoma and 100 healthy women as control. The genetic polymorphisms for ER-α MSP1 exon 1, CYP1B1 Leu432Val, and CYP1A1 Ile462Val were analyzed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing methods. RESULTS There were no statistically significant differences in the overall associations between the ER-α exon I CT genotypes and uterine leiomyoma (P = 0.47). However, an elevated risk of uterine leiomyoma was observed among women with the CYP1A1 Ile462Val AG genotype (P = 0.07) and CYP1B1 Leu 432Val C/C genotype (P = 0.08). CONCLUSION We concluded that the carriage of CYP1A1 Ile462Val AG and CYP1B1 Leu 432Val CC genotypes predict the susceptibility to leiomyoma in Egyptian women and they are likely to contribute in the pathogenesis of leiomyoma.
Collapse
Affiliation(s)
- Gehan A El-Shennawy
- Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | | | | |
Collapse
|
7
|
Sliwinski T, Sitarek P, Stetkiewicz T, Sobczuk A, Blasiak J. Polymorphism of theERαandCYP1B1genes in endometrial cancer in a Polish subpopulation. J Obstet Gynaecol Res 2010; 36:311-7. [DOI: 10.1111/j.1447-0756.2009.01143.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Wang B, Yang LP, Zhang XZ, Huang SQ, Bartlam M, Zhou SF. New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme. Drug Metab Rev 2010; 41:573-643. [PMID: 19645588 DOI: 10.1080/03602530903118729] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To date, the crystal structures of at least 12 human CYPs (1A2, 2A6, 2A13, 2C8, 2C9, 2D6, 2E1, 2R1, 3A4, 7A1, 8A1, and 46A1) have been determined. CYP2D6 accounts for only a small percentage of all hepatic CYPs (< 2%), but it metabolizes approximately 25% of clinically used drugs with significant polymorphisms. CYP2D6 also metabolizes procarcinogens and neurotoxins, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1,2,3,4-tetrahydroquinoline, and indolealkylamines. Moreover, the enzyme utilizes hydroxytryptamines and neurosteroids as endogenous substrates. Typical CYP2D6 substrates are usually lipophilic bases with an aromatic ring and a nitrogen atom, which can be protonated at physiological pH. Substrate binding is generally followed by oxidation (5-7 A) from the proposed nitrogen-Asp301 interaction. A number of homology models have been constructed to explore the structural features of CYP2D6, while antibody studies also provide useful structural information. Site-directed mutagenesis studies have demonstrated that Glu216, Asp301, Phe120, Phe481, and Phe483 play important roles in determining the binding of ligands to CYP2D6. The structure of human CYP2D6 has been recently determined and shows the characteristic CYP fold observed for other members of the CYP superfamily. The lengths and orientations of the individual secondary structural elements in the CYP2D6 structure are similar to those seen in other human CYP2 members, such as CYP2C9 and 2C8. The 2D6 structure has a well-defined active-site cavity located above the heme group with a volume of approximately 540 A(3), which is larger than equivalent cavities in CYP2A6 (260 A(3)), 1A2 (375 A(3)), and 2E1 (190 A(3)), but smaller than those in CYP3A4 (1385 A(3)) and 2C8 (1438 A(3)). Further studies are required to delineate the molecular mechanisms involved in CYP2D6 ligand interactions and their implications for drug development and clinical practice.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pediatrics, Guangdong Women and Children's Hospital, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Cytochrome P450 (CYP450) enzymes are predominantly involved in the Phase I metabolism of xenobiotics. Metabolic inhibition and induction can give rise to clinically important drug-drug interactions. Metabolic stability is a prerequisite for sustaining the therapeutically relevant concentrations, and very often drug candidates are sacrificed due to poor metabolic profiles. Computational tools such as quantitative structure-activity relationships are widely used to study different metabolic end points successfully to accelerate the drug discovery process. There are a lot of computational studies on clinically important CYPs already reported in recent years. But other clinically significant families are to yet be explored computationally. Powerfulness of quantitative structure-activity relationship will drive computational chemists to develop new potent and selective inhibitors of different classes of CYPs for the treatment of different diseases with least drug-drug interactions. Furthermore, there is a need to enhance the accuracy, interpretability and confidence in the computational models in accelerating the drug discovery pathways.
Collapse
Affiliation(s)
- Kunal Roy
- Jadavpur University, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Drug Theoretics and Cheminformatics Lab, Kolkata 700 032, India.
| | | |
Collapse
|
10
|
Understanding CYP2D6 interactions. Drug Discov Today 2009; 14:964-72. [PMID: 19638317 DOI: 10.1016/j.drudis.2009.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 11/20/2022]
Abstract
Owing to the polymorphic nature of CYP2D6, clinically significant issues can arise when drugs rely on that enzyme either for clearance, or metabolism to an active metabolite. Available screening methods to determine if the compound is likely to cause drug-drug interactions, or is likely to be a victim of inhibition of CYP2D6 by other compounds will be described. Computational models and examples will be given on strategies to design out the CYP2D6 liabilities for both heme-binding compounds and non-heme-binding compounds.
Collapse
|
11
|
Ringsted T, Nikolov N, Jensen GE, Wedebye EB, Niemelä J. QSAR models for P450 (2D6) substrate activity. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2009; 20:309-325. [PMID: 19544194 DOI: 10.1080/10629360902949195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human Cytochrome P450 (CYP) is a large group of enzymes that possess an essential function in metabolising different exogenous and endogenous compounds. Humans have more than 50 different genes encoding CYP enzymes, among these a gene encoding for the CYP isoenzyme 2D6, a CYP able to metabolise drugs and other chemicals. A training set of 747 chemicals primarily based on in vivo human data for the CYP isoenzyme 2D6 was collected from the literature. QSAR models focusing on substrate/non-substrate activity were constructed by the use of MultiCASE, Leadscope and MDL quantitative structure-activity relationship (QSAR) modelling systems. They cross validated (leave-groups-out) with concordances of 71%, 81% and 82%, respectively. Discrete organic European Inventory of Existing Commercial Chemical Substances (EINECS) chemicals were screened to predict an approximate percentage of CYP 2D6 substrates. These chemicals are potentially present in the environment. The biological importance of the CYP 2D6 and the use of the software mentioned above were discussed.
Collapse
Affiliation(s)
- T Ringsted
- Department of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, DK-2860 Søborg, Denmark
| | | | | | | | | |
Collapse
|
12
|
Costache AD, Trawick D, Bohl D, Sem DS. AmineDB: Large scale docking of amines with CYP2D6 and scoring for druglike properties—towards defining the scope of the chemical defense against foreign amines in humans. Xenobiotica 2008; 37:221-45. [PMID: 17624022 DOI: 10.1080/00498250601089162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Organic amines are prevalent in nature and in drugs, especially the psychotherapeutic agents, and a major defense against potentially toxic amines is metabolism by CYP2D6. In order to understand better the constraints on the broad specificity of CYP2D6, 4207 amines were docked into the binding site of this enzyme. Docking poses were found predominantly with the positively charged amino groups closest to Asp301, with aromatic rings close to Phe120 and sometimes extending as far as Phe483. Organic amines that bind best to CYP2D6 tend to have larger molecular weights and logP values. Organic amines that score highly as being druglike, based on a Bayesian model constructed using a 5223-drug training set, are least likely to bind to CYP2D6. This correlation suggests that the set of known drugs, which have been largely designed or selected to avoid high affinity CYP binding, partially encodes the binding site preferences (or rather anti-preferences) of CYP2D6. Finally, in order to benchmark our docking and druglike scoring procedures, an analysis of psychotherapeutic agents is presented. All of these data, including the 4207 AM1-optimized ligand structures in proper ionization states, docking poses and scores, Druglike Scores and Lipinski properties, can be viewed from an online database, the AmineDB.
Collapse
Affiliation(s)
- A D Costache
- Chemical Proteomics Facility at Marquette, Department of Chemistry, P.O. Box 1881, Marquette University, Milwaukee, Wisconsin 53201, USA
| | | | | | | |
Collapse
|
13
|
Insights into drug metabolism by cytochromes P450 from modelling studies of CYP2D6-drug interactions. Br J Pharmacol 2007; 153 Suppl 1:S82-9. [PMID: 18026129 DOI: 10.1038/sj.bjp.0707570] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The cytochromes P450 (CYPs) comprise a vast superfamily of enzymes found in virtually all life forms. In mammals, xenobiotic metabolizing CYPs provide crucial protection from the effects of exposure to a wide variety of chemicals, including environmental toxins and therapeutic drugs. Ideally, the information on the possible metabolism by CYPs required during drug development would be obtained from crystal structures of all the CYPs of interest. For some years only crystal structures of distantly related bacterial CYPs were available and homology modelling techniques were used to bridge the gap and produce structural models of human CYPs, and thereby obtain useful functional information. A significant step forward in the reliability of these models came seven years ago with the first crystal structure of a mammalian CYP, rabbit CYP2C5, followed by the structures of six human enzymes, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6 and CYP3A4, and a second rabbit enzyme, CYP2B4. In this review we describe as a case study the evolution of a CYP2D6 model, leading to the validation of the model as an in silico tool for predicting binding and metabolism. This work has led directly to the successful design of CYP2D6 mutants with novel activity-including creating a testosterone hydroxylase, converting quinidine from inhibitor to substrate, creating a diclofenac hydroxylase and creating a dextromethorphan O-demethylase. Our modelling-derived hypothesis-driven integrated interdisciplinary studies have given key insight into the molecular determinants of CYP2D6 and other important drug metabolizing enzymes.
Collapse
|
14
|
Kamimura H. Genetic polymorphism of cytochrome P450s in beagles: possible influence of CYP1A2 deficiency on toxicological evaluations. Arch Toxicol 2006; 80:732-8. [PMID: 16639591 DOI: 10.1007/s00204-006-0100-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 03/22/2006] [Indexed: 01/22/2023]
Abstract
A number of human cytochrome P450 (CYP) isozymes have been shown to be genetically polymorphic, and extensive pharmaceutical studies have been conducted to characterize the clinical relevance of the polymorphism. Although the beagle is extensively used in the safety assessment studies of new drug candidates and agricultural chemicals, only a limited number of studies have been reported on the significance of the CYP isozyme polymorphism in dogs. Recently, a single nucleotide polymorphism that results in a deficiency of canine CYP1A2 was discovered. This deficiency was shown to significantly alter the pharmacokinetic behavior of two drugs, and can be associated with a large inter-individual difference in the kinetic behavior of a third. In this article, the five genetically polymorphic canine CYP isozymes that have been reported so far are reviewed, and the altered pharmacokinetics of the drugs concerned are described. Although little information on toxicological relevance has been reported, it is possible that the modified pharmacokinetics may also cause altered toxic responses as well. This phenomenon may occur only with the types of chemicals that are eliminated mainly through polymorphic-enzyme mediated metabolism. However, it is recommended that genetically pure beagles are used for the toxicity studies and safety assessment of new chemical entities in order to reduce the potential inter-individual differences.
Collapse
Affiliation(s)
- H Kamimura
- Drug Metabolism Research Laboratories, Astellas Pharma Inc., Azusawa 1-1-8, Itabashi-ku, Tokyo, Japan.
| |
Collapse
|
15
|
Hlavica P. Functional interaction of nitrogenous organic bases with cytochrome P450: A critical assessment and update of substrate features and predicted key active-site elements steering the access, binding, and orientation of amines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:645-70. [PMID: 16503427 DOI: 10.1016/j.bbapap.2006.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/12/2006] [Accepted: 01/12/2006] [Indexed: 02/02/2023]
Abstract
The widespread use of nitrogenous organic bases as environmental chemicals, food additives, and clinically important drugs necessitates precise knowledge about the molecular principles governing biotransformation of this category of substrates. In this regard, analysis of the topological background of complex formation between amines and P450s, acting as major catalysts in C- and N-oxidative attack, is of paramount importance. Thus, progress in collaborative investigations, combining physico-chemical techniques with chemical-modification as well as genetic engineering experiments, enables substantiation of hypothetical work resulting from the design of pharmacophores or homology modelling of P450s. Based on a general, CYP2D6-related construct, the majority of prospective amine-docking residues was found to cluster near the distal heme face in the six known SRSs, made up by the highly variant helices B', F and G as well as the N-terminal portion of helix C and certain beta-structures. Most of the contact sites examined show a frequency of conservation < 20%, hinting at the requirement of some degree of conformational versatility, while a limited number of amino acids exhibiting a higher level of conservation reside close to the heme core. Some key determinants may have a dual role in amine binding and/or maintenance of protein integrity. Importantly, a series of non-SRS elements are likely to be operative via long-range effects. While hydrophobic mechanisms appear to dominate orientation of the nitrogenous compounds toward the iron-oxene species, polar residues seem to foster binding events through H-bonding or salt-bridge formation. Careful uncovering of structure-function relationships in amine-enzyme association together with recently developed unsupervised machine learning approaches will be helpful in both tailoring of novel amine-type drugs and early elimination of potentially toxic or mutagenic candidates. Also, chimeragenesis might serve in the construction of more efficient P450s for activation of amine drugs and/or bioremediation.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Goethestrasse 33, D-80336 München, Germany.
| |
Collapse
|
16
|
Dietrich M, Grundmann L, Kurr K, Valinotto L, Saussele T, Schmid RD, Lange S. Recombinant Production of Human Microsomal Cytochrome P450 2D6 in the Methylotrophic Yeast Pichia pastoris. Chembiochem 2005; 6:2014-22. [PMID: 16222729 DOI: 10.1002/cbic.200500200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Microsomal cytochrome P450 monooxygenases of groups 1-3 are mainly expressed in the liver and play a crucial role in phase 1 reactions of xenobiotic metabolism. The cDNAs encoding human CYP2D6 and human NADPH-P450 oxidoreductase (CPR) were transformed into the methylotrophic yeast Pichia pastoris and expressed with control of the methanol-inducible AOX1 promoter. The determined molecular weights of the recombinant CYP2D6 and CPR closely matched the calculated values of 55.8 and 76.6 kDa. CPR activity was detected by conversion of cytochrome c by using isolated microsomes. Nearly all of the recombinant CYP was composed of the active holoenzyme, as confirmed by reduced CO difference spectra, which showed a single peak at 450 nm. Only by coexpression of human CPR and CYP was CYP2D6 activity obtained. Microsomes containing human CPR and CYP2D6 converted different substrates, such as 3-cyano-7-ethoxycoumarin, parathion and dextrometorphan. The kinetic parameters of dextrometorphan conversion closely matched those of CYP2D6 from other recombinant expression systems and human microsomes. The endogenous NADPH-P450 oxidoreductase of Pichia pastoris seems to be incompatible with human CYP2D6, as expression of CYP2D6 without human CPR did not result in any CYP activity. These recombinant strains provide a novel, easy-to-handle and cheap source for the biochemical characterisation of single microsomal cytochromes, as well as their allelic variants.
Collapse
Affiliation(s)
- Matthias Dietrich
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
de Graaf C, Vermeulen NPE, Feenstra KA. Cytochrome P450 in Silico: An Integrative Modeling Approach. J Med Chem 2005; 48:2725-55. [PMID: 15828810 DOI: 10.1021/jm040180d] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chris de Graaf
- Leiden/Amsterdam Center for Drug Research, Division of Molecular Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
18
|
Kemp CA, Maréchal JD, Sutcliffe MJ. Progress in cytochrome P450 active site modeling. Arch Biochem Biophys 2005; 433:361-8. [PMID: 15581592 DOI: 10.1016/j.abb.2004.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 08/12/2004] [Indexed: 11/17/2022]
Abstract
Models capable of predicting the possible involvement of cytochromes P450 in the metabolism of drugs or drug candidates are important tools in drug discovery and development. Ideally, functional information would be obtained from crystal structures of all the cytochromes P450 of interest. Initially, only crystal structures of distantly related bacterial cytochromes P450 were available-comparative modeling techniques were used to bridge the gap and produce structural models of human cytochromes P450, and thereby obtain some useful functional information. A significant step forward in the reliability of these models came four years ago with the first crystal structure of a mammalian cytochrome P450, rabbit CYP2C5, followed by the structures of two human enzymes, CYP2C8 and CYP2C9, and a second rabbit enzyme, CYP2B4. The evolution of a CYP2D6 model, leading to the validation of the model as an in silico tool for predicting binding and metabolism, is presented as a case study.
Collapse
Affiliation(s)
- Carol A Kemp
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK
| | | | | |
Collapse
|
19
|
Yu AM, Idle JR, Gonzalez FJ. Polymorphic cytochrome P450 2D6: humanized mouse model and endogenous substrates. Drug Metab Rev 2004; 36:243-77. [PMID: 15237854 DOI: 10.1081/dmr-120034000] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is the first well-characterized polymorphic phase I drug-metabolizing enzyme, and more than 80 allelic variants have been identified for the CYP2D6 gene, located on human chromosome 22q13.1. Human debrisoquine and sparteine metabolism is subdivided into two principal phenotypes--extensive metabolizer and poor metabolizer--that arise from variant CYP2D6 genotypes. It has been estimated that CYP2D6 is involved in the metabolism and disposition of more than 20% of prescribed drugs, and most of them act in the central nervous system or on the heart. These drug substrates are characterized as organic bases containing one nitrogen atom with a distance about 5, 7, or 10 A from the oxidation site. Aspartic acid 301 and glutamic acid 216 were determined as the key acidic residues for substrate-enzyme binding through electrostatic interactions. CYP2D6 transgenic mice, generated using a lambda phage clone containing the complete wild-type CYP2D6 gene, exhibits enhanced metabolism and disposition of debrisoquine. This transgenic mouse line and its wild-type control are models for human extensive metabolizers and poor metabolizers, respectively, and would have broad application in the study of CYP2D6 polymorphism in drug discovery and development, and in clinical practice toward individualized drug therapy. Endogenous 5-methoxyindole- thylamines derived from 5-hydroxytryptamine were identified as high-affinity substrates of CYP2D6 that catalyzes their O-demethylations with high enzymatic capacity and specificity. Thus, polymorphic CYP2D6 may play an important role in the interconversions of these psychoactive tryptamines, including a crucial step in a serotonin-melatonin cycle.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
20
|
Sasaki M, Tanaka Y, Okino ST, Nomoto M, Yonezawa S, Nakagawa M, Fujimoto S, Sakuragi N, Dahiya R. Polymorphisms of the CYP1B1 gene as risk factors for human renal cell cancer. Clin Cancer Res 2004; 10:2015-9. [PMID: 15041720 DOI: 10.1158/1078-0432.ccr-03-0166] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE CYP1B1 activates various environmental carcinogens in human tissues, including renal tissues. We hypothesize that certain polymorphisms of the CYP1B1 gene are risk factors for renal cell cancer. The rationale for this hypothesis is that chemical procarcinogenic compounds require metabolic activation by oxidative enzymes such as CYP1B1 to be transformed into potentially carcinogenic forms. To test this hypothesis, we investigated the genotypic distributions of six different loci on the CYP1B1 gene and their association with renal cell cancer. EXPERIMENTAL DESIGN DNA from 211 cases of human renal cell cancer and 200 healthy controls was analyzed by sequence-specific PCR and direct DNA sequencing to determine the genotypic frequencies of six different polymorphic loci on the CYP1B1 gene. RESULTS The results of this study demonstrate that the frequencies of genotype 119T/T and genotype 432G/G were significantly higher in renal cell cancer patients compared with healthy normal controls. The relative risks were calculated as 3.01 and 2.17 for genotypes 119T/T and 432G/G, respectively, in renal cell carcinoma patients. These genotypic distributions were also significantly different between male and female patients. The relative risks of genotype 119T/T were calculated as 3.95 in males and 1.92 in females, and the relative risks of genotype 432G/G were calculated as 2.81 in males and 1.35 in females. CONCLUSIONS The present study demonstrates for the first time that the polymorphisms at codons 119 and 432 may be risk factors for renal cancer, especially in the male population.
Collapse
Affiliation(s)
- Masahiro Sasaki
- Department of Urology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Metabolic activation of estradiol has been shown to be a key factor in endometrial carcinogenesis. 4-hydroxy estrogens (CYP1B1 metabolites) received particular attention because of their causative role in malignant transformation of various organs including endometrium. CYP1B1 displays the highest level of expression in endometrium. 4-hydroxy estrogens can bind to DNA via their quinone metabolites and cause oxidative damage in endometrial cancer. Moreover, the 4-hydroxy estrogens bind to the estrogen receptor and have estrogenic effects on target tissues. Six polymorphisms of the CYP1B1 gene have been described of which four result in amino acid substitutions; 1-13C-->T, codon 48C-->G, codon 119G-->T, codon 432C-->G, codon 449T-->C and codon 453A-->G. The polymorphisms on exons 2 and 3 have significant effects on the catalytic function of CYP1B1. Polymorphisms on specific regions of CYP1B1 gene result in hyperactivation of the protein and can lead to a higher susceptibility in the incidence of various cancers. Thus, inherited alterations in CYP1B1 hydroxylation activity may be associated with significant changes in estrogen metabolism and, thereby, may possibly explain inter-individual differences in endometrial cancer risk associated with estrogen-mediated carcinogenesis.
Collapse
Affiliation(s)
- Masahiro Sasaki
- Department of Urology (112F), University of California-San Francisco and Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| | | | | | | | | |
Collapse
|
22
|
Suzuki A, Yasui-Furukori N, Mihara K, Kondo T, Furukori H, Inoue Y, Kaneko S, Otani K. Histamine H1-receptor antagonists, promethazine and homochlorcyclizine, increase the steady-state plasma concentrations of haloperidol and reduced haloperidol. Ther Drug Monit 2003; 25:192-6. [PMID: 12657913 DOI: 10.1097/00007691-200304000-00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of histamine H1-receptor antagonists, promethazine and homochlorcyclizine, both of which are inhibitors of CYP2D6, on the steady-state plasma concentrations (Css) of haloperidol and reduced haloperidol were studied in 23 schizophrenic inpatients receiving haloperidol, 12 to 36 mg/d, for 2 to 29 weeks. Promethazine, 150 mg/d, in 11 patients and homochlorcyclizine, 60 mg/d, in the others were coadministered for at least 1 week. Blood sampling was performed before and during coadministration of promethazine or homochlorcyclizine and 1 week after the discontinuation, together with clinical assessments by Brief Psychiatric Rating Scale (BPRS) and Udvalg for kliniske undersogelser (UKU) side effect rating scale. The Css (mean +/- SD) of haloperidol and reduced haloperidol during promethazine coadministration (27.6 +/- 24.9 and 8.6 +/- 13.2 ng/mL) were significantly higher than those before the coadministration (12.7 +/- 10.8 and 5.0 +/- 6.0 ng/mL; P < 0.01) or 1 week after the discontinuation (15.6 +/- 14.8 and 5.8 +/- 7.9 ng/mL; P < 0.05). The Css of haloperidol and reduced haloperidol during homochlorcyclizine coadministration (14.9 +/- 8.1 and 6.4 +/- 5.4 ng/mL) were also significantly higher than those before the coadministration (10.9 +/- 7.2 and 3.8 +/- 3.6 ng/mL; P < 0.01) or 1 week after the discontinuation (12.9 +/- 7.4 and 4.8 +/- 4.1 ng/mL; P < 0.05). No change in BPRS or UKU score was found throughout the study. Thus, the current study suggests that coadministration of clinical doses of promethazine and homochlorcyclizine increases the Css of haloperidol and reduced haloperidol via the inhibitory effects on the CYP2D6-catalyzed metabolism of haloperidol and reduced haloperidol.
Collapse
Affiliation(s)
- Akihito Suzuki
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sasaki M, Tanaka Y, Kaneuchi M, Sakuragi N, Dahiya R. Polymorphisms of estrogen receptor alpha gene in endometrial cancer. Biochem Biophys Res Commun 2002; 297:558-64. [PMID: 12270131 DOI: 10.1016/s0006-291x(02)02248-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is hypothesized that polymorphisms of estrogen receptor-alpha (ERalpha) gene are involved in endometrial cancer. To test this hypothesis, the genotype distributions of six different loci (codon 10 T-->C, codon 87 G-->C, codon 243 C-->T, codon 325 C-->G, codon 594 G-->A, and intron 1 C-->G) of the ERalpha gene were investigated and their association with endometrial cancer was determined. The DNA from 113 cases of human endometrial cancer was analyzed by sequence-specific polymerase chain reaction. The relative risk of variant genotype was calculated by comparison with 200 healthy controls. The frequency of variant genotype on codon 10 was significantly lower in endometrial cancer patients as compared to controls. Nine of 113 endometrial cancer patients (8.0%) showed genotype 10C/C compared to 27 of 200 healthy controls (13.5%). The relative risk of genotype 10C/C was calculated as 0.44, compared to wild-type. Forty-five of 113 endometrial cancer patients (39.8%) showed genotype T/C on codon 10 compared to 111 of 200 healthy controls (55.5%). The relative risk of genotype 10T/C was calculated as 0.67, compared to wild-type. The polymorphism on codon 87 was not detected both in endometrial cancer patients and in healthy control. Other loci, intron 1, and codons 243, 325, and 594, did not show a correlation with endometrial cancer. The frequency of alleles on codon 10 was also significantly lower in endometrial cancer patients as compared to controls. Sixty-three of 226 alleles (27.9%) of endometrial cancer patients showed allele C compared to 165 of 400 (41.2%) of healthy controls. The relative risk of allele 10C was calculated as 0.67, compared to wild-type. Other loci, intron 1, and codons 243, 325, and 594, did not show a difference between cancer patients and controls. All genotype and allelic distributions were in accordance with the Hardy-Weinberg equilibrium. The present study demonstrates for the first time a protective effect of 10C allele against endometrial cancer. Thus, inherited alterations in ERalpha may be associated with changes in estrogen metabolism and thereby may possibly explain inter-individual differences in disease incidences of endometrial cancer.
Collapse
Affiliation(s)
- Masahiro Sasaki
- Department of Urology, Urology Research Center (112F), University of California, San Francisco and Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | | | | | |
Collapse
|
24
|
Kirton SB, Kemp CA, Tomkinson NP, St-Gallay S, Sutcliffe MJ. Impact of incorporating the 2C5 crystal structure into comparative models of cytochrome P450 2D6. Proteins 2002; 49:216-31. [PMID: 12211002 DOI: 10.1002/prot.10192] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) metabolizes approximately one third of the drugs in current clinical use. To gain insight into its structure and function, we have produced four different sets of comparative models of 2D6: one based on the structures of P450s from four different microorganisms (P450 terp, P450 eryF, P450 cam, and P450 BM3), another on the only mammalian P450 (2C5) structure available, and the other two based on alternative amino acid sequence alignments of 2D6 with all five of these structures. Principal component analysis suggests that inclusion of the 2C5 crystal structure has a profound effect on the modeling process, altering the general topology of the active site, and that the models produced differ significantly from all of the templates. The four models of 2D6 were also used in conjunction with molecular docking to produce complexes with the substrates codeine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP); this identified Glu 216 [in the F-helix; substrate recognition site (SRS) 2] as a key determinant in the binding of the basic moiety of the substrate. Our studies suggest that both Asp 301 and Glu 216 are required for metabolism of basic substrates. Furthermore, they suggest that Asp 301 (I-helix, SRS-4), a residue thought from mutagenesis studies to bind directly to the basic moiety of substrates, may play a key role in positioning the B'-C loop (SRS-1) and that the loss of activity on mutating Asp 301 may therefore be the result of an indirect effect (movement of the B'-C loop) on replacing this residue.
Collapse
Affiliation(s)
- Stewart B Kirton
- Department of Chemistry, University of Leicester, Leicester, United Kingdom
| | | | | | | | | |
Collapse
|
25
|
Abstract
Cytochrome P450 (P450) reactions are of interest because of their relevance to the oxidative metabolism of drugs, steroids, carcinogens, and other chemicals. One of the considerations about functional characterization is which steps of the catalytic cycle are rate-limiting. Detailed analysis indicates that several different steps can be rate-limiting with individual P450 reactions. N-Dealkylation of para-substituted N,N-dimethylanilines is a function of the electron withdrawing/donating properties of the substituent and the oxidation-reduction potential of the substrate, supporting a role in rate-limiting electron transfer from substrate to the high valent P450. In the oxidations of ethanol and acetaldehyde by human P450 2E1, a step following product formation must be the slow step (but not product release per se). Several oxidations catalyzed by human P450s 1A2 and 2D6 show slow C-H bond breaking, and apparent high-valent iron complexes accumulate in the reaction steady-state. Kinetic simulations were used to test the suitability of potential schemes and to probe the effects of changes in individual reaction steps.
Collapse
|
26
|
Abstract
Understanding the binding of ligands in the active site of a membrane-bound protein is difficult in the absence of a crystal structure. When these proteins are the enzymes involved in drug metabolism, it leaves little option but to use site-directed mutagenesis and in vitro studies to provide critical information relating to determinants of binding affinity. Pharmacophore models and three-dimensional quantitative structure-activity relationships have been used either alone or in combination with protein homology models to provide this information for cytochrome P450s. At present, their application has been directed to the major enzymes but this may escalate in future as more in vitro data are generated for other P450s. The following review outlines the methodologies and models as well as future prospects for applying these technologies to P450s in the hope that future drugs will be selected with increased metabolic stability and fewer incidences of undesirable drug-drug interactions.
Collapse
Affiliation(s)
- Marcel J de Groot
- Department of Molecular Informatics, Structure and Design, Pfizer Global Research and Development, Sandwich Laboratories, Kent CT13 9NJ, Sandwich, UK.
| | | |
Collapse
|
27
|
Deeni YY, Paine MJ, Ayrton AD, Clarke SE, Chenery R, Wolf CR. Expression, purification, and biochemical characterization of a human cytochrome P450 CYP2D6-NADPH cytochrome P450 reductase fusion protein. Arch Biochem Biophys 2001; 396:16-24. [PMID: 11716457 DOI: 10.1006/abbi.2001.2585] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 CYP2D6 metabolizes a wide range of pharmaceutical compounds. A CYP2D6 fusion enzyme (CYP2D6F), containing an amino-terminal human CYP2D6 sequence and a carboxyterminal human NADPH-cytochrome P450 oxidoreductase (CPR) moiety, was constructed. High levels of expression were achieved in Escherichia coli (60-100 nmol/liter) and the enzyme was catalytically active with optimal activities achieved in the presence of the antioxidant, GSH. Turnover values for bufuralol 1'-hydroxylation, metoprolol alpha-hydroxylation, O-desmethylation, and dextromethorphan O-demethylation, using membranes expressing the fusion enzyme, were 5.6, 0.4, 0.72, and 6.19 min(-1), respectively. These values were similar to E. coli membranes which coexpressed human CYP2D6 and CPR (CYP2D6/R). The K(m) and k(cat) values for bufuralol metabolism were estimated to be 10.2 microM and 4.1 min(-1), respectively. The enzyme was purified using ion-exchange chromatography, affinity chromatography (2'-5' ADP-Sepharose), and gel filtration. Estimated turnover rates for bufuralol 1'-hydroxylation, metoprolol alpha-hydroxylation, O-desmethylation, and dextromethorphan O-demethylation were 1.2, 0.52, 0.79, and 0.76 min(-1), respectively. Bufuralol 1'-hydroxylase activity by purified CYP2D6F was enhanced by phospholipids and added CPR. The CYP2D6F enzyme was able to stimulate CYP3A4 testosterone 6beta-hydroxylase activity in a reconstitution system indicating that electron transfer may be largely intermolecular. The catalytically self-sufficient CYP2D6F enzyme will facilitate investigations of P450-CPR interactions and the development of new biocatalysts.
Collapse
Affiliation(s)
- Y Y Deeni
- Biomedical Research Centre, University of Dundee, Dundee, DD1 9SY, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Hanna IH, Krauser JA, Cai H, Kim MS, Guengerich FP. Diversity in mechanisms of substrate oxidation by cytochrome P450 2D6. Lack of an allosteric role of NADPH-cytochrome P450 reductase in catalytic regioselectivity. J Biol Chem 2001; 276:39553-61. [PMID: 11509577 DOI: 10.1074/jbc.m106841200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450) 2D6 was first identified as the polymorphic human debrisoquine hydroxylase and subsequently shown to catalyze the oxidation of a variety of drugs containing a basic nitrogen. Differences in the regioselectivity of oxidation products formed in systems containing NADPH-P450 reductase/NADPH and the model oxidant cumene hydroperoxide have been proposed by others to be due to an allosteric influence of the reductase on P450 2D6 (Modi, S., Gilham, D. E., Sutcliffe, M. J., Lian, L.-Y., Primrose, W. U., Wolf, C. R., and Roberts, G. C. K. (1997) Biochemistry 36, 4461-4470). We examined the differences in the formation of oxidation products of N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, metoprolol, and bufuralol between reductase-, cumene hydroperoxide-, and iodosylbenzene-supported systems. Catalytic regioselectivity was not influenced by the presence of the reductase in any of the systems supported by model oxidants, ruling out allosteric influences. The presence of the reductase had little effect on the affinity of P450 2D6 for any of these three substrates. The addition of the reaction remnants of the model oxidants (cumyl alcohol and iodobenzene) to the reductase-supported system did not affect reaction patterns, arguing against steric influences of these products on catalytic regioselectivity. Label from H(2)18O was quantitatively incorporated into 1'-hydroxybufuralol in the iodosylbenzene- but not in the reductase- or cumene hydroperoxide-supported reactions. We conclude that the P450 systems utilizing NADPH-P450 reductase, cumene hydroperoxide, and iodosylbenzene use similar but distinct chemical mechanisms. These differences are the basis for the variable product distributions, not an allosteric influence of the reductase.
Collapse
Affiliation(s)
- I H Hanna
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 23rd and Pierce Avenues, Nashville, TN 37232-0146, USA
| | | | | | | | | |
Collapse
|
29
|
Shimada T, Tsumura F, Yamazaki H, Guengerich FP, Inoue K. Characterization of (+/-)-bufuralol hydroxylation activities in liver microsomes of Japanese and Caucasian subjects genotyped for CYP2D6. PHARMACOGENETICS 2001; 11:143-56. [PMID: 11266079 DOI: 10.1097/00008571-200103000-00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Twenty-four genetic polymorphisms in the CYP2D6 gene were analysed in liver DNA samples of 39 Japanese and 44 Caucasians and compared with CYP2D6 protein levels and bufuralol 1'- and 6-hydroxylation activities in liver microsomes of these human samples. We detected 13 types of CYP2D6 genetic polymorphisms and classified these into 20 genotypes; nine types were found in Japanese and 14 types in Caucasian samples. CYP2D6*10B, but not CYP2D6*10A, was the most frequent (34.6%) in Japanese. In Caucasians, several CYP2D6 polymorphisms including CYP2D6*4, *4D, *4E, *4L, *3, *9, *5 and *2E (frequencies of 6.8, 3.4, 4.5, 9.1, 1.1, 2.3, 2.3 and 4.5%, respectively) were detected. A Caucasian having CYP2D6*3/*5 had a protein with slower gel mobility (immunoblotting with anti-CYP2D6 antibody) and very low activity for bufuralol 1'-hydroxylation. Five Caucasian samples (CYP2D6*4/*4, *4/*4L, or *4D/*4L) had no measurable CYP2D6 protein and very low bufuralol 1'-hydroxylation activities. Seven Japanese subjects with CYP2D6*10B/*10B had CYP2D6 protein at levels of approximately 20% of those present in humans with CYP2D6*1 and *2 and catalysed bufuralol 1'-hydroxylation at low rates. Kinetic analysis of bufuralol 1'- and 6-hydroxylation indicates that (i) the Km values for 1'-hydroxylation were lower in individuals with CYP2D6*1/*1, *1/*2, *1/*2X2, and *2/*2 than those with CYP2D6*4/*4, *4/*4L, *4D/*4L, or *10B/*10B and Vmax values tended to be higher in the former groups (*1, *2), and (ii) individuals with heterozygous CYP2D6*1/*4D, *1/*4L, and *1/*5 had relatively high Vmax/Km ratios, whereas individuals with heterozygous CYP2D6*1/*9, *2/4D, *2/*5, *2/*10B, *2E/*4E, *3/*5, *4L/*9, and *10B/*39 had lower Vmax/Km ratios for bufuralol 1'-hydroxylation. Quinidine inhibited bufuralol 1'-hydroxylation in liver microsomes, particularly at low substrate concentrations, in individuals with CYP2D6*1/*1, and 1/1*2, but not those with CYP2D6*4/*4 and very slightly in individuals with CYP2D6*10B/*10B. The latter two groups were found to be more sensitive to alpha-naphthoflavone than the former groups, indicative of the contribution of CYP1A2. These results support the view that CYP2D6*3, *4, *4D, and *4L are major genotypes producing poor metabolizer phenotypes in CYP2D6 in Caucasians, whereas CYP2D6*10B is a major factor in decreased CYP2D6 protein expression and catalytic activities in Japanese.
Collapse
Affiliation(s)
- T Shimada
- Osaka Prefectural Institute of Public Health, Japan.
| | | | | | | | | |
Collapse
|
30
|
De Rienzo F, Fanelli F, Menziani MC, De Benedetti PG. Theoretical investigation of substrate specificity for cytochromes P450 IA2, P450 IID6 and P450 IIIA4. J Comput Aided Mol Des 2000; 14:93-116. [PMID: 10702928 DOI: 10.1023/a:1008187802746] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three-dimensional models of the cytochromes P450 IA2, P450 IID6 and P450 IIIA4 were built by means of comparative modeling using the X-ray crystallographic structures of P450 CAM, P450 BM-3, P450 TERP and P450 ERYF as templates. The three cytochromes were analyzed both in their intrinsic structural features and in their interaction properties with fifty specific and non-specific substrates. Substrate/enzyme complexes were obtained by means of both automated rigid and flexible body docking. The comparative analysis of the three cytochromes and the selected substrates, in their free and bound forms, allowed for the building of semi-quantitative models of substrate specificity based on both molecular and intermolecular interaction descriptors. The results of this study provide new insights into the molecular determinants of substrate specificity for the three different eukaryotic P450 isozymes and constitute a useful tool for predicting the specificity of new compounds.
Collapse
Affiliation(s)
- F De Rienzo
- Dipartimento di Chimica, Università di Modena e Reggio Emilia, Italy
| | | | | | | |
Collapse
|
31
|
de Groot MJ, Ackland MJ, Horne VA, Alex AA, Jones BC. A novel approach to predicting P450 mediated drug metabolism. CYP2D6 catalyzed N-dealkylation reactions and qualitative metabolite predictions using a combined protein and pharmacophore model for CYP2D6. J Med Chem 1999; 42:4062-70. [PMID: 10514276 DOI: 10.1021/jm991058v] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combined protein and pharmacophore model for cytochrome P450 2D6 (CYP2D6) has been extended with a second pharmacophore in order to explain CYP2D6 catalyzed N-dealkylation reactions. A group of 14 experimentally verified N-dealkylation reactions form the basis of this second pharmacophore. The combined model can now accommodate both the usual hydroxylation and O-demethylation reactions catalyzed by CYP2D6, as well as the less common N-dealkylation reactions. The combined model now contains 72 metabolic pathways catalyzed by CYP2D6 in 51 substrates. The model was then used to predict the involvement of CYP2D6 in the metabolism of a "test set" of seven compounds. Molecular orbital calculations were used to suggest energetically favorable sites of metabolism, which were then examined using modeling techniques. The combined model correctly predicted 6 of the 8 observed metabolites. For the well-established CYP2D6 metabolic routes, the predictive value of the current combined protein and pharmacophore model is good. Except for the highly unusual metabolism of procainamide and ritonavir, the known metabolites not included in the development of the model were all predicted by the current model. Two possible metabolites have been predicted by the current model, which have not been detected experimentally. In these cases, the model may be able to guide experiments. P450 models, like the one presented here, have wide applications in the drug design process which will contribute to the prediction and elimination of polymorphic metabolism and drug-drug interactions.
Collapse
Affiliation(s)
- M J de Groot
- Department of Molecular Informatics, Pfizer Central Research, Sandwich, Kent CT13 9NJ, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
de Groot MJ, Ackland MJ, Horne VA, Alex AA, Jones BC. Novel approach to predicting P450-mediated drug metabolism: development of a combined protein and pharmacophore model for CYP2D6. J Med Chem 1999; 42:1515-24. [PMID: 10229622 DOI: 10.1021/jm981118h] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combined protein and pharmacophore model for cytochrome P450 2D6 (CYP2D6) has been derived using various computational chemistry techniques. A combination of pharmacophore modeling (using 40 substrates), protein modeling, and molecular orbital calculations was necessary to derive a model which incorporated steric, electronic, and chemical stability properties. The initial pharmacophore and protein models used to construct the combined model were derived independently and showed a high level of complementarity. The combined model is in agreement with experimental results concerning the substrates used to derive the model, with site-directed mutagenesis data available for the CYP2D6 protein, and takes into account the site-directed mutagenesis results for a variety of other 2-family P450s.
Collapse
Affiliation(s)
- M J de Groot
- Departments of Computational Chemistry and Drug Metabolism, Pfizer Central Research, Sandwich, Kent CT13 9NJ, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Roussel F, Duignan DB, Lawton MP, Obach RS, Strick CA, Tweedie DJ. Expression and characterization of canine cytochrome P450 2D15. Arch Biochem Biophys 1998; 357:27-36. [PMID: 9721180 DOI: 10.1006/abbi.1998.0801] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CYP2D15 is the canine ortholog of human CYP2D6, the human CYP2D isoform involved in the metabolism of drugs such as antiarhythmics, adrenoceptor antagonists, and tricyclic antidepressants. Similar to human, canine CYP2D15 is expressed in the liver, with detectable levels in several other tissues. Three different CYP2D15 cDNA clones were obtained by RT-PCR from dog liver RNA. Two clones corresponded to variant full-length CYP2D15 cDNAs (termed CYP2D15 WT2 and CYP2D15 V1); the third was identified as a splicing variant missing exon 3 (termed CYP2D15 V2). Recombinant baculoviruses were constructed containing full-length cDNAs and used to express CYP2D15 WT2 and CYP2D15 V1 in Spodoptera frugiperda (Sf9) cells with expression levels of up to 0.14 nmol/mg cell protein. As with human CYP2D6, the recombinant CYP2D15 enzymes exhibited bufuralol 1'-hydroxylaseand dextromethorphan O-demethylase activities whencoexpressed with rabbit NADPH:P450 oxidoreductase. For bufuralol 1'-hydroxylase, apparent Km values were 4.9, 3.7, and 2.5 microM and the Vmax values were 0.14, 0.034, and 0.60 nmol/min/mg protein for dog liver microsomes, CYP2D15 WT2, and the variant CYP2D15 V1, respectively. For dextromethorphan O-demethylase, apparent Km values were 0.6, 0.6, and 2.0 microM and the Vmax values were 0.18, 0.034, and 0.057 nmol/min/mg protein for dog liver microsomes, CYP2D15 WT2, and the variant CYP2D15 V1, respectively. The human CYP2D6-specific inhibitor quinidine and the rat CYP2D1-specific inhibitor quinine were both shown to be inhibitors of bufuralol 1'-hydroxylase activity for dog liver microsomes, CYP2D15 WT2, and the CYP2D15 V1 variant with nearly equal potency. Thus, the dog expresses a CYP2D ortholog possessing enzymatic activities similar to human CYP2D6, but is affected by the inhibitors quinine and quinidine in a manner closer to that of rat CYP2D1.
Collapse
Affiliation(s)
- F Roussel
- Drug Metabolism Department, Molecular Sciences Department, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Brynne N, Dalén P, Alván G, Bertilsson L, Gabrielsson J. Influence of CYP2D6 polymorphism on the pharmacokinetics and pharmacodynamic of tolterodine. Clin Pharmacol Ther 1998; 63:529-39. [PMID: 9630826 DOI: 10.1016/s0009-9236(98)90104-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine whether cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of tolterodine by investigating potential differences in pharmacokinetics and pharmacodynamic (heart rate, accommodation, and salivation) of tolterodine and its 5-hydroxymethyl metabolite between poor metabolizers and extensive metabolizers of debrisoquin (INN, debrisoquine). METHODS Sixteen male subjects (eight extensive metabolizers and eight poor metabolizers) received 4 mg tolterodine by mouth twice a day for 8 days followed by a single intravenous infusion of 1.8 mg tolterodine for 30 minutes after a washout period. Doses were given as the tartrate salt. The pharmacokinetics of tolterodine and 5-hydroxymethyl metabolite were determined, and the pharmacodynamic were measured. RESULTS The mean systemic clearance of tolterodine was significantly lower (p < 0.001) among poor metabolizers (9.0 +/- 2.1 l/hr) compared with extensive metabolizers (44 +/- 13 L/hr), resulting in a fourfold longer elimination half-life (p < 0.001). The terminal half-life of the 5-hydroxymethyl metabolite (2.9 +/- 0.4 hours) was slightly longer than that of the parent compound (2.3 +/- 0.6 hours) among extensive metabolizers, but the 5-hydroxymethyl metabolite was undetectable in the serum of poor metabolizers. Only minor differences in pharmacodynamic effects after tolterodine dosage were observed between the groups. Tolterodine caused a similar decrease in salivation in both panels. The decrease occurred when the concentration of unbound tolterodine and 5-hydroxymethyl metabolite among extensive metabolizers was comparable with that of tolterodine among poor metabolizers. CONCLUSIONS Tolterodine is extensively metabolized by CYP2D6 with high specificity. Despite the effect on pharmacokinetics, the CYP2D6 polymorphism does not appear to be of great importance in the antimuscarinic effect, probably because of the additive action of parent drug and active metabolite.
Collapse
Affiliation(s)
- N Brynne
- Department of Clinical Pharmacology, Pharmacia & Upjohn AB, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
36
|
Smith DA, Ackland MJ, Jones BC. Properties of cytochrome P450 isoenzymes and their substrates Part 1: active site characteristics. Drug Discov Today 1997. [DOI: 10.1016/s1359-6446(97)01081-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
De Groot MJ, Vermeulen NP. Modeling the active sites of cytochrome P450s and glutathione S-transferases, two of the most important biotransformation enzymes. Drug Metab Rev 1997; 29:747-99. [PMID: 9262946 DOI: 10.3109/03602539709037596] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M J De Groot
- Leiden/Amsterdam Center for Drug Research, Department of Pharmacochemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
38
|
Lewis DF, Eddershaw PJ, Goldfarb PS, Tarbit MH. Molecular modelling of cytochrome P4502D6 (CYP2D6) based on an alignment with CYP102: structural studies on specific CYP2D6 substrate metabolism. Xenobiotica 1997; 27:319-39. [PMID: 9149373 DOI: 10.1080/004982597240497] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. A molecular model of CYP2D6 has been constructed from the bacterial form CYP102 via a homology alignment between the CYP2D subfamily and CYP102 protein sequences. 2. A number of typical CYP2D6 substrates are shown to fit the putative active site of the enzyme, as can the specific inhibitor quinidine. 3. Some of the allelic variants in CYP2D6, which give rise to genetic polymorphisms in 2D6-mediated metabolism, can be rationalized in terms of their position within the active site region. 4. The results of site-directed mutagenesis experiments are consistent with the CYP2D6 model generated from the CYP102 crystal structure. 5. The possibility of an alternative orientation within the active site may explain the CYP2D6-mediated metabolism of relatively large-sized substrates.
Collapse
Affiliation(s)
- D F Lewis
- Molecular Toxicology Group, School of Biological Sciences, University of Surrey, UK
| | | | | | | |
Collapse
|
39
|
de Groot MJ, Bijloo GJ, van Acker FA, Fonseca Guerra C, Snijders JG, Vermeulen NP. Extension of a predictive substrate model for human cytochrome P4502D6. Xenobiotica 1997; 27:357-68. [PMID: 9149375 DOI: 10.1080/004982597240514] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Metoprolol, indoramine, codeine, tamoxifen and prodipine, compounds which are clinically used, and MDMA (ecstasy) were fitted in a small molecule model for substrates of human cytochrome P4502D6. 2. For both the R- and S-enantiomer of metoprolol, the R- and S-enantiomer of MDMA, and for indoramine and codeine (all proven substrates of cytochrome P4502D6) an acceptable fit in the substrate model was obtained. 3. For tamoxifen, for which the involvement of cytochrome P4502D6 in the 4-hydroxylation is uncertain, no acceptable fit could be obtained in the substrate model. 4. For prodipine, a competitive inhibitor of P4502D6, for which the involvement of P4502D6 in the metabolism is uncertain, no acceptable fit in the substrate model could be obtained. 5. The substrate model was extended in a direction in which two large known substrates extend from the original substrate model. This extension did not change the flat hydrophobic region of the original substrate model.
Collapse
Affiliation(s)
- M J de Groot
- Leiden/Amsterdam Center for Drug Research (LACDR), Department of Pharmacochemistry, Vrije Universiteit, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
de Groot MJ, Bijloo GJ, Martens BJ, van Acker FA, Vermeulen NP. A refined substrate model for human cytochrome P450 2D6. Chem Res Toxicol 1997; 10:41-8. [PMID: 9074801 DOI: 10.1021/tx960129f] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cytochromes P450 (P450s) constitute a large superfamily of heme-containing enzymes, capable of oxidizing and reducing a variety of substrates. Cytochrome P450 2D6 is a polymorphic member of the P450 superfamily and is absent in 5-9% of the Caucasian population as a result of a recessive inheritance of gene mutations. Recently, the importance of aspartic acid 301 (Asp301) for the catalytic activity of P450 2D6, as indicated by a preliminary homology model, was confirmed by site-directed mutagenesis experiments. In this study, the heme moiety and the I-helix containing Asp301 were incorporated into the previously derived substrate model for P450 2D6, in the spatial orientations as derived from a recently improved protein model for P450 2D6, thereby incorporating steric restrictions and orientational preferences into the substrate model. The direction of well-defined hydrogen bonds formed between Asp301 and basic nitrogen atoms of P450 2D6 substrates was incorporated into the substrate model as well. Also, the position(s) of the basic nitrogen atom(s) of the substrates was/were allowed more flexibility. This was established through the attachment of an aspartic acid residue (representing Asp301) to the (protonated) basic nitrogen atom(s) of the substrates and superimposing the C alpha- and C beta-atoms of this aspartic acid residue in the fitting procedure instead of the basic nitrogen atoms. A variety of 8 substrates of P450 2D6 (comprising 17 known P450 2D6 dependent metabolic pathways) has been incorporated successfully into this refined and more restrictive substrate model.
Collapse
Affiliation(s)
- M J de Groot
- Leiden/Amsterdam Center for Drug Research (LACDR), Department of Pharmacochemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Tsuji R, Isobe N, Kurita Y, Hanai K, Yabusaki Y, Kawasaki H. Species difference in the inhibition of pentobarbital metabolism by empenthrin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1996; 2:331-337. [PMID: 21781739 DOI: 10.1016/s1382-6689(96)00066-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/1996] [Revised: 08/06/1996] [Accepted: 08/12/1996] [Indexed: 05/31/2023]
Abstract
Empenthrin, synthetic pyrethroid, prolonged the pentobarbital-induced sleeping time in mice, but not in rats, guinea pigs or hamsters. Empenthrin did not delay the clearance of pentobarbital from serum in dogs. In addition, empenthrin dose-dependently inhibited in vitro metabolism of pentobarbital in mice, but not in rats, guinea pigs, hamsters or rabbits. Lineweaver-Burk plots indicated that the inhibition was competitive in mice. Microsomal fractions of recombinant yeast expressing human cytochrome P-450 (CYP)s were used to determine the inhibitory effect of empenthrin on pentobarbital metabolism in humans. CYP2B6 and CYP2D6 were responsible for biotransformation of pentobarbital to a pentobarbital alcohol identified as 5-ethyl-5-(1'-methyl-3'-hydroxybutyl) barbituric acid. The structure of pentobarbital fit the criteria for a CYP2D6 substrate on computational analysis. Empenthrin did not inhibit the pentobarbital metabolism catalyzed by these two CYPs. These findings suggest that the inhibition of pentobarbital metabolism by empenthrin in mice does not occur in other species including humans.
Collapse
Affiliation(s)
- R Tsuji
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98, Kasugade-naka, Konohana-ku, Osaka 554, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Sequeira DJ, Strobel HW. In vitro metabolism of imipramine by brain microsomes: effects of inhibitors and exogenous cytochrome P450 reductase. Brain Res 1996; 738:24-31. [PMID: 8949923 DOI: 10.1016/0006-8993(96)00759-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The metabolism of imipramine in the brains of rats was analyzed to study the activity of cytochrome P450 in brain microsomes. Brain microsomes were capable of metabolizing imipramine to both hydroxylated and N-demethylated products. The use of selective inhibitors of different cytochromes P450 effected varying changes in the metabolic profiles of formed metabolites consistent with the involvement of several P450 forms in imipramine metabolism. Quinidine inhibited the hydroxylation of imipramine competitively by 60% and 98% at concentrations of 10 microM and 100 microM, respectively. Ketoconazole and 7,8-benzoflavone at a concentration of 100 microM inhibited N-demethylation of imipramine by 75% and 30%, respectively, with a lower effect on imipramine hydroxylation. Results from studies on the incorporation of cytochrome P450 reductase into the brain microsomal system reveal a reductase concentration-dependent increase in imipramine metabolism and suggest that the reductase level in brain is an important factor for the study of catalytic activities in brain microsomal systems.
Collapse
Affiliation(s)
- D J Sequeira
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77225, USA
| | | |
Collapse
|
43
|
de Groot MJ, Vermeulen NP, Kramer JD, van Acker FA, Donné-Op den Kelder GM. A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450 101, P450 102, and P450 108. Chem Res Toxicol 1996; 9:1079-91. [PMID: 8902262 DOI: 10.1021/tx960003i] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cytochromes P450 (P450s) constitute a superfamily of phase I enzymes capable of oxidizing and reducing various substrates. P450 2D6 is a polymorphic enzyme, which is absent in 5-9% of the Caucasian population as a result of a recessive inheritance of gene mutations. This deficiency leads to impaired metabolism of a variety of drugs. All drugs metabolized by P450 2D6 contain a basic nitrogen atom, and a flat hydrophobic region coplanar to the oxidation site which is either 5 or 7 A away from the basic nitrogen atom. The aim of this study was to build a three-dimensional structure for the protein and more specifically for the active site of P450 2D6 in order to determine the amino acid residues possibly responsible for binding and/ or catalytic activity. Furthermore, the structural features of the active site can be implemented into the existing small molecule substrate model, thus enhancing its predictive value with respect to possible metabolism by P450 2D6. As no crystal structures are yet available for membrane-bound P450s (such as P450 2D6), the crystal structures of bacterial (soluble) P450 101 (P450cam), P450 102 (P450BM3), and P450 108 (P450terp) have been used to build a three-dimensional model for P450 2D6 with molecular modeling techniques. Several important P450 2D6 substrates were consecutively docked into the active site of the protein model. The energy optimized positions of the substrates in the protein agreed well with the original relative positions of the substrates within the substrate model. This confirms the usefulness of small molecule models in the absence of structural protein data. Furthermore, the derived protein model indicates new leads for experimental validation and extension of the substrate model.
Collapse
Affiliation(s)
- M J de Groot
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Molecular Toxicology, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Ellis SW, Rowland K, Ackland MJ, Rekka E, Simula AP, Lennard MS, Wolf CR, Tucker GT. Influence of amino acid residue 374 of cytochrome P-450 2D6 (CYP2D6) on the regio- and enantio-selective metabolism of metoprolol. Biochem J 1996; 316 ( Pt 2):647-54. [PMID: 8687412 PMCID: PMC1217396 DOI: 10.1042/bj3160647] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cytochrome P-450 2D6 (CYP2D6) is an important human drug-metabolizing enzyme responsible for the oxidation of more than 30 widely used therapeutic agents. The enzymes encoded by the published genomic [Kimura, Umeno, Skoda, Meyer and Gonzalez (1989) Am. J. Hum. Genet. 45, 889-904] and cDNA [Gonzalez, Skoda, Kimura, Umeno, Zanger, Nebert, Gelboin, Hardwick and Meyer (1988) Nature 331, 442-446] sequences of CYP2D6, and presumed to represent wild-type sequences, differ at residue 374 and encode valine (CYP2D6-Val) and methionine (CYP2D6-Met) respectively. The influence of this amino acid difference on cytochrome P-450 expression, ligand binding, catalysis and stereoselective oxidation of metoprolol was investigated by the heterologous expression of the corresponding cDNAs in the yeast Saccharomyces cerevisiae. The level of expression of apo- and holo-protein was similar with each form of CYP2D6 cDNA, and the binding affinities of a series of ligands to CYP2D6-Val and CYP2D6-Met were identical. The enantioselective O-demethylation and alpha-hydroxylation of metoprolol were also similar with each form of CYP2D6, O-demethylation being R-(+)- enantioselective (CYP2D6-Val: R/S, 1.6; CYP2D6-Met: R/S, 1.4), whereas alpha-hydroxylation showed a preference for S-(-)-metoprolol (CYP2D6-Val: R/S, 0.7; CYP2D6-Met: R/S, 0.8). However, although the favoured regiomer overall was O-demethylmetoprolol (ODM), the regioselectivity for O-demethylation of each metoprolol enantiomer was significantly greater for CYP2D6-Val [R-(+)-: ODM/alpha-hydroxymetoprolol (alpha OH), 5.9; S-(-)-: ODM/alpha OH, 2.5) than that observed for CYP2D6-Met [R-(+)-: ODM/alpha OH, 2.2; S-(-)-: ODM/alpha OH, 1.4]. The stereoselective properties of CYP2D6-Val were consistent with those observed for CYP2D6 in human liver microsomes. The difference in the stereoselective properties of CYP2D6-Val and CYP2D6-Met were rationalized with respect to a homology model of the active site of CYP2D6 based on an alignment with the crystal structure of the bacterial cytochrome P-450BM-3' CYP102.
Collapse
Affiliation(s)
- S W Ellis
- Department of Medicine and Pharmacology, Royal Hallamshire Hospital, University of Sheffield, U.K
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Engel G, Hofmann U, Kroemer HK. Prediction of CYP2D6-mediated polymorphic drug metabolism (sparteine type) based on in vitro investigations. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 678:93-103. [PMID: 8861659 DOI: 10.1016/0378-4347(95)00234-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Discovery of genetic polymorphism in drug metabolism has contributed a great deal to understanding the variability in dose-concentration relationships introduced by genetic factors, thereby elucidating the mechanisms responsible for unexpected drug reactions. This knowledge should find its way into clinical practice in order to make therapy more efficient and safe. Moreover, genetic factors in drug metabolism should be taken into account during drug development. Therefore, in vitro methods for identifying the metabolic pattern of new compounds during early stages of drug development should be improved. This review summarizes in vitro methods available to identify genetic polymorphism in drug oxidation, in particular the CYP2D6-related polymorphism.
Collapse
Affiliation(s)
- G Engel
- Dr. Margarete Fischer-Bosch-Institut fur Klinische Pharmakologie, Auerbachstrasse, Stuttgart, Germany
| | | | | |
Collapse
|
46
|
Yumibe N, Huie K, Chen KJ, Snow M, Clement RP, Cayen MN. Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine. Formation of descarboethoxyloratadine by CYP3A4 and CYP2D6. Biochem Pharmacol 1996; 51:165-72. [PMID: 8615885 DOI: 10.1016/0006-2952(95)02169-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
[3H]Loratadine was incubated with human liver microsomes to determine which cytochrome P450 (CYP) enzymes are responsible for its oxidative metabolism. Specific enzymes were identified by correlation analysis, by inhibition studies (chemical and immunoinhibition), and by incubation with various cDNA-expressed human P450 enzymes. Descarboethoxyloratadine (DCL) was the major metabolite of loratadine detected following incubation with pooled human liver microsomes. Although DCL can theoretically form by hydrolysis, the conversion of loratadine to DCL by human liver microsomes was not inhibited by the esterase inhibitor phenylmethylsulfonyl fluoride (PMSF), and was dependent on NADPH. A high correlation (r2 = 0.96, N = 10) was noted between the rate of formation of DCL and testosterone 6 beta-hydroxylation, a CYP3A-mediated reaction. With the addition of ketoconazole (CYP3A4 inhibitor) to the incubation mixtures, the residual rate of formation of DCL correlated (r2 = 0.81) with that for dextromethorphan O-demethylation, a CYP2D6 reaction. Rabbit polyclonal antibodies raised against the rat CYP3A1 enzyme (5 mg IgG/nmol P450) and troleandomycin (0.5 microM), a specific inhibitor of CYP3A4, decreased the formation of DCL by 53 and 75%, respectively, when added to 1.42 microM loratadine microsomal incubations. Quinidine (5 microm), a CYP2D6 inhibitor, inhibited the formation of DCL approximately 20% when added to microsomal incubations of loratadine at concentrations of 7-35 microM. Incubation of loratadine with cDNA-expressed CYP3A4 and CYP2D6 microsomes catalysed the formation of DCL with formation rates of 135 and 633 pmol/min/nmol P450, respectively. The results indicated that loratadine was metabolized to DCL primarily by the CYP3A4 and CYP2D6 enzymes in human liver microsomes. In the presence of a CYP3A4 inhibitor, loratadine was metabolized to DCL by the CYP2D6 enzyme. Conformational and electrostatic analysis of loratadine indicated that its structure is consistent with substrate models for the CYP2D6 enzyme.
Collapse
Affiliation(s)
- N Yumibe
- Department of Drug Metabolism and Pharmacokinetics, Schering-Plough Research Institute, Lafayette, NJ 07848, USA
| | | | | | | | | | | |
Collapse
|
47
|
Rodrigues AD. Measurement of human liver microsomal cytochrome P450 2D6 activity using [O-methyl-14C]dextromethorphan as substrate. Methods Enzymol 1996; 272:186-95. [PMID: 8791777 DOI: 10.1016/s0076-6879(96)72023-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A D Rodrigues
- Drug Metabolism Department, Abbott Laboratories, Abbott Park, Illinois 60064, USA
| |
Collapse
|
48
|
Ellis SW, Hayhurst GP, Smith G, Lightfoot T, Wong MM, Simula AP, Ackland MJ, Sternberg MJ, Lennard MS, Tucker GT. Evidence that aspartic acid 301 is a critical substrate-contact residue in the active site of cytochrome P450 2D6. J Biol Chem 1995; 270:29055-8. [PMID: 7493924 DOI: 10.1074/jbc.270.49.29055] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Model building studies have intimated a role for aspartic acid 301 in the substrate binding of cytochrome P450 2D6 (CYP2D6). We have tested this hypothesis by generating a range of CYP2D6 mutants substituting a variety of amino acids at this site. The mutant proteins, which included substitution with a negatively charged glutamic acid residue or neutral asparagine, alanine, or glycine residues, were expressed in Saccharomyces cerevisiae. In addition, a mutant where aspartic acid 301 was deleted was also tested. All the mutants expressed approximately equivalent amounts of recombinant apoprotein and, apart from the alanine 301 and the aspartic acid 301 deletion mutants, gave carbon monoxide difference spectra of similar magnitude to the wild type. In the cases of the alanine and deletion mutants, the amount of holoprotein was significantly reduced or absent relative to the amount of apoprotein, indicating restricted heme incorporation. The glutamic acid mutant was shown to have similar catalytic properties to the wild type enzyme toward the substrates debrisoquine and metoprolol; however, some differences in regioselectivity and ligand binding were observed. The mutants containing neutral amino acids at position 301 exhibited marked reductions in catalytic activity. At low substrate concentrations little, if any, activity toward debrisoquine and metoprolol was measured. However, at a higher substrate concentration (2 mM) some activity was observed (about 10-20% of wild type levels). Consistent with the above findings, the debrisoquine-induced spin changes in the mutant proteins were markedly reduced. These data collectively demonstrate that aspartic acid 301 plays an important role in determining the substrate specificity and activity of CYP2D6 and provide experimental evidence supporting the role of this amino acid in forming an electrostatic interaction between the basic nitrogen atom in CYP2D6 substrates and the carboxylate group of aspartic acid 301.
Collapse
Affiliation(s)
- S W Ellis
- University of Sheffield, Department of Medicine and Pharmacology, Royal Hallamshire Hospital, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mancy A, Broto P, Dijols S, Dansette PM, Mansuy D. The substrate binding site of human liver cytochrome P450 2C9: an approach using designed tienilic acid derivatives and molecular modeling. Biochemistry 1995; 34:10365-75. [PMID: 7654690 DOI: 10.1021/bi00033a007] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Biochemical experiments, using the well-defined human liver CYP2C9 expressed in yeast, and molecular modeling techniques were used to derive a predictive model for substrates of CYP2C9. The ability of 10 2-aroylthiophenes related to tienilic acid to act as substrates for CYP2C9 was studied. Four of them were original compounds that were synthesized and completely characterized by several spectroscopic techniques. In these 10 compounds various chemical functions, such as ester, amide, alcohol, phenol, ether or tetrazole functions, replaced the OCH2COOH function of tienilic acid. Among them, only the derivatives containing an acidic function (carboxylic acids, phenol, and tetrazole whose pKaS are 4.8, 6.3, and 3.8, respectively) underwent a 5-hydroxylation of their thiophene ring like tienilic acid. Despite their close structural analogy with tienilic acid, all of the other compounds not only did not undergo any 5-hydroxylation of their thiophene ring but also failed to act as inhibitors of CYP2C9. These results strongly suggested that the presence, at pH 7.4, of a negative charge on the substrate is a very important feature in its recognition by CYP2C9. In fact, the four new substrates of CYP2C9 described in this study, a carboxylic acid, phenol, and tetrazole derivative, each of which is related to tienilic acid, and the antiinflammatory drug, suprofen (with Km between 12 and 130 microM and kcat between 0.2 and 1.3 min-1), as well as almost all CYP2C9 substrates reported in the literature, exhibit a pKa below 7 (except phenytoin whose pKa is 8.1). They mainly exist as anions at physiological pH. By using molecular modeling techniques, 12 CYP2C9 substrates were superimposed with respect to their hydroxylation site and fitted onto templates, which were rigid molecules such as (S)-warfarin and phenytoin. It was thus possible to arrange them in order that all their anionic sites were at a distance around 4 A from a common point (a putative cationic site of the protein) in space. These results provide a model of the substrate binding site of CYP2C9, in which substrates interact through their anionic site A- with a cationic residue of the CYP2C9 protein C+. In that model, the distance between the hydroxylation site (Hy) and the anionic site (A-) is 7.8 +/- 1.6 A, and the <HyA-C+ angle is 82 +/- 15 degrees.
Collapse
Affiliation(s)
- A Mancy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, URA 400 CNRS, Université Paris V, France
| | | | | | | | | |
Collapse
|
50
|
Abstract
Genetic polymorphisms of drug metabolizing enzymes are well recognized. This review presents molecular mechanisms, ontogeny and clinical implications of genetically determined intersubject variation in some of these enzymes. Included are the polymorphic enzymes N-acetyl transferase, cytochromes P4502D6 and 2C, which have been well described in humans. Information regarding other Phase I and Phase II polymorphic pathways, such as glutathione and methyl conjugation and alcohol and acetaldehyde oxidation continues to increase and are also discussed. Genetic factors effecting enzyme activity are frequently important determinants of the disposition of drugs and their efficacy and toxicity. In addition, associations between genetic differences in these enzymes and susceptibility to carcinogens and teratogens have been reported. Ultimately, the application of knowledge regarding these genetic factors of enzyme activity may guide medical therapy and minimize xenobiotic-induced disease.
Collapse
Affiliation(s)
- D G May
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit 48201
| |
Collapse
|