1
|
Abstract
Epidemiological studies have shown that higher intake of flavonoid is inversely associated with CHD risk. However, which flavonoid subclass could reduce CHD risk has remained controversial. The present meta-analysis of prospective cohort studies aimed to quantitatively assess the associations between flavonoid subclasses and CHD risk. A systematic literature search was implemented from PubMed and Web of Science databases up to March 2021, and eligible studies were identified. Multivariate-adjust relative risks (RR) with corresponding 95 % CI were pooled by using a random-effects model. A restricted cubic spline regression model was performed for non-linear dose-response analysis. A total of 19 independent prospective cohort studies with 894 471 participants and 34 707 events were included. The results showed that dietary intakes of anthocyanins (RR = 0·90; 95 % CI: 0·83, 0·98), proanthocyanidins (RR = 0·78; 95 % CI: 0·65, 0·94), flavonols (RR = 0·88; 95 % CI: 0·79, 0·98), flavones (RR = 0·94; 95 % CI: 0·89, 0·99) and isoflavones (RR = 0·90; 95 % CI: 0·83, 0·98) were negatively associated with CHD risk. Dose-response analysis showed that increment of 50 mg/d anthocyanins, 100 mg/d proanthocyanidins, 25 mg/d flavonols, 5 mg/d flavones and 0·5 mg/d isoflavones were associated with 5 % reduction in CHD risk, respectively. Sensitivity and subgroup analyses were used to further support these associations. The present results indicate that dietary intakes of fruits and vegetables abundant five flavonoid subclasses, namely anthocyanins, proanthocyanidins, flavonols, flavones and isoflavones, are associated with a lower risk of CHD.
Collapse
|
2
|
Etxebeste-Mitxeltorena M, Moreno E, Carvalheiro M, Calvo A, Navarro-Blasco I, González-Peñas E, Álvarez-Galindo JI, Plano D, Irache JM, Almeida AJ, Sanmartín C, Espuelas S. Oral Efficacy of a Diselenide Compound Loaded in Nanostructured Lipid Carriers in a Murine Model of Visceral Leishmaniasis. ACS Infect Dis 2021; 7:3197-3209. [PMID: 34767359 PMCID: PMC8675869 DOI: 10.1021/acsinfecdis.1c00394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 11/29/2022]
Abstract
Leishmaniasis urgently needs new oral treatments, as it is one of the most important neglected tropical diseases that affects people with poor resources. The drug discovery pipeline for oral administration currently discards entities with poor aqueous solubility and permeability (class IV compounds in the Biopharmaceutical Classification System, BCS) such as the diselenide 2m, a trypanothione reductase (TR) inhibitor. This work was assisted by glyceryl palmitostearate and diethylene glycol monoethyl ether-based nanostructured lipid carriers (NLC) to render 2m bioavailable and effective after its oral administration. The loading of 2m in NLC drastically enhanced its intestinal permeability and provided plasmatic levels higher than its effective concentration (IC50). In L. infantum-infected BALB/c mice, 2m-NLC reduced the parasite burden in the spleen, liver, and bone marrow by at least 95% after 5 doses, demonstrating similar efficacy as intravenous Fungizone. Overall, compound 2m and its formulation merit further investigation as an oral treatment for visceral leishmaniasis.
Collapse
Affiliation(s)
- Mikel Etxebeste-Mitxeltorena
- Institute
of Tropical Health, Department of Pharmaceutical Technology and Chemistry,
School of Pharmacy and Nutrition, University
of Navarra, 31008 Pamplona, Spain
| | - Esther Moreno
- Institute
of Tropical Health, Department of Pharmaceutical Technology and Chemistry,
School of Pharmacy and Nutrition, University
of Navarra, 31008 Pamplona, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Manuela Carvalheiro
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Alba Calvo
- Institute
of Tropical Health, Department of Pharmaceutical Technology and Chemistry,
School of Pharmacy and Nutrition, University
of Navarra, 31008 Pamplona, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Iñigo Navarro-Blasco
- Department
of Chemistry, School of Sciences, University
of Navarra, 31008 Pamplona, Spain
| | - Elena González-Peñas
- Department
of Pharmaceutical Technology and Chemistry, School of Pharmacy and
Nutrition, University of Navarra, 31008 Pamplona, Spain
| | | | - Daniel Plano
- Institute
of Tropical Health, Department of Pharmaceutical Technology and Chemistry,
School of Pharmacy and Nutrition, University
of Navarra, 31008 Pamplona, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Juan M. Irache
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department
of Pharmaceutical Technology and Chemistry, School of Pharmacy and
Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Antonio J. Almeida
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Carmen Sanmartín
- Institute
of Tropical Health, Department of Pharmaceutical Technology and Chemistry,
School of Pharmacy and Nutrition, University
of Navarra, 31008 Pamplona, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Socorro Espuelas
- Institute
of Tropical Health, Department of Pharmaceutical Technology and Chemistry,
School of Pharmacy and Nutrition, University
of Navarra, 31008 Pamplona, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
3
|
Beverage-Drug Interaction: Effects of Green Tea Beverage Consumption on Atorvastatin Metabolism and Membrane Transporters in the Small Intestine and Liver of Rats. MEMBRANES 2020; 10:membranes10090233. [PMID: 32937767 PMCID: PMC7559440 DOI: 10.3390/membranes10090233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Green tea (GT) beverages are popular worldwide and may prevent the development of many chronic diseases including cardiovascular disease and cancer. To investigate whether the consumption of a GT beverage causes drug interactions, the effects of GT beverage consumption on atorvastatin metabolism and membrane transporters were evaluated. Male rats were fed a chow diet with tap water or the GT beverage for 3 weeks. Then, the rats were given a single oral dose (10 mg/kg body weight (BW)) of atorvastatin (ATV), and blood was collected at various time points within 6 h. The results show that GT consumption increased the plasma concentrations (AUC0–6h) of ATV (+85%) and 2-OH ATV (+93.3%). GT also increased the 2-OH ATV (+40.9%) and 4-OH ATV (+131.6%) contents in the liver. Decreased cytochrome P450 (CYP) 3A enzyme activity, with no change in P-glycoprotein expression in the intestine, was observed in rats treated with GT. Additionally, GT increased hepatic CYP3A-mediated ATV metabolism and decreased organic anion transporting polypeptides (OATP) 2 membrane protein expression. There was no significant difference in the membrane protein expression of OATP2B1 and P-glycoprotein in the intestine and liver after the GT treatment. The results show that GT consumption may lower hepatic OATP2 and, thus, limit hepatic drug uptake and increase plasma exposure to ATV and 2-OH ATV.
Collapse
|
4
|
Ho S, Thoo YY, Young DJ, Siow LF. Inclusion complexation of catechin by β-cyclodextrins: Characterization and storage stability. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.08.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Ho S, Thoo YY, Young DJ, Siow LF. Cyclodextrin encapsulated catechin: Effect of pH, relative humidity and various food models on antioxidant stability. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Protective effects of green tea polyphenols against benzo[a]pyrene-induced reproductive and trans-generational toxic effects in Japanese Medaka (Oryzias latipes). J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
7
|
Weisburger JH. Prevention of coronary heart disease and cancer by tea, a review. Environ Health Prev Med 2012; 7:283-8. [PMID: 21432397 DOI: 10.1007/bf02908887] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Accepted: 11/14/2002] [Indexed: 12/31/2022] Open
Abstract
Biomedical research has uncovered the mechanisms whereby tea promotes good health and lowers the risk of major chronic diseases, such as heart disease and many types of cancer. The active components in tea are polyphenols, epigallocatechin gallate in green tea, theaflavins and thearubigins in black tea. Green and black tea and the polyphenols have similar beneficial effects. The mechanisms are categorized into 5 groups. 1) Tea polyphenols are powerful antioxidants. They decrease the oxidation of LDL cholesterol and lower the risk of heart disease, and also inhibit action of reactive oxygen species mediating the oxidation of DNA associated with carcinogenesis 2) Tea polyphenols induce detoxifying enzymes, glucuronosyl transferases, eliminating active forms of carcinogens and other toxicants, accounting for the lower cancer risk. 3) Tea polyphenols lower duplication rates of cancer cells and inhibit the growth of cancer, increase apoptosis and lower angiogenesis. 4) Tea polyphenols alter the intestinal bacterial flora, suppressing undesirable bacteria and favoring growth of beneficial bacteria. 5) Aging phenomena, and diseases associated with the formation of reactive oxygen species (ROS) are inhibited.
Collapse
Affiliation(s)
- John H Weisburger
- Institute for Cancer Prevention, American Health Foundation, 1 Dana Road, 10595, Valhalla, NY, USA,
| |
Collapse
|
8
|
Cao P, Vadhanam MV, Spencer WA, Cai J, Gupta RC. Sustained systemic delivery of green tea polyphenols by polymeric implants significantly diminishes benzo[a]pyrene-induced DNA adducts. Chem Res Toxicol 2011; 24:877-86. [PMID: 21574630 DOI: 10.1021/tx2000625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The polyphenolics in green tea are believed to be the bioactive components. However, poor bioavailability following ingestion limits their efficacy in vivo. In this study, polyphenon E (poly E), a standardized green tea extract, was administered by sustained-release polycaprolactone implants (two, 2-cm implants; 20% drug load) grafted subcutaneously or via drinking water (0.8% w/v) to female S/D rats. Animals were treated with continuous low dose of benzo[a]pyrene (BP) via subcutaneous polymeric implants (2 cm; 10% load) and euthanized after 1 and 4 weeks. Analysis of lung DNA by (32)P-postlabeling resulted in a statistically significant reduction (50%; p = 0.023) of BP-induced DNA adducts in the implant group; however, only a modest (34%) but statistically insignificant reduction occurred in the drinking water group at 1 week. The implant delivery system also showed significant reduction (35%; p = 0.044) of the known BP diolepoxide-derived DNA adduct after 4 weeks. Notably, the total dose of poly E administered was >100-fold lower in the implant group than the drinking water group (15.7 versus 1,632 mg, respectively). Analysis of selected phase I, phase II, and nucleotide excision repair enzymes at both mRNA and protein levels showed no significant modulation by poly E, suggesting that the reduction in the BP-induced DNA adducts occurred presumably due to known scavenging of the antidiolepoxide of BP by the poly E catechins. In conclusion, our study demonstrated that sustained systemic delivery of poly E significantly reduced BP-induced DNA adducts in spite of its poor bioavailability following oral administration.
Collapse
Affiliation(s)
- Pengxiao Cao
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| | | | | | | | | |
Collapse
|
9
|
Tayama Y, Sugihara K, Sanoh S, Miyake K, Morita S, Kitamura S, Ohta S. Effect of Tea Beverages on Aldehyde Oxidase Activity. Drug Metab Pharmacokinet 2011; 26:94-101. [DOI: 10.2133/dmpk.dmpk-10-nt-078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Chan PC, Ramot Y, Malarkey DE, Blackshear P, Kissling GE, Travlos G, Nyska A. Fourteen-week toxicity study of green tea extract in rats and mice. Toxicol Pathol 2010; 38:1070-84. [PMID: 20884815 DOI: 10.1177/0192623310382437] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The toxicity of green tea extract (GTE) was evaluated in 14-week gavage studies in male and female F344/NTac rats and B6C3F1 mice at doses up to 1,000 mg/kg. In the rats, no treatment-related mortality was noted. In the mice, treatment-related mortality occurred in male and female mice in the 1,000 mg/kg dose groups. The cause of early deaths was likely related to liver necrosis. Treatment-related histopathological changes were seen in both species in the liver, nose, mesenteric lymph nodes, and thymus. In addition, in mice, changes were seen in the Peyer's patches, spleen, and mandibular lymph nodes. The no adverse effect level (NOAEL) for the liver in both species was 500 mg/kg. In the nose of rats, the NOAEL in males was 62.5 mg/kg, and in females no NOAEL was found. No NOAEL was found in the nose of female or male mice. The changes in the liver and nose were considered primary toxic effects of GTE, while the changes in other organs were considered to be secondary effects. The nose and liver are organs with high metabolic enzyme activity. The increased susceptibility of the nose and liver suggests a role for GTE metabolites in toxicity induction.
Collapse
Affiliation(s)
- Po C Chan
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Chacko SM, Thambi PT, Kuttan R, Nishigaki I. Beneficial effects of green tea: a literature review. Chin Med 2010; 5:13. [PMID: 20370896 PMCID: PMC2855614 DOI: 10.1186/1749-8546-5-13] [Citation(s) in RCA: 471] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 04/06/2010] [Indexed: 12/11/2022] Open
Abstract
The health benefits of green tea for a wide variety of ailments, including different types of cancer, heart disease, and liver disease, were reported. Many of these beneficial effects of green tea are related to its catechin, particularly (-)-epigallocatechin-3-gallate, content. There is evidence from in vitro and animal studies on the underlying mechanisms of green tea catechins and their biological actions. There are also human studies on using green tea catechins to treat metabolic syndrome, such as obesity, type II diabetes, and cardiovascular risk factors.Long-term consumption of tea catechins could be beneficial against high-fat diet-induced obesity and type II diabetes and could reduce the risk of coronary disease. Further research that conforms to international standards should be performed to monitor the pharmacological and clinical effects of green tea and to elucidate its mechanisms of action.
Collapse
Affiliation(s)
- Sabu M Chacko
- NPO International Laboratory of Biochemistry, 1-166 Uchide, Nakagawa-ku, Nagoya, 454-0926, Japan
| | - Priya T Thambi
- NPO International Laboratory of Biochemistry, 1-166 Uchide, Nakagawa-ku, Nagoya, 454-0926, Japan
| | - Ramadasan Kuttan
- Amala Cancer Research Center, Amala Nagar, Thrissur, Kerala, 680 555, India
| | - Ikuo Nishigaki
- NPO International Laboratory of Biochemistry, 1-166 Uchide, Nakagawa-ku, Nagoya, 454-0926, Japan
| |
Collapse
|
12
|
Shord SS, Shah K, Lukose A. Drug-botanical interactions: a review of the laboratory, animal, and human data for 8 common botanicals. Integr Cancer Ther 2010; 8:208-27. [PMID: 19815591 DOI: 10.1177/1534735409340900] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Many Americans use complementary and alternative medicine (CAM) to prevent or alleviate common illnesses, and these medicines are commonly used by individuals with cancer.These medicines or botanicals share the same metabolic and transport proteins, including cytochrome P450 enzymes (CYP), glucuronosyltransferases (UGTs), and P-glycoprotein (Pgp), with over-the-counter and prescription medicines increasing the likelihood of drug-botanical interactions.This review provides a brief description of the different proteins, such as CYPs, UGTs, and Pgp.The potential effects of drug-botanical interactions on the pharmacokinetics and pharmacodynamics of the drug or botanical and a summary of the more common models used to study drug metabolism are described.The remaining portion of this review summarizes the data extracted from several laboratory, animal, and clinical studies that describe the metabolism, transport, and potential interactions of 8 selected botanicals. The 8 botanicals include black cohosh, Echinacea, garlic, Gingko biloba, green tea, kava, milk thistle, and St John's wort; these botanicals are among some of the more common botanicals taken by individuals with cancer.These examples are included to demonstrate how to interpret the different studies and how to use these data to predict the likelihood of a clinically significant drug-botanical interaction.
Collapse
Affiliation(s)
- Stacy S Shord
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
13
|
Zhong Z, Connor HD, Li X, Mason RP, Forman DT, Lemasters JJ, Thurman RG. Reduction of ciclosporin and tacrolimus nephrotoxicity by plant polyphenols. J Pharm Pharmacol 2010; 58:1533-43. [PMID: 17132217 DOI: 10.1211/jpp.58.11.0015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The immunosuppressants ciclosporin (cyclosporin A, CsA) and tacrolimus can cause severe nephrotoxicity. Since CsA increases free radical formation, this study investigated whether an extract from Camellia sinensis, which contains several polyphenolic free radical scavengers, could prevent nephrotoxicity caused by CsA and tacrolimus. Rats were fed powdered diet containing polyphenolic extract (0-0.1%) starting 3 days before CsA or tacrolimus. Free radicals were trapped with α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) and measured using an electron spin resonance spectrometer. Both CsA and tacrolimus decreased glomerular filtration rates (GFR) and caused tubular atrophy, vacuolization and calcification and arteriolar hyalinosis, effects that were blunted by treatment with dietary polyphenols. Moreover, CsA and tacrolimus increased POBN/radical adducts in urine nearly 3.5 fold. Hydroxyl radicals attack dimethyl sulfoxide (DMSO) to produce a methyl radical fragment. Administration of CsA or tacrolimus with 12C-DMSO produced a 6-line spectrum, while CsA or tacrolimus given with 13C-DMSO produced a 12-line ESR spectrum, confirming formation of hydroxyl radicals. 4-Hydroxynonenal (4-HNE), a product of lipid peroxidation, accumulated in proximal and distal tubules after CsA or tacrolimus treatment. ESR changes and 4-HNE formation were largely blocked by polyphenols. Taken together, these results demonstrate that both CsA and tacrolimus stimulate free radical production in the kidney, most likely in tubular cells, and that polyphenols minimize nephrotoxicity by scavenging free radicals.
Collapse
Affiliation(s)
- Zhi Zhong
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Chen X, Sun CK, Han GZ, Peng JY, Li Y, Liu YX, Lv YY, Liu KX, Zhou Q, Sun HJ. Protective effect of tea polyphenols against paracetamol-induced hepatotoxicity in mice is significanly correlated with cytochrome P450 suppression. World J Gastroenterol 2009; 15:1829-35. [PMID: 19370779 PMCID: PMC2670409 DOI: 10.3748/wjg.15.1829] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the hepatoprotective activity of tea polyphenols (TP) and its relation with cytochrome P450 (CYP450) expression in mice.
METHODS: Hepatic CYP450 and CYPb5 levels were measured by UV-spectrophotometry in mice 2 d after intraperitoneal TP (25, 50 and 100 mg/kg per day). Then the mice were intragastricly pre-treated with TP (100, 200 and 400 mg/kg per day) for six days before paracetamol (1000 mg/kg) was given. Their acute mortality was compared with that of control mice. The mice were pre-treated with TP (100, 200, and 400 mg/kg per day) for five days before paracetamol (500 mg/kg) was given. Hepatic CYP2E1 and CYP1A2 protein and mRNA expression levels were evaluated by Western blotting, immunohistochemical staining and transcriptase-polymerase chain reaction.
RESULTS: The hepatic CYP450 and CYPb5 levels in mice of TP-treated groups (100, 200 and 400 mg/kg per day) were decreased in a dose-dependent manner compared with those in the negative control mice. TP significantly attenuated the paracetamol-induced hepatic injury and dramatically reduced the mortality of paracetamol-treated mice. Furthermore, TP reduced CYP2E1 and CYP1A2 expression at both protein and mRNA levels in a dose-dependent manner.
CONCLUSION: TP possess potential hepatoprotective properties and can suppress CYP450 expression.
Collapse
|
15
|
Kim HS, Kim HS, Choi H. Pre- and post-initiation modulating effects of green tea ingestion on rat hepatocarcinogenesis. Nutr Res Pract 2008; 2:234-9. [PMID: 20016724 PMCID: PMC2788192 DOI: 10.4162/nrp.2008.2.4.234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/27/2008] [Accepted: 12/01/2008] [Indexed: 11/04/2022] Open
Abstract
The purpose of this study was to investigate the effects of green tea ingestion on hepatocarcinogenesis before and after its initiation. Male Sprague-Dawley rats were fed an AIN76A diet with or without green tea. Initiation was induced by a single dose (200 mg/kg) of diethylnitrosamine at week 4 and 0.02% (w/w) 2-acetylaminofluorene was supplied in the diets. The control group had free access to water for 13 weeks (CTR13). Tea infusion was provided from the beginning of the experiment for 13 weeks (PRE13) or from the post-initiation stage until week 13 (POST13). Three other groups (CTR24, PRE24 and POST24) were added to examine the longer-term effects (24 weeks) with the same experimental design. The percentage area of liver sections that were positive for hepatic placental glutathione S-transferase (GST-P), which was used as a marker of preneoplastic lesions, was smaller in PRE13 (20.2 +/- 5.0%, mean +/- SD) and POST13 (26.0 +/- 4.8%) than in CTR13 (33.2 +/- 5.8%, p<0.05). Over the longer period, the GST-P lesions were significantly smaller for both PRE24 and POST24 (21.6 +/- 8.5% and 22.2 +/- 4.0%, respectively) than for CTR24 (28.6 +/- 5.1%, p<0.05), but there was no significant difference between PRE24 and POST24. The liver content of thiobarbituric acid reactive substances was significantly lower in the tea groups than in the controls (p<0.05). However, no significant differences were observed among groups of GST activity. The results show that tea consumption exhibits a stronger short-term initiation-inhibiting ability in liver carcinogenesis, but over a longer period, the preventive effects of green tea ingestion do not differ in post- and pre-initiation.
Collapse
Affiliation(s)
| | - Hee-Seon Kim
- Department of Food Science and Nutrition, Soonchunhyang University, Asan, Chungnam 336-745, Korea
| | - Haymie Choi
- Department of Food Science and Nutrition, Seoul National University, Gwanak 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| |
Collapse
|
16
|
Yang CS, Lambert JD, Sang S. Antioxidative and anti-carcinogenic activities of tea polyphenols. Arch Toxicol 2008; 83:11-21. [PMID: 19002670 DOI: 10.1007/s00204-008-0372-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
Tea (Camellia sinensis, Theaceace), a popular beverage consumed world-wide, has been studied for its preventive effects against cancer as well as cardiovascular, neurodegenerative, and other diseases. Most of the proposed beneficial effects have been attributed to the polyphenolic compounds in tea, but the nature of these activities and the molecular mechanisms of their actions remain unclear. Tea polyphenols are known to be strong antioxidants. Prevention of oxidative stress, modulation of carcinogen metabolism, and prevention of DNA damage have been suggested as possible cancer preventive mechanisms for tea and tea polyphenols. In this chapter, we discuss these topics in the light of biotransformation and bioavailability of tea polyphenols. We also review the preventive effects of tea polyphenols in animal models of carcinogenesis and some of the possible post-initiation mechanisms of action. Finally, we discuss the effects of tea consumption on cancer risk in humans. It is our aim to raise some of the unanswered questions regarding cancer prevention by tea and to stimulate further research in this area.
Collapse
Affiliation(s)
- Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
17
|
Krishnan R, Raghunathan R, Maru GB. Effect of polymeric black tea polyphenols on benzo(a)pyrene [B(a)P]-induced cytochrome P4501A1 and 1A2 in mice. Xenobiotica 2008; 35:671-82. [PMID: 16316927 DOI: 10.1080/00498250500202155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The chemopreventive activity of green tea polyphenols (GTPs) is, in part, due to modulation of cytochrome P450s (CYPs). To investigate the enzyme modulatory properties of major black tea polyphenols, the effect of decaffeinated black tea extract (DBTE) or polymeric black tea polyphenol (PBP) mix was studied on CYP1A1 and CYP1A2 in mouse tissues. Animals receiving 2.5% DBTE or 1% PBP mix or drinking water (15 days) were challenged with single oral benzo(a)pyrene (B(a)P) (1 mg/mouse) treatment on the 14th day. Liver and lung microsomes isolated after 24 h were analysed for CYP1A1 and CYP1A2, using biochemical substrate(s) and Western blot analysis. Treatment with 2.5% DBTE or 1% PBP mix did not significantly alter the basal activity and level of CYP1A1 and CYP1A2, whereas pretreatment with 2.5% DBTE or 1% PBP mix resulted in a significant decrease in both the activity and the level of B(a)P-induced CYP1A1 and CYP1A2 in liver and lungs. The PBP mix possesses enzyme modulatory properties exhibited by monomeric GTPs.
Collapse
Affiliation(s)
- R Krishnan
- Tobacco Carcinogenesis Group, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | | | | |
Collapse
|
18
|
|
19
|
Saracino MR, Lampe JW. Phytochemical regulation of UDP-glucuronosyltransferases: implications for cancer prevention. Nutr Cancer 2008; 59:121-41. [PMID: 18001207 DOI: 10.1080/01635580701458178] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Uridine 5'-diphospho-glucuronosyltransferases (UGTs) are Phase II biotransformation enzymes that metabolize endogenous and exogenous compounds, some of which have been associated with cancer risk. Many phytochemicals have been shown to induce UGTs in humans, rodents, and cell culture systems. Because UGTs maintain hormone balance and facilitate excretion of potentially carcinogenic compounds, regulation of their expression and activity may affect cancer risk. Phytochemicals regulate transcription factors such as the nuclear factor-erythroid 2-related factor 2 (Nrf2), aryl hydrocarbon, and pregnane X receptors as well as proteins in several signal transduction cascades that converge on Nrf2 to stimulate UGT expression. This induction can be modified by several factors, including phytochemical dose and bioavailability and interindividual variation in enzyme expression. In this review, we summarize the knowledge of dietary modulation of UGTs, particularly by phytochemicals, and discuss the potential mechanisms by which phytochemicals regulate UGT transcription.
Collapse
|
20
|
Chow HHS, Hakim IA, Vining DR, Crowell JA, Tome ME, Ranger-Moore J, Cordova CA, Mikhael DM, Briehl MM, Alberts DS. Modulation of human glutathione s-transferases by polyphenon e intervention. Cancer Epidemiol Biomarkers Prev 2007; 16:1662-6. [PMID: 17684143 DOI: 10.1158/1055-9965.epi-06-0830] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Green tea consumption has been associated with decreased risk of certain types of cancers in humans. Induction of detoxification enzymes has been suggested as one of the biochemical mechanisms responsible for the cancer-preventive effect of green tea. We conducted this clinical study to determine the effect of repeated green tea polyphenol administration on a major group of detoxification enzymes, glutathione S-transferases (GST). METHODS A total of 42 healthy volunteers underwent a 4-week washout period by refraining from tea or tea-related products. At the end of the washout period, a fasting blood sample was collected, and plasma and lymphocytes were isolated for assessment of GST activity and level. Following the baseline evaluation, study participants underwent 4 weeks of green tea polyphenol intervention in the form of a standardized Polyphenon E preparation at a dose that contains 800 mg epigallocatechin gallate (EGCG) once a day. Polyphenon E was taken on an empty stomach to optimize the oral bioavailability of EGCG. Upon completion of the intervention, samples were collected for postintervention GST assessment. RESULTS Four weeks of Polyphenon E intervention enhanced the GST activity in blood lymphocytes from 30.7 +/- 12.2 to 35.1 +/- 14.3 nmol/min/mg protein, P = 0.058. Analysis based on baseline activity showed that a statistically significant increase (80%, P = 0.004) in GST activity was observed in individuals with baseline activity in the lowest tertile, whereas a statistically significant decrease (20%, P = 0.02) in GST activity was observed in the highest tertile. In addition, Polyphenon E intervention significantly increased the GST-pi level in blood lymphocytes from 2,252.9 +/- 734.2 to 2,634.4 +/- 1,138.3 ng/mg protein, P = 0.035. Analysis based on baseline level showed that this increase was only significant (P = 0.003) in individuals with baseline level in the lowest tertile, with a mean increase of 80%. Repeated Polyphenon E administration had minimal effects on lymphocyte GST-mu and plasma GST-alpha levels. There was a small but statistically significant decrease (8%, P = 0.003) in plasma GST-alpha levels in the highest tertile. CONCLUSIONS We conclude that 4 weeks of Polyphenon E administration resulted in differential effects on GST activity and level based on baseline enzyme activity/level, with GST activity and GST-pi level increased significantly in individuals with low baseline enzyme activity/level. This suggests that green tea polyphenol intervention may enhance the detoxification of carcinogens in individuals with low baseline detoxification capacity.
Collapse
Affiliation(s)
- H-H Sherry Chow
- Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chow HHS, Hakim IA, Vining DR, Crowell JA, Cordova CA, Chew WM, Xu MJ, Hsu CH, Ranger-Moore J, Alberts DS. Effects of repeated green tea catechin administration on human cytochrome P450 activity. Cancer Epidemiol Biomarkers Prev 2007; 15:2473-6. [PMID: 17164372 DOI: 10.1158/1055-9965.epi-06-0365] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Preclinical studies suggested that green tea or green tea catechins can modulate the activities of drug-metabolizing enzymes. We conducted this clinical study to determine the effect of repeated green tea catechin administration on human cytochrome P450 (CYP) enzyme activities. METHODS Forty-two healthy volunteers underwent a 4-week washout period by refraining from tea or tea-related products. At the end of the washout period, study participants received a cocktail of CYP metabolic probe drugs, including caffeine, dextromethorphan, losartan, and buspirone for assessing the activity of CYP1A2, CYP2D6, CYP2C9, and CYP3A4, respectively. Blood and urine samples before and 8 h after probe drug administration were collected to determine parent drug and metabolite concentrations for measurements of baseline CYP enzyme activities. Following the baseline evaluation, study participants underwent 4 weeks of green tea catechin intervention at a dose that contains 800 mg epigallocatechin gallate (EGCG) daily. The green tea catechin product was taken on an empty stomach to optimize the p.o. bioavailability of EGCG. The EGCG dose given in this study exceeded the amounts provided by average green tea consumption. Upon completion of the green tea catechin intervention, the postintervention CYP enzyme activities were evaluated as described above. RESULTS There are large between-subject variations in CYP enzyme activities in healthy individuals. Four weeks of green tea catechin intervention did not alter the phenotypic indices of CYP1A2, CYP12D6, and CYP12C9, but resulted in a 20% increase (P = 0.01) in the area under the plasma buspirone concentration-time profile, suggesting a small reduction in CYP3A4 activity. CONCLUSIONS We conclude that repeated green tea catechin administration is not likely to result in clinically significant effects on the disposition of drugs metabolized by CYP enzymes.
Collapse
Affiliation(s)
- H-H Sherry Chow
- Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gupta SK, Agarwal R, Srivastava S, Mathur R, Galpalli ND, Agrawal SS. Therapeutic potential of green tea: a new horizon in drug discovery. Expert Opin Drug Discov 2007; 2:349-59. [PMID: 23484646 DOI: 10.1517/17460441.2.3.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Worldwide, tea is one of the most widely consumed beverages. Green tea consumption is especially popular in China, Japan and other Asian countries. It has been found to be rich in polyphenolic compounds, of which catechins are the major constituents. A large number of clinical and preclinical studies have explored its pharmacologic activities. It holds promise as an antioxidant, anti-inflammatory, antibacterial, antiarteriosclerotic, cardioprotective, neuroprotective and anticarcinogenic agent, to name a few. This review summarizes the pharmacodynamics and pharmacokinetics of green tea polyphenols and explores their future as novel drugs for both health and disease conditions.
Collapse
Affiliation(s)
- Suresh Kumar Gupta
- Director General & Dean, Insititute of Clinical Research in India, A 201, Okhla Ph-1, New Delhi - 110019, India.
| | | | | | | | | | | |
Collapse
|
23
|
Mirkov S, Komoroski BJ, Ramírez J, Graber AY, Ratain MJ, Strom SC, Innocenti F. Effects of green tea compounds on irinotecan metabolism. Drug Metab Dispos 2006; 35:228-33. [PMID: 17108060 DOI: 10.1124/dmd.106.012047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of green tea compounds on the metabolism of irinotecan have never been investigated. We aimed to study whether catechins [(-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC), (-)-epicatechin] affect the inactivation metabolism of irinotecan into 7-ethyl-10-[4-N-(1-piperidino)-1-amino]carbonyloxycamptothecin (NPC) (by CYP3A4) and 7-ethyl-10-hydroxycamptothecin (SN-38) into 7-ethyl-10-hydroxycamptothecin glucuronide (SN-38G) (by UGT1A1). Human liver microsomes, hepatocytes and Hep G2 cells were incubated with catechins and treated with irinotecan and/or SN-38. NPC and SN-38G formation was measured by high-performance liquid chromatography. UGT1A1 mRNA levels were measured by real-time polymerase chain reaction. In human liver microsomes, a concentration-dependent decrease in the formation of NPC and SN-38G was observed. In human hepatocytes, a significant increase in SN-38G production was observed in 33% (EGCG), 44% (ECG), and 44% (EGC) of the hepatocyte preparations. Phenobarbital increased the formation of SN-38G in 100% of the same hepatocyte preparations. In Hep G2 cells, no increase in SN-38G formation was observed. With the exception of ECG in one liver, catechins did not increase UGT1A1 mRNA levels. NPC production was also significantly increased in 40% of the hepatocyte preparations for each catechin. However, the production of 6beta-hydroxytestosterone remained unaffected in other hepatocyte preparations. At pharmacologically relevant concentrations, catechins are unlikely to inhibit the formation of irinotecan inactive metabolites when administered concomitantly. The induction effect of catechins on UGT1A1 seems to be modest and highly variable. Catechins do not induce CYP3A4 activity. The effect of acute and prolonged use of green tea on the pharmacokinetics of irinotecan in patients remains to be evaluated.
Collapse
Affiliation(s)
- Snezana Mirkov
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
van den Bout-van den Beukel CJP, Koopmans PP, van der Ven AJAM, De Smet PAGM, Burger DM. Possible drug-metabolism interactions of medicinal herbs with antiretroviral agents. Drug Metab Rev 2006; 38:477-514. [PMID: 16877262 DOI: 10.1080/03602530600754065] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Herbal medicines are widely used by HIV patients. Several herbal medicines have been shown to interact with antiretroviral drugs, which might lead to drug failure. We have aimed to provide an overview of the modulating effects of Western and African herbal medicines on antiretroviral drug-metabolizing and transporting enzymes, focusing on potential herb-antiretroviral drug interactions. Echinacea, garlic, ginkgo, milk thistle, and St. John's wort have the potential to cause significant interactions. In vitro and in vivo animal studies also indicated other herbs with a potential for interactions; however, most evidence is based on in vitro studies. Further pharmacokinetic studies to unveil potential Western and especially African herb-antiretroviral drug interactions are urgently required, and the clinical significance of these interactions should be assessed.
Collapse
|
25
|
Abstract
Tea is one of the most popular beverages consumed around the world, second only to water. There has been substantial interest in the potential role of tea in cancer prevention, particularly in respiratory and gastrointestinal tract cancers. Recent epidemiological data have linked tea intake to reduced risk of hormone-related cancers, including breast, ovarian and prostate cancers. Based on sparse data, there is suggestion that tea intake may influence circulating hormone levels, providing a plausible mechanism whereby tea intake may influence risk of hormone-related cancers. The major objectives of this paper are to review the epidemiological evidence on tea and risk of breast, ovarian, and prostate cancers as well as the human and non-human studies on tea and circulating hormone levels. We pay special attention to some of the limitations of the human studies and discuss future research needs.
Collapse
Affiliation(s)
- Anna H Wu
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90089-9175, USA.
| | | |
Collapse
|
26
|
Augustyniak A, Waszkiewicz E, Skrzydlewska E. Preventive action of green tea from changes in the liver antioxidant abilities of different aged rats intoxicated with ethanol. Nutrition 2006; 21:925-32. [PMID: 16084066 DOI: 10.1016/j.nut.2005.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 01/27/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The present study investigated the influence of green tea as a source of water-soluble antioxidants on the liver antioxidant potential of different aged rats chronically intoxicated with ethanol. METHODS Rats (2, 12, and 24 mo old) were fed for 5 wk on a control or an ethanol Lieber-DeCarli diet with and without green tea (7 g/L). The activity and level of enzymatic and non-enzymatic antioxidants and the level of markers of protein and lipid oxidation in the liver of rats were examined. RESULTS The activities of superoxide dismutase and catalase and levels of vitamins C, E, A, and beta-carotene were significantly decreased, whereas activities of glutathione peroxidase and glutathione reductase and the level of reduced glutathione significantly increased during aging. The ethanol diet caused a significant decrease in activity of antioxidant enzymes and in the level of non-enzymatic antioxidants tested. Administration of green tea to ethanol-treated rats of different ages partly normalized the activity of enzymes and the level of non-enzymatic antioxidants. Changes in antioxidant ability observed during aging were accompanied by increased levels of markers of lipid and protein modifications that also were intensified by ethanol. Green tea caused a decrease in lipid and protein oxidation in aged and ethanol-treated rats. The protective effect of green tea was confirmed by the significantly lower activity of biomarkers of liver damage (alanine and aspartate aminotransferases) in the serum of rats that received green tea with ethanol compared with rats from the control ethanol group. CONCLUSIONS The use of green tea appears to be beneficial to rat liver by decreasing oxidative stress caused by ethanol and/or aging.
Collapse
Affiliation(s)
- Agnieszka Augustyniak
- Department of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| | | | | |
Collapse
|
27
|
Moon YJ, Wang X, Morris ME. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro 2005; 20:187-210. [PMID: 16289744 DOI: 10.1016/j.tiv.2005.06.048] [Citation(s) in RCA: 575] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2004] [Revised: 04/01/2005] [Accepted: 06/01/2005] [Indexed: 02/08/2023]
Abstract
Flavonoids are present in fruits, vegetables and beverages derived from plants (tea, red wine), and in many dietary supplements or herbal remedies including Ginkgo Biloba, Soy Isoflavones, and Milk Thistle. Flavonoids have been described as health-promoting, disease-preventing dietary supplements, and have activity as cancer preventive agents. Additionally, they are extremely safe and associated with low toxicity, making them excellent candidates for chemopreventive agents. The cancer protective effects of flavonoids have been attributed to a wide variety of mechanisms, including modulating enzyme activities resulting in the decreased carcinogenicity of xenobiotics. This review focuses on the flavonoid effects on cytochrome P450 (CYP) enzymes involved in the activation of procarcinogens and phase II enzymes, largely responsible for the detoxification of carcinogens. A number of naturally occurring flavonoids have been shown to modulate the CYP450 system, including the induction of specific CYP isozymes, and the activation or inhibition of these enzymes. Some flavonoids alter CYPs through binding to the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, acting as either AhR agonists or antagonists. Inhibition of CYP enzymes, including CYP 1A1, 1A2, 2E1 and 3A4 by competitive or mechanism-based mechanisms also occurs. Flavones (chrysin, baicalein, and galangin), flavanones (naringenin) and isoflavones (genistein, biochanin A) inhibit the activity of aromatase (CYP19), thus decreasing estrogen biosynthesis and producing antiestrogenic effects, important in breast and prostate cancers. Activation of phase II detoxifying enzymes, such as UDP-glucuronyl transferase, glutathione S-transferase, and quinone reductase by flavonoids results in the detoxification of carcinogens and represents one mechanism of their anticarcinogenic effects. A number of flavonoids including fisetin, galangin, quercetin, kaempferol, and genistein represent potent non-competitive inhibitors of sulfotransferase 1A1 (or P-PST); this may represent an important mechanism for the chemoprevention of sulfation-induced carcinogenesis. Importantly, the effects of flavonoids on enzymes are generally dependent on the concentrations of flavonoids present, and the different flavonoids ingested. Due to the low oral bioavailability of many flavonoids, the concentrations achieved in vivo following dietary administration tend to be low, and may not reflect the concentrations tested under in vitro conditions; however, this may not be true following the ingestion of herbal preparations when much higher plasma concentrations may be obtained. Effects will also vary with the tissue distribution of enzymes, and with the species used in testing since differences between species in enzyme activities also can be substantial. Additionally, in humans, marked interindividual variability in drug-metabolizing enzymes occurs as a result of genetic and environmental factors. This variability in xenobiotic metabolizing enzymes and the effect of flavonoid ingestion on enzyme expression and activity can contribute to the varying susceptibility different individuals have to diseases such as cancer. As well, flavonoids may also interact with chemotherapeutic drugs used in cancer treatment through the induction or inhibition of their metabolism.
Collapse
Affiliation(s)
- Young Jin Moon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-1200, USA
| | | | | |
Collapse
|
28
|
|
29
|
Koo MWL, Cho CH. Pharmacological effects of green tea on the gastrointestinal system. Eur J Pharmacol 2005; 500:177-85. [PMID: 15464031 DOI: 10.1016/j.ejphar.2004.07.023] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 06/02/2004] [Accepted: 07/01/2004] [Indexed: 02/08/2023]
Abstract
Green tea is rich in polyphenolic compounds, with catechins as its major component. Studies have shown that catechins possess diverse pharmacological properties that include anti-oxidative, anti-inflammatory, anti-carcinogenic, anti-arteriosclerotic and anti-bacterial effects. In the gastrointestinal tract, green tea was found to activate intracellular antioxidants, inhibit procarcinogen formation, suppress angiogenesis and cancer cell proliferation. Studies on the preventive effect of green tea in esophageal cancer have produced inconsistent results; however, inverse relationships of tea consumption with cancers of the stomach and colon have been widely reported. Green tea is effective to prevent dental caries and reduce cholesterols and lipids absorption in the gastrointestinal tract, thus benefits subjects with cardiovascular disorders. As tea catechins are well absorbed in the gastrointestinal tract and they interact synergistically in their disease-modifying actions, thus drinking unfractionated green tea is the most simple and beneficial way to prevent gastrointestinal disorders.
Collapse
Affiliation(s)
- Marcel W L Koo
- Department of Pharmacology, Faculty of Medicine, The University of Hong Kong, L2-55 Laboratory Block, 21 Sassoon Road, Hong Kong, PR China
| | | |
Collapse
|
30
|
Łuczaj W, Skrzydlewska E. Antioxidant properties of black tea in alcohol intoxication. Food Chem Toxicol 2004; 42:2045-51. [PMID: 15500941 DOI: 10.1016/j.fct.2004.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 08/14/2004] [Indexed: 02/08/2023]
Abstract
Food ingredients such as alcohol may modify cellular redox state. Ethanol metabolism is accompanied by generation of free radicals that can damage cell components especially when antioxidant mechanisms are no able to neutralize them. However black tea is a source of polyphenol antioxidants that may enhance cellular antioxidant abilities. The aim of this study was to investigate the effect of black tea on antioxidant abilities of the liver, blood serum and brain of 12-months old rats sub-chronically (for 28 days) intoxicated with ethanol. Administration of black tea alone caused increase in the activity and concentration of antioxidant parameters more extensively in the liver and serum than in the brain. Alcohol caused decrease in the liver glutathione peroxidase and reductase and catalase activity but increase in activity of superoxide dismutase. Moreover, decrease in the level of non-enzymatic antioxidants, such as reduced glutathione, vitamin C, A and E and beta-carotene was observed. The activity of serum glutathione peroxidase and reductase decreased while superoxide dismutase activity was not changed. The level of non-enzymatic antioxidants in serum was also decreased. However brain activity/level of all examined antioxidants enzymatic as well as non-enzymatic was decreased after ethanol intoxication. Black tea considerably prevented antioxidant parameters against changes caused by ethanol. These results indicate beneficial antioxidant effect of black tea regarding all examined tissues, but especially the liver.
Collapse
Affiliation(s)
- W Łuczaj
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2a, 15-230 Białystok 8, P.O. Box 14, Poland
| | | |
Collapse
|
31
|
Crespy V, Williamson G. A review of the health effects of green tea catechins in in vivo animal models. J Nutr 2004; 134:3431S-3440S. [PMID: 15570050 DOI: 10.1093/jn/134.12.3431s] [Citation(s) in RCA: 355] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is good evidence from in vitro studies that green tea catechins have a role in protection against degenerative diseases. However, the concentrations used in vitro are often higher than those found in animal or human plasma, and so in vivo evidence is required to demonstrate any protective effect of catechins. This article summarizes the most interesting in vivo animal studies on the protective effects of green tea catechins against biomarkers for cancer, cardiovascular disease, and other degenerative diseases. Generally, most studies using animal models show that consumption of green tea (catechins) provides some protection, although most studies have not examined dose response. Tea catechins could act as antitumorigenic agents and as immune modulators in immunodysfunction caused by transplanted tumors or by carcinogen treatment. Green tea has antiproliferative activity in hepatoma cells and hypolipidemic activity in hepatoma-treated rats, and some studies report that it prevents hepatoxicity. It could act as a preventive agent against mammary cancer postinitiation. Nevertheless, the implications of green tea catechins in preventing metastasis have not been clearly established. Long-term feeding of tea catechins could be beneficial for the suppression of high-fat diet-induced obesity by modulating lipid metabolism, could have a beneficial effect against lipid and glucose metabolism disorders implicated in type 2 diabetes, and could also reduce the risk of coronary disease. Further investigations on mechanisms, the nature of the active compounds, and appropriate dose levels are needed.
Collapse
Affiliation(s)
- Vanessa Crespy
- Nestlé Research Center, Vers Chez Les Blanc, CH-1000 Lausanne 26, Switzerland
| | | |
Collapse
|
32
|
Marnewick JL, Batenburg W, Swart P, Joubert E, Swanevelder S, Gelderblom WCA. Ex vivo modulation of chemical-induced mutagenesis by subcellular liver fractions of rats treated with rooibos (Aspalathus linearis) tea, honeybush (Cyclopia intermedia) tea, as well as green and black (Camellia sinensis) teas. Mutat Res 2004; 558:145-54. [PMID: 15036128 DOI: 10.1016/j.mrgentox.2003.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 11/20/2003] [Accepted: 12/01/2003] [Indexed: 04/29/2023]
Abstract
Male Fischer rats were given unprocessed (not oxidized) and processed (oxidized) rooibos and honeybush teas as well as green and black teas as a sole source of drinking fluid for 10 weeks, and sub cellular liver fractions were prepared. Cytosolic fractions of rats consuming the unprocessed herbal teas, green and black teas significantly (P < 0.05) protected against 2-acetylaminofluorene (2-AAF)-induced mutagenesis in the Salmonella mutagenicity test with strain TA 98, using Aroclor 1254-induced microsomes. A marginal or no protection was obtained with the processed herbal teas. The mutagenic response of aflatoxin B1 (AFB1) against Salmonella strain TA 100 was significantly (P < 0.05) inhibited by cytosolic fractions from rats treated with processed and unprocessed herbal teas, while no effect was obtained with the green and black teas. Microsomal fractions prepared from livers of rats treated with both the processed and unprocessed rooibos teas and the unprocessed honeybush tea, significantly (P < 0.05) reduced the activation of AFB1 while no protection was observed against 2-AAF-induced mutagenesis. In contrast, microsomal fractions from rats treated with the green, black and unprocessed honeybush teas significantly (P < 0.05) enhanced the mutagenic response of 2-AAF. None of the tea treatments significantly affected the concentration of the microsomal liver cytochrome P450.
Collapse
Affiliation(s)
- J L Marnewick
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Metabolic food-drug interactions occur when the consumption of a particular food modulates the activity of a drug-metabolising enzyme system, resulting in an alteration of the pharmacokinetics of drugs metabolised by that system. A number of these interactions have been reported. Foods that contain complex mixtures of phytochemicals, such as fruits, vegetables, herbs, spices and teas, have the greatest potential to induce or inhibit the activity of drug-metabolising enzymes, although dietary macroconstituents (i.e. total protein, fat and carbohydrate ratios, and total energy intake) can also have effects. Particularly large interactions may result from the consumption of herbal dietary supplements. Cytochrome P450 (CYP) 3A4 appears to be especially sensitive to dietary effects, as demonstrated by reports of potentially clinically important interactions involving orally administered drugs that are substrates of this enzyme. For example, interactions of grapefruit juice with cyclosporin and felodipine, St John's wort with cyclosporin and indinavir, and red wine with cyclosporin, have the potential to require dosage adjustment to maintain drug concentrations within their therapeutic windows. The susceptibility of CYP3A4 to modulation by food constituents may be related to its high level of expression in the intestine, as well as its broad substrate specificity. Reported ethnic differences in the activity of this enzyme may be partly due to dietary factors. Food-drug interactions involving CYP1A2, CYP2E1, glucuronosyltransferases and glutathione S-transferases have also been documented, although most of these interactions are modest in magnitude and clinically relevant only for drugs that have a narrow therapeutic range. Recently, interactions involving drug transporters, including P-glycoprotein and the organic anion transporting polypeptide, have also been identified. Further research is needed to determine the scope, magnitude and clinical importance of food effects on drug metabolism and transport.
Collapse
Affiliation(s)
- Robert Z Harris
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, Thousand Oaks, California 91320-1799, USA.
| | | | | |
Collapse
|
34
|
Huber WW, Teitel CH, Coles BF, King RS, Wiese FW, Kaderlik KR, Casciano DA, Shaddock JG, Mulder GJ, Ilett KF, Kadlubar FF. Potential chemoprotective effects of the coffee components kahweol and cafestol palmitates via modification of hepatic N-acetyltransferase and glutathione S-transferase activities. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 44:265-276. [PMID: 15468054 DOI: 10.1002/em.20052] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Coffee drinking has been associated with reduced incidence of colorectal cancer, possibly via chemoprotection/modification of the metabolism of dietary heterocyclic amine carcinogens such as 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine (PhIP) by kahweol and cafestol palmitates (K/C), two components of unfiltered coffee. Using the PhIP-exposed male Fisher F344 rat as a model, K/C have been shown to reduce colonic PhIP-DNA adducts by > 50%. We have used the male F344 rat to investigate the effects of dietary K/C (0.02-0.2% as a 1:1 mixture) on the metabolism of PhIP by N-acetyltransferase- (NAT), sulfotransferase- (SULT), and glutathione-dependent pathways. K/C decreased hepatic NAT-dependent PhIP activation by up to 80% in a dose-dependent manner. Conversely, hepatic glutathione S-transferase (GST) activity/expression increased, e.g., 3-4 fold toward 1-chloro-2,4-dinitrobenzene (total activity), up to 23-fold toward 4-vinylpyridine (rGSTP1), and approximately 7-fold for rGSTA2 protein. These effects had fully developed after 5 days of the test diet and persisted for at least 5 days after withdrawal of K/C. Hepatic glutathione increased two- to threefold and this increase was more short-lived than other changes. K/C did not modify hepatic SULT activity or colon NAT and GST activities. Benzylisothiocyanate and black tea, which have also been shown to reduce the formation of PhIP-DNA adducts in this model, had little effect on hepatic NAT, SULT, GST, or GSH. In primary culture of rat hepatocytes, both kahweol and cafestol palmitates reduced NAT activity by 80%. In summary, the unique potential of K/C to convert rapid acetylators to a slow acetylator phenotype, accompanied by GST induction, might contribute to chemoprevention against cancers associated with heterocyclic amines.
Collapse
Affiliation(s)
- Wolfgang W Huber
- Division of Molecular Epidemiology, National Center for Toxicological Research, Jefferson, Arkansas, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Niwattisaiwong N, Luo XX, Coville PF, Wanwimolruk S. Effects of Chinese, Japanese and Western Tea on Hepatic P450 Enzyme Activities in Rats. ACTA ACUST UNITED AC 2004; 20:43-56. [PMID: 15283302 DOI: 10.1515/dmdi.2004.20.1-2.43] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous studies have reported that green tea effectively protects against cancers caused by various dietary carcinogens. As P450 enzymes are the major system responsible for the metabolism of many carcinogens, we hypothesise that tea consumption may alter the catalytic activities of P450 enzymes. We conducted this study to screen the effects of four different teas on the activities of P450 enzymes. Tea solutions (2.5%) were prepared by adding boiling water to tea leaves and filtering. Female Wistar rats were divided into five groups (n = 4 each); each had free access to tea solutions while the control group was supplied with water for 4 weeks. Animals were sacrificed and livers were removed for preparation of microsomes. Enzyme activities were determined by incubation of liver microsomes with the appropriate CYP substrate. The activity of CYP1A1 in livers from rats receiving Oolong (Chinese) tea (185 +/- 63 pmol/mg/min), Japanese green tea (197 +/- 22 pmol/mg/min) and Earl Grey tea (228 +/- 40 pmol/mg/min) was significantly higher (p < 0.05) than in the control group (94 +/- 34 pmol/mg/min), whereas no change was observed in the activity of CYP1A2 in any of tested animals. The hepatic activity of CYP2D6 was greater only in rats drinking Earl Grey tea compared to the controls (235 +/- 37 vs 161 +/- 41 pmol/mg/min, p < 0.05). There were also significant increases (p < 0.05) in the activity of CYP3A in livers of animals given Oolong tea (653 +/- 174 vs 382 +/- 114 pmol/mg/min) and Earl Grey tea (751 +/- 202 pmol/mg/min), while Jasmine and Japanese green tea had no significant effect. These results indicate that not all types of tea cause alterations in liver CYP enzymes as some elevated activities and some did not. Further studies are needed to determine whether there is a relationship between the effect of tea on CYP activities and anti-carcinogenesis.
Collapse
Affiliation(s)
- N Niwattisaiwong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Tea is considered to be one of the most promising dietary chemopreventive agents and, consequently, it is being studied extensively worldwide. Despite the fact that tea has proved very efficient in affording protection against chemical-induced cancer in animal models of the disease, epidemiological studies do not always support the laboratory findings, so that the value of tea as a human anticarcinogen may be considered as 'not proven'. A major mechanism of the anticarcinogenic activity of tea in animals is impairment of the interaction of carcinogens with DNA leading to mutations. The antimutagenic activity of tea as well as the underlying mechanisms will be reviewed, and the role of polyphenols, the postulated bioactive components, and caffeine will be critically evaluated. RECENT FINDINGS In rats, exposure to tea modulated the disposition of heterocyclic amines, a major group of food-borne carcinogens, stimulating the pathways that lead to deactivation, and this is concordant with the established ability of tea to modulate the carcinogen-metabolizing enzyme systems. These observations provide a rational mechanism for the anticarcinogenic activity of tea in animals. SUMMARY The beneficial activities of tea have always been attributed to the polyphenols, as these are present in tea at substantial concentrations and are endowed with antioxidant activity. It is becoming increasingly evident, however, that the bioavailability of these compounds is poor as a result of limited absorption and presystemic metabolism by mammalian and microbial enzymes. We propose that the biological activity of tea may be mediated by caffeine and microbial metabolites of polyphenols.
Collapse
Affiliation(s)
- Costas Ioannides
- Molecular Toxicology Group, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| | | |
Collapse
|
37
|
Catterall F, McArdle NJ, Mitchell L, Papayanni A, Clifford MN, Ioannides C. Hepatic and intestinal cytochrome P450 and conjugase activities in rats treated with black tea theafulvins and theaflavins. Food Chem Toxicol 2003; 41:1141-7. [PMID: 12842182 DOI: 10.1016/s0278-6915(03)00073-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Theaflavins and theafulvins, a fraction of thearubigins, were isolated from aqueous infusions of black tea, and their effects on the hepatic and intestinal cytochrome P450 system, and on the glutathione S-transferase, epoxide hydrolase, glucuronosyl transferase and sulphotransferase enzyme systems were investigated in rats following oral intake for four weeks. Neither theafulvins nor theaflavins influenced cytochrome P450 activity in the liver as exemplified by the O-dealkylations of methoxy-, ethoxy- and pentoxyresorufin, the hydroxylations of lauric acid and p-nitrophenol, and the N-demethylation of erythromycin; similarly, hepatic xenobiotic conjugation systems were unaffected. In the intestine, both polyphenolic fractions markedly suppressed the O-deethylation of ethoxyresorufin and this was accompanied by a decrease in the CYP1A1 apoprotein levels. Probing intestinal microsomes with antibodies to CYP2E1 revealed the presence of a single band in the cytochrome P450 region whose intensity was lower in the polyphenol-treated animals. Immunoblot analysis utilising antibodies to CYP3A showed that the treatment with theafulvins and theaflavins reduced the apoprotein levels. A single band in the cytochrome P450 region was evident when the intestinal microsomes were probed with antibodies to CYP4A1 but the level of expression was not affected by the treatment with the black tea polyphenols. Finally, treatment of the rats with theaflavins had no effect on any of the intestinal conjugating enzymes studied, but treatment with theafulvins led to inhibition of glucuronosyl transferase activity.
Collapse
Affiliation(s)
- F Catterall
- School of Biomedical and Life Sciences, University of Surrey, Surrey, GU2 7XH, Guildford, UK
| | | | | | | | | | | |
Collapse
|
38
|
Turesky RJ, Richoz J, Constable A, Curtis KD, Dingley KH, Turteltaub KW. The effects of coffee on enzymes involved in metabolism of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in rats. Chem Biol Interact 2003; 145:251-65. [PMID: 12732453 DOI: 10.1016/s0009-2797(03)00022-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The effects of coffee on the metabolism and genotoxicity of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were investigated. Coffee diminished the bacterial mutagenicity of PhIP in the Ames reversion assay through inhibition of cytochrome P450 1A2 (CYP1A2), a key enzyme involved in the metabolic activation of PhIP. When given as part of the diet (0, 1 or 5% w/w) to male Fischer-344 rats for 2 weeks, coffee affected the expression of hepatic enzymes involved in PhIP metabolism. Coffee increased the expression of CYP1A2 by 16-fold in the 5% coffee-treated group, and approximately half of this inductive effect was attributed to caffeine. Coffee also increased the expression of enzymes involved in the detoxication of PhIP. A 2-fold increase in expression of glutathione S-transferase alpha was observed, UDP-glucuronosyl transferase (UGTs) activities of p-nitrophenol increased 2-fold, while N(2)-and N3-glucuronidation of the genotoxic metabolite 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP) increased by 1.3-fold in the 5% coffee-treated over the control group. The amount of PhIP (0.75 mg/kg, 24 h) eliminated in urine as the N(2)-and N3-glucuronide conjugates of HONH-PhIP increased by 1.8- and 2.5-fold, respectively, in the 5% coffee-treated group over control rats, suggesting either increased rates of N-oxidation of PhIP or N-glucuronidation of HONH-PhIP. Despite the strong induction of CYP1A2, there was no increase in PhIP-DNA adduct formation in colon and pancreas while liver adducts decreased by 50% over control animals. These data suggest that the effect of coffee on inhibition of PhIP N-oxidation and ensuing DNA damage is more important in vivo than its effect on induction of PhIP N-hydroxylation.
Collapse
Affiliation(s)
- Robert J Turesky
- Division of Chemistry, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Chen JJ, Chen GS, Bunce NJ. Inhibition of CYP 1A2-dependent MROD activity in rat liver microsomes: an explanation of the hepatic sequestration of a limited subset of halogenated aromatic hydrocarbons. ENVIRONMENTAL TOXICOLOGY 2003; 18:115-119. [PMID: 12635099 DOI: 10.1002/tox.10107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Many classes of halogenated aromatic compounds (HACs) are highly lipophilic environmental contaminants that exert toxic effects via the Ah receptor signal transduction pathway and whose metabolism generally involves monooxygenase enzymes of the CYP 1A family. Despite their lipophilicity, a high proportion of the body burden of certain polychlorinated dibenzo-p-dioxins and coplanar polychlorinated biphenyls is sequestered in liver, a process believed to involve CYP 1A2. In this work we examined HAC-induced inhibition of the demethylation of 7-methoxyresorufin, a process that is selectively catalyzed by CYP 1A2. 2,3,7,8-Tetrachlorodibenzo-p-dioxin, 3,3',4,4'-tetrachlorobiphenyl (PCB 77) and 3,3',4,4',5-pentachlorobiphenyl (PCB 126) were found to be strong competitive inhibitors of methoxyresorufin-O-demethylase activity, consistent with the high ability of hepatic tissue to sequester these compounds selectively.
Collapse
Affiliation(s)
- Jin Jun Chen
- Toxicology Program, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | |
Collapse
|
40
|
Catterall F, Copeland E, Clifford MN, Ioannides C. Effects of black tea theafulvins on aflatoxin B(1) mutagenesis in the Ames test. Mutagenesis 2003; 18:145-50. [PMID: 12621070 DOI: 10.1093/mutage/18.2.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Black tea theafulvins, a fraction of thearubigins isolated from black tea aqueous infusions, potentiated the mutagenic activity of the mycotoxin aflatoxin B(1) in the Ames test, in the presence of a hepatic S9 activation system derived from Aroclor 1254-treated rats. In contrast, when the S9 activation system was replaced with isolated microsomes, theafulvins suppressed the mutagenicity of the mycotoxin. When microsomal metabolism was terminated after metabolic activation of the mycotoxin, incorporation of the theafulvins into the activation system reduced the mutagenic activity, whereas if it was added before termination of microsomal activity a potentiation of mutagenic response was observed. In in vitro studies, theafulvins inhibited epoxide hydrolase and glutathione S-transferase activities in a concentration-dependent manner. Finally, the mutagenicity of aflatoxin B(1) was much more pronounced in bacteria that were pre-exposed to theafulvins but from which they were subsequently washed off. It may be inferred from the above studies that the genotoxic synergy between aflatoxin B(1) and black tea theafulvins does not occur during the bioactivation of the carcinogen, but may partly be due to decreased deactivation of the reactive intermediate, aflatoxin B(1) 8,9-oxide, by conjugation with glutathione.
Collapse
Affiliation(s)
- Fenton Catterall
- School of Biomedical and Life Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | | | | | | |
Collapse
|
41
|
Weisburger JH. Comments on the history and importance of aromatic and heterocyclic amines in public health. Mutat Res 2002; 506-507:9-20. [PMID: 12351140 DOI: 10.1016/s0027-5107(02)00147-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The carcinogenic risk of aromatic amines in humans was first discovered when a physician related the occurrence of urinary bladder cancer to the occupation of his patients. They were employed in the dyestuff industry, chronically exposed to large amounts of intermediate arylamines. Laboratory investigations disclosed that rats and mice administered specific azo dyes arylamines or derivatives developed cancer, primarily in the liver. Also, at that time, a possible pesticide, 2-aminofluorene, was tested for chronic toxicity, revealing that it rapidly induced cancers in several organs of rodents. This led to investigations on the mode of action of this class of chemicals, including their metabolic conversion. Biochemical activation to more reactive N-hydroxy compounds was found to occur, mostly in the liver, through what is now known as the cytochrome p450 enzyme systems, and also through prostaglandin synthetases. There were species differences. Guinea pigs were resistant to carcinogenesis because of the low titer of the necessary activating enzymes. In target tissues, a second essential reaction was necessary, namely acylation or sulfate ester formation. The reactive compounds produced display attributes of genotoxicity in appropriate test systems. Interest in this class of compounds increased when of Sugimura and colleagues discovered the formation of mutagens at the surface of cooked meat or fish, that were identified as heterocyclic amines (HCAs). These compounds undergo the same type of activation reactions, as do other arylamines. Epidemiological data suggest that meat eaters may have a higher risk of breast and colon cancer. HCAs induced cancer in rats in these organs and also in the prostate and the pancreas. In addition, there is some evidence that they affect the vascular system. The formation of HCAs during cooking can be decreased by natural and synthetic antioxidants, by tryptophan or proline, or by removing the essential creatine through brief microwave cooking prior to frying or broiling. The amounts of HCAs in cooked foods are small, but other components in diet such as omega-6-polyunsaturated oils have powerful promoting effects in target organs of HCAs. On the other hand, the action of HCAs may be decreased by foods containing antioxidants, such as vegetables, soy, and tea. Some constituents in foods also induce phase II enzymes that detoxify reactive HCA metabolites. Additional mechanisms involved decreased growth of neoplasms by intake of protective foods. Possibly, the carcinogenic effect of HCAs is accompanied by the presence of reactive oxygen species (ROS), which are also inhibited by antioxidants. World-wide, there have been many contributors to knowledge in this field. Adequate information may permit now to adjust lifestyle and lower the risk of human disease stemming from this entire class of aryl and HCA.
Collapse
|
42
|
Weisburger JH, Chung FL. Mechanisms of chronic disease causation by nutritional factors and tobacco products and their prevention by tea polyphenols. Food Chem Toxicol 2002; 40:1145-54. [PMID: 12067577 DOI: 10.1016/s0278-6915(02)00044-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The beverage tea, from the top leaves of the plant Camellia sinensis is one of the most widely used beverages in the world, second only to water. Black and green tea have mostly similar actions. The active components are polyphenols, mainly epigallocatechin gallate in green tea, and the tea leaf polyphenol oxidase mediated oxidation to oolong and black tea, yielding other polyphenols, theaflavin and thearubigins. There is 40-50 mg caffeine in a 160-ml cup of tea. The chemopreventive effects of tea depend on: (1) its action as an antioxidant; (2) the specific induction of detoxifying enzymes; (3) its molecular regulatory functions on cellular growth, development and apoptosis; and (4) a selective improvement in the function of the intestinal bacterial flora. The oxidation of LDL cholesterol, associated with a risk for atherosclerosis and heart disease, is inhibited by tea. Many of cancers are caused by lifestyle elements. One is cigarette and tobacco use, leading to cancer in the oral cavity, esophagus and lung, inhibited by tea. Mice administered a tobacco nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), developed significantly fewer lung tumors than controls when given green tea or its major polyphenol, epigallocatechin gallate (EGCG). Tea suppressed the formation of 8-hydroxydeoxyguanosine (8-OHdG), a marker of oxidative DNA damage, in the lung DNA of mice given NNK. Gastric cancer, caused by a combination of Helicobacter pylori and salted foods, is lower in tea drinkers. Western nutritionally-linked cancers of the breast, colon, prostate and pancreas can be inhibited by tea. The formation of genotoxic carcinogens for these target organs during the cooking of meats, heterocyclic amines, and their effects were decreased by tea. Tea inhibited the formation of reactive oxygen species and radicals and induced cytochromes P450 1A1, 1A2 and 2B1, and glucuronosyl transferase. The higher formation of glucuronides represents an important mechanism in detoxification. The developmental aspects and growth of cancers through promotion are decreased by tea. The regular use of a widely available, tasty, inexpensive beverage, tea, has displayed valuable preventive properties in chronic human diseases.
Collapse
Affiliation(s)
- J H Weisburger
- American Health Foundation, One Dana Road, Valhalla, NY 10595, USA.
| | | |
Collapse
|
43
|
Skrzydlewska E, Ostrowska J, Stankiewicz A, Farbiszewski R. Green tea as a potent antioxidant in alcohol intoxication. Addict Biol 2002; 7:307-14. [PMID: 12126490 DOI: 10.1080/13556210220139523] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ethanol oxidation to acetaldehyde and next to acetate is accompanied by free radical generation. Free radicals can affect cell integrity when antioxidant mechanisms are no longer able to cope with the free radical generation observed in ethanol intoxication. Natural antioxidants are particularly useful in such a situation. The present study was designed to investigate the efficacy of green tea as a source of water-soluble antioxidants (catechins) on the liver and blood serum antioxidative potential of rats chronically (28 days) intoxicated with ethanol. Alcohol caused a decrease in liver superoxide dismutase, glutathione peroxidase and catalase activities and an increase in activity of glutathione reductase. Moreover, a decrease in the level of reduced glutathione, ascorbic acid, vitamins A and E and beta-carotene were observed. The activity of serum glutathione peroxidase decreased while glutathione reductase activity increased. The level of serum non-enzymatic antioxidants was also decreased in the liver. Alcohol administration caused an increase in the liver and serum lipid peroxidation products, measured as thiobarbituric acid-reactive substances. However, green tea prevents the changes observed after ethanol intoxication. Green tea also protects membrane phospholipids from enhanced peroxidation. These results indicate a beneficial effect of green tea in alcohol intoxication.
Collapse
Affiliation(s)
- E Skrzydlewska
- Department of Analytical Chemistry, Medical Academy of Bialystok, Bialystok, Poland.
| | | | | | | |
Collapse
|
44
|
Embola CW, Sohn OS, Fiala ES, Weisburger JH. Induction of UDP-glucuronosyltransferase 1 (UDP-GT1) gene complex by green tea in male F344 rats. Food Chem Toxicol 2002; 40:841-4. [PMID: 11983278 DOI: 10.1016/s0278-6915(02)00022-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tea is one of the most frequently consumed beverages in the world, second only to water. Epidemiological studies have associated the consumption of green tea with a lower risk of several types of cancers, including stomach, oral cavity, esophagus, and lung. This paper deals with the mechanism of action of tea as an effective chemopreventive agent for toxic chemicals and especially carcinogens. UDP-glucuronosyltransferase (UDP-GT) activities towards p-nitrophenol were markedly increased (51.8% or 1.5-fold) in rats that consumed tea compared with the control animals on water. Induction of UDP-glucuronosyltransferase activity by tea may involve the UDP-GT1 (UGT1A) gene complex of the UDP-GT multigene family. Therefore, a major mechanism of tea as a chemopreventive agent is induction of the microsomal detoxification enzyme, UDP-glucuronosyltransferase.
Collapse
Affiliation(s)
- C W Embola
- Department of Pathology, New York Medical College, 10595, Valhalla 10595, USA
| | | | | | | |
Collapse
|
45
|
Bock KW, Bock-Hennig BS, Münzel PA, Brandenburg JO, Köhle CT, Soars MG, Riley RJ, Burchell B, von Richter O, Eichelbaum MF, Swedmark S, Orzechowski A. Tissue-specific regulation of canine intestinal and hepatic phenol and morphine UDP-glucuronosyltransferases by beta-naphthoflavone in comparison with humans. Biochem Pharmacol 2002; 63:1683-90. [PMID: 12007571 DOI: 10.1016/s0006-2952(02)00921-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are regulated in a species- and tissue-dependent manner by endogenous and environmental factors. The present study was undertaken to further our knowledge about regulation of UGTs in dogs, a species widely used in preclinical safety evaluation. beta-Naphthoflavone (BNF) was selected as a known aryl hydrocarbon receptor agonist and antioxidant-type inducer. The latter group of inducers is intensively investigated as dietary chemoprotectants against colon cancer. Dog UGTs were investigated in comparison with related human UGTs by examples, (i) expression of dog UGT1A6, the first sequenced dog phenol UGT, and (ii) morphine UGT activities, responsible for intestinal and hepatic first-pass metabolism of morphine. The following results were obtained: (i) dog UGT1A6 was found to be constitutively expressed in liver and marginally increased by BNF treatment. Expression was low in small intestine but ca. 6-fold higher in colon than for example in jejunum. Conjugation of 4-methylumbelliferone, one of the substrates of dog UGT1A6, was also enhanced 7-fold in colonic compared to jejunal microsomes. (ii) Compared to the corresponding human tissues, canine 3-O- and 6-O-morphine UGT activities were found to be >10-fold higher in dog liver and ca. 10-fold lower in small intestinal microsomes. Small intestinal morphine and 4-hydroxybiphenyl UGT activities appeared to be moderately (2- to 3-fold) induced by oral treatment with BNF. (iii) In contrast to dogs, morphine UGT activities were found to be similar in homogenates from human enterocytes and liver. The results suggest marked differences in tissue-specific regulation of canine vs. human hepatic and intestinal phenol or morphine UGTs.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Toxicology, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dhawan A, Anderson D, de Pascual-Teresa S, Santos-Buelga C, Clifford MN, Ioannides C. Evaluation of the antigenotoxic potential of monomeric and dimeric flavanols, and black tea polyphenols against heterocyclic amine-induced DNA damage in human lymphocytes using the Comet assay. Mutat Res 2002; 515:39-56. [PMID: 11909753 DOI: 10.1016/s1383-5718(01)00347-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The polyphenolic dimers, epicatechin-4beta-8-catechin (B1), epicatechin-4beta-8-epicatechin (B2), catechin-4beta-8-catechin (B3), catechin-4beta-8-epicatechin (B4), and the gallate ester epicatechin-4beta-8-epicatechin gallate (B'2G) were isolated from grape seeds, and theaflavins and theafulvins from black tea brews. The ability of these naturally-occurring polyphenols to afford protection against the genotoxicity of the heterocyclic amine 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) was compared with that of the monomeric tea flavanols, (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG). Genotoxic activity was evaluated in human peripheral lymphocytes using the Comet assay. At the concentration range of 1-100 microM, neither the monomeric nor the dimeric flavanols prevented the lymphocyte DNA damage induced by Trp-P-2. In contrast, both of the black tea polyphenols, theafulvins and theaflavins, at a dose range of 0.1-0.5 mg/ml, prevented, in a concentration-dependent manner, the DNA damage elicited by Trp-P-2. Finally, neither the monomeric and dimeric polyphenols (100 microM) nor the theafulvins and theaflavins (0.5mg/ml) caused any DNA damage in the human lymphocytes. These studies illustrate that black tea theafulvins and theaflavins, if absorbed intact, may contribute to the anticarcinogenic potential associated with black tea intake.
Collapse
Affiliation(s)
- Alok Dhawan
- School of Biological Sciences, Molecular Toxicology Group, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | | | | | | | | | | |
Collapse
|
47
|
Qin G, Ning Y, Lotlikar PD. Chemoprevention of aflatoxin B1-initiated and carbon tetrachloride-promoted hepatocarcinogenesis in the rat by green tea. Nutr Cancer 2002; 38:215-22. [PMID: 11525600 DOI: 10.1207/s15327914nc382_11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Chemoprevention of hepatocarcinogenesis by green tea (GT) has been examined in young male Fischer rats fed AIN-76A diet with aflatoxin B1 (AFB1) and CCl4 as the initiator and promoter, respectively. Animals were administered AFB1 (0.25 mg/kg body wt ip) twice a week for 2 weeks, and 2 weeks later, CCl4 was injected (0.8 ml/kg body wt ip) once per week for 11 weeks. Rats given 0.5% GT in their drinking water before and during initiation (0-4 wk) or during promotion (6-16 wk) or throughout the experimental period were sacrificed 24 hours after the last dose of CCl4. Bromodeoxyuridine incorporation as a measure of cell proliferation and glutathione S-transferase placentalform- and gamma-glutamyl transpeptidase-positive hepatic foci were analyzed by histochemical methods. Feeding of GT during initiation or promotion inhibited the number of glutathione S-transferase placental form- and gamma-glutamyl transpeptidase-positive hepatic foci by 30-40% and the area and volume by 50%. GT treatment throughout the period inhibited the number of both types of hepatic foci by 60% and the area and volume by 75-80%. Cell proliferation was inhibited 35% by GT given during promotion, whereas inhibition was 65% when GT was given during initiation or throughout the period. These results indicate that GT feeding inhibits initiation and promotion steps of AFB1 hepatocarcinogenesis and that the inhibition of cell proliferation is responsible for the inhibition of promotion.
Collapse
Affiliation(s)
- G Qin
- Fels Institute for Cancer Research and Molecular Biology and the Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
48
|
Maliakal PP, Wanwimolruk S. Effect of herbal teas on hepatic drug metabolizing enzymes in rats. J Pharm Pharmacol 2001; 53:1323-9. [PMID: 11697539 DOI: 10.1211/0022357011777819] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have investigated the effect of herbal teas (peppermint, chamomile and dandelion) on the activity of hepatic phase I and phase II metabolizing enzymes using rat liver microsomes. Female Wistar rats were divided into six groups (n = 5 each). Three groups had free access to a tea solution (2%) while the control group had water. Two groups received either green tea extract (0.1%) or aqueous caffeine solution (0.0625%). After four weeks of pretreatment, different cytochrome P450 (CYP) isoforms and phase II enzyme activities were determined by incubation of liver microsomes or cytosol with appropriate substrates. Activity of CYP1A2 in the liver microsomes of rats receiving dandelion, peppermint or chamomile tea was significantly decreased (P < 0.05) to 15%, 24% and 39% of the control value, respectively. CYP1A2 activity was significantly increased by pretreatment with caffeine solution. No alterations were observed in the activities of CYP2D and CYP3A in any group of the pretreated rats. Activity of CYP2E in rats receiving dandelion or peppermint tea was significantly lower than in the control group, 48% and 60% of the control, respectively. There was a dramatic increase (244% of control) in the activity of phase II detoxifying enzyme UDP-glucuronosyl transferase in the dandelion tea-pretreated group. There was no change in the activity of glutathione-S-transferase. The results suggested that, like green and black teas, certain herbal teas can cause modulation of phase I and phase II drug metabolizing enzymes.
Collapse
Affiliation(s)
- P P Maliakal
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
49
|
Abstract
Observations on cancer causation are some 150 years old, but actual detailed research on elements bearing on cancer started at the beginning of the twentieth century. Rapid progress, however, is only some 40 years old. Studies in humans documented certain lifestyle related factors to lead to cancer, and research in animal models strengthened this information. With the realization that there are carcinogens that in a metabolically activated attack DNA, in contrast to other agents that act by promoting, enhancing processes through totally distinct mechanisms, it became possible to develop and apply tests for DNA reactivity, in a prokaryotic organism, the widely used Salmonella typhimurium test by Ames and in a eukaryotic system, namely freshly explanted liver cells displaying evidence of DNA repair by Williams. A battery of these two tests are over 90% accurate in defining genotoxicity. Virtually all documented human carcinogens are genotoxic. With advances in molecular biology, mutational events are traced to changes in tumor suppressor genes or in oncogenes, that can serve as markers of risk. In addition, reactive oxygen systems (ROS) are involved in both the early steps in cancer and in the developmental aspects. Thus, foods containing antioxidants such as vegetables, fruits, soy products, cocoa and tea that counteract ROS are protective in cancer causation and development. Worldwide application of current knowledge and mechanisms to cancer prevention, the definitive means of cancer control, is likely to lower not only cancer but also heart disease risk in the current century.
Collapse
Affiliation(s)
- J H Weisburger
- American Health Foundation, 1 Dana Road, Valhalla, NY 10595, USA.
| |
Collapse
|
50
|
Hirose M, Hoshiya T, Mizoguchi Y, Nakamura A, Akagi K, Shirai T. Green tea catechins enhance tumor development in the colon without effects in the lung or thyroid after pretreatment with 1,2-Dimethylhydrazine or 2,2′-dihydroxy-di-n-propylnitrosamine in male F344 rats. Cancer Lett 2001; 168:23-9. [PMID: 11368873 DOI: 10.1016/s0304-3835(01)00502-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modifying effects of green tea catechins (GTCs) on the post-initiation stage of colon, lung and thyroid carcinogenesis were examined in F344 male rats. Groups of 20 animals were given subcutaneous injections of 40 mg/kg body wt of 1,2-dimethylhydrazine twice a week for 2 weeks or oral administration of 0.1% 2,2'-dihydroxy-di-n-propylnitrosamine (DHPN) in the drinking water for 2 weeks for initiation. They then received diet containing 1 or 0.1% green tea catechin or basal diet alone for 33 weeks. Histopathological examination after final sacrifice showed that although total incidence and multiplicity of colon tumors were not significantly different from controls, values for colon adenomas were decreased while those for carcinomas and the average size of tumors were significantly increased in the 0.1% GTC group. A similar tendency was observed for the 1% GTC group. Incidences and/or multiplicity of lung hyperplasia and tumors, and thyroid lesions did not significantly vary among the DHPN-treated groups. These results indicate that GTCs do not inhibit, but rather may enhance colon carcinogenesis, while not influencing lung and thyroid carcinogenesis under the present experimental conditions.
Collapse
Affiliation(s)
- M Hirose
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, 158-8501, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|