1
|
Kiefer L, Gaudin S, Rajkumar SM, Servito GIF, Langen J, Mui MH, Nawsheen S, Canzio D. Tuning cohesin trajectories enables differential readout of the Pcdhα cluster across neurons. Science 2024; 385:eadm9802. [PMID: 39052779 DOI: 10.1126/science.adm9802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 07/27/2024]
Abstract
Expression of Protocadherin (Pcdh) genes is critical to the generation of neuron identity and wiring of the nervous system. Pcdhα genes are arranged in clusters and exhibit a range of expression profiles, from stochastic to deterministic. Because Pcdhα promoters have high sequence identity and share distal enhancers, how distinct neurons choose which gene to express remains unclear. We show that the interplay between multiple enhancers, epigenetics, and genome folding orchestrates differential readouts of the locus across neurons. The probability of Pcdhα promoter choice depends on enhancer/promoter encounters catalyzed by cohesin, whose extrusion trajectories determine the likelihood that an individual promoter can "escape" heterochromatin-mediated silencing. We propose that tunable locus-specific regulatory elements and cell type-specific cohesin activity underlie the generation of cellular diversity by Pcdh genes.
Collapse
Affiliation(s)
- Lea Kiefer
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Simon Gaudin
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biology, Ecole Normale Supérieure de Lyon, 69432 Lyon, France
| | - Sandy M Rajkumar
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gabrielle Isabelle F Servito
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Langen
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael H Mui
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shayra Nawsheen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniele Canzio
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub Investigator, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Aparicio JG, Hopp H, Harutyunyan N, Stewart C, Cobrinik D, Borchert M. Aberrant gene expression yet undiminished retinal ganglion cell genesis in iPSC-derived models of optic nerve hypoplasia. Ophthalmic Genet 2024; 45:1-15. [PMID: 37807874 PMCID: PMC10841193 DOI: 10.1080/13816810.2023.2253902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Optic nerve hypoplasia (ONH), the leading congenital cause of permanent blindness, is characterized by a retinal ganglion cell (RGC) deficit at birth. Multifactorial developmental events are hypothesized to underlie ONH and its frequently associated neurologic and endocrine abnormalities; however, environmental influences are unclear and genetic underpinnings are unexplored. This work investigates the genetic contribution to ONH RGC production and gene expression using patient induced pluripotent stem cell (iPSC)-derived retinal organoids (ROs). MATERIALS AND METHODS iPSCs produced from ONH patients and controls were differentiated to ROs. RGC genesis was assessed using immunofluorescence and flow cytometry. Flow-sorted BRN3+ cells were collected for RNA extraction for RNA-Sequencing. Differential gene expression was assessed using DESeq2 and edgeR. PANTHER was employed to identify statistically over-represented ontologies among the differentially expressed genes (DEGs). DEGs of high interest to ONH were distinguished by assessing function, mutational constraint, and prior identification in ONH, autism and neurodevelopmental disorder (NDD) studies. RESULTS RGC genesis and survival were similar in ONH and control ROs. Differential expression of 70 genes was identified in both DESeq2 and edgeR analyses, representing a ~ 4-fold higher percentage of DEGs than in randomized study participants. DEGs showed trends towards over-representation of validated NDD genes and ONH exome variant genes. Among the DEGs, RAPGEF4 and DMD had the greatest number of disease-relevant features. CONCLUSIONS ONH genetic background was not associated with impaired RGC genesis but was associated with DEGs exhibiting disease contribution potential. This constitutes some of the first evidence of a genetic contribution to ONH.
Collapse
Affiliation(s)
- Jennifer G. Aparicio
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Hanno Hopp
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Narine Harutyunyan
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Carly Stewart
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - David Cobrinik
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of
Medicine, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark Borchert
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Kawamura N, Osuka T, Kaneko R, Kishi E, Higuchi R, Yoshimura Y, Hirabayashi T, Yagi T, Tarusawa E. Reciprocal Connections between Parvalbumin-Expressing Cells and Adjacent Pyramidal Cells Are Regulated by Clustered Protocadherin γ. eNeuro 2023; 10:ENEURO.0250-23.2023. [PMID: 37890993 PMCID: PMC10614112 DOI: 10.1523/eneuro.0250-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Functional neural circuits in the cerebral cortex are established through specific neural connections between excitatory and various inhibitory cell types. However, the molecular mechanisms underlying synaptic partner recognition remain unclear. In this study, we examined the impact of clustered protocadherin-γ (cPcdhγ) gene deletion in parvalbumin-positive (PV+) cells on intralaminar and translaminar neural circuits formed between PV+ and pyramidal (Pyr) cells in the primary visual cortex (V1) of male and female mice. First, we used whole-cell recordings and laser-scan photostimulation with caged glutamate to map excitatory inputs from layer 2/3 to layer 6. We found that cPcdhγ-deficient PV+ cells in layer 2/3 received normal translaminar inputs from Pyr cells through layers 2/3-6. Second, to further elucidate the effect on PV+-Pyr microcircuits within intralaminar layer 2/3, we conducted multiple whole-cell recordings. While the overall connection probability of PV+-Pyr cells remained largely unchanged, the connectivity of PV+-Pyr was significantly different between control and PV+-specific cPcdhγ-conditional knock-out (PV-cKO) mice. In control mice, the number of reciprocally connected PV+ cells was significantly higher than PV+ cells connected one way to Pyr cells, a difference that was not significant in PV-cKO mice. Interestingly, the proportion of highly reciprocally connected PV+ cells to Pyr cells with large unitary IPSC (uIPSC) amplitudes was reduced in PV-cKO mice. Conversely, the proportion of middle reciprocally connected PV+ cells to Pyr cells with large uIPSC amplitudes increased compared with control mice. This study demonstrated that cPcdhγ in PV+ cells modulates their reciprocity with Pyr cells in the cortex.
Collapse
Affiliation(s)
- Nanami Kawamura
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoki Osuka
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryosuke Kaneko
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Eri Kishi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryuon Higuchi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yumiko Yoshimura
- Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| | - Takahiro Hirabayashi
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, Totsuka-ku, Yokohama 244-0806, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Etsuko Tarusawa
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Heskett MB, Vouzas AE, Smith LG, Yates PA, Boniface C, Bouhassira EE, Spellman PT, Gilbert DM, Thayer MJ. Epigenetic control of chromosome-associated lncRNA genes essential for replication and stability. Nat Commun 2022; 13:6301. [PMID: 36273230 PMCID: PMC9588035 DOI: 10.1038/s41467-022-34099-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/13/2022] [Indexed: 01/18/2023] Open
Abstract
ASARs are long noncoding RNA genes that control replication timing of entire human chromosomes in cis. The three known ASAR genes are located on human chromosomes 6 and 15, and are essential for chromosome integrity. To identify ASARs on all human chromosomes we utilize a set of distinctive ASAR characteristics that allow for the identification of hundreds of autosomal loci with epigenetically controlled, allele-restricted behavior in expression and replication timing of coding and noncoding genes, and is distinct from genomic imprinting. Disruption of noncoding RNA genes at five of five tested loci result in chromosome-wide delayed replication and chromosomal instability, validating their ASAR activity. In addition to the three known essential cis-acting chromosomal loci, origins, centromeres, and telomeres, we propose that all mammalian chromosomes also contain "Inactivation/Stability Centers" that display allele-restricted epigenetic regulation of protein coding and noncoding ASAR genes that are essential for replication and stability of each chromosome.
Collapse
Affiliation(s)
- Michael B Heskett
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Molecular and Medical Genetics Oregon Health & Science University, Portland, OR, 97239, USA
| | - Athanasios E Vouzas
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Leslie G Smith
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University, Portland, OR, 97239, USA
| | - Phillip A Yates
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University, Portland, OR, 97239, USA
| | - Christopher Boniface
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute Oregon Health & Science University, Portland, OR, 97239, USA
| | - Eric E Bouhassira
- Department of Cell Biology and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Paul T Spellman
- Department of Molecular and Medical Genetics Oregon Health & Science University, Portland, OR, 97239, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute Oregon Health & Science University, Portland, OR, 97239, USA
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Mathew J Thayer
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
5
|
Heskett MB, Spellman PT, Thayer MJ. Differential Allelic Expression among Long Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040066. [PMID: 34698262 PMCID: PMC8544735 DOI: 10.3390/ncrna7040066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNA) comprise a diverse group of non-protein-coding RNAs >200 bp in length that are involved in various normal cellular processes and disease states, and can affect coding gene expression through mechanisms in cis or in trans. Since the discovery of the first functional lncRNAs transcribed by RNA Polymerase II, H19 and Xist, many others have been identified and noted for their unusual transcriptional pattern, whereby expression from one chromosome homolog is strongly favored over the other, also known as mono-allelic or differential allelic expression. lncRNAs with differential allelic expression have been observed to play critical roles in developmental gene regulation, chromosome structure, and disease. Here, we will focus on known examples of differential allelic expression of lncRNAs and highlight recent research describing functional lncRNAs expressed from both imprinted and random mono-allelic expression domains.
Collapse
Affiliation(s)
- Michael B. Heskett
- Department of Genetics, Oregon Health & Science University, Portland, OR 97239, USA; (M.B.H.); (P.T.S.)
| | - Paul T. Spellman
- Department of Genetics, Oregon Health & Science University, Portland, OR 97239, USA; (M.B.H.); (P.T.S.)
| | - Mathew J. Thayer
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
6
|
Planterose Jiménez B, Liu F, Caliebe A, Montiel González D, Bell JT, Kayser M, Vidaki A. Equivalent DNA methylation variation between monozygotic co-twins and unrelated individuals reveals universal epigenetic inter-individual dissimilarity. Genome Biol 2021; 22:18. [PMID: 33402197 PMCID: PMC7786996 DOI: 10.1186/s13059-020-02223-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although the genomes of monozygotic twins are practically identical, their methylomes may evolve divergently throughout their lifetime as a consequence of factors such as the environment or aging. Particularly for young and healthy monozygotic twins, DNA methylation divergence, if any, may be restricted to stochastic processes occurring post-twinning during embryonic development and early life. However, to what extent such stochastic mechanisms can systematically provide a stable source of inter-individual epigenetic variation remains uncertain until now. RESULTS We enriched for inter-individual stochastic variation by using an equivalence testing-based statistical approach on whole blood methylation microarray data from healthy adolescent monozygotic twins. As a result, we identified 333 CpGs displaying similarly large methylation variation between monozygotic co-twins and unrelated individuals. Although their methylation variation surpasses measurement error and is stable in a short timescale, susceptibility to aging is apparent in the long term. Additionally, 46% of these CpGs were replicated in adipose tissue. The identified sites are significantly enriched at the clustered protocadherin loci, known for stochastic methylation in developing neurons. We also confirmed an enrichment in monozygotic twin DNA methylation discordance at these loci in whole genome bisulfite sequencing data from blood and adipose tissue. CONCLUSIONS We have isolated a component of stochastic methylation variation, distinct from genetic influence, measurement error, and epigenetic drift. Biomarkers enriched in this component may serve in the future as the basis for universal epigenetic fingerprinting, relevant for instance in the discrimination of monozygotic twin individuals in forensic applications, currently impossible with standard DNA profiling.
Collapse
Affiliation(s)
- Benjamin Planterose Jiménez
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
- University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Wang CY, Brand H, Shaw ND, Talkowski ME, Lee JT. Role of the Chromosome Architectural Factor SMCHD1 in X-Chromosome Inactivation, Gene Regulation, and Disease in Humans. Genetics 2019; 213:685-703. [PMID: 31420322 PMCID: PMC6781896 DOI: 10.1534/genetics.119.302600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is an architectural factor critical for X-chromosome inactivation (XCI) and the repression of select autosomal gene clusters. In mice, homozygous nonsense mutations in Smchd1 cause female-specific embryonic lethality due to an XCI defect. However, although human mutations in SMCHD1 are associated with congenital arhinia and facioscapulohumeral muscular dystrophy type 2 (FSHD2), the diseases do not show a sex-specific bias, despite the essential nature of XCI in humans. To investigate whether there is a dosage imbalance for the sex chromosomes, we here analyze transcriptomic data from arhinia and FSHD2 patient blood and muscle cells. We find that X-linked dosage compensation is maintained in these patients. In mice, SMCHD1 controls not only protocadherin (Pcdh) gene clusters, but also Hox genes critical for craniofacial development. Ablating Smchd1 results in aberrant expression of these genes, coinciding with altered chromatin states and three-dimensional (3D) topological organization. In a subset of FSHD2 and arhinia patients, we also found dysregulation of clustered PCDH, but not HOX genes. Overall, our study demonstrates preservation of XCI in arhinia and FSHD2, and implicates SMCHD1 in the regulation of the 3D organization of select autosomal gene clusters.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Harrison Brand
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Natalie D Shaw
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Michael E Talkowski
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
9
|
Yufik YM. The Understanding Capacity and Information Dynamics in the Human Brain. ENTROPY (BASEL, SWITZERLAND) 2019; 21:E308. [PMID: 33267023 PMCID: PMC7514789 DOI: 10.3390/e21030308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
This article proposes a theory of neuronal processes underlying cognition, focusing on the mechanisms of understanding in the human brain. Understanding is a product of mental modeling. The paper argues that mental modeling is a form of information production inside the neuronal system extending the reach of human cognition "beyond the information given" (Bruner, J.S., Beyond the Information Given, 1973). Mental modeling enables forms of learning and prediction (learning with understanding and prediction via explanation) that are unique to humans, allowing robust performance under unfamiliar conditions having no precedents in the past history. The proposed theory centers on the notions of self-organization and emergent properties of collective behavior in the neuronal substrate. The theory motivates new approaches in the design of intelligent artifacts (machine understanding) that are complementary to those underlying the technology of machine learning.
Collapse
Affiliation(s)
- Yan M Yufik
- Virtual Structures Research, Inc., Potomac, MD 20854, USA
| |
Collapse
|
10
|
Slankster E, Odell SR, Mathew D. Strength in diversity: functional diversity among olfactory neurons of the same type. J Bioenerg Biomembr 2019; 51:65-75. [PMID: 30604088 PMCID: PMC6382560 DOI: 10.1007/s10863-018-9779-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023]
Abstract
Most animals depend upon olfaction to find food, mates, and to avoid predators. An animal's olfactory circuit helps it sense its olfactory environment and generate critical behavioral responses. The general architecture of the olfactory circuit, which is conserved across species, is made up of a few different neuronal types including first-order receptor neurons, second- and third-order neurons, and local interneurons. Each neuronal type differs in their morphology, physiology, and neurochemistry. However, several recent studies have suggested that there is intrinsic diversity even among neurons of the same type and that this diversity is important for neural function. In this review, we first examine instances of intrinsic diversity observed among individual types of olfactory neurons. Next, we review potential genetic and experience-based plasticity mechanisms that underlie this diversity. Finally, we consider the implications of intrinsic neuronal diversity for circuit function. Overall, we hope to highlight the importance of intrinsic diversity as a previously underestimated property of circuit function.
Collapse
Affiliation(s)
- Eryn Slankster
- Department of Biology, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA
| | - Seth R Odell
- Department of Biology, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA
- Integrated Neuroscience Program, University of Nevada, Reno, NV, 89557, USA
| | - Dennis Mathew
- Department of Biology, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA.
- Integrated Neuroscience Program, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
11
|
Clark DA, Odell SR, Armstrong JM, Turcotte M, Kohler D, Mathis A, Schmidt DR, Mathew D. Behavior Responses to Chemical and Optogenetic Stimuli in Drosophila Larvae. Front Behav Neurosci 2018; 12:324. [PMID: 30622461 PMCID: PMC6308144 DOI: 10.3389/fnbeh.2018.00324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/10/2018] [Indexed: 11/13/2022] Open
Abstract
An animal’s ability to navigate an olfactory environment is critically dependent on the activities of its first-order olfactory receptor neurons (ORNs). While considerable research has focused on ORN responses to odorants, the mechanisms by which olfactory information is encoded in the activities of ORNs and translated into navigational behavior remain poorly understood. We sought to determine the contributions of most Drosophila melanogaster larval ORNs to navigational behavior. Using odorants to activate ORNs and a larval tracking assay to measure the corresponding behavioral response, we observed that larval ORN activators cluster into four groups based on the behavior responses elicited from larvae. This is significant because it provides new insights into the functional relationship between ORN activity and behavioral response. Subsequent optogenetic analyses of a subset of ORNs revealed previously undescribed properties of larval ORNs. Furthermore, our results indicated that different temporal patterns of ORN activation elicit different behavioral outputs: some ORNs respond to stimulus increments while others respond to stimulus decrements. These results suggest that the ability of ORNs to encode temporal patterns of stimulation increases the coding capacity of the olfactory circuit. Moreover, the ability of ORNs to sense stimulus increments and decrements facilitates instantaneous evaluations of concentration changes in the environment. Together, these ORN properties enable larvae to efficiently navigate a complex olfactory environment. Ultimately, knowledge of how ORN activity patterns and their weighted contributions influence odor coding may eventually reveal how peripheral information is organized and transmitted to subsequent layers of a neural circuit.
Collapse
Affiliation(s)
- David A Clark
- Department of Biology, University of Nevada, Reno, NV, United States.,Integrated Neuroscience Graduate Program, University of Nevada, Reno, NV, United States
| | - Seth R Odell
- Department of Biology, University of Nevada, Reno, NV, United States.,Integrated Neuroscience Graduate Program, University of Nevada, Reno, NV, United States
| | - Joanna M Armstrong
- Department of Mathematics & Statistics, University of Nevada, Reno, NV, United States
| | - Mariah Turcotte
- Department of Biology, University of Nevada, Reno, NV, United States
| | - Donovan Kohler
- Department of Biology, University of Nevada, Reno, NV, United States
| | - America Mathis
- Department of Biology, University of Nevada, Reno, NV, United States
| | - Deena R Schmidt
- Integrated Neuroscience Graduate Program, University of Nevada, Reno, NV, United States.,Department of Mathematics & Statistics, University of Nevada, Reno, NV, United States
| | - Dennis Mathew
- Department of Biology, University of Nevada, Reno, NV, United States.,Integrated Neuroscience Graduate Program, University of Nevada, Reno, NV, United States
| |
Collapse
|
12
|
Molecular diversity of clustered protocadherin-α required for sensory integration and short-term memory in mice. Sci Rep 2018; 8:9616. [PMID: 29941942 PMCID: PMC6018629 DOI: 10.1038/s41598-018-28034-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/14/2018] [Indexed: 12/11/2022] Open
Abstract
Clustered protocadherins (Pcdhs) are neuronal cell adhesion molecules characterized by homophilic adhesion between the tetramers of 58 distinct isoforms in mice. The diversity of Pcdhs and resulting highly-specific neuronal adhesion may be required for the formation of neural circuits for executing higher brain functions. However, this hypothesis remains to be tested, because knockout of Pcdh genes produces abnormalities that may interfere with higher brain functions indirectly. In Pcdh-α1,12 mice, only α1, α12 and two constitutive isoforms are expressed out of 14 isoforms. The appearance and behavior of Pcdh-α1,12 mice are similar to those of wild-type mice, and most abnormalities reported in Pcdh-α knockout mice are not present in Pcdh-α1,12 mice. We examined Pcdh-α1,12 mice in detail, and found that cortical depression induced by sensory mismatches between vision and whisker sensation in the visual cortex was impaired. Since Pcdh-α is densely distributed over the cerebral cortex, various types of higher function are likely impaired in Pcdh-α1,12 mice. As expected, visual short-term memory of space/shape was impaired in behavioral experiments using space/shape cues. Furthermore, behavioral learning based on audio-visual associative memory was also impaired. These results indicate that the molecular diversity of Pcdh-α plays essential roles for sensory integration and short-term memory.
Collapse
|
13
|
Affiliation(s)
- Satoshi Yoshinaga
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
14
|
Experience-Dependent Plasticity Drives Individual Differences in Pheromone-Sensing Neurons. Neuron 2017; 91:878-892. [PMID: 27537487 DOI: 10.1016/j.neuron.2016.07.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 03/30/2016] [Accepted: 07/06/2016] [Indexed: 02/03/2023]
Abstract
Different individuals exhibit distinct behaviors, but studying the neuronal basis of individuality is a daunting challenge. Here, we considered this question in the vomeronasal organ, a pheromone-detecting epithelium containing hundreds of distinct neuronal types. Using light-sheet microscopy, we characterized in each animal the abundance of 17 physiologically defined types, altogether recording from half a million sensory neurons. Inter-animal differences were much larger than predicted by chance, and different physiological cell types showed distinct patterns of variability. One neuronal type was present in males and nearly absent in females. Surprisingly, this apparent sexual dimorphism was generated by plasticity, as exposure to female scents or single ligands led to both the elimination of this cell type and alterations in olfactory behavior. That an all-or-none apparent sex difference in neuronal types is controlled by experience-even in a sensory system devoted to "innate" behaviors-highlights the extraordinary role of "nurture" in neural individuality.
Collapse
|
15
|
Hirayama T, Yagi T. Regulation of clustered protocadherin genes in individual neurons. Semin Cell Dev Biol 2017; 69:122-130. [PMID: 28591566 DOI: 10.1016/j.semcdb.2017.05.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023]
Abstract
Individual neurons are basic functional units in the complex system of the brain. One aspect of neuronal individuality is generated by stochastic and combinatorial expression of diverse clustered protocadherins (Pcdhs), encoded by the Pcdha, Pcdhb, and Pcdhg gene clusters, that are critical for several aspects of neural circuit formation. Each clustered Pcdh gene has its own promoter containing conserved sequences and is transcribed by a promoter choice mechanism involving interaction between the promoter and enhancers. A CTCF/Cohesin complex induces this interaction by configuration of DNA-looping in the chromatin structure. At the same time, the semi-stochastic expression of clustered Pcdh genes is regulated in individual neurons by DNA methylation: the methyltransferase Dnmt3b regulates methylation state of individual clustered Pcdh genes during early embryonic stages prior to the establishment of neural stem cells. Several other factors, including Smchd1, also contribute to the regulation of clustered Pcdh gene expression. In addition, psychiatric diseases and early life experiences of individuals can influence expression of clustered Pcdh genes in the brain, through epigenetic alterations. Clustered Pcdh gene expression is thus a significant and highly regulated step in establishing neuronal individuality and generating functional neural circuits in the brain.
Collapse
Affiliation(s)
- Teruyoshi Hirayama
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
16
|
Hasegawa S, Kobayashi H, Kumagai M, Nishimaru H, Tarusawa E, Kanda H, Sanbo M, Yoshimura Y, Hirabayashi M, Hirabayashi T, Yagi T. Clustered Protocadherins Are Required for Building Functional Neural Circuits. Front Mol Neurosci 2017; 10:114. [PMID: 28484370 PMCID: PMC5401904 DOI: 10.3389/fnmol.2017.00114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023] Open
Abstract
Neuronal identity is generated by the cell-surface expression of clustered protocadherin (Pcdh) isoforms. In mice, 58 isoforms from three gene clusters, Pcdhα, Pcdhβ, and Pcdhγ, are differentially expressed in neurons. Since cis-heteromeric Pcdh oligomers on the cell surface interact homophilically with that in other neurons in trans, it has been thought that the Pcdh isoform repertoire determines the binding specificity of synapses. We previously described the cooperative functions of isoforms from all three Pcdh gene clusters in neuronal survival and synapse formation in the spinal cord. However, the neuronal loss and the following neonatal lethality prevented an analysis of the postnatal development and characteristics of the clustered-Pcdh-null (Δαβγ) neural circuits. Here, we used two methods, one to generate the chimeric mice that have transplanted Δαβγ neurons into mouse embryos, and the other to generate double mutant mice harboring null alleles of both the Pcdh gene and the proapoptotic gene Bax to prevent neuronal loss. First, our results showed that the surviving chimeric mice that had a high contribution of Δαβγ cells exhibited paralysis and died in the postnatal period. An analysis of neuronal survival in postnatally developing brain regions of chimeric mice clarified that many Δαβγ neurons in the forebrain were spared from apoptosis, unlike those in the reticular formation of the brainstem. Second, in Δαβγ/Bax null double mutants, the central pattern generator (CPG) for locomotion failed to create a left-right alternating pattern even in the absence of neurodegeneraton. Third, calcium imaging of cultured hippocampal neurons showed that the network activity of Δαβγ neurons tended to be more synchronized and lost the variability in the number of simultaneously active neurons observed in the control network. Lastly, a comparative analysis for trans-homophilic interactions of the exogenously introduced single Pcdh-γA3 isoforms between the control and the Δαβγ neurons suggested that the isoform-specific trans-homophilic interactions require a complete match of the expressed isoform repertoire at the contacting sites between interactive neurons. These results suggested that combinations of clustered Pcdh isoforms are required for building appropriate neural circuits.
Collapse
Affiliation(s)
- Sonoko Hasegawa
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan.,Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka UniversitySuita, Osaka, Japan
| | - Hiroaki Kobayashi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan.,Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka UniversitySuita, Osaka, Japan
| | - Makiko Kumagai
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan.,Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka UniversitySuita, Osaka, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine, University of ToyamaToyama, Japan
| | - Etsuko Tarusawa
- Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazaki, Japan
| | - Hiro Kanda
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan.,Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka UniversitySuita, Osaka, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological SciencesOkazaki, Japan
| | - Yumiko Yoshimura
- Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazaki, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological SciencesOkazaki, Japan
| | - Takahiro Hirabayashi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan.,Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka UniversitySuita, Osaka, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan.,Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka UniversitySuita, Osaka, Japan
| |
Collapse
|
17
|
Gul IS, Hulpiau P, Saeys Y, van Roy F. Evolution and diversity of cadherins and catenins. Exp Cell Res 2017; 358:3-9. [PMID: 28268172 DOI: 10.1016/j.yexcr.2017.03.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/07/2023]
Abstract
Cadherin genes encode a superfamily of conserved transmembrane proteins that share an adhesive ectodomain composed of tandem cadherin repeats. More than 100 human cadherin superfamily members have been identified, which can be classified into three families: major cadherins, protocadherins and cadherin-related proteins. These superfamily members are involved in diverse fundamental cellular processes including cell-cell adhesion, morphogenesis, cell recognition and signaling. Epithelial cadherin (E-cadherin) is the founding cadherin family member. Its cytoplasmic tail interacts with the armadillo catenins, p120 and β-catenin. Further, α-catenin links the cadherin/armadillo catenin complex to the actin filament network. Even genomes of ancestral metazoan species such as cnidarians and placozoans encode a limited number of distinct cadherins and catenins, emphasizing the conservation and functional importance of these gene families. Moreover, a large expansion of the cadherin and catenin families coincides with the emergence of vertebrates and reflects a major functional diversification in higher metazoans. Here, we revisit and review the functions, phylogenetic classifications and co-evolution of the cadherin and catenin protein families.
Collapse
Affiliation(s)
- Ismail Sahin Gul
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paco Hulpiau
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
18
|
Hasegawa S, Kumagai M, Hagihara M, Nishimaru H, Hirano K, Kaneko R, Okayama A, Hirayama T, Sanbo M, Hirabayashi M, Watanabe M, Hirabayashi T, Yagi T. Distinct and Cooperative Functions for the Protocadherin-α, -β and -γ Clusters in Neuronal Survival and Axon Targeting. Front Mol Neurosci 2016; 9:155. [PMID: 28066179 PMCID: PMC5179546 DOI: 10.3389/fnmol.2016.00155] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/07/2016] [Indexed: 01/29/2023] Open
Abstract
The clustered protocadherin (Pcdh) genes are divided into the Pcdhα, Pcdhβ, and Pcdhγ clusters. Gene-disruption analyses in mice have revealed the in vivo functions of the Pcdhα and Pcdhγ clusters. However, all Pcdh protein isoforms form combinatorial cis-hetero dimers and enter trans-homophilic interactions. Here we addressed distinct and cooperative functions in the Pcdh clusters by generating six cluster-deletion mutants (Δα, Δβ, Δγ, Δαβ, Δβγ, and Δαβγ) and comparing their phenotypes: Δα, Δβ, and Δαβ mutants were viable and fertile; Δγ mutants lived less than 12 h; and Δβγ and Δαβγ mutants died shortly after birth. The Pcdhα, Pcdhβ, and Pcdhγ clusters were individually and cooperatively important in olfactory-axon targeting and spinal-cord neuron survival. Neurodegeneration was most severe in Δαβγ mutants, indicating that Pcdhα and Pcdhβ function cooperatively for neuronal survival. The Pcdhα, Pcdhβ, and Pcdhγ clusters share roles in olfactory-axon targeting and neuronal survival, although to different degrees.
Collapse
Affiliation(s)
- Sonoko Hasegawa
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED)Suita, Japan
| | - Makiko Kumagai
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED)Suita, Japan
| | - Mitsue Hagihara
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED)Suita, Japan
| | - Hiroshi Nishimaru
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba Tsukuba, Japan
| | - Keizo Hirano
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University Suita, Japan
| | - Ryosuke Kaneko
- Bioresource Center, Graduate School of Medicine, Gunma University Maebashi, Japan
| | - Atsushi Okayama
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University Suita, Japan
| | - Teruyoshi Hirayama
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED)Suita, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences Okazaki, Japan
| | - Masumi Hirabayashi
- AMED-CREST, Japan Agency for Medical Research and Development (AMED)Suita, Japan; Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological SciencesOkazaki, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine Sapporo, Japan
| | - Takahiro Hirabayashi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED)Suita, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED)Suita, Japan
| |
Collapse
|
19
|
Goodman KM, Rubinstein R, Thu CA, Mannepalli S, Bahna F, Ahlsén G, Rittenhouse C, Maniatis T, Honig B, Shapiro L. γ-Protocadherin structural diversity and functional implications. eLife 2016; 5. [PMID: 27782885 PMCID: PMC5106212 DOI: 10.7554/elife.20930] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/06/2016] [Indexed: 12/26/2022] Open
Abstract
Stochastic cell-surface expression of α-, β-, and γ-clustered protocadherins (Pcdhs) provides vertebrate neurons with single-cell identities that underlie neuronal self-recognition. Here we report crystal structures of ectodomain fragments comprising cell-cell recognition regions of mouse γ-Pcdhs γA1, γA8, γB2, and γB7 revealing trans-homodimers, and of C-terminal ectodomain fragments from γ-Pcdhs γA4 and γB2, which depict cis-interacting regions in monomeric form. Together these structures span the entire γ-Pcdh ectodomain. The trans-dimer structures reveal determinants of γ-Pcdh isoform-specific homophilic recognition. We identified and structurally mapped cis-dimerization mutations to the C-terminal ectodomain structures. Biophysical studies showed that Pcdh ectodomains from γB-subfamily isoforms formed cis dimers, whereas γA isoforms did not, but both γA and γB isoforms could interact in cis with α-Pcdhs. Together, these data show how interaction specificity is distributed over all domains of the γ-Pcdh trans interface, and suggest that subfamily- or isoform-specific cis-interactions may play a role in the Pcdh-mediated neuronal self-recognition code.
Collapse
Affiliation(s)
- Kerry Marie Goodman
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Rotem Rubinstein
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States
| | - Chan Aye Thu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Seetha Mannepalli
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Fabiana Bahna
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Göran Ahlsén
- Department of Systems Biology, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Chelsea Rittenhouse
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States.,Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States.,Department of Medicine, Columbia University, New York, United States
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States.,Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
| |
Collapse
|
20
|
Differential Contributions of Olfactory Receptor Neurons in a Drosophila Olfactory Circuit. eNeuro 2016; 3:eN-NWR-0045-16. [PMID: 27570823 PMCID: PMC4987412 DOI: 10.1523/eneuro.0045-16.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 01/02/2023] Open
Abstract
The ability of an animal to detect, discriminate, and respond to odors depends on the functions of its olfactory receptor neurons (ORNs). The extent to which each ORN, upon activation, contributes to chemotaxis is not well understood. We hypothesized that strong activation of each ORN elicits a different behavioral response in the Drosophila melanogaster larva by differentially affecting the composition of its navigational behavior. To test this hypothesis, we exposed Drosophila larvae to specific odorants to analyze the effect of individual ORN activity on chemotaxis. We used two different behavioral paradigms to analyze the chemotaxis response of larvae to odorants. When tested with five different odorants that elicit strong physiological responses from single ORNs, larval behavioral responses toward each odorant differed in the strength of attraction as well as in the composition of discrete navigational elements, such as runs and turns. Further, behavioral responses to odorants did not correlate with either the strength of odor gradients tested or the sensitivity of each ORN to its cognate odorant. Finally, we provide evidence that wild-type larvae with all ORNs intact exhibit higher behavioral variance than mutant larvae that have only a single pair of functional ORNs. We conclude that individual ORNs contribute differently to the olfactory circuit that instructs chemotactic responses. Our results, along with recent studies from other groups, suggest that ORNs are functionally nonequivalent units. These results have implications for understanding peripheral odor coding.
Collapse
|
21
|
Lomvardas S, Maniatis T. Histone and DNA Modifications as Regulators of Neuronal Development and Function. Cold Spring Harb Perspect Biol 2016; 8:8/7/a024208. [PMID: 27371659 DOI: 10.1101/cshperspect.a024208] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA and histone modifications, together with constraints imposed by nuclear architecture, contribute to the transcriptional regulatory landscape of the nervous system. Here, we provide select examples showing how these regulatory layers, often referred to as epigenetic, contribute to neuronal differentiation and function. We describe the interplay between DNA methylation and Polycomb-mediated repression during neuronal differentiation, the role of DNA methylation and long-range enhancer-promoter interactions in Protocadherin promoter choice, and the contribution of heterochromatic silencing and nuclear organization in singular olfactory receptor expression. Finally, we explain how the activity-dependent expression of a histone variant determines the longevity of olfactory sensory neurons.
Collapse
Affiliation(s)
- Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
22
|
Weber TS, Dukes M, Miles DC, Glaser SP, Naik SH, Duffy KR. Site-specific recombinatorics: in situ cellular barcoding with the Cre Lox system. BMC SYSTEMS BIOLOGY 2016; 10:43. [PMID: 27363727 PMCID: PMC4929723 DOI: 10.1186/s12918-016-0290-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/14/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cellular barcoding is a recently developed biotechnology tool that enables the familial identification of progeny of individual cells in vivo. In immunology, it has been used to track the burst-sizes of multiple distinct responding T cells over several adaptive immune responses. In the study of hematopoiesis, it revealed fate heterogeneity amongst phenotypically identical multipotent cells. Most existing approaches rely on ex vivo viral transduction of cells with barcodes followed by adoptive transfer into an animal, which works well for some systems, but precludes barcoding cells in their native environment such as those inside solid tissues. RESULTS With a view to overcoming this limitation, we propose a new design for a genetic barcoding construct based on the Cre Lox system that induces randomly created stable barcodes in cells in situ by exploiting inherent sequence distance constraints during site-specific recombination. We identify the cassette whose provably maximal code diversity is several orders of magnitude higher than what is attainable with previously considered Cre Lox barcoding approaches, exceeding the number of lymphocytes or hematopoietic progenitor cells in mice. CONCLUSIONS Its high diversity and in situ applicability, make the proposed Cre Lox based tagging system suitable for whole tissue or even whole animal barcoding. Moreover, it can be built using established technology.
Collapse
Affiliation(s)
- Tom S Weber
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | | | - Denise C Miles
- The Walter and Eliza Hall Institute of Medical Research & The University of Melbourne, Parkville, Melbourne, Australia
| | - Stefan P Glaser
- The Walter and Eliza Hall Institute of Medical Research & The University of Melbourne, Parkville, Melbourne, Australia
| | - Shalin H Naik
- The Walter and Eliza Hall Institute of Medical Research & The University of Melbourne, Parkville, Melbourne, Australia
| | - Ken R Duffy
- Hamilton Institute, Maynooth University, Maynooth, Ireland.
| |
Collapse
|
23
|
Goodman KM, Rubinstein R, Thu CA, Bahna F, Mannepalli S, Ahlsén G, Rittenhouse C, Maniatis T, Honig B, Shapiro L. Structural Basis of Diverse Homophilic Recognition by Clustered α- and β-Protocadherins. Neuron 2016; 90:709-23. [PMID: 27161523 DOI: 10.1016/j.neuron.2016.04.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/22/2016] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
Abstract
Clustered protocadherin proteins (α-, β-, and γ-Pcdhs) provide a high level of cell-surface diversity to individual vertebrate neurons, engaging in highly specific homophilic interactions to mediate important roles in mammalian neural circuit development. How Pcdhs bind homophilically through their extracellular cadherin (EC) domains among dozens of highly similar isoforms has not been determined. Here, we report crystal structures for extracellular regions from four mouse Pcdh isoforms (α4, α7, β6, and β8), revealing a canonical head-to-tail interaction mode for homophilic trans dimers comprising primary intermolecular EC1:EC4 and EC2:EC3 interactions. A subset of trans interface residues exhibit isoform-specific conservation, suggesting roles in recognition specificity. Mutation of these residues, along with trans-interacting partner residues, altered the specificities of Pcdh interactions. Together, these data show how sequence variation among Pcdh isoforms encodes their diverse strict homophilic recognition specificities, which are required for their key roles in neural circuit assembly.
Collapse
Affiliation(s)
- Kerry Marie Goodman
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Rotem Rubinstein
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Chan Aye Thu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Fabiana Bahna
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Seetha Mannepalli
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Göran Ahlsén
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Chelsea Rittenhouse
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
24
|
Benítez-Burraco A, Uriagereka J. The Immune Syntax Revisited: Opening New Windows on Language Evolution. Front Mol Neurosci 2016; 8:84. [PMID: 26793054 PMCID: PMC4707268 DOI: 10.3389/fnmol.2015.00084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/14/2015] [Indexed: 01/29/2023] Open
Abstract
Recent research has added new dimensions to our understanding of classical evolution, according to which evolutionary novelties result from gene mutations inherited from parents to offspring. Language is surely one such novelty. Together with specific changes in our genome and epigenome, we suggest that two other (related) mechanisms may have contributed to the brain rewiring underlying human cognitive evolution and, specifically, the changes in brain connectivity that prompted the emergence of our species-specific linguistic abilities: the horizontal transfer of genetic material by viral and non-viral vectors and the brain/immune system crosstalk (more generally, the dialogue between the microbiota, the immune system, and the brain).
Collapse
Affiliation(s)
| | - Juan Uriagereka
- Department of Linguistics, University of Maryland College Park, MD, USA
| |
Collapse
|
25
|
Ravi V, Yu WP, Pillai NE, Lian MM, Tay BH, Tohari S, Brenner S, Venkatesh B. Cyclostomes Lack Clustered Protocadherins. Mol Biol Evol 2015; 33:311-5. [DOI: 10.1093/molbev/msv252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/01/2015] [Indexed: 12/30/2022] Open
|
26
|
Coughlin GM, Kurrasch DM. Protocadherins and hypothalamic development: do they play an unappreciated role? J Neuroendocrinol 2015; 27:544-55. [PMID: 25845440 DOI: 10.1111/jne.12280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/17/2022]
Abstract
Normal brain development requires coordinated cell movements at precise times. It has long been established that cell-cell adhesion proteins of the cadherin superfamily are involved in the adhesion and sorting of cells during tissue morphogenesis. In the present review, we focus on protocadherins, which form the largest subfamily of the cadherin superfamily and mediate homophilic cell-cell adhesion in the developing brain. These molecules are highly expressed during neural development and the exact roles that they play are still emerging. Although, historically, protocadherins were considered to provide mechanical and chemical connections between adjacent cells, recent research suggests that they may also serve as molecular identity markers of neurones to help guide cell recognition and sorting, cell migration, outgrowth of neuronal processes, and synapse formation. This phenomenon of single cell diversity stems, in part, from the vast variation in protein structure, genomic organisation and molecular function of the protocadherins. Although expression profiles and genetic manipulations have provided evidence for the role of protocadherins in the developing brain, we have only begun to construct a complete understanding of protocadherin function. We examine our current understanding of how protocadherins influence brain development and discuss the possible roles for this large superfamily within the hypothalamus. We conclude that further research into these underappreciated but vitally important genes will shed insight into hypothalamic development and perhaps the underlying aetiology of neuroendocrine disorders.
Collapse
Affiliation(s)
- G M Coughlin
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - D M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Wu C, Niu L, Yan Z, Wang C, Liu N, Dai Y, Zhang P, Xu R. Pcdh11x Negatively Regulates Dendritic Branching. J Mol Neurosci 2015; 56:822-828. [DOI: 10.1007/s12031-015-0515-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
|
28
|
Thu CA, Chen WV, Rubinstein R, Chevee M, Wolcott HN, Felsovalyi KO, Tapia JC, Shapiro L, Honig B, Maniatis T. Single-cell identity generated by combinatorial homophilic interactions between α, β, and γ protocadherins. Cell 2015; 158:1045-1059. [PMID: 25171406 DOI: 10.1016/j.cell.2014.07.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/18/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
Individual mammalian neurons stochastically express distinct repertoires of α, β, and γ protocadherin (Pcdh) proteins, which function in neural circuit assembly. We report that all three subfamilies of clustered Pcdhs can engage in specific homophilic interactions, that cell surface delivery of Pcdhα isoforms requires cis interactions with other Pcdhs, and that the extracellular cadherin domain EC6 plays a critical role in this process. Examination of homophilic interactions between specific combinations of multiple Pcdh isoforms revealed that Pcdh combinatorial recognition specificities depend on the identity of all of the expressed isoforms. A single mismatched Pcdh isoform can interfere with these combinatorial homophilic interactions. A theoretical analysis reveals that assembly of Pcdh isoforms into multimeric recognition units and the observed tolerance for mismatched isoforms can generate cell surface diversity sufficient for single-cell identity. However, the competing demands of nonself discrimination and self-recognition place limitations on the mechanisms by which homophilic recognition units can function.
Collapse
Affiliation(s)
- Chan Aye Thu
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032, USA
| | - Weisheng V Chen
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032, USA
| | - Rotem Rubinstein
- Center for Computational Biology and Bioinformatics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of System Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Howard Hughes Medical Institute
| | - Maxime Chevee
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032, USA
| | - Holly N Wolcott
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 1150 St. Nicholas Avenue, Russ Berrie Pavilion, New York, NY 10032, USA
| | - Klara O Felsovalyi
- Center for Computational Biology and Bioinformatics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of System Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Howard Hughes Medical Institute
| | - Juan Carlos Tapia
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 1150 St. Nicholas Avenue, Russ Berrie Pavilion, New York, NY 10032, USA; Department of System Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 1150 St. Nicholas Avenue, Russ Berrie Pavilion, New York, NY 10032, USA; Center for Computational Biology and Bioinformatics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of System Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Howard Hughes Medical Institute.
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032, USA.
| |
Collapse
|
29
|
Transcriptional evidence for the role of chronic venlafaxine treatment in neurotrophic signaling and neuroplasticity including also Glutamatergic [corrected] - and insulin-mediated neuronal processes. PLoS One 2014; 9:e113662. [PMID: 25423262 PMCID: PMC4244101 DOI: 10.1371/journal.pone.0113662] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/27/2014] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES Venlafaxine (VLX), a serotonine-noradrenaline reuptake inhibitor, is one of the most commonly used antidepressant drugs in clinical practice for the treatment of major depressive disorder (MDD). Despite being more potent than its predecessors, similarly to them, the therapeutical effect of VLX is visible only 3-4 weeks after the beginning of treatment. Furthermore, recent papers show that antidepressants, including also VLX, enhance the motor recovery after stroke even in non depressed persons. In the present, transcriptomic-based study we looked for changes in gene expressions after a long-term VLX administration. METHODS Osmotic minipumps were implanted subcutaneously into Dark Agouti rats providing a continuous (40 mg/kg/day) VLX delivery for three weeks. Frontal regions of the cerebral cortex were isolated and analyzed using Illumina bead arrays to detect genes showing significant chances in expression. Gene set enrichment analysis was performed to identify specific regulatory networks significantly affected by long term VLX treatment. RESULTS Chronic VLX administration may have an effect on neurotransmitter release via the regulation of genes involved in vesicular exocytosis and receptor endocytosis (such as Kif proteins, Myo5a, Sv2b, Syn2 or Synj2). Simultaneously, VLX activated the expression of genes involved in neurotrophic signaling (Ntrk2, Ntrk3), glutamatergic transmission (Gria3, Grin2b and Grin2a), neuroplasticity (Camk2g/b, Cd47), synaptogenesis (Epha5a, Gad2) and cognitive processes (Clstn2). Interestingly, VLX increased the expression of genes involved in mitochondrial antioxidant activity (Bcl2 and Prdx1). Additionally, VLX administration also modulated genes related to insulin signaling pathway (Negr1, Ppp3r1, Slc2a4 and Enpp1), a mechanism that has recently been linked to neuroprotection, learning and memory. CONCLUSIONS Our results strongly suggest that chronic VLX treatment improves functional reorganization and brain plasticity by influencing gene expression in regulatory networks of motor cortical areas. These results are consonant with the synaptic (network) hypothesis of depression and antidepressant-induced motor recovery after stroke.
Collapse
|
30
|
Toyoda S, Kawaguchi M, Kobayashi T, Tarusawa E, Toyama T, Okano M, Oda M, Nakauchi H, Yoshimura Y, Sanbo M, Hirabayashi M, Hirayama T, Hirabayashi T, Yagi T. Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single neuron diversity. Neuron 2014; 82:94-108. [PMID: 24698270 DOI: 10.1016/j.neuron.2014.02.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2014] [Indexed: 01/08/2023]
Abstract
In the brain, enormous numbers of neurons have functional individuality and distinct circuit specificities. Clustered Protocadherins (Pcdhs), diversified cell-surface proteins, are stochastically expressed by alternative promoter choice and affect dendritic arborization in individual neurons. Here we found that the Pcdh promoters are differentially methylated by the de novo DNA methyltransferase Dnmt3b during early embryogenesis. To determine this methylation's role in neurons, we produced chimeric mice from Dnmt3b-deficient induced pluripotent stem cells (iPSCs). Single-cell expression analysis revealed that individual Dnmt3b-deficient Purkinje cells expressed increased numbers of Pcdh isoforms; in vivo, they exhibited abnormal dendritic arborization. These results indicate that DNA methylation by Dnmt3b at early embryonic stages regulates the probability of expression for the stochastically expressed Pcdh isoforms. They also suggest a mechanism for a rare human recessive disease, the ICF (Immunodeficiency, Centromere instability, and Facial anomalies) syndrome, which is caused by Dnmt3b mutations.
Collapse
Affiliation(s)
- Shunsuke Toyoda
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahumi Kawaguchi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Kobayashi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Japan Science Technology Agency, ERATO, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Etsuko Tarusawa
- Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Developmental Neurophysiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Tomoko Toyama
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaki Okano
- Laboratory for Mammalian Epigenetic Studies, RIKEN Center for Developmental Biology, Minatojima-minamimachi 2-2-3, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masaaki Oda
- Laboratory for Mammalian Epigenetic Studies, RIKEN Center for Developmental Biology, Minatojima-minamimachi 2-2-3, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Japan Science Technology Agency, ERATO, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yumiko Yoshimura
- Division of Developmental Neurophysiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| | - Makoto Sanbo
- Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Masumi Hirabayashi
- Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan; Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Teruyoshi Hirayama
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Hirabayashi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
31
|
Abstract
A complete understanding of nervous system function cannot be achieved without the identification of its component cell types. In this Perspective, we explore a series of related issues surrounding cell identity and how revolutionary methods for labeling and probing specific neuronal types have clarified this question. Specifically, we ask the following questions: what is the purpose of such diversity, how is it generated, how is it maintained, and, ultimately, how can one unambiguously identity one cell type from another? We suggest that each cell type can be defined by a unique and conserved molecular ground state that determines its capabilities. We believe that gaining an understanding of these molecular barcodes will advance our ability to explore brain function, enhance our understanding of the biochemical basis of CNS disorders, and aid in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Gord Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10016, USA.
| | | |
Collapse
|
32
|
Visual Map Shifts based on Whisker-Guided Cues in the Young Mouse Visual Cortex. Cell Rep 2013; 5:1365-74. [DOI: 10.1016/j.celrep.2013.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/03/2013] [Accepted: 11/04/2013] [Indexed: 11/20/2022] Open
|