1
|
Borkar NA, Thompson MA, Bartman CM, Khalfaoui L, Sine S, Sathish V, Prakash YS, Pabelick CM. Nicotinic receptors in airway disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L149-L163. [PMID: 38084408 PMCID: PMC11280694 DOI: 10.1152/ajplung.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
With continued smoking of tobacco products and expanded use of nicotine delivery devices worldwide, understanding the impact of smoking and vaping on respiratory health remains a major global unmet need. Although multiple studies have shown a strong association between smoking and asthma, there is a relative paucity of mechanistic understanding of how elements in cigarette smoke impact the airway. Recognizing that nicotine is a major component in both smoking and vaping products, it is critical to understand the mechanisms by which nicotine impacts airways and promotes lung diseases such as asthma. There is now increasing evidence that α7 nicotinic acetylcholine receptors (α7nAChRs) are critical players in nicotine effects on airways, but the mechanisms by which α7nAChR influences different airway cell types have not been widely explored. In this review, we highlight and integrate the current state of knowledge regarding nicotine and α7nAChR in the context of asthma and identify potential approaches to alleviate the impact of smoking and vaping on the lungs.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Steven Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
2
|
Liu M, Huo Y, Cheng Y. Mechanistic Regulation of Wnt Pathway-Related Progression of Chronic Obstructive Pulmonary Disease Airway Lesions. Int J Chron Obstruct Pulmon Dis 2023; 18:871-880. [PMID: 37215745 PMCID: PMC10198175 DOI: 10.2147/copd.s391487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic disease associated with inflammation and structural changes in the airways and lungs, resulting from a combination of genetic and environmental factors. This interaction highlights significant genes in early life, particularly those involved in lung development, such as the Wnt signaling pathway. The Wnt signaling pathway plays an important role in cell homeostasis, and its abnormal activation can lead to the occurrence of related diseases such as asthma, COPD, and lung cancer. Due to the fact that the Wnt pathway is mechanically sensitive, abnormal activation of the Wnt pathway by mechanical stress contributes to the progression of chronic diseases. But in the context of COPD, it has received little attention. In this review, we aim to summarize the important current evidence on mechanical stress through the Wnt pathway in airway inflammation and structural changes in COPD and to provide potential targets for COPD treatment strategies.
Collapse
Affiliation(s)
- Minrong Liu
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510630, People’s Republic of China
| | - Yating Huo
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510630, People’s Republic of China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510630, People’s Republic of China
| |
Collapse
|
3
|
Torday JS. Ontogeny, phylogeny and cellular energy flows for evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:78-82. [PMID: 36639034 DOI: 10.1016/j.pbiomolbio.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The case has previously been made for the 'Singularity of Nature" based on homologies between the inorganic and the organic. But a causal explanation for those homologies was not provided. The following is a hypothetical way to understand how and why physiology emerged from physics, providing a predictive model for cell-molecular evolution.
Collapse
Affiliation(s)
- J S Torday
- Department of Pediatrics and Obstetrics and Gynecology Evolutionary Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
4
|
Liu H, Yu L, Shao B, Yin N, Li L, Tang R. Cucurbitacin E ameliorates airway remodelling by inhibiting nerve growth factor expression in nicotine-treated bronchial epithelial cells and mice: The key role of let-7c-5p up-regulated expression. Basic Clin Pharmacol Toxicol 2022; 131:34-44. [PMID: 35560511 DOI: 10.1111/bcpt.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 11/28/2022]
Abstract
Cucurbitacin E (CuE) shows potential to handle airway remodelling. In the current study, the effects of CuE on nicotine-induced airway remodelling were explored by focussing on its interaction with let-7c-5p/NGF axis. The potential microRNA (miR) as the therapeutic target for CuE treatment was determined using a microarray assay. Changes in viability, inflammation and let-7c-5p/NGF pathway in nicotine-treated bronchial epithelial cells (BECs) were detected under CuE treatment (5 μM). The pathways were manipulated with let-7c-5p inhibitor. Mice were subjected to nicotine treatment and handled with CuE. Changes in pulmonary function and structure were detected. Based on the microarray data, let-7c-5p was selected as the therapeutic target. Viability and inflammation of BECs were induced by nicotine and then restored by CuE. At molecular level, nicotine suppressed let-7c-5p while induced NGF, FN1 and COLIA levels. The effects of CuE were counteracted by let-7c-5p inhibition. In a mouse model, nicotine impaired the function and structure of lung, which was attenuated by CuE and then re-impaired by let-7c-5p antagomir. Collectively, CuE protected against nicotine-induced airway remodelling and partially depended on the induction of let-7c-5p; our future work would pay more attention to other downstream effectors of the miR to promote the treatment of nicotine-induced pulmonary disorders.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Emergency Department, The First People's Hospital of Kunming, Kunming, China
| | - Lu Yu
- Department of Pathology, The First People's Hospital of Kunming, Kunming, China
| | - Biao Shao
- Department of Emergency Department, The First People's Hospital of Kunming, Kunming, China
| | - Na Yin
- Department of Emergency Department, The First People's Hospital of Kunming, Kunming, China
| | - Lina Li
- Department of Emergency Department, The First People's Hospital of Kunming, Kunming, China
| | - Rui Tang
- Department of Pharmacy, Huaian Second People's Hospital, Huai'an, China
| |
Collapse
|
5
|
Kaur J, Mazzone GL, Aquino JB, Nistri A. Nicotine Neurotoxicity Involves Low Wnt1 Signaling in Spinal Locomotor Networks of the Postnatal Rodent Spinal Cord. Int J Mol Sci 2021; 22:ijms22179572. [PMID: 34502498 PMCID: PMC8431663 DOI: 10.3390/ijms22179572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
The postnatal rodent spinal cord in-vitro is a useful model to investigate early pathophysiological changes after injury. While low dose nicotine (1 µM) induces neuroprotection, how higher doses affect spinal networks is unknown. Using spinal preparations of postnatal wild-type Wistar rat and Wnt1Cre2:Rosa26Tom double-transgenic mouse, we studied the effect of nicotine (0.5–10 µM) on locomotor networks in-vitro. Nicotine 10 µM induced motoneuron depolarization, suppressed monosynaptic reflexes, and decreased fictive locomotion in rat spinal cord. Delayed fall in neuronal numbers (including motoneurons) of central and ventral regions emerged without loss of dorsal neurons. Conversely, nicotine (0.5–1 µM) preserved neurons throughout the spinal cord and strongly activated the Wnt1 signaling pathway. High-dose nicotine enhanced expression of S100 and GFAP in astrocytes indicating a stress response. Excitotoxicity induced by kainate was contrasted by nicotine (10 µM) in the dorsal area and persisted in central and ventral regions with no change in basal Wnt signaling. When combining nicotine with kainate, the activation of Wnt1 was reduced compared to kainate/sham. The present results suggest that high dose nicotine was neurotoxic to central and ventral spinal neurons as the neuroprotective role of Wnt signaling became attenuated. This also corroborates the risk of cigarette smoking for the foetus/newborn since tobacco contains nicotine.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
- Department of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
- Correspondence: (J.K.); (G.L.M.); Tel.: +45-5260-1502 (J.K.); +54-23-0438-7425 (G.L.M.)
| | - Graciela L. Mazzone
- Department of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, Pilar B1629AHJ, Buenos Aires, Argentina;
- Correspondence: (J.K.); (G.L.M.); Tel.: +45-5260-1502 (J.K.); +54-23-0438-7425 (G.L.M.)
| | - Jorge B. Aquino
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, Pilar B1629AHJ, Buenos Aires, Argentina;
| | - Andrea Nistri
- Department of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
| |
Collapse
|
6
|
Altintaş A, Liu J, Fabre O, Chuang TD, Wang Y, Sakurai R, Chehabi GN, Barrès R, Rehan VK. Perinatal exposure to nicotine alters spermatozoal DNA methylation near genes controlling nicotine action. FASEB J 2021; 35:e21702. [PMID: 34153130 PMCID: PMC9231556 DOI: 10.1096/fj.202100215r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Perinatal smoke/nicotine exposure alters lung development and causes asthma in exposed offspring, transmitted transgenerationally. The mechanism underlying the transgenerational inheritance of perinatal smoke/nicotine-induced asthma remains unknown, but germline epigenetic modulations may play a role. Using a well-established rat model of perinatal nicotine-induced asthma, we determined the DNA methylation pattern of spermatozoa of F1 rats exposed perinatally to nicotine in F0 gestation. To identify differentially methylated regions (DMRs), reduced representation bisulfite sequencing was performed on spermatozoa of F1 litters. The top regulated gene body and promoter DMRs were tested for lung gene expression levels, and key proteins involved in lung development and repair were determined. The overall CpG methylation in F1 sperms across gene bodies, promoters, 5'-UTRs, exons, introns, and 3'-UTRs was not affected by nicotine exposure. However, the methylation levels were different between the different genomic regions. Eighty one CpG sites, 16 gene bodies, and 3 promoter regions were differentially methylated. Gene enrichment analysis of DMRs revealed pathways involved in oxidative stress, nicotine response, alveolar and brain development, and cellular signaling. Among the DMRs, Dio1 and Nmu were the most hypermethylated and hypomethylated genes, respectively. Gene expression analysis showed that the mRNA expression and DNA methylation were incongruous. Key proteins involved in lung development and repair were significantly different (FDR < 0.05) between the nicotine and placebo-treated groups. Our data show that DNA methylation is remodeled in offspring spermatozoa upon perinatal nicotine exposure. These epigenetic alterations may play a role in transgenerational inheritance of perinatal smoke/nicotine induced asthma.
Collapse
Affiliation(s)
- Ali Altintaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jie Liu
- Lundquist Institute for Biomedical Innovation at Harbor-ULCA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - Odile Fabre
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tsai-Der Chuang
- Lundquist Institute for Biomedical Innovation at Harbor-ULCA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - Ying Wang
- Lundquist Institute for Biomedical Innovation at Harbor-ULCA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - Reiko Sakurai
- Lundquist Institute for Biomedical Innovation at Harbor-ULCA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - Galal Nazih Chehabi
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Virender K. Rehan
- Lundquist Institute for Biomedical Innovation at Harbor-ULCA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| |
Collapse
|
7
|
Zhang S, Zhang X, Purmann C, Ma S, Shrestha A, Davis KN, Ho M, Huang Y, Pattni R, Hung Wong W, Bernstein JA, Hallmayer J, Urban AE. Network Effects of the 15q13.3 Microdeletion on the Transcriptome and Epigenome in Human-Induced Neurons. Biol Psychiatry 2021; 89:497-509. [PMID: 32919612 PMCID: PMC9359316 DOI: 10.1016/j.biopsych.2020.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The 15q13.3 microdeletion is associated with several neuropsychiatric disorders, including autism and schizophrenia. Previous association and functional studies have investigated the potential role of several genes within the deletion in neuronal dysfunction, but the molecular effects of the deletion as a whole remain largely unknown. METHODS Induced pluripotent stem cells, from 3 patients with the 15q13.3 microdeletion and 3 control subjects, were generated and converted into induced neurons. We analyzed the effects of the 15q13.3 microdeletion on genome-wide gene expression, DNA methylation, chromatin accessibility, and sensitivity to cisplatin-induced DNA damage. Furthermore, we measured gene expression changes in induced neurons with CRISPR (clustered regularly interspaced short palindromic repeats) knockouts of individual 15q13.3 microdeletion genes. RESULTS In both induced pluripotent stem cells and induced neurons, gene copy number change within the 15q13.3 microdeletion was accompanied by significantly decreased gene expression and no compensatory changes in DNA methylation or chromatin accessibility, supporting the model that haploinsufficiency of genes within the deleted region drives the disorder. Furthermore, we observed global effects of the microdeletion on the transcriptome and epigenome, with disruptions in several neuropsychiatric disorder-associated pathways and gene families, including Wnt signaling, ribosome function, DNA binding, and clustered protocadherins. Individual gene knockouts mirrored many of the observed changes in an overlapping fashion between knockouts. CONCLUSIONS Our multiomics analysis of the 15q13.3 microdeletion revealed downstream effects in pathways previously associated with neuropsychiatric disorders and indications of interactions between genes within the deletion. This molecular systems analysis can be applied to other chromosomal aberrations to further our etiological understanding of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Siming Zhang
- Department of Genetics, School of Humanities and Science, Stanford University, Stanford, California
| | - Xianglong Zhang
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Carolin Purmann
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Shining Ma
- Department of Pediatrics, School of Humanities and Sciences, Stanford University, Stanford, California
| | - Anima Shrestha
- School of Medicine, Stanford University, and Department of Statistics, School of Humanities and Sciences, Stanford University, Stanford, California
| | - Kasey N Davis
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Marcus Ho
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Yiling Huang
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Wing Hung Wong
- Department of Pediatrics, School of Humanities and Sciences, Stanford University, Stanford, California
| | - Jonathan A Bernstein
- Department of Human Biology, School of Humanities and Science, Stanford University, Stanford, California
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Alexander E Urban
- Department of Genetics, School of Humanities and Science, Stanford University, Stanford, California; Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California.
| |
Collapse
|
8
|
Noël A, Hansen S, Zaman A, Perveen Z, Pinkston R, Hossain E, Xiao R, Penn A. In utero exposures to electronic-cigarette aerosols impair the Wnt signaling during mouse lung development. Am J Physiol Lung Cell Mol Physiol 2020; 318:L705-L722. [PMID: 32083945 DOI: 10.1152/ajplung.00408.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Currently, more than 9 million American adults, including women of childbearing age, use electronic-cigarettes (e-cigs). Further, the prevalence of maternal vaping now approaching 10% is similar to that of maternal smoking. Little, however, is known about the effects of fetal exposures to nicotine-rich e-cig aerosols on lung development. In this study, we assessed whether in utero exposures to e-cig aerosols compromised lung development in mice. A third-generation e-cig device was used to expose pregnant BALB/c mice by inhalation to 36 mg/mL of nicotine cinnamon-flavored e-cig aerosols for 14-31 days. This included exposures for either 12 days before mating plus during gestation (preconception groups) or only during gestation (prenatal groups). Respective control mice were exposed to filtered air. Subgroups of offspring were euthanized at birth or at 4 wk of age. Compared with respective air-exposed controls, both preconception and prenatal exposures to e-cig aerosols significantly decreased the offspring birth weight and body length. In the preconception group, 7 inflammation-related genes were downregulated, including 4 genes common to both dams and fetuses, denoting an e-cig immunosuppressive effect. Lung morphometry assessments of preconception e-cig-exposed offspring showed a significantly increased tissue fraction at birth. This result was supported by the downregulation of 75 lung genes involved in the Wnt signaling, which is essential to lung organogenesis. Thus, our data indicate that maternal vaping impairs pregnancy outcomes, alters fetal lung structure, and dysregulates the Wnt signaling. This study provides experimental evidence for future regulations of e-cig products for pregnant women and developmentally vulnerable populations.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Shannon Hansen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Anusha Zaman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Rakeysha Pinkston
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana.,Health Research Center, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana
| | - Ekhtear Hossain
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Rui Xiao
- Department of Anesthesiology, Columbia University Medical Center, New York, New York
| | - Arthur Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
9
|
Blaskovic S, Donati Y, Zanetti F, Ruchonnet-Métrailler I, Lemeille S, Cremona TP, Schittny JC, Barazzone-Argiroffo C. Gestation and lactation exposure to nicotine induces transient postnatal changes in lung alveolar development. Am J Physiol Lung Cell Mol Physiol 2020; 318:L606-L618. [PMID: 31967849 DOI: 10.1152/ajplung.00228.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Harmful consequences of cigarette smoke (CS) exposure during lung development can already manifest in infancy. In particular, early life exposure to nicotine, the main component of CS, was shown to affect lung development in animal models. We aimed to characterize the effect of nicotine on alveoli formation. We analyzed the kinetics of normal alveolar development during the alveolarization phase and then looked at the effect of nicotine in a mouse model of gestational and early life exposure. Immunohistochemical staining revealed that the wave of cell proliferation [i.e., vascular endothelial cells, alveolar epithelial cells (AEC) type II and mesenchymal cell] occurs at postnatal day (pnd) 8 in control and nicotine-exposed lungs. However, FACS analysis of individual epithelial alveolar cells revealed nicotine-induced transient increase of AEC type I proliferation and decrease of vascular endothelial cell proliferation at pnd8. Furthermore, nicotine increased the percentage of endothelial cells at pnd2. Transcriptomic data also showed significant changes in nicotine samples compared with the controls on cell cycle-associated genes at pnd2 but not anymore at pnd16. Accordingly, the expression of survivin, involved in cell cycle regulation, also follows a different kinetics in nicotine lung extracts. These changes resulted in an increased lung size detected by stereology at pnd16 but no longer in adult age, suggesting that nicotine can act on the pace of lung maturation. Taken together, our results indicate that early life nicotine exposure could be harmful to alveolar development independently from other toxicants contained in CS.
Collapse
Affiliation(s)
- Sanja Blaskovic
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Yves Donati
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Filippo Zanetti
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Isabelle Ruchonnet-Métrailler
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Sylvain Lemeille
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Tiziana P Cremona
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | - Constance Barazzone-Argiroffo
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| |
Collapse
|
10
|
Prevention of perinatal nicotine-induced bone marrow mesenchymal stem cell myofibroblast differentiation by augmenting the lipofibroblast phenotype. Clin Sci (Lond) 2018; 132:2357-2368. [PMID: 30309879 DOI: 10.1042/cs20180749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
Perinatal nicotine exposure drives the differentiation of alveolar lipofibroblasts (LIFs), which are critical for lung injury repair, to myofibroblasts (MYFs), which are the hallmark of chronic lung disease. Bone marrow-derived mesenchymal stem cells (BMSCs) are important players in lung injury repair; however, how these cells are affected with perinatal nicotine exposure and whether these can be preferentially driven to a lipofibroblastic phenotype are not known. We hypothesized that perinatal nicotine exposure would block offspring BMSCs lipogenic differentiation, driving these cells toward a MYF phenotype. Since peroxisome proliferator activated-receptor γ (PPARγ) agonists can prevent nicotine-induced MYF differentiation of LIFs, we further hypothesized that the modulation of PPARγ expression would inhibit nicotine's myogenic effect on BMSCs. Sprague Dawley dams were perinatally administered nicotine (1 mg/kg bodyweight) with or without the potent PPARγ agonist rosiglitazone (RGZ), both administered subcutaneously. At postnatal day 21, BMSCs were isolated and characterized morphologically, molecularly, and functionally for their lipogenic and myogenic potentials. Perinatal nicotine exposure resulted in decreased oil red O staining, triolein uptake, expression of PPARγ, and its downstream target gene adipocyte differentiation-related protein by BMSCs, but enhanced α-smooth muscle actin and fibronectin expression, and activated Wnt signaling, all features indicative of their inhibited lipogenic, but enhanced myogenic potential. Importantly, concomitant treatment with RGZ virtually blocked all of these nicotine-induced morphologic, molecular, and functional changes. Based on these data, we conclude that BMSCs can be directionally induced to differentiate into the lipofibroblastic phenotype, and PPARγ agonists can effectively block perinatal nicotine-induced MYF transdifferentiation, suggesting a possible molecular therapeutic approach to augment BMSC's lung injury/repair potential.
Collapse
|
11
|
Protective effect of electro-acupuncture at maternal different points on perinatal nicotine exposure-induced pulmonary dysplasia in offspring based on HPA axis and signal transduction pathway. Biochem Biophys Res Commun 2018; 505:586-592. [PMID: 30274776 DOI: 10.1016/j.bbrc.2018.09.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/22/2018] [Indexed: 12/12/2022]
Abstract
Perinatal nicotine exposure can not only lead to lung dysplasia in offspring, but also cause epigenetic changes and induce transgenerational asthma. Previous studies have shown that electro-acupuncture (EA) applied to "Zusanli" (ST 36) can improve the lung morphology and correct abnormal expression of lung development-related protein in perinatal nicotine exposure offspring. However, it is still unclear whether ST 36 has a specific therapeutic effect and how maternal acupuncture can protect the offspring from pulmonary dysplasia. In this study, we compared the different effect of ST 36 and "Fenglong" (ST 40), which belong to the same meridian, in terms of lung pulmonary function and morphology, PPARγ, β-catenin, GR levels in the lung tissues and CORT in the serum of perinatal nicotine exposure offspring, and explored the mechanism of acupuncture based on the maternal hypothalamus-pituitary-adrenal (HPA) axis. It is shown that EA applied to ST 36 could restore the normal function of maternal HPA axis and alleviate maternal glucocorticoid overexposure in offspring, thereby it can up-regulate the PTHrP/PPARγ and down-regulate the Wnt/β-catenin signaling pathways, and protects perinatal nicotine exposure-induced pulmonary dysplasia in offspring. Its effect is better than that of ST 40. These results are of great significance in preventing perinatal nicotine exposure-induced pulmonary dysplasia in offspring.
Collapse
|
12
|
Feller D, Kun J, Ruzsics I, Rapp J, Sarosi V, Kvell K, Helyes Z, Pongracz JE. Cigarette Smoke-Induced Pulmonary Inflammation Becomes Systemic by Circulating Extracellular Vesicles Containing Wnt5a and Inflammatory Cytokines. Front Immunol 2018; 9:1724. [PMID: 30090106 PMCID: PMC6068321 DOI: 10.3389/fimmu.2018.01724] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating, irreversible pathology affecting millions of people worldwide. Clinical studies show that currently available therapies are insufficient, have no or little effect on elevated comorbidities and on systemic inflammation. To develop alternative therapeutic options, a better understanding of the molecular background of COPD is essential. In the present study, we show that non-canonical and pro-inflammatory Wnt5a is up-regulated by cigarette smoking with parallel up-regulation of pro-inflammatory cytokines in both mouse and human model systems. Wnt5a is not only a pro-inflammatory Wnt ligand but can also inhibit the anti-inflammatory peroxisome proliferator-activated receptor gamma transcription and affect M1/M2 macrophage polarization. Both Wnt5a and pro-inflammatory cytokines can be transported in lipid bilayer sealed extracellular vesicles that reach and deliver their contents to every organ measured in the blood of COPD patients, therefore, demonstrating a potential mechanism for the systemic nature of this crippling disease.
Collapse
Affiliation(s)
- Diana Feller
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary.,Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Jozsef Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Istvan Ruzsics
- Department of Internal Medicine, Clinical Centre and Medical School, University of Pecs, Pecs, Hungary
| | - Judit Rapp
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Veronika Sarosi
- Department of Internal Medicine, Clinical Centre and Medical School, University of Pecs, Pecs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| |
Collapse
|
13
|
Qu Q, Zhang F, Zhang X, Yin W. Bidirectional Regulation of Mouse Embryonic Stem Cell Proliferation by Nicotine Is Mediated Through Wnt Signaling Pathway. Dose Response 2017; 15:1559325817739760. [PMID: 29200986 PMCID: PMC5697588 DOI: 10.1177/1559325817739760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/07/2017] [Accepted: 09/26/2017] [Indexed: 01/09/2023] Open
Abstract
Introduction: Nicotine is a key biologically active compound of cigarettes. Although nicotine is a risk factor for various health issues, it may also be beneficial when treated at moderate concentrations. Nicotine has been shown to bidirectionally regulate stem cell proliferation and differentiation depending on the doses applied. It is not clear whether or how nicotine regulates mouse embryonic stem cell (mESC) survival and proliferation. Methods: Mouse embryonic stem cells were cultured in the presence of 0.01, 0.1, 1, or 10 μM nicotine. The effects of nicotine on cell survival and proliferation were examined. The signaling pathway that mediated these effects was analyzed. Results: Cell viability was not affected by nicotine at all 4 concentrations examined. The proliferation of mESCs was promoted by 0.01 and 0.1 μM nicotine and suppressed by 1 and 10 μM. This dose-dependent regulation was mediated through the Wnt/β-catenin pathway. Modulation of Wnt/β-catenin activity either worsens or reverses the effects of nicotine. Conclusions: We have identified a bidirectional function of nicotine on mESC proliferation through regulation of the Wnt/β-catenin pathway and this is associated with different doses. This study suggests that concentration of nicotine is a crucial aspect for consideration when designing research or therapeutic strategies.
Collapse
Affiliation(s)
- Qinglan Qu
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| | - Fengrong Zhang
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| | - Xiang Zhang
- Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Weihong Yin
- Yantai Affiliated Hospital of Binzhou Medical University, Muping District, Yantai, Shandong, China
| |
Collapse
|
14
|
Schmid A, Sailland J, Novak L, Baumlin N, Fregien N, Salathe M. Modulation of Wnt signaling is essential for the differentiation of ciliated epithelial cells in human airways. FEBS Lett 2017; 591:3493-3506. [PMID: 28921507 PMCID: PMC5683904 DOI: 10.1002/1873-3468.12851] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 12/20/2022]
Abstract
Wnt signaling is essential for the differentiation of airway epithelial cells during development. Here, we examined the role of Wnt signaling during redifferentiation of ciliated airway epithelial cells in vitro at the air liquid interface as a model of airway epithelial repair. Phases of proliferation and differentiation were defined. Markers of squamous metaplasia and epithelial ciliation were followed while enhancing β‐catenin signaling by blocking glycogen synthase kinase 3β with SB216763 and shRNA as well as inhibiting canonical WNT signaling with apical application of Dickkopf 1 (Dkk1). Our findings indicate that enhanced β‐catenin signaling decreases the number of ciliated cells and causes squamous changes in the epithelium, whereas treatment with DDk1 leads to an increased number of ciliated cells.
Collapse
Affiliation(s)
- Andreas Schmid
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Juliette Sailland
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Lisa Novak
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Nathalie Baumlin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Nevis Fregien
- Department of Cell Biology, University of Miami School of Medicine, FL, USA
| | - Matthias Salathe
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| |
Collapse
|
15
|
Rapp J, Jaromi L, Kvell K, Miskei G, Pongracz JE. WNT signaling - lung cancer is no exception. Respir Res 2017; 18:167. [PMID: 28870231 PMCID: PMC5584342 DOI: 10.1186/s12931-017-0650-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/27/2017] [Indexed: 02/07/2023] Open
Abstract
Since the initial discovery of the oncogenic activity of WNT ligands our understanding of the complex roles for WNT signaling pathways in lung cancers has increased substantially. In the current review, the various effects of activation and inhibition of the WNT signaling pathways are summarized in the context of lung carcinogenesis. Recent evidence regarding WNT ligand transport mechanisms, the role of WNT signaling in lung cancer angiogenesis and drug transporter regulation and the importance of microRNA and posttranscriptional regulation of WNT signaling are also reviewed.
Collapse
Affiliation(s)
- Judit Rapp
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Luca Jaromi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Gyorgy Miskei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| |
Collapse
|
16
|
Gahring LC, Myers EJ, Dunn DM, Weiss RB, Rogers SW. Nicotinic alpha 7 receptor expression and modulation of the lung epithelial response to lipopolysaccharide. PLoS One 2017; 12:e0175367. [PMID: 28384302 PMCID: PMC5383308 DOI: 10.1371/journal.pone.0175367] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/26/2017] [Indexed: 01/14/2023] Open
Abstract
Nicotine modulates multiple inflammatory responses in the lung through the nicotinic acetylcholine receptor subtype alpha7 (α7). Previously we reported that α7 modulates both the hematopoietic and epithelium responses in the lung to the bacterial inflammogen, lipopolysaccharide (LPS). Here we apply immunohistochemistry, flow cytometry and RNA-Seq analysis of isolated distal lung epithelium to further define α7-expression and function in this tissue. Mouse lines were used that co-express a bicistronic tau-green fluorescent protein (tGFP) as a reporter of α7 (α7G) expression and that harbor an α7 with a specific point mutation (α7E260A:G) that selectively uncouples it from cell calcium-signaling mechanisms. The tGFP reporter reveals strong cell-specific α7-expression by alveolar macrophages (AM), Club cells and ATII cells. Ciliated cells do not express detectible tGFP, but their numbers decrease by one-third in the α7E260A:G lung compared to controls. Transcriptional comparisons (RNA-Seq) between α7G and α7E260A:G enriched lung epithelium 24 hours after challenge with either intra-nasal (i.n.) saline or LPS reveals a robust α7-genotype impact on both the stasis and inflammatory response of this tissue. Overall the α7E260A:G lung epithelium exhibits reduced inflammatory cytokine/chemokine expression to i.n. LPS. Transcripts specific to Club cells (e.g., CC10, secretoglobins and Muc5b) or to ATII cells (e.g., surfactant proteins) were constitutively decreased in in the α7E260A:G lung, but they were strongly induced in response to i.n. LPS. Protein analysis applying immunohistochemistry and ELISA also revealed α7-associated differences suggested by RNA-Seq including altered mucin protein 5b (Muc5b) accumulation in the α7E260A:G bronchia, that in some cases appeared to form airway plugs, and a substantial increase in extracellular matrix deposits around α7E260A:G airway bronchia linings that was not seen in controls. Our results show that α7 is an important modulator of normal gene expression stasis and the response to an inhaled inflammogen in the distal lung epithelium. Further, when normal α7 signaling is disrupted, changes in lung gene expression resemble those associated with long-term lung pathologies seen in humans who use inhaled nicotine products.
Collapse
Affiliation(s)
- Lorise C. Gahring
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Administration Medical Center, Salt Lake City, Utah, United States of America
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail: (LCG); (SWR)
| | - Elizabeth J. Myers
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Diane M. Dunn
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Robert B. Weiss
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Scott W. Rogers
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Administration Medical Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail: (LCG); (SWR)
| |
Collapse
|
17
|
Wang C, Xu X, Jin H, Liu G. Nicotine may promote tongue squamous cell carcinoma progression by activating the Wnt/β-catenin and Wnt/PCP signaling pathways. Oncol Lett 2017; 13:3479-3486. [PMID: 28521453 PMCID: PMC5431205 DOI: 10.3892/ol.2017.5899] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
To investigate the effects and the possible underlying mechanisms of nicotine stimulation on tongue squamous cell carcinoma (TSCC) progression, a TSCC cell line Cal27 and 34 samples of paraffin-embedded TSCC were examined. Immunofluorescence, western blot analysis, and TOP/FOP flash, CCK-8, wound healing and Transwell invasion assays were used to evaluate Cal27 in response to nicotine stimulation. We also investigated expression levels of related proteins of Wnt/β-catenin and Wnt/PCP pathways in paraffin-embedded TSCC samples with or without a history of smoking by immunohistochemistry. Nicotine stimulation can promote proliferation, migration, and invasion of TSCC cells in vitro, downregulate E-cadherin, and activate the Wnt/β-catenin and Wnt/PCP pathways, which could be antagonized by the α7 nicotine acetylcholine receptor (α7 nAChR) inhibitor α-BTX. Moreover, the expression levels of β-catenin, Wnt5a and Ror2 were higher in TSCC patients with a history of smoking than those without a history of smoking. Our results suggest nicotine may promote tongue squamous carcinoma cells progression by activating the Wnt/β-catenin and Wnt/PCP signaling pathways and may play a significant role in the progression and metastasis of smoking-related TSCC.
Collapse
Affiliation(s)
- Chengze Wang
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xin Xu
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hairu Jin
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Gangli Liu
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
18
|
Ji B, Zhao GZ, Sakurai R, Cao Y, Zhang ZJ, Wang D, Yan MN, Rehan VK. Effect of Maternal Electroacupuncture on Perinatal Nicotine Exposure-Induced Lung Phenotype in Offspring. Lung 2016; 194:535-46. [PMID: 27179524 DOI: 10.1007/s00408-016-9899-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Pregnant women exposed to tobacco smoke predispose the offspring to many adverse consequences including an altered lung development and function. There is no effective therapeutic intervention to block the effects of smoke exposure on the developing lung. Clinical and animal studies demonstrate that acupuncture can modulate a variety of pathophysiological processes, including those involving the respiratory system; however, whether acupuncture affects the lung damage caused by perinatal smoke exposure is not known. METHODS To determine the effect of acupuncture on perinatal nicotine exposure on the developing lung, pregnant rat dams were administered (1) saline, (2) nicotine, or (3) nicotine + electroacupuncture (EA). Nicotine was administered (1 mg/kg subcutaneously) once a day and EA was applied to both "Zusanli" (ST 36) points. Both interventions were administered from gestational day 6 to postnatal day 21 (PND21), following which pups were sacrificed. Lungs, blood, and brain were collected to examine markers of lung injury, repair, and hypothalamic pituitary adrenal (HPA) axis. RESULTS Concomitant EA application blocked nicotine-induced changes in lung morphology, lung peroxisome proliferator-activated receptor γ and wingless-int signaling, two key lung developmental signaling pathways, hypothalamic pituitary adrenal axis (hypothalamic corticotropic releasing hormone and lung glucocorticoid receptor levels), and plasma β-endorphin levels. CONCLUSIONS Electroacupuncture blocks the nicotine-induced changes in lung developmental signaling pathways and the resultant myogenic lung phenotype, known to be present in the affected offspring. We conclude that EA is a promising novel intervention against the smoke exposed lung damage to the developing lung.
Collapse
Affiliation(s)
- Bo Ji
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | | | - Reiko Sakurai
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, 1124 West Carson Street, Torrance, CA, 90502, USA
| | - Yu Cao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zi-Jian Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ming-Na Yan
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Virender K Rehan
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, 1124 West Carson Street, Torrance, CA, 90502, USA.
| |
Collapse
|
19
|
Reuter S, Beckert H, Taube C. Take the Wnt out of the inflammatory sails: modulatory effects of Wnt in airway diseases. J Transl Med 2016; 96:177-85. [PMID: 26595171 DOI: 10.1038/labinvest.2015.143] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/08/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022] Open
Abstract
Bronchial asthma and chronic obstructive pulmonary disease (COPD) are chronic diseases that are associated with inflammation and structural changes in the airways and lungs. Recent findings have implicated Wnt pathways in critically regulating inflammatory responses, especially in asthma. Furthermore, canonical and noncanonical Wnt pathways are involved in structural changes such as airway remodeling, goblet cell metaplasia, and airway smooth muscle (ASM) proliferation. In COPD, Wnt pathways are not only associated with structural changes in the airways but also involved in the development of emphysema. The present review summarizes the role and function of the canonical and noncanonical Wnt pathway with regard to airway inflammation and structural changes in asthma and COPD. Further identification of the role and function of different Wnt molecules and pathways could help to develop novel therapeutic options for these diseases.
Collapse
Affiliation(s)
- Sebastian Reuter
- Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North, Member of the German Center for Lung Research, Borstel, Germany
| | - Hendrik Beckert
- III Medical Clinic, University Medical Center, Mainz, Germany
| | - Christian Taube
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Zou W, Liu S, Hu J, Sheng Q, He F, Li B, Ran P. Nicotine reduces the levels of surfactant proteins A and D via Wnt/β-catenin and PKC signaling in human airway epithelial cells. Respir Physiol Neurobiol 2016; 221:1-10. [DOI: 10.1016/j.resp.2015.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022]
|
21
|
Liu W, Yi DD, Guo JL, Xiang ZX, Deng LF, He L. Nuciferine, extracted from Nelumbo nucifera Gaertn, inhibits tumor-promoting effect of nicotine involving Wnt/β-catenin signaling in non-small cell lung cancer. JOURNAL OF ETHNOPHARMACOLOGY 2015; 165:83-93. [PMID: 25698245 DOI: 10.1016/j.jep.2015.02.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaves of Nelumbo nucifera Gaertn are recorded in the earliest written documentation of traditional Chinese medicinal as "Ben Cao Gang Mu", a medicinal herb for blood clotting, dysentery and dizziness. Recently, nuciferine (NF), one of N. nucifera Gaertn leaf extracts has been shown to possess several pharmacological properties, including anti-viral and anti-cancer. The aim of this study is to investigate the underlying molecular mechanism of the anti-cancer activity of NF in NSCLC progression induced by nicotine MATERIALS AND METHODS The effect of NF on proliferation of A549 (human lung adenocarcinoma epithelial cell line) pretreated with or without nicotine was detected by tumor cell proliferation assay. TOP-Flash reporter assay was applied to investigate the activity of Wnt/β-catenin signaling in tumor cells in the presence of NF and/or nicotine. Apoptosis was measured using a FITC-Annexin V and PI detection kit by flow cytometry. In addition, mRNA or protein expression levels were respectively tested by quantitative RT-PCR or western blot. In vivo experiments, tumor samples were fixed in formalin and embedded in paraffin for additional analyses by immunohistochemistry and TUNEL staining. RESULTS NF significantly inhibited the proliferation of NSCLC cells in the presence of nicotine, suppressed the activity of Wnt/β-catenin signaling, enhanced the stabilization of Axin, and induced apoptosis. NF down-regulated the expression levels of β-catenin and its downstream targets including c-myc, cyclin D and VEGF-A. NF also decreased the ratio of Bcl-2/Bax, which may explain the pro-apoptosis effect of NF. In tumor xenograft nude mice, NF not only inhibited the growth of non-small cell lung cancer (NSCLC) cells, but also remarkably alleviated the injury induced by nicotine in liver function. CONCLUSIONS NF has the remarkable effect to inhibit nicotine-induced NSCLC progression, which was due to its ability to reduce the activity of Wnt/β-catenin signaling. Thus, the work stated here emphasizes the importance of this traditional medicine and presents a potential novel alternative to NSCLC prevention and therapy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, China
| | - Dan-Dan Yi
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Jian-Li Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Zhu-Xing Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Lin-Feng Deng
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Road, Wuhan 430030, China
| | - Lei He
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Road, Wuhan 430030, China.
| |
Collapse
|
22
|
Gong M, Liu J, Sakurai R, Corre A, Anthony S, Rehan VK. Perinatal nicotine exposure suppresses PPARγ epigenetically in lung alveolar interstitial fibroblasts. Mol Genet Metab 2015; 114:604-12. [PMID: 25661292 PMCID: PMC4390504 DOI: 10.1016/j.ymgme.2015.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
Abstract
Due to the active inhibition of the adipogenic programming, the default destiny of the developing lung mesenchyme is to acquire a myogenic phenotype. We have previously shown that perinatal nicotine exposure, by down-regulating PPARγ expression, accentuates this property, culminating in myogenic pulmonary phenotype, though the underlying mechanisms remained incompletely understood. We hypothesized that nicotine-induced PPARγ down-regulation is mediated by PPARγ promoter methylation, controlled by DNA methyltransferase 1 (DNMT1) and methyl CpG binding protein 2 (MeCP2), two known key regulators of DNA methylation. Using cultured alveolar interstitial fibroblasts and an in vivo perinatal nicotine exposure rat model, we found that PPARγ promoter methylation is strongly correlated with inhibition of PPARγ expression in the presence of nicotine. Methylation inhibitor 5-aza-2'-deoxycytidine restored the nicotine-induced down-regulation of PPARγ expression and the activation of its downstream myogenic marker fibronectin. With nicotine exposure, a specific region of PPARγ promoter was significantly enriched with antibodies against chromatin repressive markers H3K9me3 and H3K27me3, dose-dependently. Similar data were observed with antibodies against DNA methylation regulatory factors DNMT1 and MeCP2. The knock down of DNMT1 and MeCP2 abolished nicotine-mediated increases in DNMT1 and MeCP2 protein levels, and PPARγ promoter methylation, restoring nicotine-induced down regulation of PPARγ and upregulation of the myogenic protein, fibronectin. The nicotine-induced alterations in DNA methylation modulators DNMT1 and MeCP2, PPARγ promoter methylation, and its down-stream targets, were also validated in perinatally nicotine exposed rat lung tissue. These data provide novel mechanistic insights into nicotine-induced epigenetic silencing of PPARγ that could be exploited to design novel targeted molecular interventions against the smoke exposed lung injury in general and perinatal nicotine exposure induced lung damage in particular.
Collapse
Affiliation(s)
- M Gong
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - J Liu
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - R Sakurai
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - A Corre
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - S Anthony
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - V K Rehan
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA.
| |
Collapse
|
23
|
Nuclear receptors in transgenerational epigenetic inheritance. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:34-43. [PMID: 25792088 DOI: 10.1016/j.pbiomolbio.2015.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 02/11/2015] [Accepted: 02/23/2015] [Indexed: 11/22/2022]
Abstract
Nuclear Receptors are ligand-activated transcription factors that translate information about the lipid environment into specific genetic programs, a property that renders them good candidates to be mediators of rapid adaptation changes of a species. Lipid-based morphogens, endocrine hormones, fatty acids and xenobiotics might act through this class of transcription factors making them regulators able to fine-tune physiological processes. Here we review the basic concepts and current knowledge on the process whereby small molecules act through nuclear receptors and contribute to transgenerational changes. Several molecules shown to cause transgenerational changes like phthalates, BPA, nicotine, tributylin bind and activate nuclear receptors like ERs, androgen receptors, glucocorticoid receptors or PPARγ. A specific subset of observations involving nuclear receptors has focused on the effects of environmental stress or maternal behaviour on the development of transgenerational traits. While these effects do not involve environmental ligands, they change the expression levels of Estrogen and glucocorticoid receptors of the second generation and consequently initiate an altered genetic program in the second generation. In this review we summarize the available literature about the role of nuclear receptors in transgenerational inheritance.
Collapse
|
24
|
Liu J, Sakurai R, Rehan VK. PPAR-γ agonist rosiglitazone reverses perinatal nicotine exposure-induced asthma in rat offspring. Am J Physiol Lung Cell Mol Physiol 2015; 308:L788-96. [PMID: 25659902 DOI: 10.1152/ajplung.00234.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/02/2015] [Indexed: 11/22/2022] Open
Abstract
In a rat model, downregulation of homeostatic mesenchymal peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling following perinatal nicotine exposure contributes to offspring asthma, which can be effectively prevented by concomitant administration of PPAR-γ agonist rosiglitazone (RGZ). However, whether perinatal nicotine exposure-induced asthma can be reversed is not known. We hypothesized that perinatal nicotine exposure-induced asthma would be reversed by PPAR-γ agonist RGZ. Pregnant rat dams received either placebo or nicotine from embryonic day 6 until term. Following spontaneous delivery at term, dams were continued on the assigned treatments, up to postnatal day 21 (PND21). However, at delivery, pups were divided into two groups; one group received placebo, and the other group received RGZ from PND1 to PND21. At PND21, pulmonary function and the expression of mesenchymal markers of airway contractility (α-smooth muscle actin, calponin, fibronectin, collagen I, and collagen III) were determined by immunoblotting and immunostaining for the evidence of reversibility of perinatal nicotine exposure-induced lung effects. Compared with controls, perinatal nicotine exposure caused 1) a significant increase in airway resistance and a decrease in airway compliance following methacholine challenge, 2) a significant increase in acetylcholine-induced tracheal constriction, and 3) increased pulmonary and tracheal expression of the mesenchymal markers of contractility. Treatment with RGZ, starting on PND1, reversed all of the nicotine-induced molecular and functional pulmonary effects, virtually normalizing the pulmonary phenotype of the treated animals. We conclude that perinatal nicotine exposure-induced functional and molecular alterations in upper and lower airways can be reversed by PPAR-γ agonist RGZ, allowing an effective intervention even when started postnatally.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Reiko Sakurai
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Virender K Rehan
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| |
Collapse
|
25
|
Moura RS, Carvalho-Correia E, daMota P, Correia-Pinto J. Canonical Wnt signaling activity in early stages of chick lung development. PLoS One 2014; 9:e112388. [PMID: 25460002 PMCID: PMC4251901 DOI: 10.1371/journal.pone.0112388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/15/2014] [Indexed: 01/08/2023] Open
Abstract
Wnt signaling pathway is an essential player during vertebrate embryonic development which has been associated with several developmental processes such as gastrulation, body axis formation and morphogenesis of numerous organs, namely the lung. Wnt proteins act through specific transmembrane receptors, which activate intracellular pathways that regulate cellular processes such as cell proliferation, differentiation and death. Morphogenesis of the fetal lung depends on epithelial-mesenchymal interactions that are governed by several growth and transcription factors that regulate cell proliferation, fate, migration and differentiation. This process is controlled by different signaling pathways such as FGF, Shh and Wnt among others. Wnt signaling is recognized as a key molecular player in mammalian pulmonary development but little is known about its function in avian lung development. The present work characterizes, for the first time, the expression pattern of several Wnt signaling members, such as wnt-1, wnt-2b, wnt-3a, wnt-5a, wnt-7b, wnt-8b, wnt-9a, lrp5, lrp6, sfrp1, dkk1, β-catenin and axin2 at early stages of chick lung development. In general, their expression is similar to their mammalian counterparts. By assessing protein expression levels of active/total β-catenin and phospho-LRP6/LRP6 it is revealed that canonical Wnt signaling is active in this embryonic tissue. In vitro inhibition studies were performed in order to evaluate the function of Wnt signaling pathway in lung branching. Lung explants treated with canonical Wnt signaling inhibitors (FH535 and PK115-584) presented an impairment of secondary branch formation after 48 h of culture along with a decrease in axin2 expression levels. Branching analysis confirmed this inhibition. Wnt-FGF crosstalk assessment revealed that this interaction is preserved in the chick lung. This study demonstrates that Wnt signaling is crucial for precise chick lung branching and further supports the avian lung as a good model for branching studies since it recapitulates early mammalian pulmonary development.
Collapse
Affiliation(s)
- Rute Silva Moura
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Biology Department, School of Sciences, University of Minho, Braga, Portugal
| | - Eduarda Carvalho-Correia
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paulo daMota
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Urology, Hospital de Braga, Braga, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| |
Collapse
|
26
|
Ahlbrecht K, McGowan SE. In search of the elusive lipofibroblast in human lungs. Am J Physiol Lung Cell Mol Physiol 2014; 307:L605-8. [PMID: 25193605 DOI: 10.1152/ajplung.00230.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Although the pulmonary interstitial lipofibroblast (LF) has been widely recognized in rat and mouse lungs, their presence in human lungs remains controversial. In a recent issue of the Journal, Tahedl and associates (Tahedl D, Wirkes A, Tschanz SA, Ochs M, Mühlfeld C. Am J Physiol Lung Cell Mol Physiol 307: L386-L394, 2014) address this controversy and provide the most detailed stereological analysis of LFs in mammals other than rodents. Strikingly, their observations demonstrate that LFs were only observed in rodents, which contrasts with earlier reports. This editorial reviews the anatomical, physiological, and biochemical characteristics of the LF to better understand the significance of LFs for lung development and disease. Although lipid droplets are a signature of the LF cell type, it remains unclear whether lipid storage is the defining characteristic of LFs, or whether other less overt properties determine the importance of LFs. Are lipid droplets an adaptation to the neonatal environment, or are LFs a surrogate for other properties that promote alveolar development, and do lipid droplets modify physiology or disease in adults?
Collapse
Affiliation(s)
- Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany; and
| | - Stephen E McGowan
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
27
|
Paek DS, Sakurai R, Saraswat A, Li Y, Khorram O, Torday JS, Rehan VK. Metyrapone alleviates deleterious effects of maternal food restriction on lung development and growth of rat offspring. Reprod Sci 2014; 22:207-22. [PMID: 24916330 DOI: 10.1177/1933719114537712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maternal food restriction (MFR) causes intrauterine growth restriction, a known risk factor for developing chronic lung disease. However, it is unknown whether this negative outcome is gender specific or preventable by blocking the MFR-induced hyperglucocorticoidism. Using a well-established rat model, we used metyrapone (MTP), an inhibitor of glucocorticoid synthesis, to study the MFR-induced lung changes on postnatal day (p) 21 in a gender-specific manner. From embryonic day 10 until delivery, pregnant dams were fed either an ad libitum diet or a 50% caloric restricted diet with or without MTP supplementation. Postnatally, the offspring were fed ad libitum from healthy dams until p21. Morphometric, Western blot, and immunohistochemical analysis of the lungs demonstrated that MTP mitigated the MFR-mediated decrease in alveolar count, decrease in adipogenic protein peroxisome proliferator-activated receptor γ, increase in myogenic proteins (fibronectin, α-smooth muscle actin, and calponin), increase in Wnt signaling intermediates (lymphoid enhancer-binding factor 1 and β-catenin), and increase in glucocorticoid receptor (GR) levels. The MFR-induced lung phenotype and the effects of MTP were similar in both genders. To elucidate the mechanism of MFR-induced shift of the adipogenic-to-myogenic phenotype, lung fibroblasts were used to independently study the effects of (1) nutrient restriction and (2) excess steroid exposure. Nutrient deprivation increased myogenic proteins, Wnt signaling intermediates, and GR, all changes blocked by protein supplementation. MTP also blocked, likely by normalizing nicotinamide adenine dinucleotide phosphate levels, the corticosterone-induced increase in myogenic proteins, but had no effect on GR levels. In summary, protein restriction and increased glucocorticoid levels appear to be the key players in MFR-induced lung disease, affecting both genders.
Collapse
Affiliation(s)
- David S Paek
- Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California, Torrance, Los Angeles, CA, USA
| | - Reiko Sakurai
- Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California, Torrance, Los Angeles, CA, USA
| | - Aditi Saraswat
- Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California, Torrance, Los Angeles, CA, USA
| | - Yishi Li
- Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California, Torrance, Los Angeles, CA, USA
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California, Torrance, Los Angeles, CA, USA
| | - John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California, Torrance, Los Angeles, CA, USA
| | - Virender K Rehan
- Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California, Torrance, Los Angeles, CA, USA
| |
Collapse
|
28
|
Wang H, Kumar A, Lamont RJ, Scott DA. GSK3β and the control of infectious bacterial diseases. Trends Microbiol 2014; 22:208-17. [PMID: 24618402 DOI: 10.1016/j.tim.2014.01.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/24/2014] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
Abstract
Glycogen synthase kinase 3β (GSK3β) has been shown to be a crucial mediator of the intensity and direction of the innate immune system response to bacterial stimuli. This review focuses on: (i) the central role of GSK3β in the regulation of pathogen-induced inflammatory responses through the regulation of pro- and anti-inflammatory cytokine production, (ii) the extensive ongoing efforts to exploit GSK3β for its therapeutic potential in the control of infectious diseases, and (iii) the increasing evidence that specific pathogens target GSK3β-related pathways for immune evasion. A better understanding of complex bacteria-GSK3β interactions is likely to lead to more effective anti-inflammatory interventions and novel targets to circumvent pathogen colonization and survival.
Collapse
Affiliation(s)
- Huizhi Wang
- Oral Health and Systemic Disease, University of Louisville, Louisville, KY 40292, USA
| | - Akhilesh Kumar
- Oral Health and Systemic Disease, University of Louisville, Louisville, KY 40292, USA
| | - Richard J Lamont
- Oral Health and Systemic Disease, University of Louisville, Louisville, KY 40292, USA; Microbiology and Immunology, University of Louisville, Louisville, KY 40292, USA
| | - David A Scott
- Oral Health and Systemic Disease, University of Louisville, Louisville, KY 40292, USA; Microbiology and Immunology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
29
|
Torday JS, Rehan VK. An epigenetic ‘smoking gun’ for reproductive inheritance. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.12.79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Zhou Z, Li B, Dong Z, Liu F, Zhang Y, Yu Y, Shang F, Wu L, Wang X, Jin Y. Nicotine deteriorates the osteogenic differentiation of periodontal ligament stem cells through α7 nicotinic acetylcholine receptor regulating Wnt pathway. PLoS One 2013; 8:e83102. [PMID: 24376645 PMCID: PMC3869757 DOI: 10.1371/journal.pone.0083102] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023] Open
Abstract
Aims Cigarette smoking is one of the high risk factors of adult chronic periodontitis and nicotine is the well established toxic substance in cigarette. However, the mechanism of nicotine induced periodontitis is still unknown. Here we studied whether nicotine impaired the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) through activating α7 nicotinic acetylcholine receptor (α7 nAChR). Methods hPDLSCs with multi differentiation potential and surface makers for mesenchymal stem cells were harvested by limiting dilution technique. The level of mineralized nodule formation was assessed by alizarin red S staining. Expression level of ostegenic related genes and proteins were detected by real-time PCR and western blot analysis. The expression of α7 nAChR and its downstream signaling pathway were examined by western blot. The role of the receptor and related signaling pathway in nicotine impairing the osteogenic potential of hPDLSCs were also studied in different levels. Results Nicotine deteriorated the ostegenic differentiation of hPDLSCs in a dose dependent manner. Activation of α7 nAChR by nicotine treatment activated wnt/β-catenin signaling pathway, leading to osteogenic deficiency of hPDLSCs. Blockage of α7 nAChR and wnt pathway inhibitor treatment rescued nicotine induced osteogenic differentiation deficiency. Conclusions These data suggested that nicotine activated α7 nAChR expressed on PDLSCs and further activated wnt signaling downstream, thus deteriorating the osteogenic potential of PDLSCs. The impairment of osteogenic differentiation of PDLSCs by nicotine might lead to cigarette smoking related periodontitis.
Collapse
Affiliation(s)
- Zhifei Zhou
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bei Li
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhiwei Dong
- Department of Oral and Maxillofacial Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning, China
| | - Fen Liu
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Medicine, Maternal and Child Care Hospital, Xi’an, Shaanxi, China
| | - Yu Zhang
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yang Yu
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fengqing Shang
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Orthodontic, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lizheng Wu
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaojing Wang
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (YJ); (XW)
| | - Yan Jin
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (YJ); (XW)
| |
Collapse
|
31
|
Zou W, Zou Y, Zhao Z, Li B, Ran P. Nicotine-induced epithelial-mesenchymal transition via Wnt/β-catenin signaling in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2012. [PMID: 23204070 DOI: 10.1152/ajplung.00094.2012] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been proposed to be a mechanism in airway remodeling, which is a characteristic of chronic obstructive pulmonary disease (COPD). Studies have shown that cigarette smoke and nicotine are factors that induce Wnt/β-catenin activation, which is a pathway that has also been implicated in EMT. The main aim of this study was to test whether human bronchial epithelial cells are able to undergo EMT in vitro following nicotine stimulation via the Wnt3a/β-catenin signaling pathway. We show that nicotine activates the Wnt3a signal pathway, which leads to the translocation of β-catenin into the nucleus and activation of β-catenin/Tcf-dependent transcription in the human bronchial epithelial cell (HBEC) line. This accumulation was accompanied by an increase in smooth muscle actin, vimentin, matrix metalloproteinases-9, and type I collagen expression as well as downregulation of E-cadherin, which are typical characteristics of EMT. We also noted that the release of TGF-β(1) from these cells was stimulated by nicotine. Knockdown of Wnt3a with small interfering RNA (siRNA) prevented these effects, implying that β-catenin activation in these responses is Wnt3a dependent. Furthermore, specific knockdown of TGF-β(1) with TGF-β(1) siRNA partially prevented nicotine-induced EMT, suggesting that TGF-β(1) has a role in nicotine-mediated EMT in HBECs. These results suggest that HBECs are able to undergo EMT in vitro upon nicotine stimulation via the Wnt3a/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Weifeng Zou
- The State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | | | | | | |
Collapse
|
32
|
Rehan VK, Liu J, Naeem E, Tian J, Sakurai R, Kwong K, Akbari O, Torday JS. Perinatal nicotine exposure induces asthma in second generation offspring. BMC Med 2012; 10:129. [PMID: 23106849 PMCID: PMC3568737 DOI: 10.1186/1741-7015-10-129] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 10/30/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND By altering specific developmental signaling pathways that are necessary for fetal lung development, perinatal nicotine exposure affects lung growth and differentiation, resulting in the offsprings' predisposition to childhood asthma; peroxisome proliferator-activated receptor gamma (PPARγ) agonists can inhibit this effect. However, whether the perinatal nicotine-induced asthma risk is restricted to nicotine-exposed offspring only; whether it can be transmitted to the next generation; and whether PPARγ agonists would have any effect on this process are not known. METHODS Time-mated Sprague Dawley rat dams received either placebo or nicotine (1 mg/kg, s.c.), once daily from day 6 of gestation to postnatal day (PND) 21. Following delivery, at PND21, generation 1 (F1) pups were either subjected to pulmonary function tests, or killed to obtain their lungs, tracheas, and gonads to determine the relevant protein markers (mesenchymal contractile proteins), global DNA methylation, histone 3 and 4 acetylation, and for tracheal tension studies. Some F1 animals were used as breeders to generate F2 pups, but without any exposure to nicotine in the F1 pregnancy. At PND21, F2 pups underwent studies similar to those performed on F1 pups. RESULTS Consistent with the asthma phenotype, nicotine affected lung function in both male and female F1 and F2 offspring (maximal 250% increase in total respiratory system resistance, and 84% maximal decrease in dynamic compliance following methacholine challenge; P < 0.01, nicotine versus control; P < 0.05, males versus females; and P > 0.05, F1 versus F2), but only affected tracheal constriction in males (51% maximal increase in tracheal constriction following acetylcholine challenge, P < 0.01, nicotine versus control; P < 0.0001, males versus females; P > 0.05, F1 versus F2); nicotine also increased the contractile protein content of whole lung (180% increase in fibronectin protein levels, P < 0.01, nicotine versus control, and P < 0.05, males versus females) and isolated lung fibroblasts (for example, 45% increase in fibronectin protein levels, P < 0.05, nicotine versus control), along with decreased PPARγ expression (30% decrease, P < 0.05, nicotine versus control), but only affected contractile proteins in the male trachea (P < 0.05, nicotine versus control, and P < 0.0001, males versus females). All of the nicotine-induced changes in the lung and gonad DNA methylation and histone 3 and 4 acetylation were normalized by the PPARγ agonist rosiglitazone except for the histone 4 acetylation in the lung. CONCLUSIONS Germline epigenetic marks imposed by exposure to nicotine during pregnancy can become permanently programmed and transferred through the germline to subsequent generations, a ground-breaking finding that shifts the current asthma paradigm, opening up many new avenues to explore.
Collapse
Affiliation(s)
- Virender K Rehan
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center at David Geffen School of Medicine, 1124 West Carson Street, Torrance, 90502, USA
| | - Jie Liu
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center at David Geffen School of Medicine, 1124 West Carson Street, Torrance, 90502, USA
| | - Erum Naeem
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center at David Geffen School of Medicine, 1124 West Carson Street, Torrance, 90502, USA
| | - Jia Tian
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center at David Geffen School of Medicine, 1124 West Carson Street, Torrance, 90502, USA
| | - Reiko Sakurai
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center at David Geffen School of Medicine, 1124 West Carson Street, Torrance, 90502, USA
| | - Kenny Kwong
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center at David Geffen School of Medicine, 1124 West Carson Street, Torrance, 90502, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, 1975 Zonal Avenue, Los Angeles, 90033, USA
| | - John S Torday
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center at David Geffen School of Medicine, 1124 West Carson Street, Torrance, 90502, USA
| |
Collapse
|
33
|
Fu XW, Rekow SS, Spindel ER. The ly-6 protein, lynx1, is an endogenous inhibitor of nicotinic signaling in airway epithelium. Am J Physiol Lung Cell Mol Physiol 2012; 303:L661-8. [PMID: 22923641 PMCID: PMC3469634 DOI: 10.1152/ajplung.00075.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/21/2012] [Indexed: 02/08/2023] Open
Abstract
Our laboratory has previously reported that bronchial epithelial cells (BEC) express a regulatory cascade of classic neurotransmitters and receptors that communicate in an almost neuronal-like manner to achieve physiological regulation. In this paper we show that the similarity between neurotransmitter signaling in neurons and BEC extends to the level of transmitter receptor allosteric modulators. Lynx1 is a member of the ly-6/three-finger superfamily of proteins, many of which modulate receptor signaling activity. Lynx1 specifically has been shown to modulate nicotinic acetylcholine receptor (nAChR) function in neurons by altering receptor sensitivity and desensitization. We now report that lynx1 forms a complex with α7 nAChR in BEC and serves to negatively regulate α7 downstream signaling events. Treatment of primary cultures of BEC with nicotine increased levels of nAChR subunits and that increase was potentiated by lynx1 knockdown. Lynx1 knockdown also potentiated the nicotine-induced increase in GABA(A) receptors (GABA(A)R) and MUC5AC mRNA expression, and that effect was blocked by α7 antagonists and α7 knockdown. In parallel with the increases in nAChR, GABA(A)R, and mucin mRNA levels, lynx1 knockdown also increased levels of p-Src. Consistent with this, inhibition of Src signaling blocked the ability of the lynx1 knockdown to increase basal and nicotine-stimulated GABA(A)R and mucin mRNA expression. Thus lynx1 appears to act as a negative modulator of α7 nAChR-induced events by inhibiting Src activation. This suggests that lynx1 agonists or mimetics are a potentially important therapeutic target to develop new therapies for smoking-related diseases characterized by increased mucin expression.
Collapse
MESH Headings
- Animals
- Antigens, Ly/genetics
- Antigens, Ly/immunology
- Antigens, Ly/metabolism
- Asthma/immunology
- Asthma/metabolism
- Bronchi/cytology
- Cells, Cultured
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/metabolism
- Gene Knockdown Techniques
- Macaca mulatta
- Mucin 5AC/immunology
- Mucin 5AC/metabolism
- Nicotine/immunology
- Nicotine/metabolism
- Nicotinic Agonists/immunology
- Nicotinic Agonists/metabolism
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/metabolism
- RNA, Small Interfering/genetics
- Receptors, GABA-A/immunology
- Receptors, GABA-A/metabolism
- Receptors, Nicotinic/immunology
- Receptors, Nicotinic/metabolism
- Respiratory Mucosa/cytology
- Respiratory Mucosa/immunology
- Respiratory Mucosa/metabolism
- Signal Transduction/immunology
- Smoking/immunology
- Smoking/metabolism
- alpha7 Nicotinic Acetylcholine Receptor
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Xiao Wen Fu
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | |
Collapse
|
34
|
Liu J, Naeem E, Tian J, Lombardi V, Kwong K, Akbari O, Torday JS, Rehan VK. Sex-specific perinatal nicotine-induced asthma in rat offspring. Am J Respir Cell Mol Biol 2012; 48:53-62. [PMID: 23002101 DOI: 10.1165/rcmb.2011-0344oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recently, we have suggested that down-regulation of homeostatic mesenchymal peroxisome proliferator-activated receptor γ signaling after in utero nicotine exposure might contribute to asthma. Here, we have exploited an in vivo rat model of asthma to determine if the effects of perinatal nicotine exposure on offspring pulmonary function and mesenchymal markers of airway contractility in both tracheal and lung parenchymal tissue are sex specific, and whether the protection afforded by the peroxisome proliferator-activated receptor γ agonist, rosiglitazone (RGZ), against the perinatal nicotine-induced effect on offspring lung is also sex specific. Pregnant rat dams received placebo, nicotine, or nicotine plus RGZ daily from Embryonic Day 6 until Postnatal Day 21, at which time lung resistance, compliance, tracheal contractility, and the expression of structural and functional mesenchymal markers of pulmonary contractility were determined. Compared with control animals, perinatal nicotine exposure caused a significant increase in airway resistance and a decrease in airway compliance after a methacholine challenge in both male and female offspring, with more pronounced changes in the males. In contrast to this, the effects of perinatal nicotine exposure on acetylcholine-induced tracheal constriction, along with the expression of its mesenchymal markers, were observed exclusively in the male offspring. Concomitant treatment with RGZ normalized the nicotine-induced alterations in pulmonary function in both sexes, as well as the male-specific effects on acetylcholine-induced tracheal constriction, along with the affected mesenchymal markers. These data suggest that perinatal nicotine exposure causes sex-specific perinatal cigarette smoke exposure-induced asthma, providing a powerful phenotypic model for unequivocally determining the underlying nature of the cell molecular mechanism for this disease.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502-2006, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Rehan VK, Torday JS. PPARγ Signaling Mediates the Evolution, Development, Homeostasis, and Repair of the Lung. PPAR Res 2012; 2012:289867. [PMID: 22792087 PMCID: PMC3390135 DOI: 10.1155/2012/289867] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/18/2012] [Indexed: 12/11/2022] Open
Abstract
Epithelial-mesenchymal interactions mediated by soluble growth factors determine the evolution of vertebrate lung physiology, including development, homeostasis, and repair. The final common pathway for all of these positively adaptive properties of the lung is the expression of epithelial parathyroid-hormone-related protein, and its binding to its receptor on the mesenchyme, inducing PPARγ expression by lipofibroblasts. Lipofibroblasts then produce leptin, which binds to alveolar type II cells, stimulating their production of surfactant, which is necessary for both evolutionary and physiologic adaptation to atmospheric oxygen from fish to man. A wide variety of molecular insults disrupt such highly evolved physiologic cell-cell interactions, ranging from overdistention to oxidants, infection, and nicotine, all of which predictably cause loss of mesenchymal peroxisome-proliferator-activated receptor gamma (PPARγ) expression and the transdifferentiation of lipofibroblasts to myofibroblasts, the signature cell type for lung fibrosis. By exploiting such deep cell-molecular functional homologies as targets for leveraging lung homeostasis, we have discovered that we can effectively prevent and/or reverse the deleterious effects of these pathogenic agents, demonstrating the utility of evolutionary biology for the prevention and treatment of chronic lung disease. By understanding mechanisms of health and disease as an evolutionary continuum rather than as dissociated processes, we can evolve predictive medicine.
Collapse
Affiliation(s)
- Virender K. Rehan
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California at Los Angeles, Torrance, CA 90502, USA
| | - John S. Torday
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California at Los Angeles, Torrance, CA 90502, USA
| |
Collapse
|
36
|
Rogers SW, Tvrdik P, Capecchi MR, Gahring LC. Prenatal ablation of nicotinic receptor alpha7 cell lineages produces lumbosacral spina bifida the severity of which is modified by choline and nicotine exposure. Am J Med Genet A 2012; 158A:1135-44. [PMID: 22473653 PMCID: PMC3415211 DOI: 10.1002/ajmg.a.35372] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/26/2012] [Indexed: 12/29/2022]
Abstract
Lumbosacral spina bifida is a common debilitating birth defect whose multiple causes are poorly understood. Here, we provide the first genetic delineation of cholinergic nicotinic receptor alpha7 (Chrna7) expression and link the ablation of the Chrna7 cell lineage to this condition in the mouse. Using homologous recombination, an IRES-Cre bi-cistronic cassette was introduced into the 3′ noncoding region of Chrna7 (Chrna7:Cre) for identifying cell lineages expressing this gene. This lineage first appears at embryonic day E9.0 in rhombomeres 3 and 5 of the neural tube and extends to cell subsets in most tissues by E14.5. Ablation of the Chrna7:Cre cell lineage in embryos from crosses with conditionally expressed attenuated diphtheria toxin results in precise developmental defects including omphalocele (89%) and open spina bifida (SB; 80%). We hypothesized that like humans, this defect would be modified by environmental compounds not only folic acid or choline but also nicotine. Prenatal chronic oral nicotine administration substantially worsened the defect to often include the rostral neural tube. In contrast, supplementation of the maternal diet with 2% choline decreased SB prevalence to 38% and dramatically reduced the defect severity. Folic acid supplementation only trended towards a reduced SB frequency. The omphalocele was unaffected by these interventions. These studies identify the Chrna7 cell lineage as participating in posterior neuropore closure and present a novel model of lower SB that can be substantially modified by the prenatal environment. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Scott W Rogers
- Salt Lake City VA Geriatric Research, Education and Clinical Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
37
|
Rehan VK, Sakurai R, Torday JS. Thirdhand smoke: a new dimension to the effects of cigarette smoke on the developing lung. Am J Physiol Lung Cell Mol Physiol 2011; 301:L1-8. [PMID: 21478255 PMCID: PMC3129897 DOI: 10.1152/ajplung.00393.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 04/08/2011] [Indexed: 11/22/2022] Open
Abstract
The underlying mechanisms and effector molecules involved in mediating in utero smoke exposure-induced effects on the developing lung are only beginning to be understood. However, the effects of a newly discovered category of smoke, i.e., thirdhand smoke (THS), on the developing lung are completely unknown. We hypothesized that, in addition to nicotine, other components of THS would also affect lung development adversely. Fetal rat lung explants were exposed to nicotine, 1-(N-methyl-N-nitrosamino)-1-(3-pyridinyl)-4-butanal (NNA), or 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the two main tobacco-specific N-nitrosamine constituents of THS, for 24 h. We then determined key markers for alveolar paracrine signaling [epithelial differentiation markers surfactant phospholipid and protein synthesis; mesenchymal differentiation markers peroxisome proliferator-activated receptor γ (PPAR-γ), fibronectin and calponin], the BCL-2-to-Bax ratio (BCL-2/Bax), a marker of apoptosis and the involvement of nicotinic acetylcholine receptors (nAChR)-α3 and -α7 in mediating NNA's and NNK's effects on the developing lung. Similar to the effects of nicotine, exposure of the developing lung to either NNK or NNA resulted in disrupted homeostatic signaling, indicated by the downregulation of PPAR-γ, upregulation of fibronectin and calponin protein levels, decreased BCL-2/Bax, and the accompanying compensatory stimulation of surfactant phospholipid and protein synthesis. Furthermore, nAChR-α3 and -α7 had differential complex roles in mediating these effects. NNK and NNA exposure resulted in breakdown of alveolar epithelial-mesenchymal cross-talk, reflecting lipofibroblast-to-myofibroblast transdifferentiation, suggesting THS constituents as possible novel contributors to in utero smoke exposure-induced pulmonary damage. These data are particularly relevant for designing specific therapeutic strategies, and for formulating public health policies to minimize THS exposure.
Collapse
Affiliation(s)
- Virender K Rehan
- Departments of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA.
| | | | | |
Collapse
|
38
|
Liu J, Sakurai R, O'Roark EM, Kenyon NJ, Torday JS, Rehan VK. PPARγ agonist rosiglitazone prevents perinatal nicotine exposure-induced asthma in rat offspring. Am J Physiol Lung Cell Mol Physiol 2011; 300:L710-7. [PMID: 21355041 DOI: 10.1152/ajplung.00337.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Perinatal exposure to maternal smoke is associated with adverse pulmonary effects, including reduced lung function and increased incidence of asthma. However, the mechanisms underlying these effects are unknown, and there is no effective preventive and/or therapeutic intervention. Recently, we suggested that downregulation of homeostatic mesenchymal peroxisome proliferator-activated receptor-γ (PPARγ) signaling following in utero nicotine exposure might contribute to chronic lung diseases such as asthma. We used an in vivo rat model to determine the effect of perinatal nicotine exposure on 1) offspring pulmonary function, 2) mesenchymal markers of airway contractility in trachea and lung tissue, and 3) whether administration of a PPARγ agonist, rosiglitazone (RGZ), blocks the molecular and functional effects of perinatal nicotine exposure on offspring lung. Pregnant Sprague-Dawley rat dams received placebo, nicotine, or nicotine + RGZ daily from embryonic day 6 until postnatal day 21, when respiratory system resistance, compliance, tracheal contractility, and the expression of markers of pulmonary contractility were determined. A significant increase in resistance and a decrease in compliance under basal conditions, with more pronounced changes following methacholine challenge, were observed with perinatal nicotine exposure compared with control. Tracheal constriction response and expression of mesenchymal markers of airway contractility were also significantly increased following perinatal nicotine exposure. Concomitant treatment with RGZ completely blocked the nicotine-induced alterations in pulmonary function, as well as the markers of airway contractility, at proximal and distal airway levels. These data suggest that perinatal smoke exposure-induced asthma can be effectively blocked by PPARγ agonists.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | | | | | | | | |
Collapse
|
39
|
Krebs M, Sakurai R, Torday JS, Rehan VK. Evidence for in vivo nicotine-induced alveolar interstitial fibroblast-to-myofibroblast transdifferentiation. Exp Lung Res 2010; 36:390-8. [PMID: 20715982 DOI: 10.3109/01902141003714023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nicotine exposure alters normal homeostatic pulmonary epithelial-mesenchymal paracrine signaling pathways, resulting in alveolar interstitial fibroblast (AIF)-to-myofibroblast (MYF) transdifferentiation. Though this has been described under in vitro conditions, it is not known if the same phenomenon also takes place in vivo. A well-established rodent model of lung damage following perinatal nicotine exposure was used. By probing for the well-established markers of fibroblast differentiation (parathyroid hormone-related protein [PTHrP], peroxisome proliferator-activated receptor gamma [PPARgamma], adipocyte differentiation-related protein, alpha-smooth muscle actin, and fibronectin) at the mRNA, protein, and tissue levels, the authors provide the first in vivo evidence for nicotine-induced AIF-to-MYF transdifferentiation. In addition, these data also provide the first evidence for nicotine-induced up-regulation of Wnt signaling, accompanying the down-regulation of PTHrP/PPARgamma signaling in vivo following nicotine exposure during pregnancy. These data provide an integrated mechanism for in utero nicotine-induced lung damage and how it could permanently alter the "developmental program" of the developing lung by disrupting critically important epithelial-mesenchymal interactions. More importantly, these data are likely to provide specific interventions to augment the pulmonary mesenchymal lipogenic pathway to ameliorate nicotine-induced in utero lung injury.
Collapse
Affiliation(s)
- Melissa Krebs
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | | | | | | |
Collapse
|
40
|
Rehan VK, Asotra K, Torday JS. The effects of smoking on the developing lung: insights from a biologic model for lung development, homeostasis, and repair. Lung 2009; 187:281-9. [PMID: 19641967 DOI: 10.1007/s00408-009-9158-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 07/01/2009] [Indexed: 01/15/2023]
Abstract
There is extensive epidemiologic and experimental evidence from both animal and human studies that demonstrates detrimental long-term pulmonary outcomes in the offspring of mothers who smoke during pregnancy. However, the molecular mechanisms underlying these associations are not understood. Therefore, it is not surprising that that there is no effective intervention to prevent the damaging effects of perinatal smoke exposure. Using a biologic model of lung development, homeostasis, and repair, we have determined that in utero nicotine exposure disrupts specific molecular paracrine communications between epithelium and interstitium that are driven by parathyroid hormone-related protein and peroxisome proliferator-activated receptor (PPAR)gamma, resulting in transdifferentiation of lung lipofibroblasts to myofibroblasts, i.e., the conversion of the lipofibroblast phenotype to a cell type that is not conducive to alveolar homeostasis, and is the cellular hallmark of chronic lung disease, including asthma. Furthermore, we have shown that by molecularly targeting PPAR gamma expression, nicotine-induced lung injury can not only be significantly averted, it can also be reverted. The concept outlined by us differs from the traditional paradigm of teratogenic and toxicological effects of tobacco smoke that has been proposed in the past. We have argued that since nicotine alters the normal homeostatic epithelial-mesenchymal paracrine signaling in the developing alveolus, rather than causing totally disruptive structural changes, it offers a unique opportunity to prevent, halt, and/or reverse this process through targeted molecular manipulations.
Collapse
Affiliation(s)
- Virender K Rehan
- Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, David Geffen School of Medicine at UCLA, 1124 West Carson Street, Torrance, CA 90502, USA.
| | | | | |
Collapse
|