1
|
Nowakowska J, Olechnowicz A, Langwiński W, Koteluk O, Lemańska Ż, Jóźwiak K, Kamiński K, Łosiewski W, Stegmayr J, Wagner D, Alsafadi HN, Lindstedt S, Dziuba M, Bielicka A, Graczyk Z, Szczepankiewicz A. Increased expression of ORMDL3 in allergic asthma: a case control and in vitro study. J Asthma 2023; 60:458-467. [PMID: 35321632 DOI: 10.1080/02770903.2022.2056896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Asthma is the most frequent chronic disease in children. One of the most replicated genetic findings in childhood asthma is the ORMDL3 gene confirmed in several GWA studies in several pediatric populations. OBJECTIVES The purpose of this study was to analyze ORMDL3 variants and expression in childhood asthma in the Polish population. METHODS In the study we included 416 subject, 223 asthmatic children and 193 healthy control subjects. The analysis of two SNPs (rs3744246 and rs8076131) was performed using genotyping with TaqMan probes. The methylation of the ORMDL3 promoter was examined with Methylation Sensitive HRM (MS-HRM), covering 9 CpG sites. The expression of ORMDL3 was analyzed in PBMCs from pediatric patients diagnosed with allergic asthma and primary human bronchial epithelial cells derived from healthy subjects treated with IL-13, IL-4, or co-treatment with both cytokines to model allergic airway inflammation. RESULTS We found that ORMDL3 expression was increased in allergic asthma both in PBMCs from asthmatic patients as well as in human bronchial epithelial cells stimulated with the current cytokines. We did not observe significant differences between cases and controls either in the genotype distribution of analyzed SNPs (rs3744246 and rs8076131) nor in the level of promoter methylation. CONCLUSIONS Increased ORMDL3 expression is associated with pediatric allergic asthma and upregulated in the airways upon Th2-cytokines stimulation, but further functional studies are required to fully understand its role in this disease.
Collapse
Affiliation(s)
- Joanna Nowakowska
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Olechnowicz
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Oliwia Koteluk
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Żaneta Lemańska
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Jóźwiak
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Kamiński
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Łosiewski
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - John Stegmayr
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Darcy Wagner
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hani N Alsafadi
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Maria Dziuba
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Antonina Bielicka
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Zuzanna Graczyk
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
2
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
3
|
Thampi P, Dubey R, Lowney R, Adam EN, Janse S, Wood CL, MacLeod JN. Effect of Skeletal Paracrine Signals on the Proliferation of Interzone Cells. Cartilage 2021; 13:82S-94S. [PMID: 31023058 PMCID: PMC8804777 DOI: 10.1177/1947603519841680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Articular cartilage in mammals has limited intrinsic capacity to repair structural defects, a fact that contributes to the chronic and progressive nature of osteoarthritis. In contrast, Mexican axolotl salamanders have demonstrated the remarkable ability to spontaneously and completely repair large joint cartilage lesions, a healing process that involves interzone cells in the intraarticular space. Furthermore, interzone tissue transplanted into skeletal defects in the axolotl salamander demonstrates a multi-differentiation potential. Cellular and molecular mechanisms of this repair process remain unclear. The objective of this study was to examine whether paracrine mitogenic signals are an important variable in the interaction between interzone cells and the skeletal microenvironment. DESIGN The paracrine regulation of the proliferation of equine interzone cells was evaluated in an in vitro co-culture system. Cell viability and proliferation were measured in equine fetal interzone cells after exposure to conditioned medium from skeletal and nonskeletal primary cell lines. Steady-state expression was determined for genes encoding 37 putative mitogens secreted by cells that generated the conditioned medium. RESULTS All experimental groups of conditioned media elicited a mitogenic response in interzone cells. Fetal anlage chondrocytes (P < 0.0001) and dermal fibroblasts (P < 0.0001) conditioned medium showed a significantly higher mitogenic potential compared with interzone cells. Conditioned medium from bone marrow-derived cells elicited a significantly higher proliferative response relative to that from young adult articular chondrocytes (P < 0.0001) or dermal fibroblasts (P < 0.0001). Sixteen genes had expression patterns consistent with the functional proliferation assays. CONCLUSIONS The results indicate a mitogenic effect of skeletal paracrine signals on interzone cells.
Collapse
Affiliation(s)
- Parvathy Thampi
- Maxwell H. Gluck Equine Research Center,
Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Rashmi Dubey
- Maxwell H. Gluck Equine Research Center,
Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Rachael Lowney
- Maxwell H. Gluck Equine Research Center,
Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Emma N. Adam
- Maxwell H. Gluck Equine Research Center,
Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Sarah Janse
- Department of Statistics, University of
Kentucky, Lexington, KY, USA
| | - Constance L. Wood
- Department of Statistics, University of
Kentucky, Lexington, KY, USA
| | - James N. MacLeod
- Maxwell H. Gluck Equine Research Center,
Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
4
|
Marcos‐López M, Rodger HD. Amoebic gill disease and host response in Atlantic salmon (
Salmo salar
L.): A review. Parasite Immunol 2020; 42:e12766. [DOI: 10.1111/pim.12766] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/13/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022]
|
5
|
Leeman KT, Pessina P, Lee JH, Kim CF. Mesenchymal Stem Cells Increase Alveolar Differentiation in Lung Progenitor Organoid Cultures. Sci Rep 2019; 9:6479. [PMID: 31015509 PMCID: PMC6478947 DOI: 10.1038/s41598-019-42819-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Lung epithelial cell damage and dysfunctional repair play a role in the development of lung disease. Effective repair likely requires the normal functioning of alveolar stem/progenitor cells. For example, we have shown in a mouse model of bronchopulmonary dysplasia (BPD) that mesenchymal stem cells (MSC) protect against hyperoxic lung injury at least in part by increasing the number of Epcam+ Sca-1+ distal lung epithelial cells. These cells are capable of differentiating into both small airway (CCSP+) and alveolar (SPC+) epithelial cells in three-dimensional (3D) organoid cultures. To further understand the interactions between MSC and distal lung epithelial cells, we added MSC to lung progenitor 3D cultures. MSC stimulated Epcam+ Sca-1+ derived organoid formation, increased alveolar differentiation and decreased self-renewal. MSC-conditioned media was sufficient to promote alveolar organoid formation, demonstrating that soluble factors secreted by MSC are likely responsible for the response. This work provides strong evidence of a direct effect of MSC-secreted factors on lung progenitor cell differentiation.
Collapse
Affiliation(s)
- Kristen T Leeman
- Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Patrizia Pessina
- Department of Pediatrics, Division of Hematology/Oncology, Stem Cell Program; Boston Children's Hospital, Boston, MA, 02115, USA.,Genetics Department, Harvard Medical School, Boston, MA, 02115, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Joo-Hyeon Lee
- Department of Pediatrics, Division of Hematology/Oncology, Stem Cell Program; Boston Children's Hospital, Boston, MA, 02115, USA.,Genetics Department, Harvard Medical School, Boston, MA, 02115, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.,Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Carla F Kim
- Department of Pediatrics, Division of Hematology/Oncology, Stem Cell Program; Boston Children's Hospital, Boston, MA, 02115, USA. .,Genetics Department, Harvard Medical School, Boston, MA, 02115, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Verstockt B, Perrier C, De Hertogh G, Cremer J, Creyns B, Van Assche G, Ferrante M, Ceuppens JL, Vermeire S, Breynaert C. Effects of Epithelial IL-13Rα2 Expression in Inflammatory Bowel Disease. Front Immunol 2018; 9:2983. [PMID: 30619339 PMCID: PMC6305625 DOI: 10.3389/fimmu.2018.02983] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Mucosal IL-13 Receptor alpha 2 (IL13RA2) mRNA expression is one of the best predictive markers for primary non-responsiveness to infliximab therapy in patients with inflammatory bowel disease (IBD). The objective of this study was to understand how IL-13Rα2, a negative regulator of IL-13 signaling, can contribute to IBD pathology. Methods:IL13RA2 knockout (KO) and wild type (WT) mice were exposed to dextran sodium sulfate (DSS) in drinking water to induce colitis. Furthermore, mucosal biopsies and resection specimen of healthy individuals and IBD patients before the start of anti-tumor necrosis factor (anti-TNF) therapy were obtained for immunohistochemistry and gene expression analysis. Results: After induction of DSS colitis, IL13RA2 KO mice had similar disease severity, but recovered more rapidly than WT animals. Goblet cell numbers and mucosal architecture were also more rapidly restored in IL13RA2 KO mice. In mucosal biopsies of active IBD patients, immunohistochemistry revealed that IL-13Rα2 protein was highly expressed in epithelial cells, while expression was restricted to goblet cells in healthy controls. Mucosal IL13RA2 mRNA negatively correlated with mRNA of several goblet cell-specific and barrier genes, and with goblet cell numbers. Conclusions: The data suggest that IL-13Rα2 on epithelial cells contributes to IBD pathology by negatively influencing goblet cell recovery, goblet cell function and epithelial restoration after injury. Therefore, blocking IL-13Rα2 could be a promising target for restoration of the epithelial barrier in IBD.
Collapse
Affiliation(s)
- Bram Verstockt
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research for Gastrointestinal Disorders, Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Clémentine Perrier
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research for Gastrointestinal Disorders, Leuven, Belgium
- KU Leuven, Laboratory of Clinical Immunology, Department of Microbiology and Immunology, Leuven, Belgium
| | - Gert De Hertogh
- KU Leuven, Department of Imaging & Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - Jonathan Cremer
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research for Gastrointestinal Disorders, Leuven, Belgium
- KU Leuven, Laboratory of Clinical Immunology, Department of Microbiology and Immunology, Leuven, Belgium
| | - Brecht Creyns
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research for Gastrointestinal Disorders, Leuven, Belgium
- KU Leuven, Laboratory of Clinical Immunology, Department of Microbiology and Immunology, Leuven, Belgium
| | - Gert Van Assche
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research for Gastrointestinal Disorders, Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Marc Ferrante
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research for Gastrointestinal Disorders, Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Jan L. Ceuppens
- KU Leuven, Laboratory of Clinical Immunology, Department of Microbiology and Immunology, Leuven, Belgium
| | - Séverine Vermeire
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research for Gastrointestinal Disorders, Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Christine Breynaert
- KU Leuven, Laboratory of Clinical Immunology, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
7
|
Marcos-López M, Calduch-Giner JA, Mirimin L, MacCarthy E, Rodger HD, O'Connor I, Sitjà-Bobadilla A, Pérez-Sánchez J, Piazzon MC. Gene expression analysis of Atlantic salmon gills reveals mucin 5 and interleukin 4/13 as key molecules during amoebic gill disease. Sci Rep 2018; 8:13689. [PMID: 30209326 PMCID: PMC6135806 DOI: 10.1038/s41598-018-32019-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Amoebic gill disease (AGD) is one of the main diseases affecting Atlantic salmon (Salmo salar L.) mariculture. Hallmarks of AGD are hyperplasia of the lamellar epithelium and increased production of gill mucus. This study investigated the expression of genes involved in mucus secretion, cell cycle regulation, immunity and oxidative stress in gills using a targeted 21-gene PCR array. Gill samples were obtained from experimental and natural Neoparamoeba perurans infections, and sampling points included progressive infection stages and post-freshwater treatment. Up-regulation of genes related to mucin secretion and cell proliferation, and down-regulation of pro-inflammatory and pro-apoptotic genes were associated with AGD severity, while partial restoration of the gill homeostasis was detected post-treatment. Mucins and Th2 cytokines accoun ted for most of the variability observed between groups highlighting their key role in AGD. Two mucins (muc5, muc18) showed differential regulation upon disease. Substantial up-regulation of the secreted muc5 was detected in clinical AGD, and the membrane bound muc18 showed an opposite pattern. Th2 cytokines, il4/13a and il4/13b2, were significantly up-regulated from 2 days post-infection onwards, and changes were lesion-specific. Despite the differences between experimental and natural infections, both yielded comparable results that underline the importance of the studied genes in the respiratory organs of fish, and during AGD progression.
Collapse
Affiliation(s)
- Mar Marcos-López
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Co., Galway, H91 T8NW, Ireland. .,FishVet Group Ireland, Unit 7b Oranmore Business Park, Oranmore, Co, Galway, H91 XP3F, Ireland.
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, 12595, Spain
| | - Luca Mirimin
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Co., Galway, H91 T8NW, Ireland
| | - Eugene MacCarthy
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Co., Galway, H91 T8NW, Ireland
| | - Hamish D Rodger
- FishVet Group Ireland, Unit 7b Oranmore Business Park, Oranmore, Co, Galway, H91 XP3F, Ireland
| | - Ian O'Connor
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Co., Galway, H91 T8NW, Ireland
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, 12595, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, 12595, Spain
| | - M Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, 12595, Spain.
| |
Collapse
|
8
|
Chand HS, Harris JF, Tesfaigzi Y. IL-13 in LPS-Induced Inflammation Causes Bcl-2 Expression to Sustain Hyperplastic Mucous cells. Sci Rep 2018; 8:436. [PMID: 29323189 PMCID: PMC5765145 DOI: 10.1038/s41598-017-18884-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 12/19/2017] [Indexed: 12/23/2022] Open
Abstract
Exposure to lipopolysaccharides (LPS) causes extensive neutrophilic inflammation in the airways followed by mucous cell hyperplasia (MCH) that is sustained by the anti-apoptotic protein, Bcl-2. To identify inflammatory factor(s) that are responsible for Bcl-2 expression, we established an organ culture system consisting of airway epithelial tissue from the rat nasal midseptum. The highest Muc5AC and Bcl-2 expression was observed when organ cultures were treated with brochoalveolar lavage (BAL) fluid harvested from rats 10 h post LPS instillation. Further, because BAL harvested from rats depleted of polymorphonuclear cells compared to controls showed increased Bcl-2 expression, analyses of cytokine levels in lavages identified IL-13 as an inducer of Bcl-2 expression. Ectopic IL-13 treatment of differentiated airway epithelial cells increased Bcl-2 and MUC5AC expression in the basal and apical regions of the cells, respectively. When Bcl-2 was blocked using shRNA or a small molecule inhibitor, ABT-263, mucous cell numbers were reduced due to increased apoptosis that disrupted the interaction of Bcl-2 with the pro-apoptotic protein, Bik. Furthermore, intranasal instillation of ABT-263 reduced the LPS-induced MCH in bik +/+ but not bik -/- mice, suggesting that Bik mediated apoptosis in hyperplastic mucous cells. Therefore, blocking Bcl-2 function could be useful in reducing IL-13 induced mucous hypersecretion.
Collapse
Affiliation(s)
- Hitendra S Chand
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Jennifer F Harris
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Yohannes Tesfaigzi
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA.
| |
Collapse
|
9
|
Luettich K, Talikka M, Lowe FJ, Haswell LE, Park J, Gaca MD, Hoeng J. The Adverse Outcome Pathway for Oxidative Stress-Mediated EGFR Activation Leading to Decreased Lung Function. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Karsta Luettich
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| | - Frazer J. Lowe
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | - Linsey E. Haswell
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | | | - Marianna D. Gaca
- British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Neuchâtel, Switzerland
| |
Collapse
|
10
|
Jovanovic K, Siebeck M, Gropp R. The route to pathologies in chronic inflammatory diseases characterized by T helper type 2 immune cells. Clin Exp Immunol 2014; 178:201-11. [PMID: 24981014 DOI: 10.1111/cei.12409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2014] [Indexed: 12/23/2022] Open
Abstract
T helper type 2 (Th2)-characterized inflammatory responses are highly dynamic processes initiated by epithelial cell damage resulting in remodelling of the tissue architecture to prevent further harm caused by a dysfunctional epithelial barrier or migrating parasites. This process is a temporal and spatial response which requires communication between immobile cells such as epithelial, endothelial, fibroblast and muscle cells and the highly mobile cells of the innate and adaptive immunity. It is further characterized by a high cellular plasticity that enables the cells to adapt to a specific inflammatory milieu. Incipiently, this milieu is shaped by cytokines released from epithelial cells, which stimulate Th2, innate lymphoid and invariant natural killer (NK) T cells to secrete Th2 cytokines and to activate dendritic cells which results in the further differentiation of Th2 cells. This milieu promotes wound-healing processes which are beneficial in parasitic infections or toxin exposure but account for increasingly dysfunctional vital organs, such as the lung in the case of asthma and the colon in ulcerative colitis. A better understanding of the dynamics underlying relapses and remissions might lead ultimately to improved therapeutics for chronic inflammatory diseases adapted to individual needs and to different phases of the inflammation.
Collapse
Affiliation(s)
- K Jovanovic
- Department of General-, Visceral-, Transplantation- and Thoracic Surgery, University Clinics of Munich, Munich, Germany
| | | | | |
Collapse
|
11
|
Schneider MR, Yarden Y. Structure and function of epigen, the last EGFR ligand. Semin Cell Dev Biol 2013; 28:57-61. [PMID: 24374012 DOI: 10.1016/j.semcdb.2013.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 01/29/2023]
Abstract
Epigen is the latest addition to the mammalian family of EGFR ligands. Epigen was initially identified as a novel expressed sequence tag with homology to the EGF family by high throughput sequencing of a mouse keratinocyte complementary DNA library, and received its name for its ability to act as an epithelial mitogen. In vitro studies attributed to epigen several unique features, such as persistent and potent biological actions involving low affinity receptor binding, as well as sub-maximal receptor activation and inactivation. Similarly to the other EGFR ligands, the expression of epigen is up-regulated by hormones and in certain cancer types. While the biological functions of epigen remain to be uncovered, it appears to play a role in epidermal structures, such as the mammary gland and the sebaceous gland. The latter organ, in particular, was greatly enlarged in transgenic mice overexpressing epigen. Interestingly, mice lacking epigen develop and grow normally, probably due to functional compensation by other EGFR ligands. Future studies are likely to reveal the biological roles of the unique receptor binding properties of epigen, as well as its potential harnessing during disease.
Collapse
Affiliation(s)
- Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Dahlhoff M, Emrich D, Wolf E, Schneider MR. Increased activation of the epidermal growth factor receptor in transgenic mice overexpressing epigen causes peripheral neuropathy. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2068-76. [PMID: 23899604 DOI: 10.1016/j.bbadis.2013.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/17/2013] [Accepted: 07/22/2013] [Indexed: 01/03/2023]
Abstract
In the mammalian nervous system, axons are commonly surrounded by myelin, a lipid-rich sheath that is essential for precise and rapid conduction of nerve impulses. In the peripheral nervous system (PNS), myelin sheaths are formed by Schwann cells which wrap around individual axons. While the tyrosine kinase receptors ERBB2 and ERBB3 are established mediators of peripheral myelination, less is known about the functions of the related epidermal growth factor receptor (EGFR) in the regulation of PNS myelination. Here, we report a peripheral neurodegenerative disease caused by increased EGFR activation. Specifically, we characterize a symmetric and distally pronounced, late-onset muscular atrophy in transgenic mice overexpressing the EGFR ligand epigen. Histological examination revealed a demyelinating neuropathy and axon degeneration, and molecular analysis of signaling pathways showed reduced protein kinase B (PKB, AKT) activation in the nerves of Epigen-tg mice, indicating that the muscular phenotype is secondary to PNS demyelination and axon degeneration. Crossing of Epigen-tg mice into an EGFR-deficient background revealed the pathology to be completely EGFR-dependent. This mouse line provides a new model for studying molecular events associated with early stages of peripheral neuropathies, an essential prerequisite for the development of successful therapeutic interventions.
Collapse
Affiliation(s)
- Maik Dahlhoff
- Institute of Molecular Animal Breeding and Biotechnology, Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany.
| | | | | | | |
Collapse
|
13
|
Genetic deletion of the EGFR ligand epigen does not affect mouse embryonic development and tissue homeostasis. Exp Cell Res 2012; 319:529-35. [PMID: 23142483 DOI: 10.1016/j.yexcr.2012.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/01/2012] [Indexed: 02/08/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor with manifold functions during development, tissue homeostasis and disease. EGFR activation, the formation of homodimers or heterodimers (with the related ERBB2-4 receptors) and downstream signaling is initiated by the binding of a family of structurally related growth factors, the EGFR ligands. Genetic deletion experiments clarified the biological function of all family members except for the last characterized ligand, epigen. We employed gene targeting in mouse embryonic stem cells to generate mice lacking epigen expression. Loss of epigen did not affect mouse development, fertility, or organ physiology. Quantitative RT-PCR analysis revealed increased expression of betacellulin and EGF in a few organs of epigen-deficient mice, suggesting a functional compensation by these ligands. In conclusion, we completed the genetic analysis of EGFR ligands and show that epigen has non-essential functions or functions that can be compensated by other EGFR ligands during growth and tissue homeostasis.
Collapse
|