1
|
Dror S, Lucotti S, Asao T, Li J, Wortzel I, Berger LS, Matei I, Boudreau N, Zhang H, Jones D, Bromberg J, Lyden D. Tumour-derived Extracellular Vesicle and Particle Reprogramming of Interstitial Macrophages in the Lung Pre-Metastatic Niche Enhances Vascular Permeability and Metastatic Potential. RESEARCH SQUARE 2024:rs.3.rs-4462139. [PMID: 38853850 PMCID: PMC11160910 DOI: 10.21203/rs.3.rs-4462139/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Extracellular vesicles and particles (EVPs) are pivotal mediators of pre-metastatic niche formation and cancer progression, including induction of vascular permeability, which facilitates tumor cell extravasation and metastasis. However, the mechanisms through which EVPs exert this effect remain poorly understood. Here, we elucidate a novel mechanism by which tumor EVPs enhance endothelial cell permeability, tumor extravasation, and lung metastasis to different degrees, depending on tumor type. Strikingly, vascular leakiness is observed within 48h following tumor implantation and as early as one hour following intravenous injection of tumour-derived EVPs in naïve mice. Surprisingly, rather than acting directly on endothelial cells, EVPs first activate interstitial macrophages (IMs) leading to activation of JAK/STAT signaling and IL-6 secretion in IMs which subsequently promote endothelial permeability. Depletion of IMs significantly reduces tumour-derived EVP-dependent vascular leakiness and metastatic potential. Tumour EVPs that strongly induce vascular leakiness express high levels of ITGα5, and ITGα5 ablation impairs IM activation, cytokine secretion, and subsequently vascular permeability and metastasis. Importantly, IL-6 expression is elevated in IMs from non-involved tumor-adjacent lung tissue compared to distal lung tissue in lung cancer patients, highlight the clinical relevance of our discovery. Our findings identify a key role for IM activation as an initiating step in tumor type-specific EVP-driven vascular permeability and metastasis, offering promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shani Dror
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tetsuhiko Asao
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jianlong Li
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Inbal Wortzel
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Lee Shaashua Berger
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Nancy Boudreau
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David Jones
- Department of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jacqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Mićanović D, Lazarević M, Kulaš J, Despotović S, Stegnjaić G, Jevtić B, Koprivica I, Mirkov I, Stanisavljević S, Nikolovski N, Miljković Đ, Saksida T. Ethyl pyruvate ameliorates acute respiratory distress syndrome in mice. Eur J Pharmacol 2024; 971:176509. [PMID: 38493914 DOI: 10.1016/j.ejphar.2024.176509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Acute respiratory distress syndrome (ARDS) became a focus of intensive research due to its death toll during the Covid-19 pandemic. An uncontrolled and excessive inflammatory response mediated by proinflammatory molecules such as high mobility group box protein 1 (HMGB1), IL-6, and TNF mounts as a response to infection. In this study, ethyl pyruvate (EP), a known inhibitor of HMGB1, was tested in the model of murine ARDS induced in C57BL/6 mice by intranasal administration of polyinosinic:polycytidylic acid (poly(I:C)). Intraperitoneal administration of EP ameliorated the ARDS-related histopathological changes in the lungs of poly(I:C)-induced ARDS and decreased numbers of immune cells in the lungs, broncho-alveolar lavage fluid and draining lymph nodes (DLN). Specifically, fewer CD8+ T cells and less activated CD4+ T cells were observed in DLN. Consequently, the lungs of EP-treated animals had fewer damage-inflicting CD8+ cells and macrophages. Additionally, the expression and production of proinflammatory cytokines, IL-17, IFN-γ and IL-6 were downregulated in the lungs. The expression of chemokine CCL5 which recruits immune cells into the lungs was also reduced. Finally, EP downregulated the expression of HMGB1 in the lungs. Our results imply that EP should be further evaluated as a potential candidate for ARDS therapy.
Collapse
Affiliation(s)
- Dragica Mićanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Milica Lazarević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Jelena Kulaš
- Department of Ecology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Sanja Despotović
- Institute of Histology and Embryology "Aleksandar Đ. Kostić", School of Medicine, University of Belgrade, Višegradska 26, 11000, Belgrade, Serbia
| | - Goran Stegnjaić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Ivana Mirkov
- Department of Ecology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Neda Nikolovski
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
3
|
Fratianni G, Malfatto G, Perger E, Facchetti L, Pini L, Bosco M, Cernigliaro F, Perego GB, Facchini M, Badano LP, Parati G. Lung Ultrasound in Patients With SARS-COV-2 Pneumonia: Correlations With Chest Computed Tomography, Respiratory Impairment, and Inflammatory Cascade. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:1465-1473. [PMID: 34533859 PMCID: PMC8662157 DOI: 10.1002/jum.15831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Lung ultrasound (LUS) might be comparable to chest computed tomography (CT) in detecting parenchymal and pleural pathology, and in monitoring interstitial lung disease. We aimed to describe LUS characteristics of patients during the hospitalization for COVID-19 pneumonia, and to compare the extent of lung involvement at LUS and chest-CT with inflammatory response and the severity of respiration impairment. METHODS During a 2-week period, we performed LUS and chest CT in hospitalized patients affected by COVID-19 pneumonia. Dosages of high sensitivity C-reactive protein (HS-CRP), d-dimer, and interleukin-6 (IL-6) were also obtained. The index of lung function (P/F ratio) was calculated from the blood gas test. LUS and CT scoring were assessed using previously validated scores. RESULTS Twenty-six consecutive patients (3 women) underwent LUS 34 ± 14 days from the early symptoms. Among them, 21 underwent CT on the same day of LUS. A fair association was found between LUS and CT scores (R = 0.45, P = .049), which became stronger if the B-lines score on LUS was not considered (R = 0.57, P = .024). LUS B-lines score correlated with IL-6 levels (R = 0.75, P = .011), and the number of involved lung segments detected by LUS correlated with the P/F ratio (R = 0.60, P = .019) but not with HS-CRP and d-Dimer levels. No correlations were found between CT scores and inflammations markers or P/F. CONCLUSION In patients with COVID-19 pneumonia, LUS was correlated with both the extent of the inflammatory response and the P/F ratio.
Collapse
Affiliation(s)
- Gerardina Fratianni
- Department of CardiologyIstituto Auxologico Italiano IRCCS, Ospedale S. LucaMilan
| | - Gabriella Malfatto
- Department of CardiologyIstituto Auxologico Italiano IRCCS, Ospedale S. LucaMilan
| | - Elisa Perger
- Department of CardiologyIstituto Auxologico Italiano IRCCS, Ospedale S. LucaMilan
- Dipartimento di Medicina e Chirurgia, Università di Milano‐BicoccaMilan
| | - Luca Facchetti
- Department of Radiology, ASST Spedali Civili di BresciaBresciaItaly
| | - Laura Pini
- Respiratory Medicine Unit, ASST Spedali Civili di BresciaBresciaItaly
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Miriam Bosco
- Department of CardiologyIstituto Auxologico Italiano IRCCS, Ospedale S. LucaMilan
| | - Franco Cernigliaro
- Department of CardiologyIstituto Auxologico Italiano IRCCS, Ospedale S. LucaMilan
| | - Giovanni B. Perego
- Department of CardiologyIstituto Auxologico Italiano IRCCS, Ospedale S. LucaMilan
| | - Mario Facchini
- Department of CardiologyIstituto Auxologico Italiano IRCCS, Ospedale S. LucaMilan
| | - Luigi P. Badano
- Department of CardiologyIstituto Auxologico Italiano IRCCS, Ospedale S. LucaMilan
- Dipartimento di Medicina e Chirurgia, Università di Milano‐BicoccaMilan
| | - Gianfranco Parati
- Department of CardiologyIstituto Auxologico Italiano IRCCS, Ospedale S. LucaMilan
- Dipartimento di Medicina e Chirurgia, Università di Milano‐BicoccaMilan
| |
Collapse
|
4
|
von Knethen A, Heinicke U, Laux V, Parnham MJ, Steinbicker AU, Zacharowski K. Antioxidants as Therapeutic Agents in Acute Respiratory Distress Syndrome (ARDS) Treatment-From Mice to Men. Biomedicines 2022; 10:98. [PMID: 35052778 PMCID: PMC8773193 DOI: 10.3390/biomedicines10010098] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of patient mortality in intensive care units (ICUs) worldwide. Considering that no causative treatment but only symptomatic care is available, it is obvious that there is a high unmet medical need for a new therapeutic concept. One reason for a missing etiologic therapy strategy is the multifactorial origin of ARDS, which leads to a large heterogeneity of patients. This review summarizes the various kinds of ARDS onset with a special focus on the role of reactive oxygen species (ROS), which are generally linked to ARDS development and progression. Taking a closer look at the data which already have been established in mouse models, this review finally proposes the translation of these results on successful antioxidant use in a personalized approach to the ICU patient as a potential adjuvant to standard ARDS treatment.
Collapse
Affiliation(s)
- Andreas von Knethen
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Ulrike Heinicke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andrea U Steinbicker
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
5
|
Jose N, Prasad P, Prasad R, Ayub II, Jayakumar M. Diffuse Alveolar Hemorrhage (DAH) in the Immediate Post-Transplant Setting: An Unusual Case and a Review of Literature. Indian J Nephrol 2022; 32:498-501. [PMID: 36568595 PMCID: PMC9775602 DOI: 10.4103/ijn.ijn_409_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/22/2021] [Accepted: 12/21/2021] [Indexed: 11/06/2022] Open
Abstract
Diffuse alveolar hemorrhage is known to be a devastating clinical condition with myriad etiologies. The immediate post-transplant period is plagued by immunosuppression, surgical complications, and nosocomial sources of infection. Diffuse alveolar hemorrhage in this setting is usually attributed to infection. In this case report, an unusual cause of diffuse alveolar hemorrhage due to anti-thymocyte globulin used as an induction agent is described, and an approach to DAH in the immediate post-transplant setting is discussed.
Collapse
Affiliation(s)
- Nisha Jose
- Department of Nephrology, SRIHER, Chennai, Tamil Nadu, India
| | - Pallavi Prasad
- Department of Nephrology, SRIHER, Chennai, Tamil Nadu, India,Address for correspondence: Dr. Pallavi Prasad, Department of Nephrology, SRIHER, Porur, Chennai, Tamil Nadu - 600 116, India. E-mail:
| | - Ram Prasad
- Department of Nephrology, SRIHER, Chennai, Tamil Nadu, India
| | - Irfan Ismail Ayub
- Department of Respiratory Medicine, SRIHER, Chennai, Tamil Nadu, India
| | - M. Jayakumar
- Department of Nephrology, SRIHER, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Ding Y, Tu P, Chen Y, Huang Y, Pan X, Chen W. CYP2J2 and EETs protect against pulmonary arterial hypertension with lung ischemia-reperfusion injury in vivo and in vitro. Respir Res 2021; 22:291. [PMID: 34774051 PMCID: PMC8590292 DOI: 10.1186/s12931-021-01891-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/05/2021] [Indexed: 01/05/2023] Open
Abstract
Background Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to epoxyeicosatrienoic acids (EETs), which exert anti-inflammatory, anti-apoptotic, pro-proliferative, and antioxidant effects on the cardiovascular system. However, the role of CYP2J2 and EETs in pulmonary arterial hypertension (PAH) with lung ischemia–reperfusion injury (LIRI) remains unclear. In the present study, we investigated the effects of CYP2J2 overexpression and exogenous EETs on PAH with LIRI in vitro and in vivo. Methods CYP2J2 gene was transfected into rat lung tissue by recombinant adeno-associated virus (rAAV) to increase the levels of EETs in serum and lung tissue. A rat model of PAH with LIRI was constructed by intraperitoneal injection of monocrotaline (50 mg/kg) for 4 weeks, followed by clamping of the left pulmonary hilum for 1 h and reperfusion for 2 h. In addition, we established a cellular model of human pulmonary artery endothelial cells (HPAECs) with TNF-α combined with anoxia/reoxygenation (anoxia for 8 h and reoxygenation for 16 h) to determine the effect and mechanism of exogenous EETs. Results CYP2J2 overexpression significantly reduced the inflammatory response, oxidative stress and apoptosis associated with lung injury in PAH with LIRI. In addition, exogenous EETs suppressed inflammatory response and reduced intracellular reactive oxygen species (ROS) production and inhibited apoptosis in a tumor necrosis factor alpha (TNF-α) combined hypoxia-reoxygenation model of HPAECs. Our further studies revealed that the anti-inflammatory effects of CYP2J2 overexpression and EETs might be mediated by the activation of PPARγ; the anti-apoptotic effects might be mediated by the PI3K/AKT pathway. Conclusions CYP2J2 overexpression and EETs protect against PAH with LIRI via anti-inflammation, anti-oxidative stress and anti-apoptosis, suggesting that increased levels of EETs may be a promising strategy for the prevention and treatment of PAH with LIRI. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Yun Ding
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Pengjie Tu
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Yiyong Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Yangyun Huang
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Xiaojie Pan
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Wenshu Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
7
|
Joelsson JP, Ingthorsson S, Kricker J, Gudjonsson T, Karason S. Ventilator-induced lung-injury in mouse models: Is there a trap? Lab Anim Res 2021; 37:30. [PMID: 34715943 PMCID: PMC8554750 DOI: 10.1186/s42826-021-00108-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is a serious acute injury to the lung tissue that can develop during mechanical ventilation of patients. Due to the mechanical strain of ventilation, damage can occur in the bronchiolar and alveolar epithelium resulting in a cascade of events that may be fatal to the patients. Patients requiring mechanical ventilation are often critically ill, which limits the possibility of obtaining patient samples, making VILI research challenging. In vitro models are very important for VILI research, but the complexity of the cellular interactions in multi-organ animals, necessitates in vivo studies where the mouse model is a common choice. However, the settings and duration of ventilation used to create VILI in mice vary greatly, causing uncertainty in interpretation and comparison of results. This review examines approaches to induce VILI in mouse models for the last 10 years, to our best knowledge, summarizing methods and key parameters presented across the studies. The results imply that a more standardized approach is warranted.
Collapse
Affiliation(s)
- Jon Petur Joelsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland. .,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland. .,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland.
| | - Saevar Ingthorsson
- Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,Faculty of Nursing, University of Iceland, Reykjavik, Iceland
| | | | - Thorarinn Gudjonsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland
| | - Sigurbergur Karason
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Intensive Care Unit, Landspitali-University Hospital, Reykjavik, Iceland
| |
Collapse
|
8
|
Zheng YR, Xie WP, Liu JF, Wu HL, Xu N, Huang ST, Cao H, Chen Q. Impact of High-Frequency Oscillatory Ventilation Combined With Volume Guarantee on Lung Inflammatory Response in Infants With Acute Respiratory Distress Syndrome After Congenital Heart Surgery: A Randomized Controlled Trial. J Cardiothorac Vasc Anesth 2021; 36:2368-2375. [PMID: 34753654 DOI: 10.1053/j.jvca.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Congenital heart disease (CHD) after cardiopulmonary bypass can cause systemic inflammation, and its degree is closely related to the incidence of acute respiratory distress syndrome (ARDS). The purpose of this study was to determine the effectiveness of high-frequency oscillatory ventilation (HFOV) combined with volume guarantee (VG) in reducing systemic inflammation in infants with ARDS after cardiopulmonary bypass for congenital heart surgery. DESIGN A randomized controlled trial. SETTING Single-center study in a tertiary teaching hospital. PARTICIPANTS A total of 58 infants with ARDS after congenital heart surgery were eligible and were randomized to the HFOV (n = 29) or the HFOV-VG (n = 29) between January 2020 and January 2021. INTERVENTIONS Tracheal aspirate samples for the measurement of interleukin (IL)-6, IL-8, and tumor necrosis factor-α (TNF-α) were obtained on days one, two, and three of HFOV or HFOV-VG ventilation. MEASUREMENTS AND MAIN RESULTS The authors found a significantly increasing trend in the HFOV group mean values of IL-6, IL-8, and TNF-α (p < 0.05 on days two and three v day one), and IL-6, IL-8, and TNF-α levels were significantly higher on day three in the HFOV group versus the HFOV+VG group (p < 0.05). In addition, the incidences of hypocapnia and hypercapnia in infants supported with HFOV-VG were significantly lower (p < 0.05). Furthermore, the postoperative mechanical ventilation duration in the HFOV-VG group also was shorter than that in the HFOV group (p < 0.05). CONCLUSION Compared with HFOV alone, HFOV-VG reduced proinflammatory systemic reactions after congenital cardiac surgery, decreased the incidences of hypercapnia and hypocapnia, and shortened the postoperative mechanical ventilation duration.
Collapse
Affiliation(s)
- Yi-Rong Zheng
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Wen-Peng Xie
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Jian-Feng Liu
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Hong-Lin Wu
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Ning Xu
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Shu-Ting Huang
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Hua Cao
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Qiang Chen
- Department of Cardiac Surgery, Fujian branch of Shanghai Children's Medical Center, Fuzhou, China; Fujian Children's Hospital, Fuzhou, China; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China.
| |
Collapse
|
9
|
Alladina J, Levy SD, Cho JL, Brait KL, Rao SR, Camacho A, Hibbert KA, Harris RS, Medoff BD, Januzzi JL, Thompson BT, Bajwa EK. Plasma Soluble Suppression of Tumorigenicity-2 Associates with Ventilator Liberation in Acute Hypoxemic Respiratory Failure. Am J Respir Crit Care Med 2021; 203:1257-1265. [PMID: 33400890 DOI: 10.1164/rccm.202005-1951oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rationale: Standard physiologic assessments of extubation readiness in patients with acute hypoxemic respiratory failure (AHRF) may not reflect lung injury resolution and could adversely affect clinical decision-making and patient outcomes. Objectives: We hypothesized that elevations in inflammatory plasma biomarkers sST2 (soluble suppression of tumorigenicity-2) and IL-6 indicate ongoing lung injury in AHRF and better inform patient outcomes compared with standard clinical assessments. Methods: We measured daily plasma biomarkers and physiologic variables in 200 patients with AHRF for up to 9 days after intubation. We tested the associations of baseline values with the primary outcome of unassisted breathing at Day 29. We analyzed the ability of serial biomarker measurements to inform successful ventilator liberation. Measurements and Main Results: Baseline sST2 concentrations were higher in patients dead or mechanically ventilated versus breathing unassisted at Day 29 (491.7 ng/ml [interquartile range (IQR), 294.5-670.1 ng/ml] vs. 314.4 ng/ml [IQR, 127.5-550.1 ng/ml]; P = 0.0003). Higher sST2 concentrations over time were associated with a decreased probability of ventilator liberation (hazard ratio, 0.80 per log-unit increase; 95% confidence interval [CI], 0.75-0.83; P = 0.03). Patients with higher sST2 concentrations on the day of liberation were more likely to fail liberation compared with patients who remained successfully liberated (320.9 ng/ml [IQR, 181.1- 495.6 ng/ml] vs. 161.6 ng/ml [IQR, 95.8-292.5 ng/ml]; P = 0.002). Elevated sST2 concentrations on the day of liberation decreased the odds of successful liberation when adjusted for standard physiologic parameters (odds ratio, 0.325; 95% CI, 0.119-0.885; P = 0.03). IL-6 concentrations did not associate with outcomes. Conclusions: Using sST2 concentrations to guide ventilator management may more accurately reflect underlying lung injury and outperform traditional measures of readiness for ventilator liberation.
Collapse
Affiliation(s)
| | - Sean D Levy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Josalyn L Cho
- Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | | - Sowmya R Rao
- Boston University School of Public Health, Boston, Massachusetts; and
| | - Alexander Camacho
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | | | - R Scott Harris
- Division of Pulmonary and Critical Care Medicine and.,Vertex Pharmaceuticals, Boston, Massachusetts
| | | | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Ednan K Bajwa
- Division of Pulmonary and Critical Care Medicine and
| |
Collapse
|
10
|
Tang F, Tie Y, Hong W, Wei Y, Tu C, Wei X. Targeting Myeloid-Derived Suppressor Cells for Premetastatic Niche Disruption After Tumor Resection. Ann Surg Oncol 2021; 28:4030-4048. [PMID: 33258011 PMCID: PMC7703739 DOI: 10.1245/s10434-020-09371-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023]
Abstract
Surgical resection is a common therapeutic option for primary solid tumors. However, high cancer recurrence and metastatic rates after resection are the main cause of cancer related mortalities. This implies the existence of a "fertile soil" following surgery that facilitates colonization by circulating cancer cells. Myeloid-derived suppressor cells (MDSCs) are essential for premetastatic niche formation, and may persist in distant organs for up to 2 weeks after surgery. These postsurgical persistent lung MDSCs exhibit stronger immunosuppression compared with presurgical MDSCs, suggesting that surgery enhances MDSC function. Surgical stress and trauma trigger the secretion of systemic inflammatory cytokines, which enhance MDSC mobilization and proliferation. Additionally, damage associated molecular patterns (DAMPs) directly activate MDSCs through pattern recognition receptor-mediated signals. Surgery also increases vascular permeability, induces an increase in lysyl oxidase and extracellular matrix remodeling in lungs, that enhances MDSC mobilization. Postsurgical therapies that inhibit the induction of premetastatic niches by MDSCs promote the long-term survival of patients. Cyclooxygenase-2 inhibitors and β-blockade, or their combination, may minimize the impact of surgical stress on MDSCs. Anti-DAMPs and associated inflammatory signaling inhibitors also are potential therapies. Existing therapies under tumor-bearing conditions, such as MDSCs depletion with low-dose chemotherapy or tyrosine kinase inhibitors, MDSCs differentiation using all-trans retinoic acid, and STAT3 inhibition merit clinical evaluation during the perioperative period. In addition, combining low-dose epigenetic drugs with chemokine receptors, reversing immunosuppression through the Enhanced Recovery After Surgery protocol, repairing vascular leakage, or inhibiting extracellular matrix remodeling also may enhance the long-term survival of curative resection patients.
Collapse
Affiliation(s)
- Fan Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yan Tie
- Department of Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chongqi Tu
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
11
|
Byler MR, Haywood NS, Money DT, Zhang A, Beller JP, Charles EJ, Chancellor WZ, Ta HQ, Stoler MH, Mehaffey JH, Laubach VE, Kron IL, Roeser ME. Two Hours of In Vivo Lung Perfusion Improves Lung Function in Sepsis-Induced Acute Respiratory Distress Syndrome. Semin Thorac Cardiovasc Surg 2021; 34:337-346. [PMID: 33713831 PMCID: PMC8433279 DOI: 10.1053/j.semtcvs.2021.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 01/08/2023]
Abstract
Sepsis is the leading cause of acute respiratory distress syndrome (ARDS) in adults and carries a high mortality. Utilizing a previously validated porcine model of sepsis-induced ARDS, we sought to refine our novel therapeutic technique of in vivo lung perfusion (IVLP). We hypothesized that 2 hours of IVLP would provide non-inferior lung rehabilitation compared to 4 hours of treatment. Adult swine (n = 8) received lipopolysaccharide to develop ARDS and were placed on central venoarterial extracorporeal membrane oxygenation. Animals were randomized to 2 vs 4 hours of IVLP. The left pulmonary vessels were cannulated to IVLP using antegrade Steen solution. After IVLP treatment, the left lung was decannulated and reperfused for 4 hours. Total lung compliance and pulmonary venous gases from the right lung (control) and left lung (treatment) were sampled hourly. Biochemical analysis of tissue and bronchioalveolar lavage was performed along with tissue histologic assessment. Throughout IVLP and reperfusion, treated left lung PaO2/FiO2 ratio was significantly higher than the right lung control in the 2-hour group (332.2 ± 58.9 vs 264.4 ± 46.5, P = 0.01). In the 4-hour group, there was no difference between treatment and control lung PaO2/FiO2 ratio (258.5 ± 72.4 vs 253.2 ± 90.3, P = 0.58). Wet-to-dry weight ratios demonstrated reduced edema in the treated left lungs of the 2-hour group (6.23 ± 0.73 vs 7.28 ± 0.61, P = 0.03). Total lung compliance was also significantly improved in the 2-hour group. Two hours of IVLP demonstrated superior lung function in this preclinical model of sepsis-induced ARDS. Clinical translation of IVLP may shorten duration of mechanical support and improve outcomes.
Collapse
Affiliation(s)
- Matthew R Byler
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Nathan S Haywood
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Dustin T Money
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Aimee Zhang
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Jared P Beller
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Eric J Charles
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | | | - Huy Q Ta
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Mark H Stoler
- Department of Pathology, University of Virginia, Charlottesville, Virginia
| | - J Hunter Mehaffey
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Victor E Laubach
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Irving L Kron
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Mark E Roeser
- Department of Surgery, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
12
|
Humayun M, Ayuso JM, Brenneke RA, Virumbrales-Muñoz M, Lugo-Cintrón K, Kerr S, Ponik SM, Beebe DJ. Elucidating cancer-vascular paracrine signaling using a human organotypic breast cancer cell extravasation model. Biomaterials 2021; 270:120640. [PMID: 33592387 DOI: 10.1016/j.biomaterials.2020.120640] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
In cancer metastasis, extravasation refers to the process where tumor cells exit the bloodstream by crossing the endothelium and invade the surrounding tissue. Tumor cells engage in complex crosstalk with other active players such as the endothelium leading to changes in functional behavior that exert pro-extravasation effects. Most in vitro studies to date have only focused on the independent effects of molecular targets on the functional changes of cancer cell extravasation behavior. However, singular targets cannot combat complex interactions involved in tumor cell extravasation that affects multiple cell types and signaling pathways. In this study, we employ an organotypic microfluidic model of human vasculature to investigate the independent and combined role of multiple upregulated secreted factors resulting from cancer-vascular interactions during cancer cell extravasation. The device consists of a tubular endothelial vessel generated from induced pluripotent stem cell derived endothelial cells within a collagen-fibrinogen matrix with breast cancer cells injected through and cultured along the lumen of the vessel. Our system identified cancer-vascular crosstalk, involving invasive breast cancer cells, that results in increased levels of secreted IL-6, IL-8, and MMP-3. Our model also showed that upregulation of these secreted factors correlates with invasive/metastatic potential of breast cancer cells. We also used therapeutic inhibitors to assess the independent and combined role of multiple signaling factors on the overall changes in functional behavior of both the cancer cells and the endothelium that promote extravasation. Taken together, these results demonstrate the potential of our organotypic model in elucidating mechanisms through which cancer-vascular interactions can promote extravasation, and in conducting functional assessment of therapeutic drugs that prevent extravasation in cancer metastasis.
Collapse
Affiliation(s)
- Mouhita Humayun
- Department of Biomedical Engineering, University of Wisconsin- Madison, 1415 Engineering Drive, Madison, WI, 53706, USA; The University of Wisconsin Carbone Cancer Center, University of Wisconsin- Madison, WIMR I Room 6028 - 1111 Highland Ave, Madison, WI, 53705, USA.
| | - Jose M Ayuso
- Department of Biomedical Engineering, University of Wisconsin- Madison, 1415 Engineering Drive, Madison, WI, 53706, USA; The University of Wisconsin Carbone Cancer Center, University of Wisconsin- Madison, WIMR I Room 6028 - 1111 Highland Ave, Madison, WI, 53705, USA
| | - Raven A Brenneke
- Department of Biomedical Engineering, University of Wisconsin- Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - María Virumbrales-Muñoz
- Department of Biomedical Engineering, University of Wisconsin- Madison, 1415 Engineering Drive, Madison, WI, 53706, USA; The University of Wisconsin Carbone Cancer Center, University of Wisconsin- Madison, WIMR I Room 6028 - 1111 Highland Ave, Madison, WI, 53705, USA
| | - Karina Lugo-Cintrón
- Department of Biomedical Engineering, University of Wisconsin- Madison, 1415 Engineering Drive, Madison, WI, 53706, USA; The University of Wisconsin Carbone Cancer Center, University of Wisconsin- Madison, WIMR I Room 6028 - 1111 Highland Ave, Madison, WI, 53705, USA
| | - Sheena Kerr
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin- Madison, WIMR I Room 6028 - 1111 Highland Ave, Madison, WI, 53705, USA; Department of Pathology & Laboratory Medicine, University of Wisconsin- Madison, 1685 Highland Avenue, Madison, WI, 53705, USA
| | - Suzanne M Ponik
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin- Madison, WIMR I Room 6028 - 1111 Highland Ave, Madison, WI, 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin- Madison, 1300 University Ave, Madison, WI, 53706, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin- Madison, 1415 Engineering Drive, Madison, WI, 53706, USA; The University of Wisconsin Carbone Cancer Center, University of Wisconsin- Madison, WIMR I Room 6028 - 1111 Highland Ave, Madison, WI, 53705, USA; Department of Pathology & Laboratory Medicine, University of Wisconsin- Madison, 1685 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
13
|
Hoevenaar M, Goossens D, Roorda J. Angiotensin-converting enzyme 2, the complement system, the kallikrein-kinin system, type-2 diabetes, interleukin-6, and their interactions regarding the complex COVID-19 pathophysiological crossroads. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320979097. [PMID: 33283602 PMCID: PMC7724427 DOI: 10.1177/1470320320979097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Because of the current COVID-19-pandemic, the world is currently being held hostage in various lockdowns. ACE2 facilitates SARS-CoV-2 cell-entry, and is at the very center of several pathophysiological pathways regarding the RAAS, CS, KKS, T2DM, and IL-6. Their interactions with severe COVID-19 complications (e.g. ARDS and thrombosis), and potential therapeutic targets for pharmacological intervention, will be reviewed.
Collapse
Affiliation(s)
| | | | - Janne Roorda
- Medical Doctor, General Practice
van Dijk, Oisterwijk, The Netherlands
| |
Collapse
|
14
|
Probst CK, Montesi SB, Medoff BD, Shea BS, Knipe RS. Vascular permeability in the fibrotic lung. Eur Respir J 2020; 56:13993003.00100-2019. [PMID: 32265308 PMCID: PMC9977144 DOI: 10.1183/13993003.00100-2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/26/2020] [Indexed: 12/26/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is thought to result from aberrant tissue repair processes in response to chronic or repetitive lung injury. The origin and nature of the injury, as well as its cellular and molecular targets, are likely heterogeneous, which complicates accurate pre-clinical modelling of the disease and makes therapeutic targeting a challenge. Efforts are underway to identify central pathways in fibrogenesis which may allow targeting of aberrant repair processes regardless of the initial injury stimulus. Dysregulated endothelial permeability and vascular leak have long been studied for their role in acute lung injury and repair. Evidence that these processes are of importance to the pathogenesis of fibrotic lung disease is growing. Endothelial permeability is increased in non-fibrosing lung diseases, but it resolves in a self-limited fashion in conditions such as bacterial pneumonia and acute respiratory distress syndrome. In progressive fibrosing diseases such as IPF, permeability appears to persist, however, and may also predict mortality. In this hypothesis-generating review, we summarise available data on the role of endothelial permeability in IPF and focus on the deleterious consequences of sustained endothelial hyperpermeability in response to and during pulmonary inflammation and fibrosis. We propose that persistent permeability and vascular leak in the lung have the potential to establish and amplify the pro-fibrotic environment. Therapeutic interventions aimed at recognising and "plugging" the leak may therefore be of significant benefit for preventing the transition from lung injury to fibrosis and should be areas for future research.
Collapse
Affiliation(s)
- Clemens K. Probst
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sydney B. Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Barry S. Shea
- Division of Pulmonary and Critical Care Medicine, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
15
|
REPLY TO: Interleukin-17: a potential therapeutic target in COVID-19. J Infect 2020; 81:e37-e38. [PMID: 32610110 PMCID: PMC7322471 DOI: 10.1016/j.jinf.2020.06.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
|
16
|
Malbon AJ, Fonfara S, Meli ML, Hahn S, Egberink H, Kipar A. Feline Infectious Peritonitis as a Systemic Inflammatory Disease: Contribution of Liver and Heart to the Pathogenesis. Viruses 2019; 11:E1144. [PMID: 31835559 PMCID: PMC6949997 DOI: 10.3390/v11121144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal immune-mediated disease of cats, induced by feline coronavirus (FCoV). A combination of as yet poorly understood host and viral factors combine to cause a minority of FCoV-infected cats to develop FIP. Clinicopathological features include fever, vasculitis, and serositis, with or without effusions; all of which indicate a pro-inflammatory state with cytokine release. As a result, primary immune organs, as well as circulating leukocytes, have thus far been of most interest in previous studies to determine the likely sources of these cytokines. Results have suggested that these tissues alone may not be sufficient to induce the observed inflammation. The current study therefore focussed on the liver and heart, organs with a demonstrated ability to produce cytokines and therefore with huge potential to exacerbate inflammatory processes. The IL-12:IL-10 ratio, a marker of the immune system's inflammatory balance, was skewed towards the pro-inflammatory IL-12 in the liver of cats with FIP. Both organs were found to upregulate mRNA expression of the inflammatory triad of cytokines IL-1β, IL-6, and TNF-α in FIP. This amplifying step may be one of the missing links in the pathogenesis of this enigmatic disease.
Collapse
Affiliation(s)
- Alexandra J Malbon
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Sonja Fonfara
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Small Animal Hospital, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Marina L Meli
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Shelley Hahn
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Herman Egberink
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
17
|
Xiao Q, Wang Y, Sun L, Lu S, Li J, Chen Y, Wu Y. Immediate Prone Positioning After Massive Gastric Aspiration Reduces Lung Injury Possibly by Attenuating Interleukin-6-Mediated Lung-Tissue Inflammation in Pigs. Biol Res Nurs 2019; 22:64-74. [PMID: 31529988 DOI: 10.1177/1099800419875521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gastric aspiration, which can cause acute, diffuse, inflammatory lung injury, is of particular concern in critically ill patients. This study aimed to determine the effects of immediate prone positioning on the degree of lung injury and inflammatory response induced by gastric aspiration. Following induction of gastric aspiration by injection of gastric fluid, 16 healthy pigs were randomized to one of two groups: supine position (SP) or prone position (PP). After ventilation and monitoring for 6 hr, all pigs were euthanized. The ratio of the partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FIO2) and the partial pressure of arterial carbon dioxide (PaCO2) were recorded during the 6-hr study period. Serum levels of interleukin (IL)-6 were measured every 2 hr, and the mean optical density (MOD) of IL-6 in lung tissues and lung-injury scores were measured at the end of the experiment. The PP group showed a significantly higher PaO2/FIO2 ratio, lower serum IL-6 concentration (p = .015), lower lung-injury scores (p = .012), and lower IL-6 concentration and MOD of IL-6 in lung tissue, especially in dorsal (p = .001, p = .021, respectively) and nondependent regions (p = .005, p = .035, respectively) than the SP group. There were no statistically significant differences in PaCO2 between the groups. Lung-injury severity was positively correlated with the IL-6 concentration and MOD of IL-6 in lung tissues (p < .05). These results suggest that immediate prone positioning alleviated the degree of aspiration-induced lung injury, possibly through mitigating IL-6-mediated lung inflammation.
Collapse
Affiliation(s)
- Qian Xiao
- School of Nursing, Capital Medical University, Beijing, China
| | - Yanling Wang
- School of Nursing, Capital Medical University, Beijing, China
| | - Liu Sun
- School of Nursing, Capital Medical University, Beijing, China
| | - Sai Lu
- College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Jia Li
- School of Nursing, Capital Medical University, Beijing, China
| | - Yun Chen
- School of Nursing, Capital Medical University, Beijing, China
| | - Ying Wu
- School of Nursing, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Hidalgo AI, Carretta MD, Alarcón P, Manosalva C, Müller A, Navarro M, Hidalgo MA, Kaehne T, Taubert A, Hermosilla CR, Burgos RA. Pro-inflammatory mediators and neutrophils are increased in synovial fluid from heifers with acute ruminal acidosis. BMC Vet Res 2019; 15:225. [PMID: 31269952 PMCID: PMC6610826 DOI: 10.1186/s12917-019-1974-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/23/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Acute ruminal acidosis (ARA) is a metabolic disease of cattle characterized by an aseptic synovitis. ARA is the result of an increased intake of highly fermentable carbohydrates that frequently occurs in dairy cattle subjected to high production requirements. In human joint diseases such as rheumatoid arthritis and gout, several pro-inflammatory molecules are increased in the synovial fluid, including cytokines, prostaglandin E2 (PGE2), metalloproteinases, and neutrophil extracellular traps (NETs). The aim of this study was to identify the presence of proinflammatory mediators and neutrophils in the synovial fluid of heifers with ARA, induced by an oligofructose overload. Five heifers were challenged with an oligofructose overload (13 g/kg BW) dissolved in water. As a control, a similar vehicle volume was used in four heifers. Synovial fluid samples were collected from the tarso-crural joint and PGE2, IL-6, IL-1β, ATP, lactate dehydrogenase (LDH), albumin, glucose, matrix metalloproteinase-9 (MMP-9), cellular free DNA, NETs, and serpin B1 were analyzed at 0, 9, and 24 h post treatment. RESULTS At 9 h post oligofructose overload, an increase of IL-1β, IL-6, PGE2, serpin B1 and LDH was detected in the joints when compared to the control group. At 24 h, the synovial fluid was yellowish, viscous, turbid, and contained abundant neutrophils. An increase of DNA-backbone-like traps, histone 3 (H3cit), aggregated neutrophil extracellular traps (aggNETs), and serpin B1 were observed 24 h post treatment. Furthermore, albumins, LDH, ATP, MMP-9, IL-6, and IL-1β were increased after 24 h. CONCLUSIONS The overall results indicate that IL-1β, IL-6 and PGE2, were the earliest proinflammatory parameters that increased in the synovial fluid of animals with ARA. Furthermore, the most sever inflammatory response in the joint was observed after 24 h and could be associated with a massive presence of neutrophils and release of aggNETs.
Collapse
Affiliation(s)
- Alejandra I Hidalgo
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - María D Carretta
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia, Chile
| | - Ananda Müller
- Veterinary Clinical Sciences Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Max Navarro
- Veterinary Clinical Sciences Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María A Hidalgo
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44-0, 39120, Magdeburg, Germany
| | - Anja Taubert
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Carlos R Hermosilla
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
19
|
Mehrotra P, Collett JA, Gunst SJ, Basile DP. Th17 cells contribute to pulmonary fibrosis and inflammation during chronic kidney disease progression after acute ischemia. Am J Physiol Regul Integr Comp Physiol 2018; 314:R265-R273. [PMID: 29118018 PMCID: PMC5867669 DOI: 10.1152/ajpregu.00147.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 12/25/2022]
Abstract
Acute kidney injury (AKI) is associated with high mortality rates and predisposes development of chronic kidney disease (CKD). Distant organ damage, particularly in the lung, may contribute to mortality in AKI patients. Animal models of AKI demonstrate an increase in pulmonary infiltration of lymphocytes and reveal an acute compromise of lung function, but the chronic effects of AKI on pulmonary inflammation are unknown. We hypothesized that in response to renal ischemia/reperfusion (I/R), there is a persistent systemic increase in Th17 cells with potential effects on pulmonary structure and function. Renal I/R injury was performed on rats, and CKD progression was hastened by unilateral nephrectomy and exposure to 4.0% sodium diet between 35 and 63 days post-I/R. Th17 cells in peripheral blood showed a progressive increase up to 63 days after recovery from I/R injury. Infiltration of leukocytes including Th17 cells was also elevated in bronchiolar lavage (BAL) fluid 7 days after I/R and remained elevated for up to 63 days. Lung histology demonstrated an increase in alveolar cellularity and a significant increase in picrosirius red staining. Suppression of lymphocytes with mycophenolate mofetil (MMF) or an IL-17 antagonist significantly reduced Th17 cell infiltration and fibrosis in lung. In addition, tracheal smooth muscle contraction to acetylcholine was significantly enhanced 63-days after I/R relative to sham-operated controls. These data suggest that AKI is associated with a persistent increase in circulating and lung Th17 cells which may promote pulmonary fibrosis and the potential alteration in airway contractility.
Collapse
MESH Headings
- Acute Kidney Injury/complications
- Acute Kidney Injury/immunology
- Acute Kidney Injury/pathology
- Animals
- Disease Models, Animal
- Disease Progression
- Immunosuppressive Agents/pharmacology
- Lung/drug effects
- Lung/immunology
- Lung/pathology
- Lung/physiopathology
- Male
- Muscle Contraction
- Muscle, Smooth/immunology
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Phenotype
- Pneumonia/etiology
- Pneumonia/immunology
- Pneumonia/pathology
- Pneumonia/physiopathology
- Pulmonary Fibrosis/etiology
- Pulmonary Fibrosis/immunology
- Pulmonary Fibrosis/pathology
- Pulmonary Fibrosis/physiopathology
- Rats, Nude
- Rats, Sprague-Dawley
- Rats, Transgenic
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/immunology
- Renal Insufficiency, Chronic/pathology
- Risk Factors
- Sodium, Dietary/toxicity
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Time Factors
- Trachea/immunology
- Trachea/pathology
- Trachea/physiopathology
Collapse
Affiliation(s)
- Purvi Mehrotra
- Department of Cellular and Integrative Physiology, Indiana University , Indianapolis, Indiana
| | - Jason A Collett
- Department of Cellular and Integrative Physiology, Indiana University , Indianapolis, Indiana
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University , Indianapolis, Indiana
| | - David P Basile
- Department of Cellular and Integrative Physiology, Indiana University , Indianapolis, Indiana
| |
Collapse
|
20
|
Alsaffar H, Martino N, Garrett JP, Adam AP. Interleukin-6 promotes a sustained loss of endothelial barrier function via Janus kinase-mediated STAT3 phosphorylation and de novo protein synthesis. Am J Physiol Cell Physiol 2018; 314:C589-C602. [PMID: 29351406 DOI: 10.1152/ajpcell.00235.2017] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vascular leakage is a hallmark of the inflammatory response. Acute changes in endothelial permeability are due to posttranslational changes in intercellular adhesion and cytoskeleton proteins. However, little is known about the mechanisms leading to long-term changes in vascular permeability. Here, we show that interleukin-6 (IL-6) promotes an increase in endothelial monolayer permeability that lasts over 24 h and demonstrate that activation of Src and MEK/ERK pathways is required only for short-term increases in permeability, being dispensable after 2 h. In contrast, Janus kinase (JAK)-mediated STAT3 phosphorylation at Y705 (but not S727) and de novo synthesis of RNA and proteins are required for the sustained permeability increases. Loss of junctional localization of VE-cadherin and ZO-1 is evident several hours after the maximal IL-6 response, thus suggesting that these events are a consequence of IL-6 signaling, but not a cause of the increased permeability. Understanding the mechanisms involved in sustaining vascular permeability may prove crucial to allow us to directly target vascular leakage and minimize tissue damage, thus reducing the rates of mortality and chronic sequelae of excessive edema. Targeting endothelial-specific mechanisms regulating barrier function could provide a new therapeutic strategy to prevent vascular leakage while maintaining the immune response and other beneficial aspects of the inflammatory response that are required for bacterial clearance and tissue repair.
Collapse
Affiliation(s)
- Hiba Alsaffar
- Department of Molecular and Cellular Physiology, Albany Medical Center , Albany, New York
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical Center , Albany, New York
| | - Joshua P Garrett
- Department of Molecular and Cellular Physiology, Albany Medical Center , Albany, New York
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical Center , Albany, New York.,Department of Ophthalmology, Albany Medical Center, Albany, New York
| |
Collapse
|
21
|
High-Fat Feeding Protects Mice From Ventilator-Induced Lung Injury, Via Neutrophil-Independent Mechanisms. Crit Care Med 2017; 45:e831-e839. [PMID: 28426531 DOI: 10.1097/ccm.0000000000002403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity has a complex impact on acute respiratory distress syndrome patients, being associated with increased likelihood of developing the syndrome but reduced likelihood of dying. We propose that such observations are potentially explained by a model in which obesity influences the iatrogenic injury that occurs subsequent to intensive care admission. This study therefore investigated whether fat feeding protected mice from ventilator-induced lung injury. DESIGN In vivo study. SETTING University research laboratory. SUBJECTS Wild-type C57Bl/6 mice or tumor necrosis factor receptor 2 knockout mice, either fed a high-fat diet for 12-14 weeks, or age-matched lean controls. INTERVENTIONS Anesthetized mice were ventilated with injurious high tidal volume ventilation for periods up to 180 minutes. MEASUREMENTS AND MAIN RESULTS Fat-fed mice showed clear attenuation of ventilator-induced lung injury in terms of respiratory mechanics, blood gases, and pulmonary edema. Leukocyte recruitment and activation within the lungs were not significantly attenuated nor were a host of circulating or intra-alveolar inflammatory cytokines. However, intra-alveolar matrix metalloproteinase activity and levels of the matrix metalloproteinase cleavage product soluble receptor for advanced glycation end products were significantly attenuated in fat-fed mice. This was associated with reduced stretch-induced CD147 expression on lung epithelial cells. CONCLUSIONS Consumption of a high-fat diet protects mice from ventilator-induced lung injury in a manner independent of neutrophil recruitment, which we postulate instead arises through blunted up-regulation of CD147 expression and subsequent activation of intra-alveolar matrix metalloproteinases. These findings may open avenues for therapeutic manipulation in acute respiratory distress syndrome and could have implications for understanding the pathogenesis of lung disease in obese patients.
Collapse
|
22
|
Voiriot G, Razazi K, Amsellem V, Tran Van Nhieu J, Abid S, Adnot S, Mekontso Dessap A, Maitre B. Interleukin-6 displays lung anti-inflammatory properties and exerts protective hemodynamic effects in a double-hit murine acute lung injury. Respir Res 2017; 18:64. [PMID: 28424078 PMCID: PMC5397701 DOI: 10.1186/s12931-017-0553-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/13/2017] [Indexed: 01/11/2023] Open
Abstract
Background Interleukin 6 (IL-6) is a predictive factor of poor prognosis in patients with acute respiratory distress syndrome (ARDS). However, its acute pulmonary hemodynamic effects and role in lung injury have not been investigated in a clinically relevant murine model of ARDS. Methods We used adult C57Bl6 wild-type (WT) and IL-6 knock-out (IL-6KO) mice. The animals received intravenous recombinant human IL-6 (rHuIL-6) or vehicle followed by intratracheal lipopolysaccharide (LPS) or saline before undergoing low tidal volume mechanical ventilation (MV) for 5 h. Before sacrifice, right ventricular systolic pressure and cardiac output were measured and total pulmonary resistance was calculated. After sacrifice, lung inflammation, edema and injury were assessed with bronchoalveolar lavage (BAL) and histology. In other experiments, right ventricular systolic pressure was recorded during hypoxic challenges in uninjured WT mice pretreated with rHuIL-6 or rHuIL-6 + non-selective nitric oxide synthase inhibitor L-NAME or vehicle. Results IL-6KO(LPS+MV) mice showed a faster deterioration of lung elastic properties and more severe bronchoalveolar cellular inflammation as compared to WT(LPS+MV). Treatment with rHuIL-6 partially prevented this lung deterioration. Total pulmonary resistance was higher in IL-6KO(LPS+MV) mice and this increase was abolished in rHuIL-6-treated IL-6KO mice. Finally, rHuIL-6 reduced hypoxic pulmonary vasoconstriction in uninjured WT mice, an effect that was abolished by co-treatment with L-NAME. Conclusions In a double-hit murine model of ARDS, IL-6 deficient mice experienced more severe bronchoalveolar cellular inflammation as compared to wild-type littermates. Furthermore, IL-6 deficiency caused marked acute pulmonary hypertension, which may be, at least partially, due to vasoactive mechanisms. A dysregulation of nitric oxide synthase may account for this observation, a hypothesis that will need to be investigated in future studies.
Collapse
Affiliation(s)
- Guillaume Voiriot
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France. .,Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.
| | - Keyvan Razazi
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France.,Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.,Groupe Henri Mondor-Albert Chenevier, Hôpital Henri Mondor, Service de Réanimation Médicale, AP-HP, Créteil, France
| | - Valérie Amsellem
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France
| | - Jeanne Tran Van Nhieu
- Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.,Groupe Henri Mondor-Albert Chenevier, Hôpital Henri Mondor, Service d'Anatomie et Cytologie Pathologiques, AP-HP, Créteil, France
| | - Shariq Abid
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France
| | - Serge Adnot
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France.,Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.,Groupe Henri Mondor-Albert Chenevier, Hôpital Henri Mondor, Service des Explorations Fonctionnelles, AP-HP, Créteil, France
| | - Armand Mekontso Dessap
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France.,Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.,Groupe Henri Mondor-Albert Chenevier, Hôpital Henri Mondor, Service de Réanimation Médicale, AP-HP, Créteil, France
| | - Bernard Maitre
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France.,Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.,Groupe Henri Mondor-Albert Chenevier, Hôpital Henri Mondor, Service de Réanimation Médicale, AP-HP, Créteil, France
| |
Collapse
|
23
|
Dubey PK, Masuda K, Nyati KK, -Uz Zaman MM, Chalise JP, Millrine D, Kai W, Ripley B, Kishimoto T. Arid5a-deficient mice are highly resistant to bleomycin-induced lung injury. Int Immunol 2017; 29:79-85. [DOI: 10.1093/intimm/dxx004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/23/2017] [Indexed: 12/19/2022] Open
|
24
|
Francioli C, Wang X, Parapanov R, Abdelnour E, Lugrin J, Gronchi F, Perentes J, Eckert P, Ris HB, Piquilloud L, Krueger T, Liaudet L. Pyrrolidine dithiocarbamate administered during ex-vivo lung perfusion promotes rehabilitation of injured donor rat lungs obtained after prolonged warm ischemia. PLoS One 2017; 12:e0173916. [PMID: 28323904 PMCID: PMC5360331 DOI: 10.1371/journal.pone.0173916] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/28/2017] [Indexed: 01/08/2023] Open
Abstract
Damaged lung grafts obtained after circulatory death (DCD lungs) and warm ischemia may be at high risk of reperfusion injury after transplantation. Such lungs could be pharmacologically reconditioned using ex-vivo lung perfusion (EVLP). Since acute inflammation related to the activation of nuclear factor kappaB (NF-κB) is instrumental in lung reperfusion injury, we hypothesized that DCD lungs might be treated during EVLP by pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB. Rat lungs exposed to 1h warm ischemia and 2 h cold ischemia were subjected to EVLP during 4h, in absence (CTRL group, N = 6) or in presence of PDTC (2.5g/L, PDTC group, N = 6). Static pulmonary compliance (SPC), peak airway pressure (PAWP), pulmonary vascular resistance (PVR), and oxygenation capacity were determined during EVLP. After EVLP, we measured the weight gain of the heart-lung block (edema), and the concentration of LDH (cell damage), proteins (permeability edema) and of the cytokines IL-6, TNF-α and CINC-1 in bronchoalveolar lavage (BAL), and we evaluated NF-κB activation by the degree of phosphorylation and degradation of its inhibitor IκBα in lung tissue. In CTRL, we found significant NF-κB activation, lung edema, and a massive release of LDH, proteins and cytokines. SPC significantly decreased, PAWP and PVR increased, while oxygenation tended to decrease. Treatment with PDTC during EVLP inhibited NF-κB activation, did not influence LDH release, but markedly reduced lung edema and protein concentration in BAL, suppressed TNFα and IL-6 release, and abrogated the changes in SPC, PAWP and PVR, with unchanged oxygenation. In conclusion, suppression of innate immune activation during EVLP using the NF-κB inhibitor PDTC promotes significant improvement of damaged rat DCD lungs. Future studies will determine if such rehabilitated lungs are suitable for in vivo transplantation.
Collapse
Affiliation(s)
- Cyril Francioli
- Service of Thoracic Surgery, University Hospital Medical Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Xingyu Wang
- Service of Thoracic Surgery, University Hospital Medical Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Roumen Parapanov
- Service of Thoracic Surgery, University Hospital Medical Center and Faculty of Biology and Medicine, Lausanne, Switzerland
- Service of Adult Intensive Care Medicine, University Hospital Medical Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Etienne Abdelnour
- Service of Thoracic Surgery, University Hospital Medical Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Jérôme Lugrin
- Service of Adult Intensive Care Medicine, University Hospital Medical Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Fabrizio Gronchi
- Service of Anesthesiology, University Hospital Medical Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Jean Perentes
- Service of Thoracic Surgery, University Hospital Medical Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Philippe Eckert
- Service of Adult Intensive Care Medicine, University Hospital Medical Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Hans-Beat Ris
- Service of Thoracic Surgery, University Hospital Medical Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Lise Piquilloud
- Service of Adult Intensive Care Medicine, University Hospital Medical Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Thorsten Krueger
- Service of Thoracic Surgery, University Hospital Medical Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Lucas Liaudet
- Service of Adult Intensive Care Medicine, University Hospital Medical Center and Faculty of Biology and Medicine, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Yang CH, Hsiao JL, Wu MF, Lu MH, Chang HM, Ko WS, Chiou YL. The declined levels of inflammatory cytokines related with weaning rate during period of septic patients using ventilators. CLINICAL RESPIRATORY JOURNAL 2016; 12:772-778. [PMID: 27925446 DOI: 10.1111/crj.12593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/04/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Approximately 50% of patients with sepsis-induced acute lung injury and acute respiratory distress syndrome require mechanical ventilation. Patients with extended mechanical ventilator use routinely develop reinfections, which increases hospital stay, mortality, and health care cost. Some studies have pointed out inflammatory factors concentrations can affect ventilator weaning, but do not indicate changed inflammatory factors related to ventilator weaning during using ventilators. OBJECTIVES This study aimed to investigate during period of septic patients using ventilators, the inflammatory cytokines concentrations related with weaning rate. METHODS Blood was collected from 35 septic patients before and during ventilator use on days 1, 7, 14, and 21 (or weaning). RESULTS 58.3% (N = 20) of septic patients with mechanical ventilators were weaned successfully within 21 days (ventilator weaned group, VW), 16.7% (N = 6) did not wean within 21 days (ventilator dependent group, VD), and 25% died (death group) in hospital. Before ventilator use, higher C-reactive protein (CRP), IL-6, and IL-8 levels were measured in the death group than in all other groups (P < .05). During ventilator use, CRP, IL-6, and IL-8 concentrations declined significantly in VW and VD patients (P < .05). In addition, IL-6 concentrations in the VW group were significantly lower than in the VD group at 14 and 21 days (P < .05). CONCLUSION The factors of ventilators weaning successfully such as disease control, nutritional status, and so on. The declined levels of serum inflammatory cytokines, especially IL-6, improved inflammation status might be one factor of successfully weaning during septic patients on ventilators.
Collapse
Affiliation(s)
- Chao-Huei Yang
- Department of Pulmonary Medicine, Kuang-Tien General Hospital, Taichung, Taiwan, Republic of China
| | - Jung-Lung Hsiao
- Department of Critical Care Medicine, Kuang-Tien General Hospital, Taichung, Taiwan, Republic of China
| | - Ming-Feng Wu
- Department of Internal Medicine, Kuang-Tien General Hospital, Taichung, Taiwan, Republic of China
| | - Mei-Hua Lu
- Department of Nursing, Kuang-Tien General Hospital, Taichung, Taiwan, Republic of China
| | - Hui-Ming Chang
- Department of Nursing, Kuang-Tien General Hospital, Taichung, Taiwan, Republic of China
| | - Wang-Sheng Ko
- Department of Internal Medicine, Kuang-Tien General Hospital, Taichung, Taiwan, Republic of China.,Department of Nutrition and Institute of BioMedical Nutrition, Hungkuang University, Taichung, Taiwan, Republic of China
| | - Ya-Ling Chiou
- Department of Nutrition and Institute of BioMedical Nutrition, Hungkuang University, Taichung, Taiwan, Republic of China
| |
Collapse
|
26
|
Cai Y, Bolte C, Le T, Goda C, Xu Y, Kalin TV, Kalinichenko VV. FOXF1 maintains endothelial barrier function and prevents edema after lung injury. Sci Signal 2016; 9:ra40. [PMID: 27095594 DOI: 10.1126/scisignal.aad1899] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multiple signaling pathways, structural proteins, and transcription factors are involved in the regulation of endothelial barrier function. The forkhead protein FOXF1 is a key transcriptional regulator of embryonic lung development, and we used a conditional knockout approach to examine the role of FOXF1 in adult lung homeostasis, injury, and repair. Tamoxifen-regulated deletion of both Foxf1 alleles in endothelial cells of adult mice (Pdgfb-iCreER/Foxf1(-/-)) caused lung inflammation and edema, leading to respiratory insufficiency and death. Deletion of a single Foxf1 allele made heterozygous Pdgfb-iCreER/Foxf1(+/-)mice more susceptible to acute lung injury. FOXF1 abundance was decreased in pulmonary endothelial cells of human patients with acute lung injury. Gene expression analysis of pulmonary endothelial cells with homozygous FOXF1 deletion indicated reduced expression of genes critical for maintenance and regulation of adherens junctions. FOXF1 knockdown in vitro and in vivo disrupted adherens junctions, enhanced lung endothelial permeability, and increased the abundance of the mRNA and protein for sphingosine 1-phosphate receptor 1 (S1PR1), a key regulator of endothelial barrier function. Chromatin immunoprecipitation and luciferase reporter assays demonstrated that FOXF1 directly bound to and induced the transcriptional activity of the S1pr1 promoter. Pharmacological administration of S1P to injured Pdgfb-iCreER/Foxf1(+/-)mice restored endothelial barrier function, decreased lung edema, and improved survival. Thus, FOXF1 promotes normal lung homeostasis and repair, in part, by enhancing endothelial barrier function through activation of the S1P/S1PR1 signaling pathway.
Collapse
Affiliation(s)
- Yuqi Cai
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Craig Bolte
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Tien Le
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Chinmayee Goda
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yan Xu
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. The Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. The Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| |
Collapse
|
27
|
Preconditioning of physiological cyclic stretch attenuated HMGB1 expression in pathologically mechanical stretch-activated A549 cells and ventilator-induced lung injury rats through inhibition of IL-6/STAT3/SOCS3. Int Immunopharmacol 2016; 31:66-73. [DOI: 10.1016/j.intimp.2015.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 01/24/2023]
|
28
|
Stephens RS, Johnston L, Servinsky L, Kim BS, Damarla M. The tyrosine kinase inhibitor imatinib prevents lung injury and death after intravenous LPS in mice. Physiol Rep 2015; 3:3/11/e12589. [PMID: 26620257 PMCID: PMC4673626 DOI: 10.14814/phy2.12589] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Severe sepsis and septic shock are frequent causes of the acute respiratory distress syndrome, and important sources of human mortality. Lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls, plays a major role in the pathogenesis of severe sepsis and septic shock. LPS exposure induces the production of harmful reactive oxygen species, and the resultant oxidant injury has been implicated in the pathogenesis of both severe sepsis and ARDS. We previously showed that the tyrosine kinase inhibitor imatinib increases lung endothelial antioxidant enzymes and protects against pulmonary endothelial antioxidant injury. In the present study, we tested the hypothesis that imatinib would protect against lung injury and systemic inflammation caused by intravenous LPS in an intact mouse model of endotoxemia mimicking early sepsis. We found that intravenous LPS induced a significant increase in the activity of lung xanthine oxidoreductase (XOR), an enzyme which is a major source of reactive oxygen species and implicated in the pathogenesis of acute lung injury. Imatinib had no effect of LPS-induced XOR activity. However, pretreatment of mice with imatinib increased lung catalase activity and decreased intravenous LPS-induced lung oxidant injury as measured by γ-H2AX, a marker of oxidant-induced DNA damage, lung apoptosis, and pulmonary edema. Imatinib also attenuated systemic cytokine expression after intravenous LPS exposure. Finally, imatinib completely prevented mortality in an in vivo, intravenous LPS mouse model of endotoxemia and lung injury. These results support the testing of imatinib as a novel pharmacologic agent in the treatment of Gram-negative sepsis and sepsis-induced ARDS.
Collapse
Affiliation(s)
- R Scott Stephens
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Laura Johnston
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Laura Servinsky
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Bo S Kim
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
29
|
Isoflurane Ameliorates Acute Lung Injury by Preserving Epithelial Tight Junction Integrity. Anesthesiology 2015; 123:377-88. [PMID: 26068207 DOI: 10.1097/aln.0000000000000742] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Isoflurane may be protective in preclinical models of lung injury, but its use in patients with lung injury remains controversial and the mechanism of its protective effects remains unclear. The authors hypothesized that this protection is mediated at the level of alveolar tight junctions and investigated the possibility in a two-hit model of lung injury that mirrors human acute respiratory distress syndrome. METHODS Wild-type mice were treated with isoflurane 1 h after exposure to nebulized endotoxin (n = 8) or saline control (n = 9) and then allowed to recover for 24 h before mechanical ventilation (MV; tidal volume, 15 ml/kg, 2 h) producing ventilator-induced lung injury. Mouse lung epithelial cells were similarly treated with isoflurane 1 h after exposure to lipopolysaccharide. Cells were cyclically stretched the following day to mirror the MV protocol used in vivo. RESULTS Mice treated with isoflurane following exposure to inhaled endotoxin and before MV exhibited significantly less physiologic lung dysfunction. These effects appeared to be mediated by decreased vascular leak, but not altered inflammatory indices. Mouse lung epithelial cells treated with lipopolysaccharide and cyclic stretch and lungs harvested from mice after treatment with lipopolysaccharide and MV had decreased levels of a key tight junction protein (i.e., zona occludens 1) that was rescued by isoflurane treatment. CONCLUSIONS Isoflurane rescued lung injury induced by a two-hit model of endotoxin exposure followed by MV by maintaining the integrity of the alveolar-capillary barrier possibly by modulating the expression of a key tight junction protein.
Collapse
|
30
|
Deleted in malignant brain tumors 1 (DMBT1) elicits increased VEGF and decreased IL-6 production in type II lung epithelial cells. BMC Pulm Med 2015; 15:32. [PMID: 25885541 PMCID: PMC4426184 DOI: 10.1186/s12890-015-0027-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deleted in malignant brain tumors 1 (DMBT1) is an innate defence protein expressed in the lungs of preterm infants and adults. Recent studies showed that DMBT1 is important in angiogenesis and can bind to different growth factors including VEGF. We aimed at examining relationships between VEGF and IL-6 levels to DMBT1 expression in the lungs of preterm and term infants and in lung epithelial cells in vitro. METHODS We examined by ELISA VEGF levels in 120 tracheal aspirates of 57 preterm and term infants and tested for correlation with different perinatal factors as well as with DMBT1 levels. To examine the effect of DMBT1 on VEGF and IL-6 expression we compared type II lung epithelial A549 cells stably transfected with a DMBT1 expression plasmid (DMBT1+ cells) to A549 cells stably transfected with an empty expression plasmid (DMBT1- cells). The concentrations of VEGF and IL-6 were determined via ELISA in the supernatant of the unstimulated cells and after stimulation with LPS, TNFα and Phorbol-12-myristate-13-acetate (PMA). RESULTS The VEGF levels in the tracheal aspirates of preterm and term infants were significantly correlated with DMBT1 levels (p = 0.0032), the postnatal age (p = 0.0073) and the presence of neonatal infection/sepsis (p = 0.0002). Unstimulated DMBT1+ A549 cells showed significantly higher VEGF expression (p = 0.0017) than DMBT1- cells. Significantly elevated VEGF levels were also confirmed for DMBT1+ cells after stimulation with TNFα (p = 0.0008), LPS (p = 0.0232) and PMA (p = 0.0025). The IL-6 levels were comparable in DMBT1+ versus DMBT1- cells without stimulation (p = 0.6028), but they were significantly reduced in DMBT1+ cells after stimulation with TNFα (p = 0.0003), LPS (p = 0.0088) and PMA (p = 0.0039). CONCLUSIONS The data indicate that DMBT1 promotes VEGF and suppresses IL-6 production in alveolar tissues, which could point to DMBT1 having a possible role in the transition from inflammation to regeneration and being a potentially useful clinical marker.
Collapse
|
31
|
Müller-Redetzky HC, Felten M, Hellwig K, Wienhold SM, Naujoks J, Opitz B, Kershaw O, Gruber AD, Suttorp N, Witzenrath M. Increasing the inspiratory time and I:E ratio during mechanical ventilation aggravates ventilator-induced lung injury in mice. Crit Care 2015; 19:23. [PMID: 25888164 PMCID: PMC4336519 DOI: 10.1186/s13054-015-0759-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/20/2015] [Indexed: 11/10/2022] Open
Abstract
Introduction Lung-protective ventilation reduced acute respiratory distress syndrome (ARDS) mortality. To minimize ventilator-induced lung injury (VILI), tidal volume is limited, high plateau pressures are avoided, and positive end-expiratory pressure (PEEP) is applied. However, the impact of specific ventilatory patterns on VILI is not well defined. Increasing inspiratory time and thereby the inspiratory/expiratory ratio (I:E ratio) may improve oxygenation, but may also be harmful as the absolute stress and strain over time increase. We thus hypothesized that increasing inspiratory time and I:E ratio aggravates VILI. Methods VILI was induced in mice by high tidal-volume ventilation (HVT 34 ml/kg). Low tidal-volume ventilation (LVT 9 ml/kg) was used in control groups. PEEP was set to 2 cm H2O, FiO2 was 0.5 in all groups. HVT and LVT mice were ventilated with either I:E of 1:2 (LVT 1:2, HVT 1:2) or 1:1 (LVT 1:1, HVT 1:1) for 4 hours or until an alternative end point, defined as mean arterial blood pressure below 40 mm Hg. Dynamic hyperinflation due to the increased I:E ratio was excluded in a separate group of animals. Survival, lung compliance, oxygenation, pulmonary permeability, markers of pulmonary and systemic inflammation (leukocyte differentiation in lung and blood, analyses of pulmonary interleukin-6, interleukin-1β, keratinocyte-derived chemokine, monocyte chemoattractant protein-1), and histopathologic pulmonary changes were analyzed. Results LVT 1:2 or LVT 1:1 did not result in VILI, and all individuals survived the ventilation period. HVT 1:2 decreased lung compliance, increased pulmonary neutrophils and cytokine expression, and evoked marked histologic signs of lung injury. All animals survived. HVT 1:1 caused further significant worsening of oxygenation, compliance and increased pulmonary proinflammatory cytokine expression, and pulmonary and blood neutrophils. In the HVT 1:1 group, significant mortality during mechanical ventilation was observed. Conclusion According to the “baby lung” concept, mechanical ventilation-associated stress and strain in overinflated regions of ARDS lungs was simulated by using high tidal-volume ventilation. Increase of inspiratory time and I:E ratio significantly aggravated VILI in mice, suggesting an impact of a “stress/strain × time product” for the pathogenesis of VILI. Thus increasing the inspiratory time and I:E ratio should be critically considered. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-0759-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Holger C Müller-Redetzky
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Matthias Felten
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Katharina Hellwig
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Sandra-Maria Wienhold
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Jan Naujoks
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Bastian Opitz
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Olivia Kershaw
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany.
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany.
| | - Norbert Suttorp
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
32
|
Clinical and biological heterogeneity in acute respiratory distress syndrome: direct versus indirect lung injury. Clin Chest Med 2014; 35:639-53. [PMID: 25453415 DOI: 10.1016/j.ccm.2014.08.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The acute respiratory distress syndrome (ARDS) is a heterogeneous group of illnesses affecting the pulmonary parenchyma with acute onset bilateral inflammatory pulmonary infiltrates with associated hypoxemia. ARDS occurs after 2 major types of pulmonary injury: direct lung injury affecting the lung epithelium or indirect lung injury disrupting the vascular endothelium. Greater understanding of the differences between direct and indirect lung injury may refine the classification of patients with ARDS and lead to development of new therapeutics targeted at specific subpopulations of patients with ARDS.
Collapse
|
33
|
Goldman JL, Sammani S, Kempf C, Saadat L, Letsiou E, Wang T, Moreno-Vinasco L, Rizzo AN, Fortman JD, Garcia JGN. Pleiotropic effects of interleukin-6 in a "two-hit" murine model of acute respiratory distress syndrome. Pulm Circ 2014; 4:280-8. [PMID: 25006447 DOI: 10.1086/675991] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/09/2014] [Indexed: 12/19/2022] Open
Abstract
Patients with acute respiratory distress syndrome (ARDS) exhibit elevated levels of interleukin-6 (IL-6), which correlate with increased morbidity and mortality. The exact role of IL-6 in ARDS has proven difficult to study because it exhibits either pro- or anti-inflammatory actions in mouse models of lung injury, depending on the model utilized. In order to improve understanding of the role of this complex cytokine in ARDS, we evaluated IL-6 using the clinically relevant combination of lipopolysaccharide (LPS) and ventilator-induced lung injury (VILI) in IL-6(-/-) mice. Bronchoalveolar lavage fluid (BAL), whole-lung tissue, and histology were evaluated for inflammatory markers of injury. Transendothelial electrical resistance was used to evaluate the action of IL-6 on endothelial cells in vitro. In wild-type mice, the combination model showed a significant increase in lung injury compared to either LPS or VILI alone. IL-6(-/-) mice exhibited a statistically significant decrease in BAL cellular inflammation as well as lower histologic scores for lung injury, changes observed only in the combination model. A paradoxical increase in BAL total protein was observed in IL-6(-/-) mice exposed to LPS, suggesting that IL-6 provides protection from vascular leakage. However, in vitro data showed that IL-6, when combined with its soluble receptor, actually caused a significant increase in endothelial cell permeability, suggesting that the protection seen in vivo was likely due to complex interactions of IL-6 and other inflammatory mediators rather than to direct effects of IL-6. These studies suggest that a dual-injury model exhibits utility in evaluating the pleiotropic effects of IL-6 in ARDS on inflammatory cells and lung endothelium.
Collapse
Affiliation(s)
- Julia L Goldman
- Institute of Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA ; Biological Resources Laboratory, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Saad Sammani
- Institute of Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Carrie Kempf
- Institute of Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA ; Current affiliation: Division of Pulmonary and Critical Care, Sleep Medicine, Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Laleh Saadat
- Institute of Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Eleftheria Letsiou
- Institute of Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ting Wang
- Institute of Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA ; Current affiliation: Division of Pulmonary and Critical Care, Sleep Medicine, Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Liliana Moreno-Vinasco
- Institute of Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alicia N Rizzo
- Institute of Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jeffrey D Fortman
- Biological Resources Laboratory, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joe G N Garcia
- Institute of Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA ; Office of the Vice President for Health Affairs, University of Illinois at Chicago, Chicago, Illinois, USA ; Current affiliation: Division of Pulmonary and Critical Care, Sleep Medicine, Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
34
|
Improvement of ventilation-induced lung injury in a rodent model by inhibition of inhibitory κB kinase. J Trauma Acute Care Surg 2014; 76:1417-24. [DOI: 10.1097/ta.0000000000000229] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Szema AM, Reeder RJ, Harrington AD, Schmidt M, Liu J, Golightly M, Rueb T, Hamidi SA. Iraq dust is respirable, sharp, and metal-laden and induces lung inflammation with fibrosis in mice via IL-2 upregulation and depletion of regulatory T cells. J Occup Environ Med 2014; 56:243-51. [PMID: 24603199 PMCID: PMC4037815 DOI: 10.1097/jom.0000000000000119] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Determine whether surface dust grab samples taken from a large military base in Iraq are toxic and respirable. METHODS X-ray diffraction for mineral content, x-ray fluorescence for elemental content, in vivo mouse dust challenges for assessment of histological changes, bronchoalveolar lavage for cytokines, polarizing light microscopy for crystals in lung tissue, and Fluorescence Activated Cell Sorting for cell surface and intracellular markers were utilized. RESULTS Camp Victory, Iraq dust taken during wartime contains respirable particles 2.5 microns in size, constituting particulate matter air pollution. Dust particles are angular and have sharp edges. Trace metals (including titanium) calcium and silicon are present. Mice with airway instillation of dust have polarizable crystals in lung and septate inflammation. Regulatory T cells (CD4⁺CD25⁺FOXP3⁺) are decreased in thymus and spleen. Interleukin-2 (IL-2) is upregulated in bronchoalveolar lavage. CONCLUSIONS Respirable Iraq dust leads to lung inflammation in mice similar to that seen in patients with polarizable crystals, which seem to be titanium.
Collapse
Affiliation(s)
- Anthony M. Szema
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | | | | | | | - Jingxuan Liu
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Marc Golightly
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Todd Rueb
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Sayyed A. Hamidi
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| |
Collapse
|
36
|
Ensuring animal welfare while meeting scientific aims using a murine pneumonia model of septic shock. Shock 2013; 39:488-94. [PMID: 23603767 DOI: 10.1097/shk.0b013e3182939831] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
With animal models, death as an intentional end point is ethically unacceptable. However, in the study of septic shock, death is still considered the only relevant end point. We defined eight humane end points into four stages of severity (from healthy to moribund) and used to design a clinically relevant scoring tool, termed "the mouse clinical assessment score for sepsis" (M-CASS). The M-CASS was used to enable a consistent approach to the assessment of disease severity. This allowed an ethical and objective assessment of disease after which euthanasia was performed, instead of worsening suffering. The M-CASS displayed a high internal consistency (Cronbach α = 0.97) with a high level of agreement and an intraclass correlation coefficient equal to 0.91. The plasma levels of cytokines and markers of oxidative stress were all associated with the M-CASS score (Kruskal-Wallis test, P < 0.05). The M-CASS allows tracking of disease progression and animal welfare requirements.
Collapse
|
37
|
The fetal inflammatory response syndrome is a risk factor for morbidity in preterm neonates. Am J Obstet Gynecol 2013; 209:542.e1-542.e11. [PMID: 23994220 DOI: 10.1016/j.ajog.2013.08.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/02/2013] [Accepted: 08/26/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to show and discuss an association between fetal inflammatory response syndrome (FIRS) and an adverse neonatal outcome defined as combined severe neonatal morbidity and mortality in preterm neonates hospitalized in our neonatal intensive care unit. STUDY DESIGN This was an observational study including all preterm neonates hospitalized in our neonatal intensive care unit over a 21 month period. FIRS was defined as cord blood interleukin (IL)-6 greater than 11 pg/mL. Main outcome parameter was an adverse neonatal outcome defined as hospital mortality and/or the presence of any of 5 prespecified morbidities (bronchopulmonary dysplasia, periventricular leukomalacia, intraventricular hemorrhage, and early- or late-onset sepsis). RESULTS Fifty-seven of 176 preterm infants hospitalized during the study period (32%) had an adverse neonatal outcome and 62 of these 176 infants (35%) had FIRS with median IL-6 values of 51.8 pg/mL (range, 11.2 to >1000 pg/mL). In a regression analysis, FIRS was significantly associated with adverse neonatal outcome (P < .001) and with the single outcome parameters, intraventricular hemorrhage and early-onset sepsis (P = .006 and P = .018, respectively). In the bivariate analysis, FIRS was associated with death and bronchopulmonary dysplasia (P = .004 and P < .001, respectively). IL-6 correlated with adverse neonatal outcome (r = 0.411, P < .001). When comparing the correlation in neonates less than 32 weeks' gestational age (r = 0.481, P < .001) with neonates 32 weeks or longer (r = 0.233, P = .019), the difference was nearly significant (P = .065). CONCLUSION FIRS is a risk factor for adverse neonatal outcome in preterm infants. In particular, the combination of IL-6 greater than 11 pg/mL and low gestational age increased the risk for severe neonatal morbidity or death.
Collapse
|
38
|
Zhang A, Chi X, Luo G, Hei Z, Xia H, Luo C, Wang Y, Mao X, Xia Z. Mast cell stabilization alleviates acute lung injury after orthotopic autologous liver transplantation in rats by downregulating inflammation. PLoS One 2013; 8:e75262. [PMID: 24116032 PMCID: PMC3792971 DOI: 10.1371/journal.pone.0075262] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022] Open
Abstract
Background Acute lung injury (ALI) is one of the most severe complications after orthotopic liver transplantation. Amplified inflammatory response after transplantation contributes to the process of ALI, but the mechanism underlying inflammation activation is not completely understood. We have demonstrated that mast cell stabilization attenuated inflammation and ALI in a rodent intestine ischemia/reperfusion model. We hypothesized that upregulation of inflammation triggered by mast cell activation may be involve in ALI after liver transplantation. Methods Adult male Sprague–Dawley rats received orthotopic autologous liver transplantation (OALT) and were executed 4, 8, 16, and 24 h after OALT. The rats were pretreated with the mast cell stabilizers cromolyn sodium or ketotifen 15 min before OALT and executed 8 h after OALT. Lung tissues and arterial blood were collected to evaluate lung injury. β-hexosaminidase and mast cell tryptase levels were assessed to determine the activation of mast cells. Tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 in serum and lung tissue were analyzed by enzyme-linked immunosorbent assay. Nuclear factor-kappa B (NF-κB) p65 translocation was assessed by Western blot. Results The rats that underwent OALT exhibited severe pulmonary damage with a high wet-to-dry ratio, low partial pressure of oxygen, and low precursor surfactant protein C levels, which corresponded to the significant elevation of pro-inflammatory cytokines, β-hexosaminidase, and tryptase levels in serum and lung tissues. The severity of ALI progressed and maximized 8 h after OALT. Mast cell stabilization significantly inhibited the activation of mast cells, downregulated pro-inflammatory cytokine levels and translocation of NF-κB, and attenuated OALT-induced ALI. Conclusions Mast cell activation amplified inflammation and played an important role in the process of post-OALT related ALI.
Collapse
Affiliation(s)
- Ailan Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, People's Republic of China
| | - Xinjin Chi
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, People's Republic of China
| | - Gangjian Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, People's Republic of China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, People's Republic of China
- * E-mail:
| | - Hua Xia
- Department of Anesthesiology, the Affiliated Hospital of Luzhou Medical College, Luzhou City, People's Republic of China
| | - Chenfang Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, People's Republic of China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, People's Republic of China
| | - Xiaowen Mao
- Department of Anesthesiology, Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Zhengyuan Xia
- Department of Anesthesiology, Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
39
|
Cohen SS, Min M, Cummings EE, Chen X, Sadowska GB, Sharma S, Stonestreet BS. Effects of interleukin-6 on the expression of tight junction proteins in isolated cerebral microvessels from yearling and adult sheep. Neuroimmunomodulation 2013; 20:264-73. [PMID: 23867217 PMCID: PMC3827681 DOI: 10.1159/000350470] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/04/2013] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The blood-brain barrier is a selective diffusion barrier between brain parenchyma and the intravascular compartment. Tight junctions are integral components of the blood-brain barrier. Pro-inflammatory cytokines are important in the pathogenesis of brain injury and could modify the protein constituents of tight junctions. We hypothesized that interleukin-6 (IL-6) downregulates key protein constituents of endothelial tight junctions (e.g. occludin and claudin-5). METHODS We examined the effects of IL-6 on tight junction protein expression using an in vitro blood-brain barrier model. We isolated microvessels from yearling and adult ovine cerebral cortex and placed them into culture with IL-6 concentrations of 0 (control, phosphate-buffered saline), 1, 10, and 100 ng/ml for 24 h. Cerebral microvessels were harvested, Western immunoblot performed for occludin and claudin-5, densitometry performed, and results expressed as a ratio to control values. RESULTS Western immunoblot analysis showed that treatment with 100 ng/ml of IL-6, but not the lower concentrations, reduced (p < 0.05) occludin expression in microvessels from yearling and adult sheep and claudin-5 in microvessels from adult sheep. However, treatment with 10 ng/ml of IL-6 increased claudin-5 in microvessels from yearling sheep. The percent of lactate dehydrogenase released from the microvessels into the surrounding media was not increased by IL-6 treatment, suggesting that the reductions in tight junction proteins did not result from cell death. Treatment of adult cerebral cortical microvessels with IL-6 preincubated with anti-IL-6 monoclonal antibodies partially attenuated the reduction in claudin-5. CONCLUSION We conclude that IL-6 modulates tight junction protein expression in cerebral cortical microvessels from yearling and adult sheep.
Collapse
Affiliation(s)
- Susan S. Cohen
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| | - May Min
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| | - Erin E. Cummings
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| | - Xiaodi Chen
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| | - Grazyna B. Sadowska
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| | - Surendra Sharma
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| | - Barbara S. Stonestreet
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| |
Collapse
|