1
|
Yin Z, Wan B, Gong G, Yin J. ROS: Executioner of regulating cell death in spinal cord injury. Front Immunol 2024; 15:1330678. [PMID: 38322262 PMCID: PMC10844444 DOI: 10.3389/fimmu.2024.1330678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
The damage to the central nervous system and dysfunction of the body caused by spinal cord injury (SCI) are extremely severe. The pathological process of SCI is accompanied by inflammation and injury to nerve cells. Current evidence suggests that oxidative stress, resulting from an increase in the production of reactive oxygen species (ROS) and an imbalance in its clearance, plays a significant role in the secondary damage during SCI. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulatory molecule for cellular redox. This review summarizes recent advancements in the regulation of ROS-Nrf2 signaling and focuses on the interaction between ROS and the regulation of different modes of neuronal cell death after SCI, such as apoptosis, autophagy, pyroptosis, and ferroptosis. Furthermore, we highlight the pathways through which materials science, including exosomes, hydrogels, and nanomaterials, can alleviate SCI by modulating ROS production and clearance. This review provides valuable insights and directions for reducing neuronal cell death and alleviating SCI through the regulation of ROS and oxidative stress.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, the Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People’s Hospital of Lianyungang), Lianyungang, China
| | - Bowen Wan
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Jiangning Clinical Teaching Hospitals of Jiangsu Vocational College of Medicine, Nanjing, China
| |
Collapse
|
2
|
Zhang Y, Liu C, Li Y, Xu H. Mechanism of the Mitogen-Activated Protein Kinases/Mammalian Target of Rapamycin Pathway in the Process of Cartilage Endplate Stem Cell Degeneration Induced by Tension Load. Global Spine J 2023; 13:2396-2408. [PMID: 35400210 PMCID: PMC10538332 DOI: 10.1177/21925682221085226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
STUDY DESIGN Basic Research. OBJECTIVE Intervertebral disc degeneration (IVDD) is caused by the cartilage endplate (CEP). Cartilage endplate stem cell (CESC) is involved in the recovery of CEP degeneration. Tension load (TL) contributes a lot to the initiation and progression of IVDD. This study aims to investigate the regulatory mechanism of the Mitogen-activated protein kinases/Mammalian target of rapamycin (MAPK/mTOR) pathway during TL-induced CESC degeneration. METHODS CESCs were isolated from New Zealand big-eared white female rabbits (6 months old). FX-4000T cell stress loading system was applied to establish a TL-induced degeneration model of CESCs. Western blotting was used to detect the level of mTOR pathway-related proteins and autophagy markers LC3-Ⅱ, Beclin-1, and p62 in degenerative CESCs. The expression of MAPK pathway-related proteins JNK and extracellular signal-regulated kinases (ERK) in degenerated CESCs was inhibited by cell transfection to explore whether JNK and ERK play a regulatory role in TL-induced autophagy in CESCs. RESULTS In the CESC degeneration model, the mTOR pathway was activated. After inhibition of mTOR, the autophagy level of CESCs was increased, and the degeneration of CESCs was alleviated. The MAPK pathway was also activated in the CESC degeneration model. Inhibition of JNK expression may alleviate TL-induced CEP degeneration by inhibiting Raptor phosphorylation and activating autophagy. Inhibition of ERK expression may alleviate TL-induced CEP degeneration by inhibiting mTOR phosphorylation and activating autophagy. CONCLUSION Inhibition of JNK and ERK in the MAPK signaling family alleviated TL-induced CESC degeneration by inhibiting the phosphorylation of Raptor and mTOR in the mTOR pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Chen Liu
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Yu Li
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Hongguang Xu
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| |
Collapse
|
3
|
Zhang H, Wu C, Yu DD, Su H, Chen Y, Ni W. Piperine attenuates the inflammation, oxidative stress, and pyroptosis to facilitate recovery from spinal cord injury via autophagy enhancement. Phytother Res 2023; 37:438-451. [PMID: 36114802 DOI: 10.1002/ptr.7625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Spinal cord injury (SCI) is a serious injury that can lead to irreversible motor dysfunction. Due to its complicated pathogenic mechanism, there are no effective drug treatments. Piperine, a natural active alkaloid extracted from black pepper, has been reported to influence neurogenesis and exert a neuroprotective effect in traumatic brain injury. The aim of this study was to investigate the therapeutic effect of piperine in an SCI model. SCI was induced in mice by clamping the spinal cord with a vascular clip for 1 min. Before SCI and every 2 days post-SCI, evaluations using the Basso mouse scale and inclined plane tests were performed. On day 28 after SCI, footprint analyses, and HE/Masson staining of tissues were performed. On a postoperative Day 3, the spinal cord was harvested to assess the levels of pyroptosis, reactive oxygen species (ROS), inflammation, and autophagy. Piperine enhanced functional recovery after SCI. Additionally, piperine reduced inflammation, oxidative stress, pyroptosis, and activated autophagy. However, the effects of piperine on functional recovery after SCI were reversed by autophagy inhibition. The study demonstrated that piperine facilitated functional recovery after SCI by inhibiting inflammatory, oxidative stress, and pyroptosis, mediated by the activation of autophagy.
Collapse
Affiliation(s)
- Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dong-Dong Yu
- Department of Urology, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Haohan Su
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanlin Chen
- Spinal Surgery Department, The Central Hospital of Lishui City, Lishui, People's Republic of China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
4
|
Zhu L, Yang Y, Yan Z, Zeng J, Weng F, Shi Y, Shen P, Liu L, Yang H. Controlled Release of TGF-β3 for Effective Local Endogenous Repair in IDD Using Rat Model. Int J Nanomedicine 2022; 17:2079-2096. [PMID: 35592099 PMCID: PMC9113136 DOI: 10.2147/ijn.s358396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/14/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Lifan Zhu
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215200, People’s Republic of China
- Lifan Zhu, Department of Orthopedics, Suzhou Ninth Hospital affiliated to Soochow University, Suzhou, 215200, People’s Republic of China, Email
| | - Yanjun Yang
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Zhanjun Yan
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Jincai Zeng
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Fengbiao Weng
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Yuhui Shi
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Pengcheng Shen
- Department of Orthopedics, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, People’s Republic of China
| | - Ling Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215200, People’s Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215200, People’s Republic of China
- Correspondence: Huilin Yang, Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People’s Republic of China, Email
| |
Collapse
|
5
|
Xu Z, Zheng J, Zhang Y, Wu H, Sun B, Zhang K, Wang J, Zang F, Zhang X, Guo L, Wu X. Increased Expression of Integrin Alpha 6 in Nucleus Pulposus Cells in Response to High Oxygen Tension Protects against Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8632823. [PMID: 34707783 PMCID: PMC8545551 DOI: 10.1155/2021/8632823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
The destruction of the low oxygen microenvironment in nucleus pulposus (NP) cells played a critical role in the pathogenesis of intervertebral disc degeneration (IVDD). The purpose of this study was to determine the potential role of integrin alpha 6 (ITG α6) in NP cells in response to high oxygen tension (HOT) in IVDD. Immunofluorescence staining and western blot analysis showed that the levels of ITG α6 expression were increased in the NP tissue from IVDD patients and the IVDD rat model with mild degeneration, which were reduced as the degree of degeneration increases in severity. In NP cells, the treatment of HOT resulted in upregulation of ITG α6 expression, which could be alleviated by blocking the PI3K/AKT signaling pathway. Further studies found that ITG α6 could protect NP cells against HOT-induced apoptosis and oxidative stress and protect NP cells from HOT-inhibited ECM protein synthesis. Upregulation of ITG α6 expression by HOT contributed to maintaining NP tissue homeostasis through the interaction with hypoxia-inducible factor-1α (HIF-1α). Furthermore, silencing of ITG α6 in vivo could obviously accelerate puncture-induced IVDD. Taken together, these results revealed that the increase of ITG α6 expression by HOT in NP cells might be a protective factor in IVD degeneration as well as restore NP cell function.
Collapse
Affiliation(s)
- Zeng Xu
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Jiancheng Zheng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Ying Zhang
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Huiqiao Wu
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Bin Sun
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Ke Zhang
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Jianxi Wang
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Fazhi Zang
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Xingkai Zhang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Xiaodong Wu
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Zhang QC, Hu SQ, Hu AN, Zhang TW, Jiang LB, Li XL. Autophagy-activated nucleus pulposus cells deliver exosomal miR-27a to prevent extracellular matrix degradation by targeting MMP-13. J Orthop Res 2021; 39:1921-1932. [PMID: 33038032 DOI: 10.1002/jor.24880] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 02/04/2023]
Abstract
Although autophagy may be beneficial for maintaining the metabolic balance of the extracellular matrix (ECM) in the nucleus pulposus (NP) and its vitality under inflammation, the underlying mechanism still remains unclear. A previous study found that autophagy activation stimulated the release of exosomes in normal chondrocytes, which are located in a similar avascular environment and share many common features with those of nucleus pulposus cells (NPCs). This study explored the protective effect on matrix degradation in the NP by exosomes derived from autophagy-activated NPCs and exosomal microRNAs. NPCs-derived exosomes (NPCs-Exos) were isolated from culture medium of either normal NPCs or rapamycin-treated NPCs and quantified by nanoparticle tracking analysis. The effect of rapamycin-treated NPC-derived exosomes on NPCs were assessed by coculture with interleukin 1β (IL-1β)-stimulated NPCs. After examination of six major proteinases of the ECM, matrix metalloproteinase 13 (MMP-13) was chosen for further study. miR-27a, which targets MMP-13, was investigated through previous studies and bioinformatics tool. The levels of miR-27a were upregulated in both rapamycin-treated NPCs and their exosomes, compared to the control. When exosomal miR-27a was transferred into NPCs, it alleviated IL-1β-induced degradation of the NPC ECM by targeting MMP-13. Autophagy activation may promote the release of NPCs-derived exosomes and thereby prevent the NPC matrix from degradation. Autophagy activation also alleviates intervertebral disc degeneration (IDD), at least partly via exosomal miR-27a, which restrains MMP-13 expression under IL-1β stimulation. Our work elucidates a new mechanism for how autophagy may participate in preventing IDD, which may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Qi-Chen Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shun-Qi Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - An-Nan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tai-Wei Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Bo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi-Lei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Nan LP, Wang F, Liu Y, Wu Z, Feng XM, Liu JJ, Zhang L. 6-gingerol protects nucleus pulposus-derived mesenchymal stem cells from oxidative injury by activating autophagy. World J Stem Cells 2020; 12:1603-1622. [PMID: 33505603 PMCID: PMC7789124 DOI: 10.4252/wjsc.v12.i12.1603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/30/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To date, there has been no effective treatment for intervertebral disc degeneration (IDD). Nucleus pulposus-derived mesenchymal stem cells (NPMSCs) showed encouraging results in IDD treatment, but the overexpression of reactive oxygen species (ROS) impaired the endogenous repair abilities of NPMSCs. 6-gingerol (6-GIN) is an antioxidant and anti-inflammatory reagent that might protect NPMSCs from injury.
AIM To investigate the effect of 6-GIN on NPMSCs under oxidative conditions and the potential mechanism.
METHODS The cholecystokinin-8 assay was used to evaluate the cytotoxicity of hydrogen peroxide and the protective effects of 6-GIN. ROS levels were measured by 2´7´-dichlorofluorescin diacetate analysis. Matrix metalloproteinase (MMP) was detected by the tetraethylbenzimidazolylcarbocyanine iodide assay. TUNEL assay and Annexin V/PI double-staining were used to determine the apoptosis rate. Additionally, autophagy-related proteins (Beclin-1, LC-3, and p62), apoptosis-associated proteins (Bcl-2, Bax, and caspase-3), and PI3K/Akt signaling pathway-related proteins (PI3K and Akt) were evaluated by Western blot analysis. Autophagosomes were detected by transmission electron microscopy in NPMSCs. LC-3 was also detected by immunofluorescence. The mRNA expression of collagen II and aggrecan was evaluated by real-time polymerase chain reaction (RT-PCR), and the changes in collagen II and MMP-13 expression were verified through an immunofluorescence assay.
RESULTS 6-GIN exhibited protective effects against hydrogen peroxide-induced injury in NPMSCs, decreased hydrogen peroxide-induced intracellular ROS levels, and inhibited cell apoptosis. 6-GIN could increase Bcl-2 expression and decrease Bax and caspase-3 expression. The MMP, Annexin V-FITC/PI flow cytometry and TUNEL assay results further confirmed that 6-GIN treatment significantly inhibited NPMSC apoptosis induced by hydrogen peroxide. 6-GIN treatment promoted extracellular matrix (ECM) expression by reducing the oxidative stress injury-induced increase in MMP-13 expression. 6-GIN activated autophagy by increasing the expression of autophagy-related markers (Beclin-1 and LC-3) and decreasing the expression of p62. Autophagosomes were visualized by transmission electron microscopy. Pretreatment with 3-MA and BAF further confirmed that 6-GIN-mediated stimulation of autophagy did not reduce autophagosome turnover but increased autophagic flux. The PI3K/Akt pathway was also found to be activated by 6-GIN. 6-GIN inhibited NPMSC apoptosis and ECM degeneration, in which autophagy and the PI3K/Akt pathway were involved.
CONCLUSION 6-GIN efficiently decreases ROS levels, attenuates hydrogen peroxide-induced NPMSCs apoptosis, and protects the ECM from degeneration. 6-GIN is a promising candidate for treating IDD.
Collapse
Affiliation(s)
- Li-Ping Nan
- Department of Orthopedic, Tongji University School of Medicine, Shanghai Tenth People’s Hospital, Tenth People’s Hospital of Tongji University, Shanghai 200072, China
| | - Feng Wang
- Department of Spine Surgery, Tongji University School of Medicine, Shanghai East Hospital, Shanghai 200120, China
| | - Yang Liu
- Department of Orthopedic, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Zhong Wu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Jun-Jian Liu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| |
Collapse
|
8
|
Zhu L, Yu C, Zhang X, Yu Z, Zhan F, Yu X, Wang S, He F, Han Y, Zhao H. The treatment of intervertebral disc degeneration using Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113117. [PMID: 32738389 DOI: 10.1016/j.jep.2020.113117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Intervertebral disc degeneration (IDD) is one of the most common causes of chronic low back pain that spending a lot of workforces and financial resources, seriously affecting human physical and mental health. Clinically used drug treatments and surgical treatments cannot fundamentally relieve the disease and have a risk of recurrence. Traditional Chinese Medicine (TCM) has a history of more than a thousand years in the prevention and treatment of IDD. However, so far, there are few reviews on the treatment of IDD by TCM. Therefore, it is crucial and necessary to systematically mine the existing literature on the treatment of IDD with TCM. This paper strives to systematically describe the modern medicine and TCM theoretical research on IDD, progress in the treatment of IDD and focuses on the treatment of IDD by TCM, which would lay some theoretical foundation and provide new directions for future research. MATERIALS AND METHODS Information on clinical observations, animal experiments and relevant pharmacology data about the treatment of IDD were gathered from various sources including traditional Chinese books and Chinese Pharmacopoeia, scientific databases (Elsevier, PubMed, Science Direct, Baidu Scholar, CNKI, Spring Link, Web of Science) and from different professional websites. RESULTS This review mainly introduces the current research on the theoretical research on IDD, the combination principle of the TCM formula, and the underlying mechanism of the formula and active ingredients. CONCLUSIONS At present, domestic and foreign scholars have carried out a lot of research in different ways, such as the molecular mechanism and predisposing factors of IDD, which provides theoretical development and clinical practice significance for future research. TCM, as a multi-component and multi-targeted drug, can produce synergistic effects to exert its efficacy. Therefore, the development of TCM with more specific functions and practical data will not only become a significant trend in the world market but also has an irreplaceable role in the future treatment of IDD.
Collapse
Affiliation(s)
- Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Changsui Yu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China.
| | - Xiaofeng Zhang
- Heilongjiang Provincial Administration of Traditional Chinese Medicine, Harbin, 150030, China
| | - Zhongbao Yu
- Liaoning Yuzhongbao Chinese Medicine Clinic, Kuandian, 118200, China
| | - Fengyuan Zhan
- Liaoning Yuzhongbao Chinese Medicine Clinic, Kuandian, 118200, China
| | - Xin Yu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuren Wang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Feng He
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Yusheng Han
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - He Zhao
- Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Zhang H, Qin H, Zhou C, Feng Q, Yang Y, Sui J, Tang Y. Gene expression profile of lipopolysaccharide‑induced apoptosis of nucleus pulposus cells reversed by syringic acid. Mol Med Rep 2020; 22:5012-5022. [PMID: 33174055 PMCID: PMC7646953 DOI: 10.3892/mmr.2020.11632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/03/2020] [Indexed: 11/26/2022] Open
Abstract
Apoptosis of nucleus pulposus (NP) cells has an important role in the process of intervertebral disc degeneration (IDD), and the search for novel compounds to prevent apoptosis from occurring is urgently required. In the present study, syringic acid (SyrA) was found to exhibit no cytotoxicity on NP cells, and was able to reverse the cytotoxicity, as well as the abnormal expression of Bcl-2 and caspase-3, that were induced by lipopolysaccharide (LPS). The transcriptomes of each group were then analyzed using RNA-Seq. A total of 65 differentially expressed genes (DEGs) were identified in LPS-stimulated groups (LPS group vs. control group), 819 DEGs were identified in the SyrA-reversed groups (SyrA plus LPS group vs. LPS group), and a further 25 DEGs were identified in the SyrA plus LPS group compared with the control group. Reverse transcription-quantitative PCR validation indicated that the alterations in expression of uroplakin 3B-like 1 (UPK3BL1), voltage-dependent calcium channel subunit α-2/δ-1 (CACNA2D1) and polo-like kinase 4 (PLK4) were consistent with the corresponding results of RNA-Seq, and that these genes were involved in both LPS-stimulation and SyrA-reversion processes. Kyoto Encyclopedia of Genes and Genomes analyses indicated that the DEGs in SyrA-reversed groups were involved in, amongst other pathways, ‘Autophagy-other’ and ‘Apoptosis-multiple species’. In conclusion, the addition of SyrA to the NP cells co-incubated with LPS appeared to help prevent the abnormal expression of mRNAs and apoptosis that had been identified in NP cells incubated with LPS alone. The potential mechanism underlying the reversion of SyrA might be attributed to the regulation of CACNA2D1 and PLK4.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Rehabilitation Medicine, Langdong Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530028, P.R. China
| | - Hong Qin
- Department of Health Care, Nanning Maternal and Child Health Hospital, Nanning, Guangxi Zhuang Autonomous Region 530011, P.R. China
| | - Chengen Zhou
- Department of Rehabilitation Medicine, Langdong Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530028, P.R. China
| | - Qiang Feng
- Department of Rehabilitation Medicine, Langdong Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530028, P.R. China
| | - Yuan Yang
- Department of Rehabilitation Medicine, Langdong Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530028, P.R. China
| | - Jinhui Sui
- Department of Rehabilitation Medicine, Langdong Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530028, P.R. China
| | - Yucai Tang
- Department of Rehabilitation Medicine, Langdong Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530028, P.R. China
| |
Collapse
|
10
|
Liu C, Xiao L, Zhang Y, Zhao Q, Xu H. Regeneration of annulus fibrosus tissue using a DAFM/PECUU-blended electrospun scaffold. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2347-2361. [PMID: 32885742 DOI: 10.1080/09205063.2020.1812038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Low back pain and disc degeneration affect quality of life and imposes an enormous financial burden. Although annulus fibrosus (AF) tissue engineering provides an alternative therapeutic possibility in the treatment of degenerative intervertebral disc disease, it is restricted by the biochemical properties, organizational structure, and mechanical characteristics of the scaffold. The ideal scaffold should closely mimic the natural extracellular matrix (ECM) in structure and function for long-term stability and survival. Poly(ether carbonate urethane) urea (PECUU) can be electrospun into nanofibrous scaffolds to mimic ECM architecture with the appropriate mechanical properties. However, PECUU scaffolds lack the bioactivity of natural ECM. On the other hand, a decellularized annulus fibrosus matrix (DAFM) has good biocompatibility and biodegradability and has been shown to promote secretion of AF-related ECM. Herein, DAFM/PECUU-blended electrospun scaffolds were fabricated with the help of coaxial electrospinning technology for the first time. AF-derived stem cells were cultured on DAFM/PECUU electrospun scaffolds, and cellular metabolic activity, morphology, and gene expression assays as well as AF-related ECM synthesis were performed. The results showed that AF-derived stem cells proliferated well on the scaffolds. Gene expression and ECM secretion of collagen type I and II and aggrecan from AF-derived stem cells cultured on DAFM/PECUU electrospun scaffolds were higher than from those on PECUU fibrous scaffolds. Thus, DAFM/PECUU electrospun scaffolds are a potential candidate for AF tissue engineering applications.
Collapse
Affiliation(s)
- Chen Liu
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Spine Research Center of Wannan Medical College, Wuhu, Anhui, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China.,Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Liang Xiao
- Spine Research Center of Wannan Medical College, Wuhu, Anhui, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China.,Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yu Zhang
- Spine Research Center of Wannan Medical College, Wuhu, Anhui, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
| | - Quanlai Zhao
- Spine Research Center of Wannan Medical College, Wuhu, Anhui, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
| | - Hongguang Xu
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Spine Research Center of Wannan Medical College, Wuhu, Anhui, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China.,Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
11
|
Oichi T, Taniguchi Y, Oshima Y, Tanaka S, Saito T. Pathomechanism of intervertebral disc degeneration. JOR Spine 2020; 3:e1076. [PMID: 32211588 PMCID: PMC7084053 DOI: 10.1002/jsp2.1076] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the main contributor to low back pain, which is a leading cause of disability worldwide. Although substantial progress has been made in elucidating the molecular mechanisms of IDD, fundamental and long-lasting treatments for IDD are still lacking. With increased understanding of the complex pathomechanism of IDD, alternative strategies for treating IDD can be discovered. A brief overview of the prevalence and epidemiologic risk factors of IDD is provided in this review, followed by the descriptions of anatomic, cellular, and molecular structure of the intervertebral disc as well as the molecular pathophysiology of IDD. Finally, the recent findings of intervertebral disc progenitors are reviewed and the future perspectives are discussed.
Collapse
Affiliation(s)
- Takeshi Oichi
- Sensory & Motor System Medicine, Faculty of MedicineThe University of TokyoBunkyo‐kuTokyoJapan
- Department of Orthopedic SurgeryUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Yuki Taniguchi
- Sensory & Motor System Medicine, Faculty of MedicineThe University of TokyoBunkyo‐kuTokyoJapan
| | - Yasushi Oshima
- Sensory & Motor System Medicine, Faculty of MedicineThe University of TokyoBunkyo‐kuTokyoJapan
| | - Sakae Tanaka
- Sensory & Motor System Medicine, Faculty of MedicineThe University of TokyoBunkyo‐kuTokyoJapan
| | - Taku Saito
- Sensory & Motor System Medicine, Faculty of MedicineThe University of TokyoBunkyo‐kuTokyoJapan
| |
Collapse
|
12
|
Intervertebral Disc Nucleus Repair: Hype or Hope? Int J Mol Sci 2019; 20:ijms20153622. [PMID: 31344903 PMCID: PMC6696292 DOI: 10.3390/ijms20153622] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic back pain is a common disability, which is often accredited to intervertebral disc degeneration. Gold standard interventions such as spinal fusion, which are mainly designed to mechanically seal the defect, frequently fail to restore the native biomechanics. Moreover, artificial implants have limited success as a repair strategy, as they do not alter the underlying disease and fail to promote tissue integration and subsequent native biomechanics. The reported high rates of spinal fusion and artificial disc implant failure have pushed intervertebral disc degeneration research in recent years towards repair strategies. Intervertebral disc repair utilizing principles of tissue engineering should theoretically be successful, overcoming the inadequacies of artificial implants. For instance, advances in the development of scaffolds aided with cells and growth factors have opened up new possibilities for repair strategies. However, none has reached the stage of clinical trials in humans. In this review, we describe the hitches encountered in the musculoskeletal field and summarize recent advances in designing tissue-engineered constructs for promoting nucleus pulposus repair. Additionally, the review focuses on the effect of biomaterial aided with cells and growth factors on achieving effective functional reparative potency, highlighting the ways to enhance the efficacy of these treatments.
Collapse
|
13
|
Tang Z, Hu B, Zang F, Wang J, Zhang X, Chen H. Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect intervertebral disc from degeneration. Cell Death Dis 2019; 10:510. [PMID: 31263165 PMCID: PMC6602960 DOI: 10.1038/s41419-019-1701-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Intervertebral disc (IVD) degeneration is known to aggravate with age and oxidative stress is implicated in the pathogenesis of many age-related diseases. Nuclear factor (erythroid-derived-2)-like 2 (Nrf2) can confer adaptive protection against oxidative and proteotoxic stress in cells. In this study, we assessed whether Nrf2 can protect against oxidative stress in nucleus pulposus (NP) cells. In addition, we investigated Nrf2 expression in NP tissue samples from patients with different degrees of IVD degeneration and a mouse model of aging and IVD degeneration and the influence of H2O2-induced oxidative stress on autophagic pathways in NP cells. Autophagy was assessed by measuring levels of autophagy-related protein (ATG) family members and the autophagic markers, p62 and LC3. We found that expression of Nrf2 progressively decreased in human NP tissue samples of patients with increasing degrees of IVD degeneration. Nrf2 deficiency leads to the degeneration of IVDs during aging. Nrf2 knockout also aggravates IVD degeneration and reduces autophagic gene expression in an induced mouse model of IVD degeneration. The detrimental effects of H2O2-induced oxidative stress were increased in autophagy-deficient cells via reduced expression of Atg7 and the Keap1–Nrf2–p62 autophagy pathway. Taken together, these results suggest that excessive oxidative stress causes the upregulation of autophagy, and autophagy acts as an antioxidant feedback response activated by a Keap1-Nrf2-p62 feedback loop in IVD degeneration.
Collapse
Affiliation(s)
- Zehan Tang
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bo Hu
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Fazhi Zang
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianxi Wang
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xingda Zhang
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Huajiang Chen
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
14
|
Luo R, Liao Z, Song Y, Yin H, Zhan S, Li G, Ma L, Lu S, Wang K, Li S, Zhang Y, Yang C. Berberine ameliorates oxidative stress-induced apoptosis by modulating ER stress and autophagy in human nucleus pulposus cells. Life Sci 2019; 228:85-97. [PMID: 31047897 DOI: 10.1016/j.lfs.2019.04.064] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
AIM Nucleus pulposus (NP) cell apoptosis induced by oxidative stress is known to be closely involved in the pathogenesis of intervertebral disc (IVD) degeneration. Berberine, a small molecule derived from Rhizoma coptidis, has been found to exert antioxidative activity and preserve cell viability. The present study aims to investigate whether berberine can prevent NP cell apoptosis under oxidative damage and the potential underlying mechanisms. METHODS AND MATERIALS The effects of berberine on IVD degeneration were investigated both in vitro and in vivo. KEY FINDINGS Our results showed that berberine significantly mitigated oxidative stress-decreased cell viability as well as apoptosis in human NP cells. Berberine treatment could attenuate oxidative stress-induced ER stress and autophagy in a concentration-dependent manner. With 4-PBA (ER stress specific inhibitor) and 3-MA (autophagy specific inhibitor) administration, we demonstrated that berberine inhibited oxidative stress-induced apoptosis by modulating the ER stress and autophagy pathway. We also found that the IRE1/JNK pathway was involved in the induction of ER stress-dependent autophagy. With Ca2+ chelator BAPTA-AM utilization, we revealed that oxidative stress-mediated ER stress and autophagy repressed by berberine could be restored by inducing intracellular Ca2+ dysregulation. Furthermore, in vivo study provided evidence that berberine treatment could retard the process of puncture-induced IVD degeneration in a rat model. SIGNIFICANCE Our results indicate that berberine could prevent oxidative stress-induced apoptosis by modulating ER stress and autophagy, thus offering a novel potential pharmacological treatment strategy for IVD degeneration.
Collapse
Affiliation(s)
- Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huipeng Yin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengfeng Zhan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
15
|
Zuo R, Wang Y, Li J, Wu J, Wang W, Li B, Sun C, Wang Z, Shi C, Zhou Y, Liu M, Zhang C. Rapamycin Induced Autophagy Inhibits Inflammation-Mediated Endplate Degeneration by Enhancing Nrf2/Keap1 Signaling of Cartilage Endplate Stem Cells. Stem Cells 2019; 37:828-840. [PMID: 30840341 DOI: 10.1002/stem.2999] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/01/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
Abstract
Cartilage endplate (CEP) calcification inhibits the transport of metabolites and nutrients in the intervertebral disk and is an important initiating factor of intervertebral disk degeneration. However, the mechanisms governing CEP degeneration have not been thoroughly elucidated. In this study, we established a mouse CEP degeneration model and showed that autophagy insufficiency caused the degeneration of CEP. We found that the inflammatory cytokine tumor necrosis factor-α (TNF-α) increased the level of intracellular reactive oxygen species (ROS) and caused cell senescence and osteogenic differentiation of cartilage endplate stem cells (CESCs), whereas rapamycin-induced autophagy protected CESCs from TNF-α-induced oxidative stress and cell senescence. Furthermore, rapamycin-induced autophagy helped CESCs maintain the chondrogenic properties and inhibited extracellular matrix protease expression and osteogenic differentiation. Further study revealed that autophagy activated by rapamycin or inhibited by chloroquine influenced the expression and nuclear translocation of Nrf2, thereby controlling the expression of antioxidant proteins and the scavenging of ROS. Taken together, the results indicate that rapamycin-induced autophagy enhances Nrf2/Keap1 signaling and promotes the expression of antioxidant proteins, thereby eliminating ROS, alleviating cell senescence, reducing the osteogenic differentiation of CESCs, and ultimately protecting CEPs from chronic inflammation-induced degeneration. Stem Cells 2019;37:828-840.
Collapse
Affiliation(s)
- Rui Zuo
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, People's Republic of China
| | - Yanqiu Wang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, People's Republic of China
| | - Jie Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, People's Republic of China
| | - Junlong Wu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, People's Republic of China
| | - Wenkai Wang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, People's Republic of China
| | - Bin Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, People's Republic of China
| | - Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, People's Republic of China
| | - Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns, and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns, and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, People's Republic of China
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, People's Republic of China
| | - Chao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
16
|
Torre OM, Mroz V, Bartelstein MK, Huang AH, Iatridis JC. Annulus fibrosus cell phenotypes in homeostasis and injury: implications for regenerative strategies. Ann N Y Acad Sci 2018; 1442:61-78. [PMID: 30604562 DOI: 10.1111/nyas.13964] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/05/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022]
Abstract
Despite considerable efforts to develop cellular, molecular, and structural repair strategies and restore intervertebral disk function after injury, the basic biology underlying intervertebral disk healing remains poorly understood. Remarkably, little is known about the origins of cell populations residing within the annulus fibrosus, or their phenotypes, heterogeneity, and roles during healing. This review focuses on recent literature highlighting the intrinsic and extrinsic cell types of the annulus fibrosus in the context of the injury and healing environment. Spatial, morphological, functional, and transcriptional signatures of annulus fibrosus cells are reviewed, including inner and outer annulus fibrosus cells, which we propose to be referred to as annulocytes. The annulus also contains peripheral cells, interlamellar cells, and potential resident stem/progenitor cells, as well as macrophages, T lymphocytes, and mast cells following injury. Phases of annulus fibrosus healing include inflammation and recruitment of immune cells, cell proliferation, granulation tissue formation, and matrix remodeling. However, annulus fibrosus healing commonly involves limited remodeling, with granulation tissues remaining, and the development of chronic inflammatory states. Identifying annulus fibrosus cell phenotypes during health, injury, and degeneration will inform reparative regeneration strategies aimed at improving annulus fibrosus healing.
Collapse
Affiliation(s)
- Olivia M Torre
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Victoria Mroz
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Meredith K Bartelstein
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice H Huang
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
17
|
Gao J, Zhang Q, Song L. Resveratrol enhances matrix biosynthesis of nucleus pulposus cells through activating autophagy via the PI3K/Akt pathway under oxidative damage. Biosci Rep 2018; 38:BSR20180544. [PMID: 29752339 PMCID: PMC6435559 DOI: 10.1042/bsr20180544] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022] Open
Abstract
The decrease in nucleus pulposus (NP) matrix production is a classic feature during disc degeneration. Resveratrol (RSV) is reported to play protective effects under many pathological factors.The present study aims to study the effects of RSV on NP matrix homeostasis under oxidative damage and the potential mechanism. Rat NP cells were exposed to H2O2 solution to create an oxidative damage. RSV and the 3-methyladenine (3-MA) were added along with the culture medium to respectively investigate the role of RSV and cellular autophagy. NP matrix synthesis was evaluated by the expression of macromolecules (aggrecan and collagen II) and glycosaminoglycan (GAG) content. Activation of cellular autophagy was assessed by the expression of several molecular markers. Additionally, activity of the PI3K/Akt pathway was also evaluated to study its potential role. Compared with the control group (NP cells treated with H2O2), RSV significantly up-regulated expression of matrix macromolecules (aggrecan and collagen), promoted GAG production, and increased the expression of autophagy-related markers (Beclin-1 and LC-3). Further analysis showed that inhibition of autophagy by 3-MA partly attenuated NP matrix production. Additionally, RSV increased activity of the PI3K/Akt pathway compared with the control NP cells, but it was not affected by the addition of 3-MA. RSV plays a protective role in enhancing NP matrix synthesis under oxidative damage. Mechanistically, activation of the cellular autophagy via the PI3K/Akt pathway may participate in this process. RSV may be an effective drug to attenuate oxidative stress-induced disc degeneration.
Collapse
Affiliation(s)
- Jinlou Gao
- Department of Orthopedic Surgery, The Cancer Hospital of Liaocheng City, Liaocheng 252000, China
| | - Qingyun Zhang
- Department of Traumatic Orthopedics, The Chinese Medicine Hospital of Liaocheng City, Shandong Traditional Chinese Medicine University, Liaocheng 252000, China
| | - Lin Song
- Department of Orthopedic Surgery, The Cancer Hospital of Liaocheng City, Liaocheng 252000, China
| |
Collapse
|
18
|
Lupeol against high-glucose-induced apoptosis via enhancing the anti-oxidative stress in rabbit nucleus pulposus cells. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:2609-2620. [DOI: 10.1007/s00586-018-5687-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/19/2018] [Accepted: 06/25/2018] [Indexed: 01/05/2023]
|
19
|
Eloqayli H, Al-Yousef A, Jaradat R. Vitamin D and ferritin correlation with chronic neck pain using standard statistics and a novel artificial neural network prediction model. Br J Neurosurg 2018; 32:172-176. [PMID: 29447493 DOI: 10.1080/02688697.2018.1436691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM Despite the high prevalence of chronic neck pain, there is limited consensus about the primary etiology, risk factors, diagnostic criteria and therapeutic outcome. Here, we aimed to determine if Ferritin and Vitamin D are modifiable risk factors with chronic neck pain using slandered statistics and artificial intelligence neural network (ANN). METHODS Fifty-four patients with chronic neck pain treated between February 2016 and August 2016 in King Abdullah University Hospital and 54 patients age matched controls undergoing outpatient or minor procedures were enrolled. Patients and control demographic parameters, height, weight and single measurement of serum vitamin D, Vitamin B12, ferritin, calcium, phosphorus, zinc were obtained. An ANN prediction model was developed. RESULTS The statistical analysis reveals that patients with chronic neck pain have significantly lower serum Vitamin D and Ferritin (p-value <.05). 90% of patients with chronic neck pain were females. Multilayer Feed Forward Neural Network with Back Propagation(MFFNN) prediction model were developed and designed based on vitamin D and ferritin as input variables and CNP as output. The ANN model output results show that, 92 out of 108 samples were correctly classified with 85% classification accuracy. CONCLUSIONS Although Iron and vitamin D deficiency cannot be isolated as the sole risk factors of chronic neck pain, they should be considered as two modifiable risk. The high prevalence of chronic neck pain, hypovitaminosis D and low ferritin amongst women is of concern. Bioinformatics predictions with artificial neural network can be of future benefit in classification and prediction models for chronic neck pain. We hope this initial work will encourage a future larger cohort study addressing vitamin D and iron correction as modifiable factors and the application of artificial intelligence models in clinical practice.
Collapse
Affiliation(s)
- Haytham Eloqayli
- a Department of Neurosurgery, Faculty of Medicine , Jordan University of Science and Technology (JUST) , Irbid , Jordan
| | - Ali Al-Yousef
- b Computer Department , Computer and Information Technology Collage, Jerash University , Jersah , Jordan
| | - Raid Jaradat
- a Department of Neurosurgery, Faculty of Medicine , Jordan University of Science and Technology (JUST) , Irbid , Jordan
| |
Collapse
|
20
|
He JL, Dong XH, Li ZH, Wang XY, Fu ZA, Shen N. Pterostilbene inhibits reactive oxygen species production and apoptosis in primary spinal cord neurons by activating autophagy via the mechanistic target of rapamycin signaling pathway. Mol Med Rep 2018; 17:4406-4414. [PMID: 29328494 PMCID: PMC5802216 DOI: 10.3892/mmr.2018.8412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/13/2017] [Indexed: 01/14/2023] Open
Abstract
Autophagy is an important self-adaptive mechanism that is involved in inhibiting reactive oxygen species (ROS) in spinal cord neurons. Pterostilbene, a natural plant extract, has been demonstrated to possess antioxidant effects; however, it has not yet been investigated whether pterostilbene could activate autophagy and protect spinal cord neurons from oxidative stress. In the present study, primary spinal cord neurons of Sprague Dawley rats were cultured. Cell counting kit‑8 analysis was used to detect cytotoxicity of pterostilbene. Cells were treated with various doses of pterostilbene for 24 and 48 h, respectively, and H2O2 was used to induce ROS production. Western blot analysis was performed to assess the protein expression of microtubule‑associated protein 1 light chain 3 (LC3)‑II, Beclin‑1, p62, p‑p70S6K and p‑mechanistic target of rapamycin (mTOR). Furthermore, the green fluorescent protein (GFP)‑LC3 assay was used to detect the level of autophagy level and activation mechanism. 2',7'‑Dichlorofluorescin diacetate and MitoSOX Red staining were used to detect ROS production, and Terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labelling assay was used to analyze apoptosis percentage. ATG5 small interfering (si)RNA transfection was used to analyze the involvement of autophagy. A dose‑dependent increase in the expression of LC3‑II and Beclin‑1, as well as the p62 decline, were observed in the pterostilbene‑treated neurons; however, p‑p70S6K and p‑mTOR expression was inhibited by pterostilbene. Pterostilbene increased the expression of LC3‑II in H2O2‑treated cells, and GFP‑LC3 analysis demonstrated an increased number of autophagosomes. Furthermore, pterostilbene significantly inhibited the ROS production and apoptosis induced by H2O2; however, ATG5 siRNA transfection significantly reversed the protection of pterostilbene. These results indicate that pterostilbene may inhibit the ROS production and apoptosis in spinal cord neurons by activating autophagy via the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jing-Lan He
- Department of Orthopedic Surgery, The Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Xiao-Hui Dong
- Department of Orthopedic Surgery, The Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Zong-Hu Li
- Department of Orthopedic Surgery, The Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Xiao-Ying Wang
- Department of Orthopedic Surgery, The Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Zhi-An Fu
- Department of Orthopedic Surgery, The Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Na Shen
- Department of Orthopedic Surgery, The Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| |
Collapse
|
21
|
Jiang LB, Cao L, Ma YQ, Chen Q, Liang Y, Yuan FL, Li XL, Dong J, Chen N. TIGAR mediates the inhibitory role of hypoxia on ROS production and apoptosis in rat nucleus pulposus cells. Osteoarthritis Cartilage 2018; 26:138-148. [PMID: 29061494 DOI: 10.1016/j.joca.2017.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Hypoxia has been shown to inhibit reactive oxygen species (ROS) production in nucleus pulposus (NP) cells. The TP53-induced glycolysis and apoptosis regulator (TIGAR) has been reported to suppress oxidative stress. We sought to explore the role of TIGAR in the effect of hypoxia on ROS production and apoptosis. METHODS An intervertebral disc degeneration (IDD) model of Sprague-Dawley (SD) rat caudal spine was established by puncturing the Co6-7 disc. TIGAR expression was detected by immunohistochemistry and western blotting in human and SD rat NP tissues of degenerated discs. Rat primary NP cells treated with hypoxia and cobalt chloride (CoCl2) were analyzed by western blotting for TIGAR expression. After TIGAR silence with TIGAR siRNA transfection, apoptosis percentage, mitochondrial and total intracellular ROS levels were measured. H2O2 was used to further check the effects of TIGAR on oxidative stress. Finally, NADPH/NADP+ and GSH/GSSH ratio were examined after TIGAR silencing under hypoxic conditions and after H2O2 treatment. RESULTS A degree-dependent increase in TIGAR expression was observed in human and rat degenerated NP tissues. Hypoxia and hypoxia-inducer CoCl2 enhanced TIGAR and P53 expressions in rat NP cells. TIGAR silence reversed the inhibitory effects of hypoxia on intracellular and mitochondrial ROS production, as well as apoptosis percentage. However, TIGAR silence aggravated H2O2-induced ROS production. In addition, TIGAR increased NADPH/NADP+ and GSH/GSSH ratio in NP cells. CONCLUSIONS These results suggested that TIGAR appears to mediate the protective role of hypoxia on ROS production and apoptosis percentage by enhancing NADPH/NADP+ and GSH/GSSH ratio.
Collapse
Affiliation(s)
- L-B Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - L Cao
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y-Q Ma
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Q Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Liang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - F-L Yuan
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - X-L Li
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - J Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - N Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Qingpu Branch, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Molecular therapeutic strategies for FGFR3 gene-related skeletal dysplasia. J Mol Med (Berl) 2017; 95:1303-1313. [PMID: 29063142 DOI: 10.1007/s00109-017-1602-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 12/24/2022]
Abstract
The FGFR3 gene encodes fibroblast growth factor receptor 3 protein, a negative regulator of chondrogenesis. Gain-of-function mutations result in constitutively activated FGFR3, leading to aberrant signal transduction, and accounting for inhibition of chondrocyte proliferation and differentiation. Generally, these pathogenic mutations maintain FGFR3 in an active state and cause diverse phenotypes in patients with skeletal dysplasia. For decades, studies have revealed the molecular mechanisms of constitutively activated FGFR3 and relevant therapeutic strategies. By modulating the FGFR3-induced signalling pathway with methods such as blocking binding between ligands and receptors, blocking tyrosine kinase activities, or antagonising the FGFR3 downstream signalling pathway, these strategies offer the possibility to ameliorate FGFR3 gene-related skeletal dysplasia phenotypes. In this review, we describe the mechanisms of potential therapeutic targets and underlying regulators and then systematically review molecular therapeutic strategies for FGFR3 gene-related skeletal dysplasia based on current knowledge.
Collapse
|
23
|
Wang F, Gao ZX, Cai F, Sinkemani A, Xie ZY, Shi R, Wei JN, Wu XT. Formation, function, and exhaustion of notochordal cytoplasmic vacuoles within intervertebral disc: current understanding and speculation. Oncotarget 2017; 8:57800-57812. [PMID: 28915712 PMCID: PMC5593684 DOI: 10.18632/oncotarget.18101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 05/01/2017] [Indexed: 01/08/2023] Open
Abstract
Notochord nucleus pulposus cells are characteristic of containing abundant and giant cytoplasmic vacuoles. This review explores the embryonic formation, biological function, and postnatal exhaustion of notochord vacuoles, aiming to characterize the signal network transforming the vacuolated nucleus pulposus cells into the vacuole-less chondrocytic cells. Embryonically, the cytoplasmic vacuoles within vertebrate notochord originate from an evolutionarily conserved vacuolation process during neurulation, which may continue to provide mechanical and signal support in constructing a mammalian intervertebral disc. For full vacuolation, a vacuolating specification from dorsal organizer cells, synchronized convergent extension, well-structured notochord sheath, and sufficient post-Golgi trafficking in notochord cells are required. Postnatally, age-related and species-specific exhaustion of vacuolated nucleus pulposus cells could be potentiated by Fas- and Fas ligand-induced apoptosis, intolerance to mechanical stress and nutrient deficiency, vacuole-mediated proliferation check, and gradual de-vacuolation within the avascular and compression-loaded intervertebral disc. These results suggest that the notochord vacuoles are active and versatile organelles for both embryonic notochord and postnatal nucleus pulposus, and may provide novel information on intervertebral disc degeneration to guide cell-based regeneration.
Collapse
Affiliation(s)
- Feng Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Zeng-Xin Gao
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Feng Cai
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, China
| | - Arjun Sinkemani
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Zhi-Yang Xie
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Rui Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Ji-Nan Wei
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| |
Collapse
|
24
|
Zhang SJ, Yang W, Wang C, He WS, Deng HY, Yan YG, Zhang J, Xiang YX, Wang WJ. Autophagy: A double-edged sword in intervertebral disk degeneration. Clin Chim Acta 2016; 457:27-35. [PMID: 27018178 DOI: 10.1016/j.cca.2016.03.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
Autophagy is a homeostatic mechanism through which intracellular damaged organelles and proteins are degraded and recycled in response to increased metabolic demands or stresses. Although primarily cytoprotective, dysfunction of autophagy is often associated with many degenerative diseases, including intervertebral disc (IVD) degeneration (IDD). As a main contributing factor to low back pain, IDD is the pathological basis for various debilitating spinal diseases. Either higher or lower levels of autophagy are observed in degenerative IVD cells. Despite the precise role of autophagy in disc degeneration that is still controversial, with difference from protection to aggravation, targeting autophagy has shown promise for mitigating disc degeneration. In the current review, we summarize the changes of autophagy in degenerative IVD cells and mainly discuss the relationship between autophagy and IDD. With continued efforts, modulation of the autophagic process could be a potential and attractive therapeutic strategy for degenerative disc disease.
Collapse
Affiliation(s)
- Shu-Jun Zhang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wei Yang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Cheng Wang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Si He
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Hai-Yang Deng
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Guo Yan
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Jian Zhang
- Department of Hand and Micro-surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yong-Xiao Xiang
- Department of Hand and Micro-surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Jun Wang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
25
|
Jiang LB, Cao L, Yin XF, Yasen M, Yishake M, Dong J, Li XL. Activation of autophagy via Ca(2+)-dependent AMPK/mTOR pathway in rat notochordal cells is a cellular adaptation under hyperosmotic stress. Cell Cycle 2015; 14:867-79. [PMID: 25590373 DOI: 10.1080/15384101.2015.1004946] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nucleus pulposus (NP) cells experience hyperosmotic stress in spinal discs; however, how these cells can survive in the hostile microenvironment remains unclear. Autophagy has been suggested to maintain cellular homeostasis under different stresses by degrading the cytoplasmic proteins and organelles. Here, we explored whether autophagy is a cellular adaptation in rat notochordal cells under hyperosmotic stress. Hyperosmotic stress was found to activate autophagy in a dose- and time-dependent manner. SQSTM1/P62 expression was decreased as the autophagy level increased. Transient Ca(2+) influx from intracellular stores and extracellular space was stimulated by hyperosmotic stress. Activation of AMPK and inhibition of p70S6K were observed under hyperosmotic conditions. However, intercellular Ca(2+) chelation inhibited the increase of LC3-II and partly reversed the decrease of p70S6K. Hyperosmotic stress decreased cell viability and promoted apoptosis. Inhibition of autophagy led to SQSTM1/P62 accumulation, reduced cell viability, and accelerated apoptosis in notochordal cells under this condition. These evidences suggest that autophagy induction via the Ca(2+)-dependent AMPK/mTOR pathway might occur as an adaptation mechanism for notochordal cells under hyperosmotic stress. Thus, activating autophagy might be a promising approach to improve viability of notochordal cells in intervertebral discs.
Collapse
Key Words
- AMPK, AMP activated Protein Kinase
- Adaptation
- Apoptosis
- Autophagy
- BAPTA-AM, bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, tetra(acetoxymethyl) ester
- DAPI, 4′, 6-diamidino-2-phenylindole
- ECM, extracellular matrix
- EGTA, ethyleneglycol-bis (2-aminoethylether)-N,N,N′, N-tetraacetic acid
- FITC, fluorescein isothiocyanate
- Hyperosmotic stress
- IDD, Intervertebral disc degeneration
- JC-1, 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl-carbocyanine iodide
- MAPK, mitogen-activated protein kinase
- MDC, Monodansylcadaverine
- MMP, mitochondrial membrane potential
- MPT, mitochondrial permeability transition
- NP, nucleus pulposus
- Notochordal cells
- OD, optical density
- PI, propidium iodide
- PLC, phospholipase C
- SQSTM1, Sequestosome-1
- TRPV4, Transient receptor potential vanilloid 4
- fluo3-AM, fluo3 acetoximethylester
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Li-Bo Jiang
- a Department of Orthopedic Surgery; Zhongshan Hospital ; Fudan University ; Shanghai , China
| | | | | | | | | | | | | |
Collapse
|