1
|
Lai HY, Cooper TF. Costs of antibiotic resistance genes depend on host strain and environment and can influence community composition. Proc Biol Sci 2024; 291:20240735. [PMID: 38889784 DOI: 10.1098/rspb.2024.0735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Antibiotic resistance genes (ARGs) benefit host bacteria in environments containing corresponding antibiotics, but it is less clear how they are maintained in environments where antibiotic selection is weak or sporadic. In particular, few studies have measured if the direct effect of ARGs on host fitness is fixed or if it depends on the host strain, perhaps marking some ARG-host combinations as selective refuges that can maintain ARGs in the absence of antibiotic selection. We quantified the fitness effects of six ARGs in 11 diverse Escherichia spp. strains. Three ARGs (blaTEM-116, cat and dfrA5, encoding resistance to β-lactams, chloramphenicol, and trimethoprim, respectively) imposed an overall cost, but all ARGs had an effect in at least one host strain, reflecting a significant strain interaction effect. A simulation predicts these interactions can cause the success of ARGs to depend on available host strains, and, to a lesser extent, can cause host strain success to depend on the ARGs present in a community. These results indicate the importance of considering ARG effects across different host strains, and especially the potential of refuge strains to allow resistance to persist in the absence of direct selection, in efforts to understand resistance dynamics.
Collapse
Affiliation(s)
- Huei-Yi Lai
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Tim F Cooper
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
2
|
Antimicrobial consumption and resistance in bacteria from humans and food-producing animals: Fourth joint inter-agency report on integrated analysis of antimicrobial agent consumption and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA JIACRA IV - 2019-2021. EFSA J 2024; 22:e8589. [PMID: 38405113 PMCID: PMC10885775 DOI: 10.2903/j.efsa.2024.8589] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
The fourth joint inter-agency report on integrated analysis of antimicrobial consumption (AMC) and the occurrence of antimicrobial resistance (AMR) in bacteria from humans and food-producing animals (JIACRA) addressed data obtained by the Agencies' EU-wide surveillance networks for 2019-2021. The analysis also sought to identify whether significant trends in AMR and AMC were concomitant over 2014-2021. AMC in both human and animal sectors, expressed in mg/kg of estimated biomass, was compared at country and European level. In 2021, the total AMC was assessed at 125.0 mg/kg of biomass for humans (28 EU/EEA countries, range 44.3-160.1) and 92.6 mg/kg of biomass for food-producing animals (29 EU/EEA countries, range 2.5-296.5). Between 2014 and 2021, total AMC in food-producing animals decreased by 44%, while in humans, it remained relatively stable. Univariate and multivariate analyses were performed to study associations between AMC and AMR for selected combinations of bacteria and antimicrobials. Positive associations between consumption of certain antimicrobials and resistance to those substances in bacteria from both humans and food-producing animals were observed. For certain combinations of bacteria and antimicrobials, AMR in bacteria from humans was associated with AMR in bacteria from food-producing animals which, in turn, was related to AMC in animals. The relative strength of these associations differed markedly between antimicrobial class, microorganism and sector. For certain antimicrobials, statistically significant decreasing trends in AMC and AMR were concomitant for food-producing animals and humans in several countries over 2014-2021. Similarly, a proportion of countries that significantly reduced total AMC also registered increasing susceptibility to antimicrobials in indicator E. coli from food-producing animals and E. coli originating from human invasive infections (i.e., exhibited 'complete susceptibility' or 'zero resistance' to a harmonised set of antimicrobials). Overall, the findings suggest that measures implemented to reduce AMC in food-producing animals and in humans have been effective in many countries. Nevertheless, these measures need to be reinforced so that reductions in AMC are retained and further continued, where necessary. This also highlights the importance of measures that promote human and animal health, such as vaccination and better hygiene, thereby reducing the need for use of antimicrobials.
Collapse
|
3
|
Miao J, Ling Y, Chen X, Wu S, Liu X, Xu S, Umar S, Anderson BD. Assessing the nonlinear association of environmental factors with antibiotic resistance genes (ARGs) in the Yangtze River Mouth, China. Sci Rep 2023; 13:20367. [PMID: 37989759 PMCID: PMC10663556 DOI: 10.1038/s41598-023-45973-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
The emergence of antibacterial resistance (ABR) is an urgent and complex public health challenge worldwide. Antibiotic resistant genes (ARGs) are considered as a new pollutant by the WHO because of their wide distribution and emerging prevalence. The role of environmental factors in developing ARGs in bacterial populations is still poorly understood. Therefore, the relationship between environmental factors and bacteria should be explored to combat ABR and propose more tailored solutions in a specific region. Here, we collected and analyzed surface water samples from Yangtze Delta, China during 2021, and assessed the nonlinear association of environmental factors with ARGs through a sigmoid model. A high abundance of ARGs was detected. Amoxicillin, phosphorus (P), chromium (Cr), manganese (Mn), calcium (Ca), and strontium (Sr) were found to be strongly associated with ARGs and identified as potential key contributors to ARG detection. Our findings suggest that the suppression of ARGs may be achieved by decreasing the concentration of phosphorus in surface water. Additionally, Group 2A light metals (e.g., magnesium and calcium) may be candidates for the development of eco-friendly reagents for controlling antibiotic resistance in the future.
Collapse
Affiliation(s)
- Jiazheng Miao
- Division of Natural and Applied Science, Duke Kunshan University, Kunshan, Jiangsu, China
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Yikai Ling
- Division of Natural and Applied Science, Duke Kunshan University, Kunshan, Jiangsu, China
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaoyuan Chen
- Division of Natural and Applied Science, Duke Kunshan University, Kunshan, Jiangsu, China
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Siyuan Wu
- Division of Natural and Applied Science, Duke Kunshan University, Kunshan, Jiangsu, China
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA
| | - Xinyue Liu
- Division of Natural and Applied Science, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Shixin Xu
- Division of Natural and Applied Science, Duke Kunshan University, Kunshan, Jiangsu, China
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Sajid Umar
- Division of Natural and Applied Science, Duke Kunshan University, Kunshan, Jiangsu, China
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Benjamin D Anderson
- Division of Natural and Applied Science, Duke Kunshan University, Kunshan, Jiangsu, China.
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu, China.
- Department of Environmental and Global Health, College of Public Health and Health Professions, and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
4
|
Gionchetta G, Snead D, Semerad S, Beck K, Pruden A, Bürgmann H. Dynamics of antibiotic resistance markers and Escherichia coli invasion in riverine heterotrophic biofilms facing increasing heat and flow stagnation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 893:164658. [PMID: 37321511 DOI: 10.1016/j.scitotenv.2023.164658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
As motivation to address environmental dissemination of antimicrobial resistance (AMR) is mounting, there is a need to characterize mechanisms by which AMR can propagate under environmental conditions. Here we investigated the effect of temperature and stagnation on the persistence of wastewater-associated antibiotic resistance markers in riverine biofilms and the invasion success of genetically-tagged Escherichia coli. Biofilms grown on glass slides incubated in-situ downstream of a wastewater treatment plant effluent discharge point were transferred to laboratory-scale flumes fed with filtered river water under potentially stressful temperature and flow conditions: recirculation flow at 20 °C, stagnation at 20 °C, and stagnation at 30 °C. After 14 days, quantitative PCR and amplicon sequencing were used to quantify bacteria, biofilms diversity, resistance markers (sul1, sul2, ermB, tetW, tetM, tetB, blaCTX-M-1, intI1) and E. coli. Resistance markers significantly decreased over time regardless of the treatment applied. Although invading E. coli were initially able to colonize the biofilms, its abundance subsequently declined. Stagnation was associated with a shift in biofilm taxonomic composition, but there was no apparent effect of flow conditions or the simulated river-pool warming (30 °C) on AMR persistence or invasion success of E. coli. Results however indicated that antibiotic resistance markers in the riverine biofilms decreased under the experimental conditions in the absence of exposure to external inputs of antibiotics and AMR.
Collapse
Affiliation(s)
- G Gionchetta
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - D Snead
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA; Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - S Semerad
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - K Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - A Pruden
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - H Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland.
| |
Collapse
|
5
|
Mesa-Varona O, Boone I, Flor M, Eckmanns T, Kaspar H, Grobbel M, Tenhagen BA. Comparison of Consumption Data and Phenotypical Antimicrobial Resistance in E. coli Isolates of Human Urinary Samples and of Weaning and Fattening Pigs from Surveillance and Monitoring Systems in Germany. Antibiotics (Basel) 2021; 11:antibiotics11010028. [PMID: 35052905 PMCID: PMC8772873 DOI: 10.3390/antibiotics11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022] Open
Abstract
Antimicrobial resistance (AMR) data from humans are mostly collected from clinical isolates, whereas from livestock data also exist from colonizing pathogens. In Germany, livestock data are collected from clinical and nonclinical isolates. We compared resistance levels of clinical and nonclinical isolates of Escherichia coli from weaning and fattening pigs with clinical outpatient isolates of humans from urban and rural areas. We also studied the association of AMR with available antimicrobial use (AMU) data from humans and pigs. Differences between rural and urban isolates were minor and did not affect the comparison between human and pig isolates. We found higher resistance levels to most antimicrobials in human isolates compared to nonclinical isolates of fattening pigs. Resistance to ampicillin, however, was significantly more frequent in clinical isolates of fattening pigs and in clinical and nonclinical isolates of weaning pigs compared to isolates from humans. The opposite was observed for ciprofloxacin. Co-trimoxazole resistance proportions were higher in clinical isolates of weaning and fattening pigs as compared to isolates from humans. Resistance proportions were higher in clinical isolates than in nonclinical isolates from pigs of the same age group and were also higher in weaner than in fattening pigs. Significant associations of AMU and AMR were found for gentamicin resistance and aminoglycoside use in humans (borderline) and for ampicillin resistance in clinical isolates and penicillin use in fattening pigs. In summary, we found significant differences between isolates from all populations, requiring more detailed analyses supported by molecular data and better harmonized data on AMU and AMR.
Collapse
Affiliation(s)
- Octavio Mesa-Varona
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (M.F.); (M.G.); (B.-A.T.)
- Correspondence:
| | - Ides Boone
- Department for Infectious Disease Epidemiology, Robert Koch Institute (RKI), 13353 Berlin, Germany; (I.B.); (T.E.)
| | - Matthias Flor
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (M.F.); (M.G.); (B.-A.T.)
| | - Tim Eckmanns
- Department for Infectious Disease Epidemiology, Robert Koch Institute (RKI), 13353 Berlin, Germany; (I.B.); (T.E.)
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety (BVL), Reference Laboratories, Resistance to Antibiotics Unit Monitoring of Resistance to Antibiotics, Department Method Standardization, 12277 Berlin, Germany;
| | - Mirjam Grobbel
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (M.F.); (M.G.); (B.-A.T.)
| | - Bernd-Alois Tenhagen
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (M.F.); (M.G.); (B.-A.T.)
| |
Collapse
|
6
|
Grilo ML, Pereira A, Sousa-Santos C, Robalo JI, Oliveira M. Climatic Alterations Influence Bacterial Growth, Biofilm Production and Antimicrobial Resistance Profiles in Aeromonas spp. Antibiotics (Basel) 2021; 10:1008. [PMID: 34439058 PMCID: PMC8389027 DOI: 10.3390/antibiotics10081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022] Open
Abstract
Climate change is expected to create environmental disruptions that will impact a wide array of biota. Projections for freshwater ecosystems include severe alterations with gradients across geographical areas. Life traits in bacteria are modulated by environmental parameters, but there is still uncertainty regarding bacterial responses to changes caused by climatic alterations. In this study, we used a river water microcosm model to evaluate how Aeromonas spp., an important pathogenic and zoonotic genus ubiquitary in aquatic ecosystems, responds to environmental variations of temperature and pH as expected by future projections. Namely, we evaluated bacterial growth, biofilm production and antimicrobial resistance profiles of Aeromonas species in pure and mixed cultures. Biofilm production was significantly influenced by temperature and culture, while temperature and pH affected bacterial growth. Reversion of antimicrobial susceptibility status occurred in the majority of strains and tested antimicrobial compounds, with several combinations of temperature and pH contributing to this effect. Current results highlight the consequences that bacterial genus such as Aeromonas will experience with climatic alterations, specifically how their proliferation and virulence and phenotypic resistance expression will be modulated. Such information is fundamental to predict and prevent future outbreaks and deleterious effects that these bacterial species might have in human and animal populations.
Collapse
Affiliation(s)
- Miguel L. Grilo
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Marine and Environmental Sciences Centre (MARE), Instituto Universitário de Ciências Psicológicas, Sociais e da Vida (ISPA), 1100-304 Lisbon, Portugal; (A.P.); (C.S.-S.); (J.I.R.)
| | - Ana Pereira
- Marine and Environmental Sciences Centre (MARE), Instituto Universitário de Ciências Psicológicas, Sociais e da Vida (ISPA), 1100-304 Lisbon, Portugal; (A.P.); (C.S.-S.); (J.I.R.)
| | - Carla Sousa-Santos
- Marine and Environmental Sciences Centre (MARE), Instituto Universitário de Ciências Psicológicas, Sociais e da Vida (ISPA), 1100-304 Lisbon, Portugal; (A.P.); (C.S.-S.); (J.I.R.)
| | - Joana I. Robalo
- Marine and Environmental Sciences Centre (MARE), Instituto Universitário de Ciências Psicológicas, Sociais e da Vida (ISPA), 1100-304 Lisbon, Portugal; (A.P.); (C.S.-S.); (J.I.R.)
| | - Manuela Oliveira
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| |
Collapse
|
7
|
Identification and antimicrobial susceptibility of milk pathogen isolated from dairy production systems. Prev Vet Med 2021; 194:105451. [PMID: 34364060 DOI: 10.1016/j.prevetmed.2021.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022]
Abstract
Livestock has been recognized as a reservoir of antibiotic-resistant bacteria. Prevalence of resistance has been associated with herd size and intensification of animal production systems. Brazil is one of the emergent hotspots of bacterial resistance, which is also associated with animal husbandry. This study aimed to evaluate the resistance profile of pathogens that cause subclinical mastitis and the relationship between resistance status at farm level and different production systems. Milk samples from cows diagnosed with subclinical mastitis were collected from farms that adopt different husbandry systems with different production intensities, i.e., agroecological, low input, high input, Free-Stall and Compost-bedded pack barn. Etiological agents were isolated and microbiologically identified, and antibiotic susceptibility testing was conducted, using the disk diffusion method. The main isolated agents were Streptococcus spp. (n = 54, 30.5 %) and coagulase-positive Staphylococcus (CPS) (n = 54; 30.5 %). The recovered isolates displayed high antibiotic resistance against Sulfamethazine (80.2 %), Gentamicin (29.37 %), Penicillin (29.37 %), Oxacillin (28.82 %) and Ampicillin (26 %). Multidrug resistance was found for all agents and in all farming systems (39.54 %). Neither production systems (p = 0.26) nor farming systems (p = 0.24) significantly affected the resistance rates of samples. Therefore, intensive production systems may not be a root cause of increased rates of antimicrobial resistance in the milk production chain, suggesting that other environmental factors should be investigated. It is noteworthy that high levels of multidrug resistance were even found in bacteria earlier considered as minor pathogens. This development can be taken as a warning that environmental bacteria are potential transmitters of resistance genes to the environment.
Collapse
|
8
|
Lauxen AI, Kobauri P, Wegener M, Hansen MJ, Galenkamp NS, Maglia G, Szymanski W, Feringa BL, Kuipers OP. Mechanism of Resistance Development in E. coli against TCAT, a Trimethoprim-Based Photoswitchable Antibiotic. Pharmaceuticals (Basel) 2021; 14:ph14050392. [PMID: 33919397 PMCID: PMC8143356 DOI: 10.3390/ph14050392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
During the last decades, a continuous rise of multi-drug resistant pathogens has threatened antibiotic efficacy. To tackle this key challenge, novel antimicrobial therapies are needed with increased specificity for the site of infection. Photopharmacology could enable such specificity by allowing for the control of antibiotic activity with light, as exemplified by trans/cis-tetra-ortho-chloroazobenzene-trimethoprim (TCAT) conjugates. Resistance development against the on (irradiated, TCATa) and off (thermally adapted, TCATd) states of TCAT were compared to that of trimethoprim (TMP) in Escherichia coli mutant strain CS1562. Genomics and transcriptomics were used to explore the acquired resistance. Although TCAT shows TMP-like dihydrofolate reductase (DHFR) inhibition in vitro, transcriptome analyses show different responses in acquired resistance. Resistance against TCATa (on) relies on the production of exopolysaccharides and overexpression of TolC. While resistance against TCATd (off) follows a slightly different gene expression profile, both indicate hampering the entrance of the molecule into the cell. Conversely, resistance against TMP is based on alterations in cell metabolism towards a more persister-like phenotype, as well as alteration of expression levels of enzymes involved in the folate biosynthesis. This study provides a deeper understanding of the development of new therapeutic strategies and the consequences on resistance development against photopharmacological drugs.
Collapse
Affiliation(s)
- Anna I. Lauxen
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands;
| | - Piermichele Kobauri
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
| | - Michael Wegener
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
| | - Nicole S. Galenkamp
- Groningen Biomolecular Science & Biotechnology Institute, University of Groningen, Nijenborg 4, 9747 AG Groningen, The Netherlands; (N.S.G.); (G.M.)
| | - Giovanni Maglia
- Groningen Biomolecular Science & Biotechnology Institute, University of Groningen, Nijenborg 4, 9747 AG Groningen, The Netherlands; (N.S.G.); (G.M.)
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Correspondence: (W.S.); (B.L.F.); (O.P.K.)
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
- Correspondence: (W.S.); (B.L.F.); (O.P.K.)
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands;
- Correspondence: (W.S.); (B.L.F.); (O.P.K.)
| |
Collapse
|
9
|
Pybus CA, Felder-Scott C, Obuekwe V, Greenberg DE. Cefiderocol Retains Antibiofilm Activity in Multidrug-Resistant Gram-Negative Pathogens. Antimicrob Agents Chemother 2021; 65:e01194-20. [PMID: 33199383 PMCID: PMC7849010 DOI: 10.1128/aac.01194-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/31/2020] [Indexed: 11/27/2022] Open
Abstract
Cefiderocol is a siderophore cephalosporin with potent antibacterial activity against a broad range of Gram-negative pathogens, including multidrug-resistant strains. Siderophore antibiotics bind ferric iron and utilize iron transporters to cross the cell membrane. In the biofilm setting, where antibiotic resistance is high but iron scavenging is important, cefiderocol may have advantageous antimicrobial properties. In this study, we compared the antimicrobial activity of cefiderocol to that of seven commonly used antibiotics in well-characterized multidrug-resistant pathogens and then determined their efficacy in the biofilm setting. MIC90 values for cefiderocol were consistently lower than those of other antibiotics (ceftolozane-tazobactam, ceftazidime-avibactam, ceftazidime, piperacillin-tazobactam, imipenem, and tobramycin) in all strains tested. Cefiderocol treatment displayed a reduction in the levels of Pseudomonas aeruginosa biofilm (93%, P < 0.0001) superior to that seen with the other antibiotics (49% to 82%). Cefiderocol was generally as effective as or superior to the other antibiotics, depending on the pathogen-antibiotic combination, in reducing biofilm in other pathogens. There was a trend toward greater biofilm reduction seen with increased antibiotic dose or with increased frequency of antibiotic treatment. We conclude that cefiderocol effectively reduces biofilm and is a potent inhibitor of planktonic growth across a range of Gram-negative medically important pathogens.
Collapse
Affiliation(s)
- Christine A Pybus
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Christina Felder-Scott
- School of Health Professions, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Victor Obuekwe
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - David E Greenberg
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| |
Collapse
|
10
|
A framework for identifying the recent origins of mobile antibiotic resistance genes. Commun Biol 2021; 4:8. [PMID: 33398069 PMCID: PMC7782503 DOI: 10.1038/s42003-020-01545-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Since the introduction of antibiotics as therapeutic agents, many bacterial pathogens have developed resistance to antibiotics. Mobile resistance genes, acquired through horizontal gene transfer, play an important role in this process. Understanding from which bacterial taxa these genes were mobilized, and whether their origin taxa share common traits, is critical for predicting which environments and conditions contribute to the emergence of novel resistance genes. This knowledge may prove valuable for limiting or delaying future transfer of novel resistance genes into pathogens. The literature on the origins of mobile resistance genes is scattered and based on evidence of variable quality. Here, we summarize, amend and scrutinize the evidence for 37 proposed origins of mobile resistance genes. Using state-of-the-art genomic analyses, we supplement and evaluate the evidence based on well-defined criteria. Nineteen percent of reported origins did not fulfill the criteria to confidently assign the respective origin. Of the curated origin taxa, >90% have been associated with infection in humans or domestic animals, some taxa being the origin of several different resistance genes. The clinical emergence of these resistance genes appears to be a consequence of antibiotic selection pressure on taxa that are permanently or transiently associated with the human/domestic animal microbiome. Ebmeyer and colleagues developed a genomic framework for identification and scrutiny of the origins of antibiotic resistance genes. Using data scoured from the literature and publicly available genomes, their results indicate that only 81% of previously reported origins are valid, and that the majority of resistance genes of which the origin is known to date emerged in taxa that have been associated with infection in humans and domesticated animals.
Collapse
|
11
|
Adator EH, Narvaez-Bravo C, Zaheer R, Cook SR, Tymensen L, Hannon SJ, Booker CW, Church D, Read RR, McAllister TA. A One Health Comparative Assessment of Antimicrobial Resistance in Generic and Extended-Spectrum Cephalosporin-Resistant Escherichia coli from Beef Production, Sewage and Clinical Settings. Microorganisms 2020; 8:microorganisms8060885. [PMID: 32545206 PMCID: PMC7355928 DOI: 10.3390/microorganisms8060885] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to compare antimicrobial resistance (AMR) in extended-spectrum cephalosporin-resistant and generic Escherichia coli from a One Health continuum of the beef production system in Alberta, Canada. A total of 705 extended-spectrum cephalosporin-resistant E. coli (ESCr) were obtained from: cattle feces (CFeces, n = 382), catch basins (CBasins, n = 137), surrounding streams (SStreams, n = 59), beef processing plants (BProcessing, n = 4), municipal sewage (MSewage; n = 98) and human clinical specimens (CHumans, n = 25). Generic isolates (663) included: CFeces (n = 142), CBasins (n = 185), SStreams (n = 81), BProcessing (n = 159) and MSewage (n = 96). All isolates were screened for antimicrobial susceptibility to 9 antimicrobials and two clavulanic acid combinations. In ESCr, oxytetracycline (87.7%), ampicillin (84.4%) and streptomycin (73.8%) resistance phenotypes were the most common, with source influencing AMR prevalence (p < 0.001). In generic E. coli, oxytetracycline (51.1%), streptomycin (22.6%), ampicillin (22.5%) and sulfisoxazole (14.3%) resistance were most common. Overall, 88.8% of ESCr, and 26.7% of generic isolates exhibited multi-drug resistance (MDR). MDR in ESCr was high from all sources: CFeces (97.1%), MSewage (96.9%), CHumans (96%), BProcessing (100%), CBasins (70.5%) and SStreams (61.4%). MDR in generic E. coli was lower with CFeces (45.1%), CBasins (34.6%), SStreams (23.5%), MSewage (13.6%) and BProcessing (10.7%). ESBL phenotypes were confirmed in 24.7% (n = 174) ESCr and 0.6% of generic E. coli. Prevalence of bla genes in ESCr were blaCTXM (30.1%), blaCTXM-1 (21.6%), blaTEM (20%), blaCTXM-9 (7.9%), blaOXA (3.0%), blaCTXM-2 (6.4%), blaSHV (1.4%) and AmpC β-lactamase blaCMY (81.3%). The lower AMR in ESCr from SStreams and BProcessing and higher AMR in CHumans and CFeces likely reflects antimicrobial use in these environments. Although MDR levels were higher in ESCr as compared to generic E. coli, AMR to the same antimicrobials ranked high in both ESCr and generic E. coli sub-populations. This suggests that both sub-populations reflect similar AMR trends and are equally useful for AMR surveillance. Considering that MDR ESCr MSewage isolates were obtained without enrichment, while those from CFeces were obtained with enrichment, MSewage may serve as a hot spot for MDR emergence and dissemination.
Collapse
Affiliation(s)
- Emelia H. Adator
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
| | - Claudia Narvaez-Bravo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
| | - Shaun R. Cook
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada; (S.R.C.); (L.T.)
| | - Lisa Tymensen
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada; (S.R.C.); (L.T.)
| | - Sherry J. Hannon
- Health Management Services Ltd, Okotoks, AB T1S 2A2, Canada; (S.J.H.); (C.W.B.)
| | - Calvin W. Booker
- Health Management Services Ltd, Okotoks, AB T1S 2A2, Canada; (S.J.H.); (C.W.B.)
| | - Deirdre Church
- Department of Pathology & Laboratory Medicine and Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (D.C.); (R.R.R.)
| | - Ron R. Read
- Department of Pathology & Laboratory Medicine and Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (D.C.); (R.R.R.)
| | - Tim A. McAllister
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
- Correspondence:
| |
Collapse
|
12
|
Spectrochemical identification of kanamycin resistance genes in artificial microbial communities using Clover-assay. J Pharm Biomed Anal 2020; 181:113108. [DOI: 10.1016/j.jpba.2020.113108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 11/24/2022]
|
13
|
Resman F. Antimicrobial stewardship programs; a two-part narrative review of step-wise design and issues of controversy. Part II: Ten questions reflecting knowledge gaps and issues of controversy in the field of antimicrobial stewardship. Ther Adv Infect Dis 2020; 7:2049936120945083. [PMID: 32913648 PMCID: PMC7443983 DOI: 10.1177/2049936120945083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/30/2020] [Indexed: 01/15/2023] Open
Abstract
Regardless of one's opinion on antimicrobial stewardship programs (ASPs), it is hardly possible to work in hospital care and not be exposed to the term or its practical effects. Despite the term being relatively new, the number of publications in the field is vast, including several excellent reviews of general and specific aspects. Work in antimicrobial stewardship is complex, and include aspects not only of infectious disease and microbiology, but also of epidemiology, genetics, behavioural psychology, systems science, economics and ethics, to name but a few. This review aims to take several of these aspects and the scientific evidence from antimicrobial stewardship studies and merge them into two questions: How should we design ASPs based on what we know today? and Which are the most essential unanswered questions regarding antimicrobial stewardship on a broader scale? This narrative review is written in two separate parts aiming to provide answers to the two questions. The first part, published separately, is written as a step-wise approach to designing a stewardship intervention based on the pillars of unmet need, feasibility, scientific evidence and necessary core elements. It is written mainly as a guide to someone new to the field. It is sorted into five distinct steps; (a) focusing on designing aims; (b) assessing performance and local barriers to rational antimicrobial use; (c) deciding on intervention technique; (d) practical, tailored design including core element inclusion; and (e) evaluation and sustainability. This second part formulates 10 critical questions on controversies in the field of antimicrobial stewardship. It is aimed at clinicians and researchers with stewardship experience and strives to promote discussion, not to provide answers.
Collapse
Affiliation(s)
- Fredrik Resman
- Clinical Infection Medicine, Department of
Translational Medicine, Lund University, Rut Lundskogs gata 3, plan 6, Malmö,
20502, Sweden
| |
Collapse
|
14
|
Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, Chivu A, Pina MDF. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? Int J Mol Sci 2019; 20:E2747. [PMID: 31167476 PMCID: PMC6600223 DOI: 10.3390/ijms20112747] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance is now considered a major global challenge; compromising medical advancements and our ability to treat infectious disease. Increased antimicrobial resistance has resulted in increased morbidity and mortality due to infectious diseases worldwide. The lack of discovery of novel compounds from natural products or new classes of antimicrobials, encouraged us to recycle discontinued antimicrobials that were previously removed from routine use due to their toxicity, e.g., colistin. Since the discovery of new classes of compounds is extremely expensive and has very little success, one strategy to overcome this issue could be the application of synthetic compounds that possess antimicrobial activities. Polymers with innate antimicrobial properties or that have the ability to be conjugated with other antimicrobial compounds create the possibility for replacement of antimicrobials either for the direct application as medicine or implanted on medical devices to control infection. Here, we provide the latest update on research related to antimicrobial polymers in the context of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. We summarise polymer subgroups: compounds containing natural peptides, halogens, phosphor and sulfo derivatives and phenol and benzoic derivatives, organometalic polymers, metal nanoparticles incorporated into polymeric carriers, dendrimers and polymer-based guanidine. We intend to enhance understanding in the field and promote further work on the development of polymer based antimicrobial compounds.
Collapse
Affiliation(s)
- Nor Fadhilah Kamaruzzaman
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Li Peng Tan
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Ruhil Hayati Hamdan
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Siew Shean Choong
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Weng Kin Wong
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| | - Amanda Jane Gibson
- Royal Veterinary College, Pathobiology and Population Sciences, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK.
| | - Alexandru Chivu
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK.
| | - Maria de Fatima Pina
- Medicines and Healthcare Regulatory Products Agency, 10 South Colonnade, Canary Wharf, London E14 4PU, UK.
| |
Collapse
|
15
|
Roth N, Hofacre C, Zitz U, Mathis GF, Moder K, Doupovec B, Berghouse R, Domig KJ. Prevalence of antibiotic-resistant E. coli in broilers challenged with a multi-resistant E. coli strain and received ampicillin, an organic acid-based feed additive or a synbiotic preparation. Poult Sci 2019; 98:2598-2607. [PMID: 30690607 PMCID: PMC6527514 DOI: 10.3382/ps/pez004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/08/2019] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to evaluate the effect of ampicillin, an organic acid-based feed additive and a synbiotic preparation on the prevalence of antibiotic-resistant E. coli in the ceca of broilers. A total of 2000 broiler chickens (Ross 708) were randomly assigned to 5 groups with 8 replicates. The negative control group was the only group that was not subjected to avian pathogenic E. coli challenge, while all the other 4 groups received a multi-resistant E. coli strain that was resistant to ampicillin, cephalexin, and nalidixic acid as an oral challenge. The second group served as a challenge control, and the third group received the antibiotic ampicillin via water for 5 d. The fourth group received a feed additive based on organic acids and cinnamaldehyde, and the fifth group received a synbiotic preparation via feed and water. On day 17 and 38 of the trial, cecal samples from 3 birds from each of the 40 pens were obtained, and the E. coli counts and abundances of antibiotic-resistant E. coli were determined. Oral challenge with an avian pathogenic E. coli strain did not influence the performance, and there was no significant difference in growth performance between groups. The total E. coli count was lower (P < 0.05) in the group supplemented with the synbiotic than in the challenge control group on day 38 of the trial. Administration of an antibiotic for 5 d led to a significant increase in the abundance of E. coli strains resistant to ampicillin, amoxicillin-clavulanic acid, cefoxitin, and ceftriaxone. There was no increase in the abundance of antibiotic-resistant E. coli observed in the groups that received feed supplemented with an organic acid/cinnamaldehyde-based feed additive or a synbiotic. Moreover, the effects of the tested feed additives on the prevalence of resistant E. coli are demonstrated by the lower ceftriaxone minimal inhibitory concentration values for this group than for the antibiotic group. Additionally, the synbiotic group exhibited lower ceftriaxone minimal inhibitory concentration values than the antibiotic group.
Collapse
Affiliation(s)
- Nataliya Roth
- Department of Food Science and Technology, Institute of Food Science, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Charles Hofacre
- Department of Population Health, Poultry Diagnostics and Research Center, University of Georgia, 30602 Athens, Georgia, USA
| | - Ulrike Zitz
- Department of Food Science and Technology, Institute of Food Science, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Greg F Mathis
- Department of Population Health, Poultry Diagnostics and Research Center, University of Georgia, 30602 Athens, Georgia, USA
| | - Karl Moder
- Institute of Applied Statistics and Computing, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | | | - Roy Berghouse
- Southern Poultry Research Group, Inc. 30607-3153 Athens, Georgia, USA
| | - Konrad J Domig
- Department of Food Science and Technology, Institute of Food Science, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
16
|
Braun RS, Chambrone L, Khouly I. Prophylactic antibiotic regimens in dental implant failure: A systematic review and meta-analysis. J Am Dent Assoc 2019; 150:e61-e91. [PMID: 31010572 DOI: 10.1016/j.adaj.2018.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND In this systematic review and meta-analysis, the authors examine the efficacy of antibiotic prophylaxis (AP) and specific antibiotic regimens for prevention of dental implant failure in patients who are healthy overall. TYPES OF STUDIES REVIEWED The authors independently conducted electronic database and manual searches to identify randomized controlled trials (RCTs). The authors selected articles on the basis of eligibility criteria and assessed for risk of bias by using the Cochrane Handbook. Implant failure was the primary outcome studied; perimucositis or implantitis, prosthetic failure, and adverse events were secondary outcomes studied. The authors conducted random effects meta-analysis for risk ratios of dichotomous data and used OpenMeta[Analyst] (Center for Evidence Synthesis, Brown School of Public Health) for qualitative assessment of administration schedules. RESULTS With duplicates removed, the authors screened 1,022 abstracts, reviewed 21 full-text articles, and included 8 RCTs that included 2,869 implants in 1,585 patients. Meta-analysis results indicated that AP resulted in a statistically significantly lower number of implant failures for all regimens combined (implant, P = .005; patient, P = .002), as well as preoperative (implant, P = .01; patient, P = .007), pre- and postoperative (implant, P = .04), and postoperative AP only (implant, P = .02), compared with no antibiotics. The authors found no statistically significant differences in analysis of comparative antibiotic treatments or secondary outcomes. The authors identified confounding variables. CONCLUSIONS AND PRACTICAL IMPLICATIONS Although meta-analysis results suggested that AP may reduce implant failure, definitive conclusions cannot be achieved yet. The overall nonsignificant differences reported in individual trials, limitations discussed, implant infection outcomes, and antibiotic-associated risks must be considered. Thus, the results for implant failure outcomes may not warrant the indiscriminate use of antibiotics in patients who are healthy who are receiving dental implants. Investigators must conduct large-scale RCTs to determine the efficacy of AP and various regimens, independent of confounding variables.
Collapse
|
17
|
Khouly I, Braun RS, Chambrone L. Antibiotic prophylaxis may not be indicated for prevention of dental implant infections in healthy patients. A systematic review and meta-analysis. Clin Oral Investig 2019; 23:1525-1553. [DOI: 10.1007/s00784-018-2762-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/17/2018] [Indexed: 01/23/2023]
|
18
|
Evaluation of Acquired Antibiotic Resistance in Escherichia coli Exposed to Long-Term Low-Shear Modeled Microgravity and Background Antibiotic Exposure. mBio 2019; 10:mBio.02637-18. [PMID: 30647159 PMCID: PMC6336426 DOI: 10.1128/mbio.02637-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stress factors experienced during space include microgravity, sleep deprivation, radiation, isolation, and microbial contamination, all of which can promote immune suppression (1, 2). Under these conditions, the risk of infection from opportunistic pathogens increases significantly, particularly during long-term missions (3). If infection occurs, it is important that the infectious agent should not be antibiotic resistant. Minimizing the occurrence of antibiotic resistance is, therefore, highly desirable. To facilitate this, it is important to better understand the long-term response of bacteria to the microgravity environment. This study demonstrated that the use of antibiotics as a preventive measure could be counterproductive and would likely result in persistent resistance to that antibiotic. In addition, unintended resistance to other antimicrobials might also occur as well as permanent genome changes that might have other unanticipated and undesirable consequences. The long-term response of microbial communities to the microgravity environment of space is not yet fully understood. Of special interest is the possibility that members of these communities may acquire antibiotic resistance. In this study, Escherichia coli cells were grown under low-shear modeled microgravity (LSMMG) conditions for over 1,000 generations (1000G) using chloramphenicol treatment between cycles to prevent contamination. The results were compared with data from an earlier control study done under identical conditions using steam sterilization between cycles rather than chloramphenicol. The sensitivity of the final 1000G-adapted strain to a variety of antibiotics was determined using Vitek analysis. In addition to resistance to chloramphenicol, the adapted strain acquired resistance to cefalotin, cefuroxime, cefuroxime axetil, cefoxitin, and tetracycline. In fact, the resistance to chloramphenicol and cefalotin persisted for over 110 generations despite the removal of both LSMMG conditions and trace antibiotic exposure. Genome sequencing of the adapted strain revealed 22 major changes, including 3 transposon-mediated rearrangements (TMRs). Two TMRs disrupted coding genes (involved in bacterial adhesion), while the third resulted in the deletion of an entire segment (14,314 bp) of the genome, which includes 14 genes involved with motility and chemotaxis. These results are in stark contrast with data from our earlier control study in which cells grown under the identical conditions without antibiotic exposure never acquired antibiotic resistance. Overall, LSMMG does not appear to alter the antibiotic stress resistance seen in microbial ecosystems not exposed to microgravity.
Collapse
|
19
|
Ghaly TM, Gillings MR. Mobile DNAs as Ecologically and Evolutionarily Independent Units of Life. Trends Microbiol 2018; 26:904-912. [DOI: 10.1016/j.tim.2018.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 10/14/2022]
|
20
|
Adam RD. Antimicrobial resistance at a community level. Lancet Planet Health 2018; 2:e473-e474. [PMID: 30396436 DOI: 10.1016/s2542-5196(18)30239-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Rodney Dean Adam
- Pathology and Medicine, Aga Khan University, Third Parklands, Nairobi, Kenya.
| |
Collapse
|
21
|
Nogueira T, David PHC, Pothier J. Antibiotics as both friends and foes of the human gut microbiome: The microbial community approach. Drug Dev Res 2018; 80:86-97. [PMID: 30370682 DOI: 10.1002/ddr.21466] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/28/2022]
Abstract
The exposure of the human gut to antibiotics can have a great impact on human health. Antibiotics pertain to the preservation of human health and are useful tools for fighting bacterial infections. They can be used for curing infections and can play a critical role in immunocompromised or chronic patients, or in fighting childhood severe malnutrition. Yet, the genomic and phylogenetic diversity of the human gut changes under antibiotic exposure. Antibiotics can also have severe side effects on human gut health, due to the spreading of potential antibiotic resistance genetic traits and to their correlation with virulence of some bacterial pathogens. They can shape, and even disrupt, the composition and functioning diversity of the human gut microbiome. Traditionally bacterial antibiotic resistances have been evaluated at clone or population level. However, the understanding of these two apparently disparate perspectives as both friends and foes may come from the study of microbiomes as a whole and from the evaluation of both positive and negative effects of antibiotics on microbial community dynamics and diversity. In this review we present some metagenomic tools and databases that enable the studying of antibiotic resistance in human gut metagenomes, promoting the development of personalized medicine strategies, new antimicrobial therapy protocols and patient follow-up.
Collapse
Affiliation(s)
- Teresa Nogueira
- cE3c - Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro H C David
- cE3c - Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Joël Pothier
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, Muséum National d'Histoire naturelle, CNRS, EPHE, CP, Paris, France
| |
Collapse
|
22
|
Strategies for screening, purification and characterization of bacteriocins. Int J Biol Macromol 2018; 117:781-789. [DOI: 10.1016/j.ijbiomac.2018.05.233] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/30/2022]
|
23
|
Beardmore RE, Cook E, Nilsson S, Smith AR, Tillmann A, Esquivel BD, Haynes K, Gow NAR, Brown AJP, White TC, Gudelj I. Drug-mediated metabolic tipping between antibiotic resistant states in a mixed-species community. Nat Ecol Evol 2018; 2:1312-1320. [PMID: 29988162 PMCID: PMC7614790 DOI: 10.1038/s41559-018-0582-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/17/2018] [Indexed: 01/07/2023]
Abstract
Microbes rarely exist in isolation, rather, they form intricate multi-species communities that colonize our bodies and inserted medical devices. However, the efficacy of antimicrobials is measured in clinical laboratories exclusively using microbial monocultures. Here, to determine how multi-species interactions mediate selection for resistance during antibiotic treatment, particularly following drug withdrawal, we study a laboratory community consisting of two microbial pathogens. Single-species dose responses are a poor predictor of community dynamics during treatment so, to better understand those dynamics, we introduce the concept of a dose-response mosaic, a multi-dimensional map that indicates how species' abundance is affected by changes in abiotic conditions. We study the dose-response mosaic of a two-species community with a 'Gene × Gene × Environment × Environment' ecological interaction whereby Candida glabrata, which is resistant to the antifungal drug fluconazole, competes for survival with Candida albicans, which is susceptible to fluconazole. The mosaic comprises several zones that delineate abiotic conditions where each species dominates. Zones are separated by loci of bifurcations and tipping points that identify what environmental changes can trigger the loss of either species. Observations of the laboratory communities corroborated theory, showing that changes in both antibiotic concentration and nutrient availability can push populations beyond tipping points, thus creating irreversible shifts in community composition from drug-sensitive to drug-resistant species. This has an important consequence: resistant species can increase in frequency even if an antibiotic is withdrawn because, unwittingly, a tipping point was passed during treatment.
Collapse
Affiliation(s)
| | - Emily Cook
- Biosciences, University of Exeter, Exeter, UK
| | | | - Adam R Smith
- School of Biological Sciences, University of Missouri at Kansas City, Kansas City, MO, USA
| | - Anna Tillmann
- MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK
| | - Brooke D Esquivel
- School of Biological Sciences, University of Missouri at Kansas City, Kansas City, MO, USA
| | - Ken Haynes
- Biosciences, University of Exeter, Exeter, UK
| | - Neil A R Gow
- MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK
| | - Theodore C White
- School of Biological Sciences, University of Missouri at Kansas City, Kansas City, MO, USA
| | | |
Collapse
|
24
|
Source of the Fitness Defect in Rifamycin-Resistant Mycobacterium tuberculosis RNA Polymerase and the Mechanism of Compensation by Mutations in the β' Subunit. Antimicrob Agents Chemother 2018; 62:AAC.00164-18. [PMID: 29661864 DOI: 10.1128/aac.00164-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis is a critical threat to human health due to the increased prevalence of rifampin resistance (RMPr). Fitness defects have been observed in RMPr mutants with amino acid substitutions in the β subunit of RNA polymerase (RNAP). In clinical isolates, this fitness defect can be ameliorated by the presence of secondary mutations in the double-psi β-barrel (DPBB) domain of the β' subunit of RNAP. To identify factors contributing to the fitness defects observed in vivo, several in vitro RNA transcription assays were utilized to probe initiation, elongation, termination, and 3'-RNA hydrolysis with the wild-type and RMPrM. tuberculosis RNAPs. We found that the less prevalent RMPr mutants exhibit significantly poorer termination efficiencies relative to the wild type, an important factor for proper gene expression. We also found that several mechanistic aspects of transcription of the RMPr mutant RNAPs are impacted relative to the wild type. For the clinically most prevalent mutant, the βS450L mutant, these defects are mitigated by the presence of secondary/compensatory mutations in the DPBB domain of the β' subunit.
Collapse
|
25
|
Pereira RVV, Carroll LM, Lima S, Foditsch C, Siler JD, Bicalho RC, Warnick LD. Impacts of feeding preweaned calves milk containing drug residues on the functional profile of the fecal microbiota. Sci Rep 2018; 8:554. [PMID: 29323259 PMCID: PMC5764986 DOI: 10.1038/s41598-017-19021-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022] Open
Abstract
Feeding drug residue-containing milk to calves is common worldwide and no information is currently available on the impact on the functional profile of the fecal microbiota. Our objective was to characterize the functional profile of the fecal microbiota of preweaned dairy calves fed raw milk with residual concentrations of antimicrobials commonly found in waste milk from birth to weaning. Calves were assigned to a controlled feeding trial being fed milk with no drug residues or milk with antibiotic residues. Fecal samples collected from each calf once a week starting at birth, prior to the first feeding in the trial, until 6 weeks of age. Antibiotic residues resulted in a significant difference in relative abundance of microbial cell functions, especially with genes linked with stress response, regulation and cell signaling, and nitrogen metabolism. These changes could directly impacts selection and dissemination of virulence and antimicrobial. Our data also identified a strong association between age in weeks and abundance of Resistance to Antibiotics and Toxic Compounds. Findings from this study support the hypothesis that drug residues, even at very low concentrations, impact the gut microbiota of calves and result in changes in the functional profile of microbial populations.
Collapse
Affiliation(s)
| | - Laura M Carroll
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Svetlana Lima
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Carla Foditsch
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Julie D Siler
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Rodrigo Carvalho Bicalho
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Lorin D Warnick
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
26
|
Lopatkin AJ, Meredith HR, Srimani JK, Pfeiffer C, Durrett R, You L. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun 2017; 8:1689. [PMID: 29162798 PMCID: PMC5698434 DOI: 10.1038/s41467-017-01532-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
In the absence of antibiotic-mediated selection, sensitive bacteria are expected to displace their resistant counterparts if resistance genes are costly. However, many resistance genes persist for long periods in the absence of antibiotics. Horizontal gene transfer (primarily conjugation) could explain this persistence, but it has been suggested that very high conjugation rates would be required. Here, we show that common conjugal plasmids, even when costly, are indeed transferred at sufficiently high rates to be maintained in the absence of antibiotics in Escherichia coli. The notion is applicable to nine plasmids from six major incompatibility groups and mixed populations carrying multiple plasmids. These results suggest that reducing antibiotic use alone is likely insufficient for reversing resistance. Therefore, combining conjugation inhibition and promoting plasmid loss would be an effective strategy to limit conjugation-assisted persistence of antibiotic resistance. It is unclear whether the transfer of plasmids carrying antibiotic resistance genes can explain their persistence when antibiotics are not present. Here, Lopatkin et al. show that conjugal plasmids, even when costly, are indeed transferred at sufficiently high rates to be maintained in the absence of antibiotics.
Collapse
Affiliation(s)
- Allison J Lopatkin
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Hannah R Meredith
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jaydeep K Srimani
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Connor Pfeiffer
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Rick Durrett
- Department of Mathematics, Duke University, Durham, NC, 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
27
|
Liechti JI, Leventhal GE, Bonhoeffer S. Host population structure impedes reversion to drug sensitivity after discontinuation of treatment. PLoS Comput Biol 2017; 13:e1005704. [PMID: 28827796 PMCID: PMC5602665 DOI: 10.1371/journal.pcbi.1005704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 09/18/2017] [Accepted: 07/26/2017] [Indexed: 01/21/2023] Open
Abstract
Intense use of antibiotics for the treatment of diseases such as tuberculosis, malaria, Staphylococcus aureus or gonorrhea has led to rapidly increasing population levels of drug resistance. This has generally necessitated a switch to new drugs and the discontinuation of older ones, after which resistance often only declines slowly or even persists indefinitely. These long-term effects are usually ascribed to low fitness costs of resistance in absence of the drug. Here we show that structure in the host population, in particular heterogeneity in number of contacts, also plays an important role in the reversion dynamics. Host contact structure acts both during the phase of intense treatment, leading to non-random distributions of the resistant strain among the infected population, and after the discontinuation of the drug, by affecting the competition dynamics resulting in a mitigation of fitness advantages. As a consequence, we observe both a lower rate of reversion and a lower probability that reversion to sensitivity on the population level occurs after treatment is stopped. Our simulations show that the impact of heterogeneity in the host structure is maximal in the biologically most plausible parameter range, namely when fitness costs of resistance are small.
Collapse
Affiliation(s)
- Jonas I. Liechti
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
- * E-mail:
| | - Gabriel E. Leventhal
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | | |
Collapse
|
28
|
Pouwels KB, Batra R, Patel A, Edgeworth JD, Robotham JV, Smieszek T. Will co-trimoxazole resistance rates ever go down? Resistance rates remain high despite decades of reduced co-trimoxazole consumption. J Glob Antimicrob Resist 2017; 11:71-74. [PMID: 28774863 DOI: 10.1016/j.jgar.2017.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/15/2017] [Accepted: 07/21/2017] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Several studies showed that a substantial decline in the use of co-trimoxazole did not result in a decline in resistance rates among Escherichia coli isolates. Since mathematical models have shown that it may take decades before resistance rates start to decline to relevant levels, we performed a new analysis using more recently collected data. METHODS Data were extracted from Guy's and St Thomas' Hospitals Transmission and Antimicrobial Record database which contains microbiological test results from all specimens tested between 2002 and 2014. We selected all blood samples positive for E. coli which were tested for resistance against co-trimoxazole. Prevalence of co-trimoxazole resistance among the tested samples by year was modelled by a Poisson model. RESULTS Almost all (96%) of E. coli blood isolates were tested for co-trimoxazole resistance. In total, 2070 E. coli isolates were available for analyses. Resistance to co-trimoxazole fluctuated over the years, but there was no clear increasing or decreasing trend; the annual percentage change in the prevalence of co-trimoxazole resistance was 0.52 (95% confidence interval -0.75% to 1.81%). Including co-trimoxazole or trimethoprim use in the year before the sample was taken did not improve the model. CONCLUSION The prevalence of co-trimoxazole resistance among E. coli blood isolates remained high, almost three decades after a substantial decline in co-trimoxazole use. Our results further emphasize the importance of prudent antibiotics use, as antibiotic resistance may not always be easily reversible.
Collapse
Affiliation(s)
- Koen B Pouwels
- Modelling and Economics Unit, National Infection Service, Public Health England, London, United Kingdom; Unit of PharmacoEpidemiology & PharmacoEconomics, Department of Pharmacy, University of Groningen, Groningen, The Netherlands; MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College School of Public Health, London, United Kingdom.
| | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Amita Patel
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jonathan D Edgeworth
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Julie V Robotham
- Modelling and Economics Unit, National Infection Service, Public Health England, London, United Kingdom; MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College School of Public Health, London, United Kingdom
| | - Timo Smieszek
- Modelling and Economics Unit, National Infection Service, Public Health England, London, United Kingdom; MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College School of Public Health, London, United Kingdom
| |
Collapse
|
29
|
Jin N, Zhang D, Martin FL. Fingerprinting microbiomes towards screening for microbial antibiotic resistance. Integr Biol (Camb) 2017; 9:406-417. [DOI: 10.1039/c7ib00009j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Naifu Jin
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Francis L. Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
30
|
Chantziaras I, Smet A, Haesebrouck F, Boyen F, Dewulf J. Studying the effect of administration route and treatment dose on the selection of enrofloxacin resistance in commensal Escherichia coli in broilers. J Antimicrob Chemother 2017; 72:1991-2001. [DOI: 10.1093/jac/dkx104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/10/2017] [Indexed: 11/13/2022] Open
|