1
|
Zheng J, Chen X, Xie Y, Zhang Y, Huang Y, Wu P, Lv J, Qiu L. Knocking Out of UDP-Glycosyltransferase Gene UGT2B10 via CRISPR/Cas9 in Helicoverpa armigera Reveals Its Function in Detoxification of Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20862-20871. [PMID: 39269786 DOI: 10.1021/acs.jafc.4c05055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The role of insect UDP-glycosyltransferases (UGTs) in the detoxification of insecticides has rarely been reported. A UGT gene UGT2B10 was previously found overexpressed in a fenvalerate-resistant strain of Helicoverpa armigera. Herein, UGT2B10 was cloned, and its involvement in insecticide detoxification was investigated. UGT2B10 was highly expressed in the larvae, mainly in the fat body and midgut. Treatment with UGT inhibitors 5-nitrouracil and sulfinpyrazone significantly enhanced the fenvalerate toxicity. Knocking down UGT2B10 by RNAi significantly increased the larvae mortality by 17.89%. UGT2B10 was further knocked out by CRISPR/Cas9, and a homozygous strain (HD-dUGT2B10) with a C-base deletion at exon 2 was obtained. The sensitivity of HD-dUGT2B10 to fenvalerate, deltamethrin, cyantraniliprole, acetamiprid, and lufenuron increased significantly, with sensitivity index increased 2.523-, 2.544-, 2.250-, 2.473-, and 3.556-fold, respectively. These results suggested that UGT2B10 was involved in the detoxification of H. armigera to insecticides mentioned above, shedding light upon further understanding of the detoxification mechanisms of insecticides by insect UGTs.
Collapse
Affiliation(s)
- Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangguang Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yao Xie
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jingshu Lv
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Li J, Yan K, Kong H, Jin L, Lv Y, Ding Y, Fan C, Pan Y, Shang Q. UDP-Glycosyltransferases UGT350C3 and UGT344L7 Confer Tolerance to Neonicotinoids in Field Populations of Aphis gossypii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14141-14151. [PMID: 38864686 DOI: 10.1021/acs.jafc.4c02682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The cotton aphid, Aphis gossypii, is a polyphagous pest that stunts host plant growth via direct feeding or transmitting plant virus. Due to the long-term application of insecticides, A. gossypii has developed different levels of resistance to numerous insecticides. We found that five field populations had evolved multiple resistances to neonicotinoids. To explore the resistance mechanism mediated by uridine diphosphate glycosyltransferases (UGTs), two upregulated UGT genes in these five strains, UGT350C3 and UGT344L7, were selected for functional analysis of their roles in neonicotinoid detoxification. Transgenic Drosophila bioassay results indicated that compared with the control lines, the UGT350C3 and UGT344L7 overexpression lines were more tolerant to thiamethoxam, imidacloprid, and dinotefuran. Knockdown of UGT350C3 and UGT344L7 significantly increased A. gossypii sensitivity to thiamethoxam, imidacloprid, and dinotefuran. Molecular docking analysis demonstrated that these neonicotinoids could bind to the active pockets of UGT350C3 and UGT344L7. This study provides functional evidence of neonicotinoid detoxification mediated by UGTs and will facilitate further work to identify strategies for preventing the development of neonicotinoid resistance in insects.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Haoran Kong
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Long Jin
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Yuntong Lv
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Yaping Ding
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Chengcheng Fan
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| |
Collapse
|
3
|
Liu X, Wang S, Tang H, Li M, Gao P, Peng X, Chen M. Uridine Diphosphate-Glycosyltransferase RpUGT344D38 Contributes to λ-Cyhalothrin Resistance in Rhopalosiphum padi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5165-5175. [PMID: 38437009 DOI: 10.1021/acs.jafc.3c08403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Uridine diphosphate-glycosyltransferase (UGT) is a key phase II enzyme in the insect detoxification system. Pyrethroids are commonly used to control the destructive wheat aphid Rhopalosiphum padi. In this study, we found a highly expressed UGT gene, RpUGT344D38, in both λ-cyhalothrin (LCR)- and bifenthrin (BTR)-resistant strains of R. padi. After exposure to λ-cyhalothrin and bifenthrin, the expression levels of RpUGT344D38 were significantly increased in the resistant strains. Knockdown of RpUGT344D38 did not affect the resistance of BTR, but it did significantly increase the susceptibility of LCR aphids to λ-cyhalothrin. Molecular docking analysis demonstrated that RpUGT344D38 had a stable binding interaction with both bifenthrin and λ-cyhalothrin. The recombinant RpUGT344D38 was able to metabolize 50% of λ-cyhalothrin. This study provides a comprehensive analysis of the role of RpUGT344D38 in the resistance of R. padi to bifenthrin and λ-cyhalothrin, contributing to a better understanding of aphid resistance to pyrethroids.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongcheng Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengtian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ping Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Wang S, Huang W, Li M, Wang N, Liu X, Chen M, Peng X. RpUGT344J7 is involved in the reproduction switch of Rhopalosiphum padi with holocyclic life cycle. INSECT SCIENCE 2024. [PMID: 38282241 DOI: 10.1111/1744-7917.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Many aphid species exhibit both cyclical parthenogenesis (CP) and the obligate parthenogenesis (OP) life history, which are genetically determined. In CP aphid lineages, the parthenogenetic individuals can switch from asexual to sexual reproduction quickly in response to environmental factors such as changes in photoperiod and temperature. However, the OP aphid lineages do not undergo sexual reproduction under any conditions. So far, mechanisms underlying the reproduction switch in CP aphids have not been fully elucidated. Rhopalosiphum padi, a serious worldwide insect pest of wheat, has both CP and OP lineages. Uridine diphosphate-glycosyltransferases (UGTs) are enzymes that participate in the metabolic detoxification of xenobiotics. Here, we identified 43 RpUGT genes from R. padi genome and transcriptome sequences, and found that: (1) the UGT content of the CP lineage was significantly higher than that in the OP lineage at the key time points when CP lineage mainly produce virginoparae, gynoparae, and males under inducing condition, while there were no significant difference under normal conditions; (2) RpUGT344J7 gene was highly expressed during the time points when CP lineages produce gynopara and males; (3) the critical time points for CP lineages to produce virginoparaee, gynoparae, and males were affected when the CP lineages were injected with dsRpUGT344J7; (4) the knockdown of RpUGT344J7 caused a significant reduction in the total number of virginoparae, gynoparae, and males in the offspring under inducing condition. The findings contribute to our understanding of the molecular mechanisms underlying the quick shift from asexual to sexual reproduction in aphid species.
Collapse
Affiliation(s)
- Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Wenjie Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Mengtian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Ni Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
5
|
Yang XY, Yang W, Zhao H, Wang BJ, Shi Y, Wang MY, Liu SQ, Liao XL, Shi L. Functional analysis of UDP-glycosyltransferase genes conferring indoxacarb resistance in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105589. [PMID: 37945240 DOI: 10.1016/j.pestbp.2023.105589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 11/12/2023]
Abstract
UDP-glycosyltransferase (UGT) is the major detoxification enzymes of phase II involved in xenobiotics metabolism, which potentially mediates the formation of insect resistance. Previous transcriptome sequencing studies have found that several UGT genes were upregulated in indoxacarb resistant strains of Spodoptera litura, but whether these UGT genes were involved in indoxacarb resistance and their functions in resistance were unclear. In this study, the UGTs inhibitor, 5-nitrouracil, enhanced the toxicity of indoxacarb against S. litura, preliminarily suggesting that UGTs were participated in indoxacarb resistance. Two UGT genes, UGT33J17 and UGT41D10 were upregulated in the resistant strains and could be induced by indoxacarb. Alignment of UGT protein sequences revealed two conserved donor-binding regions with several key residues that interact with catalytic sites and sugar donors. Further molecular modeling and docking analysis indicated that two UGT proteins were able to stably bind indoxacarb and N-decarbomethoxylated metabolite (DCJW). Furthermore, knockdown of UGT33J17 and UGT41D10 decreased viability of Spli-221 cells and enhanced susceptibility of larvae to indoxacarb. Transgenic overexpression of these genes reduced the toxicity of indoxacarb in Drosophila melanogaster. This work revealed that upregulation of UGT genes significantly contributes to indoxacarb resistance in S. litura, and is of great significance for the development of integrated and sustainable management strategies for resistant pests in the field.
Collapse
Affiliation(s)
- Xi-Yu Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wen Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hui Zhao
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Bing-Jie Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yao Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Meng-Yu Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuang-Qing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiao-Lan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
6
|
Yang Z, Xiao T, Lu K. Contribution of UDP-glycosyltransferases to chlorpyrifos resistance in Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105321. [PMID: 36740334 DOI: 10.1016/j.pestbp.2022.105321] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
As a multigene superfamily of Phase II detoxification enzymes, uridine diphosphate (UDP)-glycosyltransferases (UGTs) play important roles in the metabolism of xenobiotics including insecticides. In this study, 5-nitrouracil, an inhibitor of UGT enzyme activity, effectively increased the toxicity of chlorpyrifos to the chlorpyrifos-resistant strain of Nilaparvata lugens, one of the most resistant rice pests. The enzyme content of UGT in the resistant strain was significantly higher than that in the susceptible strain. Among 20 identified UGT genes, UGT386H2, UGT386J2, UGT386N2 and UGT386P1 were found significantly overexpressed in the resistant strain and can be effectively induced by chlorpyrifos. These four UGT genes were most highly expressed in the midgut and/or fat body, two main insect detoxification tissues. Amino acid sequence alignments revealed that these four UGTs contained a variable N-terminal substrate-binding domain and a conserved C-terminal sugar donor-binding domain. Furthermore, homology modeling and molecular docking analyses showed that these UGTs could stably bind to chlorpyrifos and chlorpyrifos oxon, with the binding free energies from -19.4 to -110.62 kcal mol-1. Knockdown of UGT386H2 or UGT386P1 by RNA interference dramatically increased the susceptibility of the resistant strain to chlorpyrifos. These findings suggest that overexpression of these two UGT genes contributes to chlorpyrifos resistance in N. lugens.
Collapse
Affiliation(s)
- Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
Xue J, Zhang H, Zeng S. Integrate thermostabilized fusion protein apocytochrome b562RIL and N-glycosylation mutations: A novel approach to heterologous expression of human UDP-glucuronosyltransferase (UGT) 2B7. Front Pharmacol 2022; 13:965038. [PMID: 36034790 PMCID: PMC9412022 DOI: 10.3389/fphar.2022.965038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Human UDP-glucuronosyltransferase (UGT) 2B7 is a crucial phase II metabolic enzyme that transfers glucuronic acid from UDP-glucuronic acid (UDPGA) to endobiotic and xenobiotic substrates. Biophysical and biochemical investigations of UGT2B7 are hampered by the challenge of the integral membrane protein purification. This study focused on the expression and purification of recombinant UGT2B7 by optimizing the insertion sites for the thermostabilized fusion protein apocytochrome b562RIL (BRIL) and various mutations to improve the protein yields and homogeneity. Preparation of the recombinant proteins with high purity accelerated the measurement of pharmacokinetic parameters of UGT2B7. The dissociation constants (KD) of two classical substrates (zidovudine and androsterone) and two inhibitors (schisanhenol and hesperetin) of UGT2B7 were determined using the surface plasmon resonance spectroscopy (SPR) for the first time. Using negative-staining transmission electron microscopy (TEM), UGT2B7 protein particles were characterized, which could be useful for further exploring its three-dimensional structure. The methods described in this study could be broadly applied to other UGTs and are expected to provide the basis for the exploration of metabolic enzyme kinetics, the mechanisms of drug metabolisms and drug interactions, changes in pharmacokinetics, and pharmacodynamics studies in vitro.
Collapse
Affiliation(s)
- Jia Xue
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haitao Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Haitao Zhang, ; Su Zeng,
| | - Su Zeng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Haitao Zhang, ; Su Zeng,
| |
Collapse
|
8
|
Wang L, Zhu J, Cui L, Wang Q, Huang W, Yang Q, Ji X, Rui C. Overexpression of Multiple UDP-Glycosyltransferase Genes Involved in Sulfoxaflor Resistance in Aphis gossypii Glover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5198-5205. [PMID: 33877846 DOI: 10.1021/acs.jafc.1c00638] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
UDP-glycosyltransferases (UGTs) are major phase II enzymes involved in the metabolic detoxification of xenobiotics. In this study, two UGT-inhibitors, 5-nitrouracil and sulfinpyrazone, significantly increased sulfoxaflor toxicity against sulfoxaflor-resistant (Sul-R) Aphis gossypii, whereas there were no synergistic effects in susceptible (Sus) A. gossypii. The activity of UGTs in the Sul-R strain was significantly higher (1.35-fold) than that in the Sus strain. Further, gene expression determination demonstrated that 11 of 23 UGT genes were significantly upregulated (1.40- to 5.46-fold) in the Sul-R strain, among which the expression levels of UGT350A2, UGT351A4, UGT350B2, UGT342C2, and UGT343C2 could be induced by sulfoxaflor. Additionally, knockdown of UGT350A2, UGT351A4, UGT350B2, and UGT343C2 using RNA interference (RNAi) significantly increased sensitivity (1.57- to 1.76-fold) to sulfoxaflor in the Sul-R strain. These results suggested that UGTs might be involved in sulfoxaflor resistance in A. gossypii. These findings will facilitate further work to validate the functional roles of these UGT genes in sulfoxaflor resistance.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junshu Zhu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinqin Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiling Huang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingjie Yang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuejiao Ji
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
9
|
Erhardt P, Bachmann K, Birkett D, Boberg M, Bodor N, Gibson G, Hawkins D, Hawksworth G, Hinson J, Koehler D, Kress B, Luniwal A, Masumoto H, Novak R, Portoghese P, Sarver J, Serafini MT, Trabbic C, Vermeulen N, Wrighton S. Glossary and tutorial of xenobiotic metabolism terms used during small molecule drug discovery and development (IUPAC Technical Report). PURE APPL CHEM 2021. [DOI: 10.1515/pac-2018-0208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
This project originated more than 15 years ago with the intent to produce a glossary of drug metabolism terms having definitions especially applicable for use by practicing medicinal chemists. A first-draft version underwent extensive beta-testing that, fortuitously, engaged international audiences in a wide range of disciplines involved in drug discovery and development. It became clear that the inclusion of information to enhance discussions among this mix of participants would be even more valuable. The present version retains a chemical structure theme while expanding tutorial comments that aim to bridge the various perspectives that may arise during interdisciplinary communications about a given term. This glossary is intended to be educational for early stage researchers, as well as useful for investigators at various levels who participate on today’s highly multidisciplinary, collaborative small molecule drug discovery teams.
Collapse
Affiliation(s)
- Paul Erhardt
- Center for Drug Design and Development , University of Toledo , Toledo , Ohio , USA
| | | | - Donald Birkett
- Department of Clinical Pharmacology , Flinders University , Adelaide , Australia (now Emeritus), (TGM)
| | - Michael Boberg
- Metabolism and Isotope Chemistry , Bayer , AG , Germany (now undetermined), (TGM)
| | - Nicholas Bodor
- Center for Drug Discovery , University of Florida , Belle Glade , FL , USA (now Emeritus Grad Res Prof/CEO Bodor Labs), (TGM)
| | - Gordon Gibson
- School of Biomedical and Life Sciences, University of Surrey , Surrey , UK (now deceased), (TGM)
| | - David Hawkins
- Huntingdon Life Sciences , Huntingdon , UK (now retired), (TGM)
| | - Gabrielle Hawksworth
- Department of Medicine and Therapeutics , University Aberdeen , Aberdeen , UK (now deceased), (TGM)
| | - Jack Hinson
- Division of Toxicology , University Arkansas for Medical Sciences , Little Rock , Arkansas , USA (now Emeritus Dist Prof), (TGM)
| | - Daniel Koehler
- Department of Pharmacology , University of Toledo , Toledo , Ohio , USA, (ST)
| | - Brian Kress
- Department of Medicinal and Biological Chemistry , University of Toledo , Toledo , Ohio , USA, (ST)
| | | | - Hiroshi Masumoto
- Drug Metabolism , Daiichi Pharm. Corp., Ltd. , Chuo , Tokyo , Japan (now retired), (TGM)
| | - Raymond Novak
- Institute of Environmental Health Science, Wayne State University , Detroit , Michigan , USA (now undetermined), (TGM)
| | - Phillip Portoghese
- Department of Medicinal Chemistry , University of Minnesota , Minneapolis , Minnesota , USA (now same), (TGM)
| | - Jeffrey Sarver
- Department of Pharmacology , University of Toledo , Toledo , Ohio , USA, (ST)
| | - M. Teresa Serafini
- Department of Pharmacokinetics and Drug Metabolism , Laboratories Dr. Esteve, S.A. , Barcelona , Spain (now Head Early ADME), (TGM)
| | | | - Nico Vermeulen
- Department of Pharmacochemistry , Vrije University , Amsterdam , Netherlands (now Emeritus Section Molecular Toxicology), (TGM)
| | - Steven Wrighton
- Eli Lilly, Inc. , Indianapolis , Indiana , USA (now retired), (TGM)
| |
Collapse
|
10
|
Cui X, Wang C, Wang X, Li G, Liu Z, Wang H, Guo X, Xu B. Molecular Mechanism of the UDP-Glucuronosyltransferase 2B20-like Gene ( AccUGT2B20-like) in Pesticide Resistance of Apis cerana cerana. Front Genet 2020; 11:592595. [PMID: 33329739 PMCID: PMC7710801 DOI: 10.3389/fgene.2020.592595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs), being multifunctional detoxification enzymes, play a major role in the process of resistance to various pesticides in insects. However, the mechanism underlying the molecular regulation of pesticide resistance remains unclear, especially in Apis cerana cerana. In this study, all of the UGTs in Apis cerana cerana (AccUGT) have been identified through the multiple alignment and phylogenetic analysis. Expression of AccUGT genes under different pesticides, and antioxidant genes after silencing of AccUGT2B20-like, were detected by qRT-PCR. The resistance of overexpressed AccUGT2B20-like to oxidative stress was investigated by an Escherichia coli overexpression system. Also, antioxidant-related enzyme activity was detected after silencing of the AccUGT2B20-like gene. Expression pattern analysis showed that almost all UGT genes were upregulated under different pesticide treatments. This result indicated that AccUGTs participate in the detoxification process of pesticides. AccUGT2B20-like was the major gene because it was more highly induced than the others. Overexpression of AccUGT2B20-like in E. coli could effectively improve oxidative stress resistance. Specifically, silencing the AccUGT2B20-like gene increased oxidative stress by repressing the expression of oxidation-related genes, decreasing antioxidant-related enzyme activity, and increasing malondialdehyde concentration. Taken together, our results indicate that AccUGTs are involved in pesticide resistance, among which, AccUGT2B20-like contributes to the detoxification of pesticides by eliminating oxidative stress in Apis cerana cerana. This study explains the molecular basis for the resistance of bees to pesticides and provides an important safeguard for maintaining ecological balance.
Collapse
Affiliation(s)
- Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xinxin Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
11
|
Wang M, Liu X, Shi L, Liu J, Shen G, Zhang P, Lu W, He L. Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval). INSECT SCIENCE 2020; 27:276-291. [PMID: 30136378 PMCID: PMC7379272 DOI: 10.1111/1744-7917.12637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 05/30/2023]
Abstract
Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are widely distributed within living organisms and share roles in biotransformation of various lipophilic endo- and xenobiotics with activated UDP sugars. In this study, it was found that the activity of UGTs in abamectin-resistant (AbR) strain was significantly higher (2.35-fold) than that in susceptible strain (SS) of Tetranychus cinnabarinus. Further analysis showed that 5-nitrouracil, the inhibitor of UGTs, could enhance the lethal effect of abamectin on mites. From the previous microarray results, we found an UGT gene (UGT201D3) overexpressed in AbR strain. Quantitative PCR analysis showed that UGT201D3 was highly expressed and more inducible with abamectin exposure in the AbR strain. After silencing the transcription of UGT201D3, the activity of UGTs was decreased and the susceptibility to abamectin was increased in AbR strain whereas it was not in SS. Furthermore, UGT201D3 gene was then successfully expressed in Escherichia coli. The recombinant UGT201D3 exhibited α-naphthol activity (2.81 ± 0.43 nmol/mg protein/min), and the enzyme activity could be inhibited by abamectin (inhibitory concentration at 50%: 57.50 ± 3.54 μmol/L). High-performance liquid chromatography analysis demonstrated that the recombinant UGT201D3 could effectively deplete abamectin (15.77% ± 3.72%) incubating with 150 μg protein for 6 h. These results provided direct evidence that UGT201D3 was involved in abamectin resistance in T. cinnabarinus.
Collapse
Affiliation(s)
- Meng‐Yao Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Xin‐Yang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Li Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Jia‐Lu Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Guang‐Mao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Wen‐Cai Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| |
Collapse
|
12
|
Kumar S, Waldo JP, Jaipuri FA, Marcinowicz A, Van Allen C, Adams J, Kesharwani T, Zhang X, Metz R, Oh AJ, Harris SF, Mautino MR. Discovery of Clinical Candidate (1 R,4 r)-4-(( R)-2-(( S)-6-Fluoro-5 H-imidazo[5,1- a]isoindol-5-yl)-1-hydroxyethyl)cyclohexan-1-ol (Navoximod), a Potent and Selective Inhibitor of Indoleamine 2,3-Dioxygenase 1. J Med Chem 2019; 62:6705-6733. [PMID: 31264862 DOI: 10.1021/acs.jmedchem.9b00662] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel class of 5-substituted 5H-imidazo[5,1-a]isoindoles are described as potent inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1). A structure-based drug design approach was used to elaborate the 5H-imidazo[5,1-a]isoindole core and to improve potency and pharmacological properties. Suitably placed hydrophobic and polar functional groups in the lead molecule allowed improvement of IDO1 inhibitory activity while minimizing off-target liabilities. Structure-activity relationship studies focused on optimizing IDO1 inhibition potency and a pharmacokinetic profile amenable to oral dosing while controlling CYP450 and hERG inhibitory properties.
Collapse
Affiliation(s)
- Sanjeev Kumar
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Jesse P Waldo
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Firoz A Jaipuri
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | | | | | - James Adams
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Tanay Kesharwani
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Xiaoxia Zhang
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Richard Metz
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Angela J Oh
- Structural Biology , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Seth F Harris
- Structural Biology , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Mario R Mautino
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| |
Collapse
|
13
|
Snoeck S, Pavlidi N, Pipini D, Vontas J, Dermauw W, Van Leeuwen T. Substrate specificity and promiscuity of horizontally transferred UDP-glycosyltransferases in the generalist herbivore Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:116-127. [PMID: 30978500 DOI: 10.1016/j.ibmb.2019.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze the addition of UDP-sugars to small hydrophobic molecules, turning them into more water-soluble metabolites. While their role in detoxification is well documented for vertebrates, arthropod UGTs have only recently been linked to the detoxification and sequestration of plant toxins and insecticides. The two-spotted spider mite Tetranychus urticae is a generalist herbivore notorious for rapidly developing resistance to insecticides and acaricides. We identified a set of eight UGT genes that were overexpressed in mites upon long-term acclimation or adaptation to a new host plant and/or in mite strains highly resistant to acaricides. Functional expression revealed that they were all catalytically active and that the majority preferred UDP-glucose as activated donor for glycosylation of model substrates. A high-throughput substrate screening of both plant secondary metabolites and pesticides revealed patterns of both substrate specificity and promiscuity. We further selected nine enzyme-substrate combinations for more comprehensive analysis and determined steady-state kinetic parameters. Among others, plant metabolites such as capsaicin and several flavonoids were shown to be glycosylated. The acaricide abamectin was also glycosylated by two UGTs and one of these was also overexpressed in an abamectin resistant strain. Our study corroborates the potential role of T. urticae UGTs in detoxification of both synthetic and natural xenobiotic compounds and paves the way for rapid substrate screening of arthropod UGTs.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Nena Pavlidi
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, 1908 XH, Amsterdam, the Netherlands.
| | - Dimitra Pipini
- Instiute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), University of Crete, Vassilika Vouton, 70013, Heraklion, Crete, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
| | - John Vontas
- Instiute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), University of Crete, Vassilika Vouton, 70013, Heraklion, Crete, Greece.
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, 1908 XH, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Cai Y, Yang H, Li W, Liu G, Lee PW, Tang Y. Computational Prediction of Site of Metabolism for UGT-Catalyzed Reactions. J Chem Inf Model 2018; 59:1085-1095. [DOI: 10.1021/acs.jcim.8b00851] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingchun Cai
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongbin Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Philip W. Lee
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Wang S, Liu Y, Zhou JJ, Yi JK, Pan Y, Wang J, Zhang XX, Wang JX, Yang S, Xi JH. Identification and tissue expression profiling of candidate UDP-glycosyltransferase genes expressed in Holotrichia parallela motschulsky antennae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:807-816. [PMID: 29397056 DOI: 10.1017/s0007485318000068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It is difficult to control Holotrichia parallela Motschulsky with chemical insecticides due to the larvae's soil-living habit, thus the pest has caused great economic losses in agriculture. In addition, uridine diphosphate-glycosyltransferases (UGTs) catalyze the glycosylation process of a variety of small lipophilic molecules with sugars to produce water-soluble glycosides, and play multiple roles in detoxification, endobiotic modulation, and sequestration in an insect. Some UGTs were found specifically expressed in antennae of Drosophila melanogaster and Spodoptera littoralis, and glucurono-conjugated odorants could not elicit any olfactory signals, suggesting that the UGTs may play roles in odorant inactivation by biotransformation. In the current study, we performed a genome-wide analysis of the candidate UGT family in the dark black chafer, H. parallela. Based on a UGT gene signature and the similarity of these genes to UGT homologs from other organisms, 20 putative H. parallela UGT genes were identified. Bioinformatics analysis was used to predict sequence and structural features of H. parallela UGT proteins, and revealed important domains and residues involved in sugar donor binding and catalysis by comparison with human UGT2B7. Phylogenetic analysis of these 20 UGT protein sequences revealed eight major groups, including both order-specific and conserved groups, which are common to more than one order. Of these 20 UGT genes, HparUGT1265-1, HparUGT3119, and HparUGT8312 were highly (>100-fold change) expressed in antennae, suggesting a possible role in olfactory tissue, and most likely in odorant inactivation and olfactory processing. The remaining UGT genes were expressed in all tissues (head, thorax, abdomen, leg, and wing), indicating that these UGTs likely have different biological functions. This study provides the fundamental basis for determining the function of UGTs in a highly specialized olfactory organ, the H. parallela antenna.
Collapse
Affiliation(s)
- S Wang
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - Y Liu
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - J-J Zhou
- Department of Biointeractions and Crop Protection,Rothamsted Research,Harpenden AL5 2JQ,UK
| | - J-K Yi
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - Y Pan
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - J Wang
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - X-X Zhang
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - J-X Wang
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - S Yang
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - J-H Xi
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| |
Collapse
|
16
|
Pan Y, Tian F, Wei X, Wu Y, Gao X, Xi J, Shang Q. Thiamethoxam Resistance in Aphis gossypii Glover Relies on Multiple UDP-Glucuronosyltransferases. Front Physiol 2018; 9:322. [PMID: 29670540 PMCID: PMC5893893 DOI: 10.3389/fphys.2018.00322] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are major phase II enzymes that conjugate a variety of small lipophilic molecules with UDP sugars and alter them into more water-soluble metabolites. Therefore, glucosidation plays a major role in the inactivation and excretion of a great variety of both endogenous and exogenous compounds. In this study, two inhibitors of UGT enzymes, sulfinpyrazone and 5-nitrouracil, significantly increased the toxicity of thiamethoxam against the resistant strain of Aphis gossypii, which indicates that UGTs are involved in thiamethoxam resistance in the cotton aphid. Based on transcriptome data, 31 A. gossypii UGTs belonging to 11 families (UGT329, UGT330, UGT341, UGT342, UGT343, UGT344, UGT345, UGT348, UGT349, UGT350, and UGT351) were identified. Compared with the thiamethoxam-susceptible strain, the transcripts of 23 UGTs were elevated, and the transcripts of 13 UGTs (UGT344J2, UGT348A2, UGT344D4, UGT341A4, UGT343B2, UGT342B2, UGT350C3, UGT344N2, UGT344A14, UGT344B4, UGT351A4, UGT344A11, and UGT349A2) were increased by approximately 2.0-fold in the resistant cotton aphid. The suppression of selected UGTs significantly increased the insensitivity of resistant aphids to thiamethoxam, suggesting that the up-regulated UGTs might be associated with thiamethoxam tolerance. This study provides an overall view of the possible metabolic factor UGTs that are relevant to the development of insecticide resistance. The results might facilitate further work to validate the roles of these UGTs in thiamethoxam resistance.
Collapse
Affiliation(s)
- Yiou Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun, China
| | - Xiang Wei
- College of Plant Science, Jilin University, Changchun, China
| | - Yongqiang Wu
- College of Plant Science, Jilin University, Changchun, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun, China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
17
|
Characterization of a membrane-bound C-glucosyltransferase responsible for carminic acid biosynthesis in Dactylopius coccus Costa. Nat Commun 2017; 8:1987. [PMID: 29215010 PMCID: PMC5719414 DOI: 10.1038/s41467-017-02031-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/02/2017] [Indexed: 11/09/2022] Open
Abstract
Carminic acid, a glucosylated anthraquinone found in scale insects like Dactylopius coccus, has since ancient times been used as a red colorant in various applications. Here we show that a membrane-bound C-glucosyltransferase, isolated from D. coccus and designated DcUGT2, catalyzes the glucosylation of flavokermesic acid and kermesic acid into their respective C-glucosides dcII and carminic acid. DcUGT2 is predicted to be a type I integral endoplasmic reticulum (ER) membrane protein, containing a cleavable N-terminal signal peptide and a C-terminal transmembrane helix that anchors the protein to the ER, followed by a short cytoplasmic tail. DcUGT2 is found to be heavily glycosylated. Truncated DcUGT2 proteins synthesized in yeast indicate the presence of an internal ER-targeting signal. The cleavable N-terminal signal peptide is shown to be essential for the activity of DcUGT2, whereas the transmembrane helix/cytoplasmic domains, although important, are not crucial for its catalytic function. Carminic acid is a widely applied red colorant that is still harvested from insects because its biosynthesis is not fully understood. Here, the authors identify and characterize a membrane-bound C-glucosyltransferase catalyzing the final step during carminic acid biosynthesis.
Collapse
|
18
|
Krempl C, Sporer T, Reichelt M, Ahn SJ, Heidel-Fischer H, Vogel H, Heckel DG, Joußen N. Potential detoxification of gossypol by UDP-glycosyltransferases in the two Heliothine moth species Helicoverpa armigera and Heliothis virescens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 71:49-57. [PMID: 26873292 DOI: 10.1016/j.ibmb.2016.02.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
The cotton bollworm Helicoverpa armigera and the tobacco budworm Heliothis virescens are closely related generalist insect herbivores and serious pest species on a number of economically important crop plants including cotton. Even though cotton is well defended by its major defensive compound gossypol, a toxic sesquiterpene dimer, larvae of both species are capable of developing on cotton plants. In spite of severe damage larvae cause on cotton plants, little is known about gossypol detoxification mechanisms in cotton-feeding insects. Here, we detected three monoglycosylated and up to five diglycosylated gossypol isomers in the feces of H. armigera and H. virescens larvae fed on gossypol-supplemented diet. Candidate UDP-glycosyltransferase (UGT) genes of H. armigera were selected by microarray studies and in silico analyses and were functionally expressed in insect cells. In enzymatic assays, we show that UGT41B3 and UGT40D1 are capable of glycosylating gossypol mainly to the diglycosylated gossypol isomer 5 that is characteristic for H. armigera and is absent in H. virescens feces. In conclusion, our results demonstrate that gossypol is partially metabolized by UGTs via glycosylation, which might be a crucial step in gossypol detoxification in generalist herbivores utilizing cotton as host plant.
Collapse
Affiliation(s)
- Corinna Krempl
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Theresa Sporer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Hanna Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Nicole Joußen
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| |
Collapse
|
19
|
Genome wide microarray based expression profiles associated with BmNPV resistance and susceptibility in Indian silkworm races of Bombyx mori. Genomics 2015; 106:393-403. [PMID: 26376410 DOI: 10.1016/j.ygeno.2015.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/19/2015] [Accepted: 09/09/2015] [Indexed: 11/23/2022]
Abstract
The molecular mechanism involved in BmNPV resistance was investigated using a genome wide microarray in midgut tissue of Indian silkworm Bombyx mori. In resistant race (Sarupat), 735 genes up-regulated and 589 genes down-regulated at 12 h post BmNPV infection. Similarly, in case of susceptible race (CSR-2), 2183 genes up-regulated and 2115 genes down-regulated. Among these, nine up-regulated and eight down-regulated genes were validated using real-time qPCR analysis. In Sarupat, vacuolar protein sorting associated, Xfin-like protein and carboxypeptidase E-like protein genes significantly up-regulated in infected midgut; prominently down-regulated genes were glutamate receptor ionotropic kainite 2-like, BTB/POZ domain and transferrin. Considerably up-regulated genes in the CSR-2 were peptidoglycan recognition protein S6 precursor and rapamycin while the conspicuous down-regulated genes were facilitated trehalose transporter and zinc transporter ZIP1-like gene. The up-regulation of genes in resistant race after BmNPV infection indicates their possible role in antiviral immune response.
Collapse
|
20
|
Tlemsani C, Huillard O, Arrondeau J, Boudou-Rouquette P, Cessot A, Blanchet B, Thomas-Schoemann A, Coriat R, Durand JP, Giroux J, Alexandre J, Goldwasser F. Effect of glucuronidation on transport and tissue accumulation of tyrosine kinase inhibitors: consequences for the clinical management of sorafenib and regorafenib. Expert Opin Drug Metab Toxicol 2015; 11:785-94. [PMID: 25809423 DOI: 10.1517/17425255.2015.1030392] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION UDP-glucuronosyltransferases (UGTs) are a multigenic family of enzymes responsible for the glucuronidation reaction. Many therapeutic classes of drugs used in solid tumors are UGT substrates, including cancer therapies. AREAS COVERED This article describes the tyrosine kinase inhibitors (TKIs) undergoing hepatic glucuronidation; its effect on transport and tissue accumulation and the clinical consequences of this particular metabolism. A PubMed search concerning the pharmacokinetics of the TKIs was performed. All are extensively metabolized by CYP450. Two TKIs, sorafenib and regorafenib, also have a major UGT-mediated metabolism and were therefore studied. EXPERT OPINION The prescription of the same dose of sorafenib and regorafenib for all patients may be inappropriate since at each enzymatic step of this multistep metabolism inter-individual fluctuations exist. Having a non-exclusive CYP-mediated route of metabolism may reduce the risk of variability in drug exposure when CYP3A4 substrates are concomitantly given. Several clinical consequences derive from this pharmacokinetic particularity of sorafenib and regorafenib. Since no clear difference distinguishes TKIs in efficacy in large randomized trials, the differences for the clinical management of their toxicity is a critical aspect.
Collapse
Affiliation(s)
- Camille Tlemsani
- Paris Descartes University, Cochin Hospital, AP-HP, Medical Oncology Department, Angiogenesis Inhibitors Multidisciplinary Study Group (CERIA) , Paris , France 33 1 58 41 17 46 ; 33 1 58 41 17 45 ;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ouzzine M, Gulberti S, Ramalanjaona N, Magdalou J, Fournel-Gigleux S. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. Front Cell Neurosci 2014; 8:349. [PMID: 25389387 PMCID: PMC4211562 DOI: 10.3389/fncel.2014.00349] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/06/2014] [Indexed: 12/12/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) form a multigenic family of membrane-bound enzymes expressed in various tissues, including brain. They catalyze the formation of β-D-glucuronides from structurally unrelated substances (drugs, other xenobiotics, as well as endogenous compounds) by the linkage of glucuronic acid from the high energy donor, UDP-α-D-glucuronic acid. In brain, UGTs actively participate to the overall protection of the tissue against the intrusion of potentially harmful lipophilic substances that are metabolized as hydrophilic glucuronides. These metabolites are generally inactive, except for important pharmacologically glucuronides such as morphine-6-glucuronide. UGTs are mainly expressed in endothelial cells and astrocytes of the blood brain barrier (BBB). They are also associated to brain interfaces devoid of BBB, such as circumventricular organ, pineal gland, pituitary gland and neuro-olfactory tissues. Beside their key-role as a detoxication barrier, UGTs play a role in the steady-state of endogenous compounds, like steroids or dopamine (DA) that participate to the function of the brain. UGT isoforms of family 1A, 2A, 2B and 3A are expressed in brain tissues to various levels and are known to present distinct but overlapping substrate specificity. The importance of these enzyme species with regard to the formation of toxic, pharmacologically or physiologically relevant glucuronides in the brain will be discussed.
Collapse
Affiliation(s)
- Mohamed Ouzzine
- UMR 7365 CNRS-Université de Lorraine "Ingénierie Moléculaire, Physiopathologie Articulaire" Vandoeuvre-lès-Nancy, France
| | - Sandrine Gulberti
- UMR 7365 CNRS-Université de Lorraine "Ingénierie Moléculaire, Physiopathologie Articulaire" Vandoeuvre-lès-Nancy, France
| | - Nick Ramalanjaona
- UMR 7365 CNRS-Université de Lorraine "Ingénierie Moléculaire, Physiopathologie Articulaire" Vandoeuvre-lès-Nancy, France
| | - Jacques Magdalou
- UMR 7365 CNRS-Université de Lorraine "Ingénierie Moléculaire, Physiopathologie Articulaire" Vandoeuvre-lès-Nancy, France
| | - Sylvie Fournel-Gigleux
- UMR 7365 CNRS-Université de Lorraine "Ingénierie Moléculaire, Physiopathologie Articulaire" Vandoeuvre-lès-Nancy, France
| |
Collapse
|
22
|
Ahn SJ, Dermauw W, Wybouw N, Heckel DG, Van Leeuwen T. Bacterial origin of a diverse family of UDP-glycosyltransferase genes in the Tetranychus urticae genome. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 50:43-57. [PMID: 24727020 DOI: 10.1016/j.ibmb.2014.04.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
UDP-glycosyltransferases (UGTs) catalyze the conjugation of a variety of small lipophilic molecules with uridine diphosphate (UDP) sugars, altering them into more water-soluble metabolites. Thereby, UGTs play an important role in the detoxification of xenobiotics and in the regulation of endobiotics. Recently, the genome sequence was reported for the two-spotted spider mite, Tetranychus urticae, a polyphagous herbivore damaging a number of agricultural crops. Although various gene families implicated in xenobiotic metabolism have been documented in T. urticae, UGTs so far have not. We identified 80 UGT genes in the T. urticae genome, the largest number of UGT genes in a metazoan species reported so far. Phylogenetic analysis revealed that lineage-specific gene expansions increased the diversity of the T. urticae UGT repertoire. Genomic distribution, intron-exon structure and structural motifs in the T. urticae UGTs were also described. In addition, expression profiling after host-plant shifts and in acaricide resistant lines supported an important role for UGT genes in xenobiotic metabolism. Expanded searches of UGTs in other arachnid species (Subphylum Chelicerata), including a spider, a scorpion, two ticks and two predatory mites, unexpectedly revealed the complete absence of UGT genes. However, a centipede (Subphylum Myriapoda) and a water flea and a crayfish (Subphylum Crustacea) contain UGT genes in their genomes similar to insect UGTs, suggesting that the UGT gene family might have been lost early in the Chelicerata lineage and subsequently re-gained in the tetranychid mites. Sequence similarity of T. urticae UGTs and bacterial UGTs and their phylogenetic reconstruction suggest that spider mites acquired UGT genes from bacteria by horizontal gene transfer. Our findings show a unique evolutionary history of the T. urticae UGT gene family among other arthropods and provide important clues to its functions in relation to detoxification and thereby host adaptation.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; National Institute of Horticultural and Herbal Science, Rural Development Administration, 441-440 Suwon, Korea.
| | - Wannes Dermauw
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Nicky Wybouw
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Thomas Van Leeuwen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
23
|
Peng J, Lu J, Shen Q, Zheng M, Luo X, Zhu W, Jiang H, Chen K. In silico site of metabolism prediction for human UGT-catalyzed reactions. Bioinformatics 2013; 30:398-405. [DOI: 10.1093/bioinformatics/btt681] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
24
|
Effect of UDP-glucuronosyltransferase 1A8 polymorphism on raloxifene glucuronidation. Eur J Pharm Sci 2013; 49:199-205. [DOI: 10.1016/j.ejps.2013.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/25/2013] [Accepted: 03/04/2013] [Indexed: 11/19/2022]
|
25
|
Tripathi SP, Bhadauriya A, Patil A, Sangamwar AT. Substrate selectivity of human intestinal UDP-glucuronosyltransferases (UGTs): in silico and in vitro insights. Drug Metab Rev 2013; 45:231-52. [PMID: 23461702 DOI: 10.3109/03602532.2013.767345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The current drug development process aims to produce safe, effective drugs within a reasonable time and at a reasonable cost. Phase II metabolism (glucuronidation) can affect drug action and pharmacokinetics to a considerable extent and so its studies and prediction at initial stages of drug development are very imperative. Extensive glucuronidation is an obstacle to oral bioavailability because the first-pass glucuronidation [or premature clearance by UDP-glucuronosyltransferases (UGTs)] of orally administered agents frequently results in poor oral bioavailability and lack of efficacy. Modeling of new chemical entities/drugs for UGTs and their kinetic data can be useful in understanding the binding patterns to be used in the design of better molecules. This review concentrates on first-pass glucuronidation by intestinal UGTs, including their topology, expression profile, and pharmacogenomics. In addition, recent advances are discussed with respect to substrate selectivity at the binding pocket, structural requirements, and mechanism of enzyme actions.
Collapse
Affiliation(s)
- Satya Prakash Tripathi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | | | | | | |
Collapse
|
26
|
Effect of oxidative stress on UDP-glucuronosyltransferases in rat astrocytes. Toxicol Lett 2012; 213:316-24. [DOI: 10.1016/j.toxlet.2012.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 01/03/2023]
|
27
|
Haslemo T, Loryan I, Ueda N, Mannheimer B, Bertilsson L, Ingelman-Sundberg M, Molden E, Eliasson E. UGT1A4*3 Encodes Significantly Increased Glucuronidation of Olanzapine in Patients on Maintenance Treatment and in Recombinant Systems. Clin Pharmacol Ther 2012; 92:221-7. [DOI: 10.1038/clpt.2012.46] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Ahn SJ, Vogel H, Heckel DG. Comparative analysis of the UDP-glycosyltransferase multigene family in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:133-147. [PMID: 22155036 DOI: 10.1016/j.ibmb.2011.11.006] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/26/2011] [Accepted: 11/28/2011] [Indexed: 05/31/2023]
Abstract
UDP-glycosyltransferases (UGT) catalyze the conjugation of a range of diverse small lipophilic compounds with sugars to produce glycosides, playing an important role in the detoxification of xenobiotics and in the regulation of endobiotics in insects. Recent progress in genome sequencing has enabled an assessment of the extent of the UGT multigene family in insects. Here we report over 310 putative UGT genes identified from genomic databases of eight different insect species together with a transcript database from the lepidopteran Helicoverpa armigera. Phylogenetic analysis of the insect UGTs showed Order-specific gene diversification and inter-species conservation of this multigene family. Only one family (UGT50) is found in all insect species surveyed (except the pea aphid) and may be homologous to mammalian UGT8. Three families (UGT31, UGT32, and UGT305) related to Lepidopteran UGTs are unique to baculoviruses. A lepidopteran sub-tree constructed with 40 H. armigera UGTs and 44 Bombyx mori UGTs revealed that lineage-specific expansions of some families in both species appear to be driven by diversification in the N-terminal substrate binding domain, increasing the range of compounds that could be detoxified or regulated by glycosylation. By comparison of the deduced protein sequences, several important domains were predicted, including the N-terminal signal peptide, UGT signature motif, and C-terminal transmembrane domain. Furthermore, several conserved residues putatively involved in sugar donor binding and catalytic mechanism were also identified by comparison with human UGTs. Many UGTs were expressed in fat body, midgut, and Malpighian tubules, consistent with functions in detoxification, and some were expressed in antennae, suggesting a role in pheromone deactivation. Transcript variants derived from alternative splicing, exon skipping, or intron retention produced additional UGT diversity. These findings from this comparative study of two lepidopteran UGTs as well as other insects reveal a diversity comparable to this gene family in vertebrates, plants and fungi and show the magnitude of the task ahead, to determine biochemical function and physiological relevance of each UGT enzyme.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | | | | |
Collapse
|
29
|
Glossop PA, Watson CAL, Price DA, Bunnage ME, Middleton DS, Wood A, James K, Roberts D, Strang RS, Yeadon M, Perros-Huguet C, Clarke NP, Trevethick MA, Machin I, Stuart EF, Evans SM, Harrison AC, Fairman DA, Agoram B, Burrows JL, Feeder N, Fulton CK, Dillon BR, Entwistle DA, Spence FJ. Inhalation by Design: Novel Tertiary Amine Muscarinic M3 Receptor Antagonists with Slow Off-Rate Binding Kinetics for Inhaled Once-Daily Treatment of Chronic Obstructive Pulmonary Disease. J Med Chem 2011; 54:6888-904. [DOI: 10.1021/jm200884j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul A. Glossop
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Christine A. L. Watson
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - David A. Price
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Mark E. Bunnage
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Donald S. Middleton
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Anthony Wood
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Kim James
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Dannielle Roberts
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Ross S. Strang
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Michael Yeadon
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Christelle Perros-Huguet
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Nicholas P. Clarke
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Michael A. Trevethick
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Ian Machin
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Emilio F. Stuart
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Steven M. Evans
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Anthony C. Harrison
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - David A. Fairman
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Balaji Agoram
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Jane L. Burrows
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Neil Feeder
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Craig K. Fulton
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Barry R. Dillon
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - David A. Entwistle
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Fiona J. Spence
- Department of Worldwide Medicinal Chemistry, ‡Allergy and Respiratory Research Unit, §Department of Pharmacokinetics, Dynamics and Metabolism, ⊥Department of Pharmaceutical Sciences, and ▽̂Department of Drug Safety, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| |
Collapse
|
30
|
Chang A, Singh S, Phillips GN, Thorson JS. Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Curr Opin Biotechnol 2011; 22:800-8. [PMID: 21592771 DOI: 10.1016/j.copbio.2011.04.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 04/11/2011] [Accepted: 04/19/2011] [Indexed: 12/19/2022]
Abstract
Glycosyltransferases (GTs) are ubiquitous in nature and are required for the transfer of sugars to a variety of important biomolecules. This essential enzyme family has been a focus of attention from both the perspective of a potential drug target and a catalyst for the development of vaccines, biopharmaceuticals and small molecule therapeutics. This review attempts to consolidate the emerging lessons from Leloir (nucleotide-dependent) GT structural biology studies and recent applications of these fundamentals toward rational engineering of glycosylation catalysts.
Collapse
Affiliation(s)
- Aram Chang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
31
|
Wu B, Kulkarni K, Basu S, Zhang S, Hu M. First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics. J Pharm Sci 2011; 100:3655-81. [PMID: 21484808 DOI: 10.1002/jps.22568] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 12/11/2022]
Abstract
Glucuronidation mediated by UDP-glucuronosyltransferases (UGTs) is a significant metabolic pathway that facilitates efficient elimination of numerous endobiotics and xenobiotics, including phenolics. UGT genetic deficiency and polymorphisms or inhibition of glucuronidation by concomitant use of drugs are associated with inherited physiological disorders or drug-induced toxicities. Moreover, extensive glucuronidation can be a barrier to oral bioavailability as the first-pass glucuronidation (or premature clearance by UGTs) of orally administered agents usually results in the poor oral bioavailability and lack of efficacies. This review focused on the first-pass glucuronidation of phenolics including natural polyphenols and pharmaceuticals. The complexity of UGT-mediated metabolism of phenolics is highlighted with species-, gender-, organ- and isoform-dependent specificity, as well as functional compensation between UGT1A and 2B subfamily. In addition, recent advances are discussed with respect to the mechanisms of enzymatic actions, including the important properties such as binding pocket size and phosphorylation requirements.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
32
|
Abbas S, Greige-Gerges H, Karam N, Piet MH, Netter P, Magdalou J. Metabolism of parabens (4-hydroxybenzoic acid esters) by hepatic esterases and UDP-glucuronosyltransferases in man. Drug Metab Pharmacokinet 2010; 25:568-77. [PMID: 20930423 DOI: 10.2133/dmpk.dmpk-10-rg-013] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Parabens (alkyl esters of 4-hydroxybenzoic acid) are widely used as preservatives in drugs, cosmetic products, and foodstuffs. Safety concerns have recently increased due to the potential health risks associated to exposure to large amounts of these substances. Biotransformation of parabens mainly includes hydrolysis of the ester bond and glucuronidation reactions. The hydrolysis and glucuronidation of a series of six parabens differing by the nature of the alkyl group were investigated in human liver microsomes and plasma, and the major human UDP-glucuronosyltransferase (UGT) isoforms involved in the reaction were identified. Methyl- and ethylparaben were stable in human plasma, with 95% of the initial concentration remaining after 24 h. On the other hand, propyl-, butyl- and benzylparaben concentrations decreased by 50% under similar conditions. In contrast, rapid hydrolysis was measured with human liver microsomes depending on the alkyl chain length, with t(1/2) varying from 22 min for methylparaben to 87 min for butylparaben. All parabens were actively glucuronidated by liver microsomes, in comparison to 4-hydroxybenzoic acid. They were mainly substrates of human recombinant UGT1A1, UGT1A8, UGT1A9, UGT2B7, UGT2B15 and UGT2B17. In conclusion, the parabens were readily metabolized in human liver through esterase hydrolysis and glucuronidation by several UGT isoforms. These results suggest that these parabens do not accumulate in human tissue.
Collapse
Affiliation(s)
- Suzanne Abbas
- UMR 7561 CNRS-Université Henri Poincaré Nancy-1, School of Medicine, Vandoeuvre-leà s-Nancy, France
| | | | | | | | | | | |
Collapse
|