1
|
Ştefănescu R. Quantification of amyloid-β aggregation inhibitors gallic acid and rosmarinic acid in biological samples by LC-MS/MS. Anal Biochem 2025; 700:115799. [PMID: 39909215 DOI: 10.1016/j.ab.2025.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/16/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
The decline of the cognitive functions encountered at patients diagnosed with Alzheimer's disease (AD) together with the findings of extracellular amyloid deposits, intracellular neurofibrillary tangles and microvascular angiopathy in brain were described at beginning of the 20th century. According to the amyloid cascade hypothesis, the overproduction of amyloid-β peptide and its aggregation into neurotoxic oligomers, fibrils, and amyloid plaques is considered the cause of AD. Amyloid-β fibril formation was experimentally proven in vitro using thioflavin T assay in the absence of interfering chemical compounds and the assay became an analytical tool for assessing the effects of different molecules against amyloid-β aggregation. Recent research studies provided experimental results that indicated the reduction of fibril formation by gallic acid and rosmarinic acid. Mass spectrometry was often employed in studies aiming at identifying, characterizing, and quantitating chemical compounds able to modify the progress of AD. The purpose of this review is to present current research studies regarding the identification and quantitation of the water-soluble gallic acid and rosmarinic acid in biological samples using liquid chromatographs coupled to triple quadrupole mass spectrometers as bioanalytical tools. The present study highlights the presence and amount of these chemical compounds in commonly used medicinal plants and culinary herbs and provides a list of extraction and liquid chromatography coupled to electrospray-triple quadrupole mass spectrometry methods examples described in previous pharmacokinetic studies. The article underlines the bioavailability and safety of gallic acid and rosmarinic acid for further research studies aiming at preventing and slowing the progress of AD.
Collapse
Affiliation(s)
- Raluca Ştefănescu
- Advanced Research and Development Center for Experimental Medicine "Prof. Ostin C. Mungiu" - CEMEX, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115, Iaşi, Romania.
| |
Collapse
|
2
|
Zhou C, Zhong R, Zhang L, Yang R, Luo Y, Lei H, Li L, Cao J, Yuan Z, Tan X, Xie M, Qu H, He Z. Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation. Discov Oncol 2025; 16:47. [PMID: 39812944 PMCID: PMC11735722 DOI: 10.1007/s12672-025-01784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE Rosmarinic acid (RosA) is a natural polyphenol compound that has been shown to be effective in the treatment of inflammatory disease and a variety of malignant tumors. However, its specific mechanism for the treatment of lung adenocarcinoma (LUAD) has not been fully elucidated. Therefore, this study aims to clarify the mechanism of RosA in the treatment of LUAD by integrating bioinformatics, network pharmacology and in vivo experiments, and to explore the potential of the active ingredients of traditional Chinese medicine in treating LUAD. METHODS Firstly, the network pharmacology was used to screen the RosA targets, and LUAD-related differential expressed genes (DEGs) were acquired from the GEO database. The intersection of LUAD regulated by RosA (RDEGs) was obtained through the Venn diagram. Secondly, GO and KEGG enrichment analysis of RDEGs were performed, and protein-protein interaction networks (PPIs) were constructed to identify and visualize hub RDEGs. Then, molecular docking between hub RDEGs and RosA was performed, and further evaluation was carried out by using bioinformatics for the predictive value of the hub RDEGs. Finally, the mechanism of RosA in the treatment of LUAD was verified by establishing a xenograft model of NSCLC in nude mouse. RESULTS Bioinformatics and other analysis showed that, compared with the control group, the expressions of MMP-1, MMP-9, IGFBP3 and PLAU in LUAD tissues were significantly up-regulated, and the expressions of PPARG and FABP4 were significantly down-regulated, and these hub RDEGs had potential predictive value for LUAD. In vivo experimental results showed that RosA could inhibit the growth of transplanted tumors in nude mice bearing tumors of lung cancer cells, reduce the positive expression of Ki67 in lung tumor tissue, and hinder the proliferation of lung tumor cells. Upregulated expression of PPARG and FABP4 by activating the PPAR signaling pathway increases the level of ROS in lung tumor tissues and promotes apoptosis of lung tumor cells. In addition, RosA can also reduce the expression of MMP-9 and IGFBP3, inhibit the migration and invasion of lung tumor tissue cells. CONCLUSIONS This study demonstrated that RosA could induce apoptosis by regulating the PPAR signaling pathway and the expression of MMP-9, inhibit the proliferation, migration and invasion of lung cancer cells, thereby exerting anti-LUAD effects. This study provides new insight into the potential mechanism of RosA in treating LUAD and provides a new therapeutic avenue for treatment of LUAD.
Collapse
Affiliation(s)
- Chaowang Zhou
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Ruqian Zhong
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
| | - Lei Zhang
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Renyi Yang
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
| | - Yuxin Luo
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Huijun Lei
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Liang Li
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Jianzhong Cao
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Zhiying Yuan
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Xiaoning Tan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No. 58, Yuelu District, Changsha, 410006, Hunan, China
| | - Mengzhou Xie
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China.
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China.
| | - Haoyu Qu
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China.
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China.
| | - Zuomei He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No. 58, Yuelu District, Changsha, 410006, Hunan, China.
| |
Collapse
|
3
|
Wang Y, Yan L, Zheng G. Magnetic Molecularly Imprinted Polymers with Hydrophilic Shells for the Selective Enrichment and Detection of Rosmarinic Acid in Aqueous Extraction. PLANTS (BASEL, SWITZERLAND) 2024; 14:56. [PMID: 39795316 PMCID: PMC11722810 DOI: 10.3390/plants14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Rosmarinic acid (RA) is a natural active compound widely found in many plants belonging to the family of Lamiaceae, Boraginaceae, and so on, which has various important bioactivities, including being anti-oxidative, anti-inflammatory, antiviral, etc. Herein, novel hydrophilic magnetic molecularly imprinted polymers (HMMIPs) with a regular core-shell structure were successfully developed using RA as a template molecule, acrylamide (AM) as a functional monomer, N-N 'methylenebisacrylamide (MBA) as a cross-linking agent, and water as the porogen. After a series of characterization and adsorption performance analyses, it was found that HMMIPs are hydrophilic with an adsorption capacity of 8.012 ± 0.54 mg/g, an imprinting factor of 3.64, and a selectivity coefficient of 2.63~2.91. Furthermore, the HMMIPs can be rapidly separated from other components under the influence of external magnetic fields. The HMMIPs were employed for the determination of RA present in the Perilla frutescens and Rosmarinus officinalis aqueous extract with recoveries of 88.2~107.3%. These results indicated that HMMIPs of RA have the benefits of straightforward operation, rapid adsorption, and high selectivity, rendering it an appropriate way for the expedient and selective isolation of RA in an intricate matrix.
Collapse
Affiliation(s)
| | - Linlin Yan
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China; (Y.W.); (G.Z.)
| | | |
Collapse
|
4
|
Zhou X, Du J, Zhu J, Pang X, Yin X, Zhou P. Structure-guided engineering of 4-coumarate: CoA ligase for efficient production of rosmarinic acid in Saccharomyces cerevisiae. J Biotechnol 2024; 396:140-149. [PMID: 39536797 DOI: 10.1016/j.jbiotec.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The utilization of genetically modified microbial cells for rosmarinic acid (RA) production is gaining increased attention as a cost-effective and sustainable approach. However, the substrate promiscuity of 4-coumarate: CoA ligase and RA synthase has been considered as a critical factor for low RA yields. In this study, we rationally engineered the substrate preference of 4-coumarate: CoA ligase (OPc4CL2) from Petroselinum crispum, resulting in a significant enhancement in RA production. Particularly, the introduction of the Y240C mutation led to a remarkable 176 % increase in RA yield. Subsequent enzymatic analysis of OPc4CL2 variants revealed diminished activity towards p-coumaric acid, resulting in insufficient time for the transformation of p-coumaric acid to 4-coumaroyl CoA to generate byproduct. Furthermore, to minimize the formation of undesired byproducts, the overexpression of 4-hydroxyphenylacetate 3-monooxygenase (OHpaB) and NADPH-flavin oxidoreductase (HpaC) was carried out to facilitate the conversion of p-coumaric acid to caffeic acid and 4-hydroxyphenyllactate to salvianic acid A, thus achieving a significant increase in RA yield of up to 329.9 mg/L (16.5 mg/g yield on glucose) in shake-flask cultivation. Finally, the engineered strain YRA113-24BHM achieved a notable RA production of 3.6 g/L (about 20.2 mg/g yield on glucose) by fed-batch fermentation. This study serves as a foundation for the sustainable biosynthesis of RA and other caffeic acid derivatives.
Collapse
Affiliation(s)
- Xiuqi Zhou
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Jiayan Du
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Jinyuan Zhu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Xueqing Pang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Xinjian Yin
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, PR China.
| | - Pingping Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
5
|
Costa Miranda Pires D, da Silva Moraes A. Long-term food supplementation with sweet basil ( Ocimum basilicum L.) prevents age-associated cognitive decline in female mice. Nutr Health 2024:2601060241281765. [PMID: 39340486 DOI: 10.1177/02601060241281765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Background: Mild cognitive decline, a common issue in aging, affects memory, learning, and attention. Nutrition can influence cognition, and research indicates that Ocimum sp. (holy basil and sweet basil) leaf extracts may enhance cognition in rodents and humans. However, these studies do not address whether these benefits extend to fresh or dry leaves consumed in typical human diets, along with physiological aging. Aim: To investigate the effects of sweet basil supplementation on cognition in mature and aged female mice. Methods: Female C57bl mice were divided into four groups: 8-month-old mature adults and 18-month-old aged adults, each receiving either a control or supplemented diet. The supplemented diet included a mix of standard chow and fresh basil leaves, administered for 2-8 months. Cognitive and behavioral assessments were conducted using the novel object recognition (NOR), Morris water maze (MWM), and elevated plus maze (EPM) tasks, focusing on memory, learning, and anxiety. Results: No cognitive improvement was observed in mature mice. However, aged mice receiving long-term basil supplementation showed enhanced discrimination in NOR and stayed closer to the absent platform in MWM compared to nonsupplemented controls. While aging mice exhibited reduced anxiety-like behavior in EPM, basil supplementation prevented this reduction. Conclusion: Basil supplementation appears beneficial in elderly mice, potentially preventing age-related cognitive decline and behavioral changes. These findings support the benefits of basil consumption in cognition and underscore its potential role in promoting healthy aging. Incorporating basil into the diet at a younger age may preserve memory and mitigate behavioral changes as individuals age.
Collapse
Affiliation(s)
- Dâmaris Costa Miranda Pires
- Department of Cell Biology, Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlandia, Brazil
| | - Alberto da Silva Moraes
- Department of Cell Biology, Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlandia, Brazil
| |
Collapse
|
6
|
Al-Hunaiti A, Zihlif M, Abu Thiab T, Al-Awaida W, Al-Ameer HJ, Imraish A. Magnetic nanoparticle-based combination therapy: Synthesis and in vitro proof of concept of CrFe2O4- rosmarinic acid nanoparticles for anti-inflammatory and antioxidant therapy. PLoS One 2024; 19:e0297716. [PMID: 39106290 DOI: 10.1371/journal.pone.0297716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/03/2024] [Indexed: 08/09/2024] Open
Abstract
Magnetic drug delivery systems using nanoparticles present a promising opportunity for clinical treatment. This study explored the potential anti-inflammatory properties of RosA- CrFe2O4 nanoparticles. These nanoparticles were developed through rosmarinic acid (RosA) co-precipitation via a photo-mediated extraction technique. XRD, FTIR, and TEM techniques were employed to characterize the nanoparticles, and the results indicated that they had a cubic spinel ferrite (FCC) structure with an average particle size of 25nm. The anti-inflammatory and antioxidant properties of RosA- CrFe2O4 nanoparticles were evaluated by using LPS-induced raw 264.7 macrophages and a hydrogen peroxide scavenging assay, respectively. The results showed that RosA- CrFe2O4 nanoparticles had moderate DPPH scavenging effects with an IC50 value of 59.61±4.52μg/ml. Notably, these nanoparticles effectively suppressed the expression of pro-inflammatory genes (IL-1β, TNF-α, IL-6, and iNOS) in LPS-stimulated cells. Additionally, the anti-inflammatory activity of RosA- CrFe2O4 nanoparticles was confirmed by reducing the release of secretory pro-inflammatory cytokines (IL-6 and TNF-α) in LPS-stimulated macrophages. This investigation highlights the promising potential of Phyto-mediated CrFe2O4-RosA as an anti-inflammatory and antioxidant agent in biomedical applications.
Collapse
Affiliation(s)
- Afnan Al-Hunaiti
- Department of Chemistry, School of Science, The University of Jordan, Amman, Jordan
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Tuqa Abu Thiab
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| | - Wajdy Al-Awaida
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| | - Hamzeh J Al-Ameer
- Department of Biotechnology, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Amer Imraish
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| |
Collapse
|
7
|
Jacquier EF, Kassis A, Marcu D, Contractor N, Hong J, Hu C, Kuehn M, Lenderink C, Rajgopal A. Phytonutrients in the promotion of healthspan: a new perspective. Front Nutr 2024; 11:1409339. [PMID: 39070259 PMCID: PMC11272662 DOI: 10.3389/fnut.2024.1409339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Considering a growing, aging population, the need for interventions to improve the healthspan in aging are tantamount. Diet and nutrition are important determinants of the aging trajectory. Plant-based diets that provide bioactive phytonutrients may contribute to offsetting hallmarks of aging and reducing the risk of chronic disease. Researchers now advocate moving toward a positive model of aging which focuses on the preservation of functional abilities, rather than an emphasis on the absence of disease. This narrative review discusses the modulatory effect of nutrition on aging, with an emphasis on promising phytonutrients, and their potential to influence cellular, organ and functional parameters in aging. The literature is discussed against the backdrop of a recent conceptual framework which describes vitality, intrinsic capacity and expressed capacities in aging. This aims to better elucidate the role of phytonutrients on vitality and intrinsic capacity in aging adults. Such a review contributes to this new scientific perspective-namely-how nutrition might help to preserve functional abilities in aging, rather than purely offsetting the risk of chronic disease.
Collapse
Affiliation(s)
| | | | - Diana Marcu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Jina Hong
- Amway Innovation and Science, Ada, MI, United States
| | - Chun Hu
- Amway Innovation and Science, Ada, MI, United States
| | - Marissa Kuehn
- Amway Innovation and Science, Ada, MI, United States
| | | | - Arun Rajgopal
- Amway Innovation and Science, Ada, MI, United States
| |
Collapse
|
8
|
Salehi H, Zhang L, Alp-Turgut FN, Arikan B, Elbasan F, Ozfidan-Konakci C, Balcı M, Zengin G, Yildiztugay E, Lucini L. The exogenous application of naringenin and rosmarinic acid modulates functional traits in Lepidium sativum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2761-2771. [PMID: 37994181 DOI: 10.1002/jsfa.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Phenolic modulators have attracted attention for their potential in shaping functional traits in plants. This work investigated the impact of naringenin (Nar) and rosmarinic acid (RA) on the functional properties of Lepidium sativum leaves and roots. RESULTS Untargeted metabolomics identified a diverse phenolic profile, including flavonoids, phenolic acids, low molecular weight phenolics, lignans, and stilbenes. Cluster, analysis of variance multiblock orthogonal partial least squares (AMOPLS), and orthogonal projection to latent structures discriminant analysis (OPLS-DA) multivariate analyses confirmed tissue-specific modulation of bioactive compounds. The tissue was the hierarchically most influential factor, explaining 27% of observed variability, while the treatment and their interaction were statistically insignificant. Thereafter, various in vitro assays were employed to assess antioxidant capacity, including 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical scavenging activity, cupric ion reducing antioxidant capacity (CUPRAC), and ferric ion reducing antioxidant power (FRAP), metal chelating ability, and phosphomolybdenum (PMD) assays. Extracts were also tested for inhibitory effects on cholinesterase, amylase, glucosidase, and tyrosinase enzymes. RA application positively impacted antioxidant and enzyme inhibitory activities, holding valuable implications in shaping the health-promoting properties of L. sativum. CONCLUSION The untargeted metabolomics analysis showed a significant tissue-dependent modulation of bioactive compounds, determining no synergistic effect between applying phenolic compounds in combination. Specifically, the sole application of RA increased anthocyanins and hydroxyphenyl propanoic acid content on leaves, which was strictly related to enhancing the biological activities. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Hajar Salehi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fatma Nur Alp-Turgut
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Melike Balcı
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Gökhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
9
|
Jakobina M, Łyczko J, Szumny A, Galek R. The influence of cultivation conditions on the formation of psychoactive salvinorin A, salvinorin B, rosmarinic acid and caffeic acid in Coleus scutellarioides. Sci Rep 2024; 14:6693. [PMID: 38509159 PMCID: PMC10954737 DOI: 10.1038/s41598-024-57399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
Coleus scutellarioides (L.) Benh. is a popular species in the world, known for its characteristic magnificent colourful leaves. The study has revealed that the contents of rosmarinic acid and caffeic acid are significantly higher in the plant tissues cultivated in vivo than when under in vitro conditions. The performed qualitative and quantitative analyses confirmed the presence (whose averaged content) of salvinorin A (6.65 µg/1 g of fresh plant) and salvinorin B (50.46 µg/1 g of fresh plant) in tissues of Coleus scutellarioides (L.) Benh. of 'Electric lime' variety. The greatest quantities of these compounds were recorded for plants cultivated in vitro on the MS medium enriched with NAA (naphthyl-1-acetic acid) at a concentration of 0.5 mg∙ dm-3. The research detected differences in the amounts of compounds between plants grown in vivo and those cultivated in vitro. Addition of plant growth regulators into the breeding medium under in vitro conditions was found affecting the amounts of compounds in plant tissues.
Collapse
Affiliation(s)
- Maciej Jakobina
- Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 24A, 50-363, Wrocław, Poland.
| | - Jacek Łyczko
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 53-375, Wrocław, Poland
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 53-375, Wrocław, Poland
| | - Renata Galek
- Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 24A, 50-363, Wrocław, Poland
| |
Collapse
|
10
|
Meng R, Yang X, Li Y, Zhang Q. Extending dual-targeting upper-limit in liposomal delivery of lithospermic acid B for Alzheimer's mitochondrial revitalization. J Control Release 2024; 367:604-619. [PMID: 38295997 DOI: 10.1016/j.jconrel.2024.01.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/13/2024]
Abstract
Mitochondrial dysfunction is a pivotal event in Alzheimer's disease (AD) pathogenesis. Lithospermic acid B (LA) has shown promise in safeguarding mitochondria, yet the underlying mechanism remains elusive. Here, we present evidence that LA rejuvenated AD-related mitochondrial pool by co-activating mitophagy and mitochondria biogenesis via PINK1/LC3B/P62 and PGC-1α/Nrf2. To advance in vivo application, hydrophilic LA was encapsulated in liposome (MT-LIP@LA) composed of D-mannosamine-cholesterol/DSPE-PEG2000-Tet1/lecithin (molar ratio, 3:0.3:10) for cascaded brain-neuron targeting. MT-LIP demonstrated 4.3-fold enhanced brain accumulation (2.57%dose/g-brain) than LIP (0.60%dose/g-brain) and precisely targeted neurons at AD lesion sites. Mechanism studies unraveled factors contributing to the preeminent brain targeting ability of MT-LIP: (1) high-density modified mannose efficiently binds to glucose transporter 1 (GLUT1) on blood-brain barrier (BBB); (2) prone to trafficking towards caveolin-Golgi pathway during transcytosis. This augmented therapeutic platform efficiently restored mitochondrial health, prevented neurodegeneration, and ameliorated memory deficits in 3 × Tg-AD transgenic mice. Our studies revealed the underlying pharmacological mechanism of LA and provided a concise but efficient platform for neuronal mitochondria quality control in vivo.
Collapse
Affiliation(s)
- Ran Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Xiyu Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yixian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China.
| |
Collapse
|
11
|
Sirajudeen F, Malhab LJB, Bustanji Y, Shahwan M, Alzoubi KH, Semreen MH, Taneera J, El-Huneidi W, Abu-Gharbieh E. Exploring the Potential of Rosemary Derived Compounds (Rosmarinic and Carnosic Acids) as Cancer Therapeutics: Current Knowledge and Future Perspectives. Biomol Ther (Seoul) 2024; 32:38-55. [PMID: 38148552 PMCID: PMC10762267 DOI: 10.4062/biomolther.2023.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 12/28/2023] Open
Abstract
Cancer is a global health challenge with high morbidity and mortality rates. However, conventional cancer treatment methods often have severe side effects and limited success rates. In the last decade, extensive research has been conducted to develop safe, and efficient alternative treatments that do not have the limitations of existing anticancer medicines. Plant-derived compounds have shown promise in cancer treatment for their anti-carcinogenic and anti-proliferative properties. Rosmarinic acid (RA) and carnosic acid (CA) are potent polyphenolic compounds found in rosemary (Rosmarinus officinalis) extract. They have been extensively studied for their biological properties, which include anti-diabetic, anti-inflammatory, antioxidant, and anticancer activities. In addition, RA and CA have demonstrated effective anti-proliferative properties against various cancers, making them promising targets for extensive research to develop candidate or leading compounds for cancer treatment. This review discusses and summarizes the anti-tumor effect of RA and CA against various cancers and highlights the involved biochemical and mechanistic pathways.
Collapse
Affiliation(s)
- Fazila Sirajudeen
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Lara J. Bou Malhab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yasser Bustanji
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Karem H. Alzoubi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jalal Taneera
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
12
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
13
|
Shah A, Mir PA, Adnan M, Patel M, Maqbool M, Mir RH, Masoodi MH. Synthetic and Natural Bioactive Molecules in Balancing the Crosstalk among Common Signaling Pathways in Alzheimer's Disease: Understanding the Neurotoxic Mechanisms for Therapeutic Intervention. ACS OMEGA 2023; 8:39964-39983. [PMID: 37929080 PMCID: PMC10620788 DOI: 10.1021/acsomega.3c05662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The structure and function of the brain greatly rely on different signaling pathways. The wide variety of biological processes, including neurogenesis, axonal remodeling, the development and maintenance of pre- and postsynaptic terminals, and excitatory synaptic transmission, depends on combined actions of these molecular pathways. From that point of view, it is important to investigate signaling pathways and their crosstalk in order to better understand the formation of toxic proteins during neurodegeneration. With recent discoveries, it is established that the modulation of several pathological events in Alzheimer's disease (AD) due to the mammalian target of rapamycin (mTOR), Wnt signaling, 5'-adenosine monophosphate activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), and sirtuin 1 (Sirt1, silent mating-type information regulator 2 homologue 1) are central to the key findings. These include decreased amyloid formation and inflammation, mitochondrial dynamics control, and enhanced neural stability. This review intends to emphasize the importance of these signaling pathways, which collectively determine the fate of neurons in AD in several ways. This review will also focus on the role of novel synthetic and natural bioactive molecules in balancing the intricate crosstalk among different pathways in order to prolong the longevity of AD patients.
Collapse
Affiliation(s)
- Abdul
Jalil Shah
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Prince Ahad Mir
- Khalsa
College of Pharmacy, G.T. Road, Amritsar 143002, Punjab, India
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, Ha’il 81451, Saudi Arabia
| | - Mitesh Patel
- Research
and Development Cell, Department of Biotechnology, Parul Institute
of Applied Sciences, Parul University, Vadodara 391760, India
| | - Mudasir Maqbool
- Pharmacy
Practice Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
14
|
Azhar MK, Anwar S, Hasan GM, Shamsi A, Islam A, Parvez S, Hassan MI. Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases. Nutrients 2023; 15:4297. [PMID: 37836581 PMCID: PMC10574478 DOI: 10.3390/nu15194297] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Phytochemicals are abundantly occurring natural compounds extracted from plant sources. Rosmarinic acid (RA) is an abundant phytochemical of Lamiaceae species with various therapeutic implications for human health. In recent years, natural compounds have gained significant attention as adjuvant and complementary therapies to existing medications for various diseases. RA has gained popularity due to its anti-inflammatory and antioxidant properties and its roles in various life-threatening conditions, such as cancer, neurodegeneration, diabetes, etc. The present review aims to offer a comprehensive insight into the multifaceted therapeutic properties of RA, including its potential as an anticancer agent, neuroprotective effects, and antidiabetic potential. Based on the available evidences, RA could be considered a potential dietary component for treating various diseases, including cancer, diabetes and neurodegenerative disorders.
Collapse
Affiliation(s)
- Md. Khabeer Azhar
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Saleha Anwar
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 364, United Arab Emirates
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (A.I.); (M.I.H.)
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (A.I.); (M.I.H.)
| |
Collapse
|
15
|
El-Huneidi W, Anjum S, Mohammed AK, Bin Eshaq S, Abdrabh S, Bustanji Y, Soares NC, Semreen MH, Alzoubi KH, Abu-Gharbieh E, Taneera J. Rosemarinic acid protects β-cell from STZ-induced cell damage via modulating NF-κβ pathway. Heliyon 2023; 9:e19234. [PMID: 37662743 PMCID: PMC10472240 DOI: 10.1016/j.heliyon.2023.e19234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Rosmarinic acid (RA), a natural ester phenolic compound, is known to have antioxidant and anti-inflammatory properties. RA has also been reported to exhibit a hypoglycemic effect; however, the mechanisms underlying this effect have yet to be investigated. Therefore, the present study focused on the anti-diabetic effects and mechanism of RA in INS-1 cells using in vitro model. Streptozotocin (STZ) at a concentration of 3 mM was applied to INS-1 cells for 4 h to create a diabetic model. The cells were pretreated for 24 h with various concentrations (1 and 2.5 μM) of RA. The Cell viability, glucose-stimulated insulin secretion (GSIS), glucose uptake, lipid peroxidation, reactive oxygen species (ROS), apoptosis, and protein expression of Bcl-2, NF-κB, 1L-1β, and PARP were assessed. Results showed that STZ-treated INS-1 cells exhibited reduced cell viability, insulin release, insulin content, glucose uptake, and elevated MDA and ROS levels. Cells pretreated with RA maintained the function and morphology of β-cells against STZ-induced damage. Moreover, RA sustained high protein expression levels of Bcl-2 and low expression levels of NF-κB, IL-1β, and PARP. In conclusion, RA preserved β-cells function against STZ-induced damage by altering NF-κB and Bcl-2 pathways.
Collapse
Affiliation(s)
- Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Shabana Anjum
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Engineering, Drug Delivery Research Group, American University of Sharjah, Sharjah, United Arab Emirates
| | - Abdul Khader Mohammed
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Shuhd Bin Eshaq
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Sham Abdrabh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Nelson C. Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
16
|
Sykłowska-Baranek K, Gaweł M, Kuźma Ł, Wileńska B, Kawka M, Jeziorek M, Graikou K, Chinou I, Szyszko E, Stępień P, Zakrzewski P, Pietrosiuk A. Rindera graeca (A. DC.) Boiss. & Heldr. (Boraginaceae) In Vitro Cultures Targeting Lithospermic Acid B and Rosmarinic Acid Production. Molecules 2023; 28:4880. [PMID: 37375435 DOI: 10.3390/molecules28124880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The in vitro cultures of Rindera graeca, a rare endemic plant, were developed as a sustainable source of phenolic acids. Various shoot and root cultures were established and scaled up in a sprinkle bioreactor. A multiplication rate of 7.2 shoots per explant was achieved. HPLC-PDA-ESI-HRMS analysis revealed the presence of rosmarinic acid (RA) and lithospermic acid B (LAB) as the main secondary metabolites in both the shoot and root cultures. The maximum RA (30.0 ± 3.2 mg/g DW) and LAB (49.3 ± 15.5 mg/g DW) yields were determined in root-regenerated shoots. The strongest free radical scavenging activity (87.4 ± 1.1%), according to 2,2-diphenyl-1-picrylhydrazyl-hydrate assay, was noted for roots cultivated in a DCR medium. The highest reducing power (2.3 µM ± 0.4 TE/g DW), determined by the ferric-reducing antioxidant power assay, was noted for shoots cultivated on an SH medium containing 0.5 mg/L 6-benzylaminopurine. A genetic analysis performed using random amplified polymorphic DNA and start codon targeted markers revealed genetic variation of 62.8% to 96.5% among the investigated shoots and roots. This variability reflects the capacity of cultivated shoots and roots to produce phenolic compounds.
Collapse
Affiliation(s)
- Katarzyna Sykłowska-Baranek
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Małgorzata Gaweł
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Łukasz Kuźma
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Łódź, 1 Muszyńskiego, 90-151 Łódź, Poland
| | - Beata Wileńska
- Faculty of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
- Biological and Chemical Research Centre, 101 Żwirki i Wigury St., 02-097 Warsaw, Poland
| | - Mateusz Kawka
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Małgorzata Jeziorek
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Konstantia Graikou
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Ioanna Chinou
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Ewa Szyszko
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Piotr Stępień
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Patryk Zakrzewski
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Agnieszka Pietrosiuk
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| |
Collapse
|
17
|
Kernou ON, Azzouz Z, Madani K, Rijo P. Application of Rosmarinic Acid with Its Derivatives in the Treatment of Microbial Pathogens. Molecules 2023; 28:molecules28104243. [PMID: 37241981 DOI: 10.3390/molecules28104243] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of the antimicrobial resistance phenomena on and the harmful consequences of the use of antibiotics motivate the necessity of innovative antimicrobial therapies, while natural substances are considered a promising alternative. Rosmarin is an original plant compound listed among the hydroxycinnamic acids. This substance has been widely used to fight microbial pathology and chronic infections from microorganisms like bacteria, fungi and viruses. Also, various derivatives of rosmarinic acid, such as the propyl ester of rosmarinic acid, rosmarinic acid methyl ester or the hexyl ester of rosmarinic acid, have been synthesized chemically, which have been isolated as natural antimicrobial agents. Rosmarinic acid and its derivatives were combined with antibiotics to obtain a synergistic effect. This review reports on the antimicrobial effects of rosmarinic acid and its associated derivatives, both in their free form and in combination with other microbial pathogens, and mechanisms of action.
Collapse
Affiliation(s)
- Ourdia-Nouara Kernou
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Zahra Azzouz
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Khodir Madani
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
- Centre de Recherche en Technologie Agroalimentaire (CRTAA), Route de Targua-Ouzemour, Bejaia 06000, Algeria
| | - Patricia Rijo
- CBIOS-Centro de Investigação em Biociências e Tecnologias da Saúde, Universida de Lusófona, Campo Grande 376, 1749-028 Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Liboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
18
|
Ijaz S, Iqbal J, Abbasi BA, Ullah Z, Yaseen T, Kanwal S, Mahmood T, Sydykbayeva S, Ydyrys A, Almarhoon ZM, Sharifi-Rad J, Hano C, Calina D, Cho WC. Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications. Biomed Pharmacother 2023; 162:114687. [PMID: 37062215 DOI: 10.1016/j.biopha.2023.114687] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023] Open
Abstract
Cancer is still the leading cause of death worldwide, burdening the global medical system. Rosmarinic acid (RA) is among the first secondary metabolites discovered and it is a bioactive compound identified in plants such as Boraginaceae and Nepetoideae subfamilies of the Lamiaceae family, including Thymus masticmasti chinaythia koreana, Ocimum sanctum, and Hyptis pectinate. This updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives, thus providing valuable clues for the potential development of some complementary drugs in the treatment of cancers. Relevant information about RA's chemopreventive and chemotherapeutic effects and its derivatives were collected from electronic scientific databases, such as PubMed/Medline, Scopus, TRIP database, Web of Science, and Science Direct. The results of the studies showed numerous significant biological effects such as antiviral, antibacterial, anti-inflammatory, anti-tumour, antioxidant and antiangiogenic effects. Most of the studies on the anticancer potential with the corresponding mechanisms are still in the experimental preclinical stage and are missing evidence from clinical trials to support the research. To open new anticancer therapeutic perspectives of RA and its derivatives, future clinical studies must elucidate the molecular mechanisms and targets of action in more detail, the human toxic potential and adverse effects.
Collapse
Affiliation(s)
- Shumaila Ijaz
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan.
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi 46300, Pakistan
| | - Zakir Ullah
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Kanwal
- Department of Biology and Environmental Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Sandugash Sydykbayeva
- Higher School of Natural Sciences, Zhetysu University named after I.Zhansugurov, 040009 Taldykorgan, Kazakhstan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050040, Kazakhstan
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Christophe Hano
- Laboratoire de Biologie Des Ligneux Et Des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, 45067 Orléans Cedex2, France.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
19
|
Shen X, Li X, Jia C, Li J, Chen S, Gao B, Liang W, Zhang L. HPLC-MS-based untargeted metabolomic analysis of differential plasma metabolites and their associated metabolic pathways in reproductively anosmic black porgy, Acanthopagrus schlegelii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101071. [PMID: 36931130 DOI: 10.1016/j.cbd.2023.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Olfaction, a universal form of chemical communication, is a powerful channel for animals to obtain social and environmental cues. The mechanisms by which fish olfaction affects reproduction, breeding and disease control are not yet clear. To evaluate metabolites profiles, plasma from anosmic and control black porgy during reproduction was analyzed by non-targeted metabolomics using ultra high-performance liquid chromatography-mass spectrometry and multivariate statistical analysis techniques, including principal component analysis and orthogonal partial least squares discriminant analysis. The metabolite profiles of anosmia and control groups were found to be significantly separated. Ten different differential metabolites, mainly including amino acids, such as isoleucine and methionine, and lipids, such as phosphatidylserine, were screened based on the combined analysis of variable importance in the projection and p values. In addition, six key differential metabolic pathways were analyzed using the Kyoto Encyclopedia of Genes and Genomes and enriched for four metabolic pathways including the citrate acid (TCA) cycle, tyrosine metabolism, arginine and proline metabolism, and arginine synthesis. The TCA cycle enhances fertility through the reduction of pyruvate kinase, and intermediate derivatives (acetyl CoA, malonyl CoA) act as signaling factors that regulate immune cell function. The tyrosine cycle can indirectly participate and promote reproduction in black porgy through melanin-concentrating hormone. Arginine and proline metabolism can promote reproduction by promoting growth hormone and enhance immunity in anosmic black porgy by stimulating T lymphocytes. Our metabolomic study revealed that anosmia in black porgy played an active role in immunity and reproduction and provided theoretical support for breeding and disease control.
Collapse
Affiliation(s)
- Xing Shen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xian Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Chaofeng Jia
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shuyin Chen
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Bo Gao
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Wenke Liang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
20
|
Jamwal VL, Rather IA, Ahmed S, Kumar A, Gandhi SG. Changing Rhizosphere Microbial Community and Metabolites with Developmental Stages of Coleus barbatus. Microorganisms 2023; 11:microorganisms11030705. [PMID: 36985280 PMCID: PMC10056624 DOI: 10.3390/microorganisms11030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Coleus barbatus is a medicinal herb belonging to Lamiaceae. It is the only living organism known to produce forskolin, which is a labdane diterpene and is reported to activate adenylate cyclase. Microbes associated with plants play an important role in maintaining plant health. Recently, the targeted application of beneficial plant-associated microbes and their combinations in abiotic and biotic stress tolerance has gained momentum. In this work, we carried out the rhizosphere metagenome sequencing of C. barbatus at different developmental stages to understand how rhizosphere microflora are affected by and affect the metabolite content in plants. We found that the Kaistobacter genus was abundantly present in the rhizosphere of C. barbatus and its accumulation pattern appears to correlate with the quantities of forskolin in the roots at different developmental stages. Members of the Phoma genus, known for several pathogenic species, were in lower numbers in the C. barbatus rhizosphere in comparison with C. blumei. To our knowledge, this is the first metagenomic study of the rhizospheric microbiome of C. barbatus, which may help to explore and exploit the culturable and non-culturable microbial diversity present in the rhizosphere.
Collapse
Affiliation(s)
- Vijay Lakshmi Jamwal
- CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Sajad Ahmed
- CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Amit Kumar
- CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sumit G. Gandhi
- CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence: or
| |
Collapse
|
21
|
Peng K, Yang F, Qiu C, Yang Y, Lan C. Rosmarinic acid protects against lipopolysaccharide-induced cardiac dysfunction via activating Sirt1/PGC-1α pathway to alleviate mitochondrial impairment. Clin Exp Pharmacol Physiol 2023; 50:218-227. [PMID: 36350269 DOI: 10.1111/1440-1681.13734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Sepsis-induced cardiomyopathy is a decisive factor that plays a critical role in the high mortality of septic patients in the critically ill. Mitochondrial dysfunction occurring during sepsis is a vital contributor to the pathogenesis of myocardial damage. Rosmarinic acid (RA), a natural poly-phenolic compound, has showed cardio-protective and mitochondrial protective effect. The present study was aimed to investigate the effect of RA on sepsis-induced cardiomyopathy. Adult mice were subjected to intraperitoneal injection of saline (control) or lipopolysaccharide (LPS, 5 mg/kg) to mimic sepsis-induced cardiomyopathy. Immediately after LPS challenge, vehicle or RA (100 mg/kg/day) was administrated via gavage. Cardiac function was examined with echocardiographic analyses 12 hours after LPS challenge and cumulative survival of mice was recorded for 8 days. Heart tissues were harvested 12 hours after LPS challenge to perform histological analyses and determine mitochondrial function. We found RA significantly improved cardiac function and survival of LPS-injected mice. Histologically, RA attenuated LPS-mediated cardiomyocyte damage, indicated by decreased cardiomyocyte apoptosis and improved myocardial swollen and disarrangement. Moreover, RA attenuated LPS-mediated myocardial mitochondrial dysfunction, indicated by improved mitochondrial ultrastructure, increased mitochondrial membrane potential (MMP), synthesis of adenosine triphosphate (ATP), markedly decreased reactive oxygen species (ROS) level and alleviated oxidative stress in heart tissues. RA treatment downregulated protein expression of Sirt1 and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and Sirt1 inhibition blocked protective effect of RA on LPS-induced myocardial damage and mitochondrial dysfunction. Collectively, RA attenuates LPS-induced cardiac dysfunction via activating Sirt1/PGC-1α pathway to alleviate mitochondrial impairment. It may be a promising cardio-protective drug to be used for septic patients.
Collapse
Affiliation(s)
- Ke Peng
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Fengyuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, China
| | - Chenming Qiu
- Department of Burn and Plastic Surgery, General Hospital of Western Theater Command, Chengdu, China
| | - Yongjian Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.,Department of Cardiology, General Hospital of Western Theater Command, Chengdu, China
| | - Cong Lan
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.,Department of Cardiology, General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
22
|
Grishchenko OV, Grigorchuk VP, Tchernoded GK, Koren OG, Bulgakov VP. Callus Culture of Scorzonera radiata as a New, Highly Productive and Stable Source of Caffeoylquinic Acids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227989. [PMID: 36432088 PMCID: PMC9694156 DOI: 10.3390/molecules27227989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
During our ongoing efforts to investigate biotechnological sources of caffeoylquinic acid (CQA) metabolites, we discovered the plant Scorzonera radiata Fisch. (Asteraceae), which is able to produce callus cultures with high yield and extremely high stability. An actively growing callus line, designated as Sr-L1, retained the ability to produce 11 CQAs during long-term cultivation (more than 20 years). A total of 29 polyphenolic compounds were identified in the leaves and Sr-L1 callus culture of S. radiata, including CQAs, lignol derivatives, flavonoids, and dihydrostilbenes. The composition of CQAs in the Sr-L1 culture was identical to that in the S. radiata leaves. Sr-L1 calli did not produce flavonoids and dihydrostilbenes, but produced lignol derivatives, which were absent in leaves. The HPLC-UV-HRMS determination showed the presence of monoacyl derivatives of CQAs such as 5-CQA, 4-CQA, cis-5-CQA, and 5-O-p-coumaroylquinic acid in the Sr-L1 culture. Among diacyl derivatives, 3,4-diCQA, 3,5-diCQA, cis-3,5-diCQA, 4,5-diCQA, 3-O-p-coumaroyl-5-O-CQA, and 3-O-caffeoyl-5-O-p-coumaroylquinic acid were found. The content of 5-CQA reached 7.54 mg/g dry weight and the content of 3,5-diCQA was as high as 18.52 mg/g dry weight. 3,5-diCQA has been reported to be of high nutritional and pharmacological value, as it alleviates inflammatory pain, reverses memory impairment by preventing neuronal apoptosis, and counteracts excessive adipose tissue expansion, serving as an attractive treatment option for obesity. The high content of 3,5-diCQA and the exceptional stability of biosynthesis make callus cultures of S. radiata a promising source for the development of drugs and nutraceuticals.
Collapse
|
23
|
Napoli E, Ruberto G, Carrubba A, Sarno M, Muscarà C, Speciale A, Cristani M, Cimino F, Saija A. Phenolic Profiles, Antioxidant and Anti-Inflammatory Activities of Hydrodistillation Wastewaters from Five Lamiaceae Species. Molecules 2022; 27:molecules27217427. [PMID: 36364258 PMCID: PMC9656622 DOI: 10.3390/molecules27217427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Distillation is the most widely used method to obtain an essential oil from plant material. The biomass used in the process is returned as a solid residue together with variable amounts of water rich in water-soluble compounds, which currently are not addressed to any further application. The scope of this work was to evaluate the phytochemical composition of wastewaters coming from hydrodistillation (DWWs) of five aromatic plants belonging to the Lamiaceae family, and to assess their in vitro antioxidant and anti-inflammatory activities. The phenolic profiles of the DWWs were determined by HPLC-DAD and HPLC-ESI/MS. Free radical scavenging ability, oxygen radical antioxidant capacity and superoxide dismutase mimetic activity of the samples under study were measured. Moreover, to investigate the anti-inflammatory activity of the DWWs, an in vitro experimental model of intestinal inflammation was used. The DWW samples’ phytochemical analysis allowed the identification of 37 phenolic compounds, all exhibiting good antioxidant and anti-inflammatory activity. Our study contributes to the knowledge on the polyphenolic composition of the DWWs of five aromatic plants of the Lamiaceae family. The results highlight the presence of compounds with proven biological activity, and therefore of great interest in the pharmaceutical and nutraceutical fields.
Collapse
Affiliation(s)
- Edoardo Napoli
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
- Correspondence: (E.N.); (F.C.)
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Alessandra Carrubba
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Build 4, Entr. L, 90128 Palermo, Italy
| | - Mauro Sarno
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Build 4, Entr. L, 90128 Palermo, Italy
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Correspondence: (E.N.); (F.C.)
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
24
|
Zhou P, Yue C, Zhang Y, Li Y, Da X, Zhou X, Ye L. Alleviation of the Byproducts Formation Enables Highly Efficient Biosynthesis of Rosmarinic Acid in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5077-5087. [PMID: 35416041 DOI: 10.1021/acs.jafc.2c01179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rosmarinic acid as a polyphenolic compound has great values in the pharmaceutical, cosmetic, and food industries. To achieve efficient biosynthesis of rosmarinic acid, the major obstacles such as imbalanced metabolic flux among branching pathways and substrate promiscuity of pathway enzymes should be eliminated. Here, a rosmarinic acid producing Saccharomyces cerevisiae strain was constructed by introducing codon optimized d-lactate dehydrogenase gene mutant (OD-LDHY52A), 4-coumarate CoA ligase gene (OPc4CL2), and rosmarinic acid synthase gene (OMoRAS) into a previously constructed caffeic acid hyper-producer. To identify the metabolic bottleneck, the substrate specificity of OPc4CL2 and OMoRAS was figured out by bioconversion experiments and HPLC-MS/MS analysis. Subsequently, the byproducts formation was alleviated by removing prephenate dehydratase and tuning down the expression level of OPc4CL2. The final strain YRA113-15B produced 208 mg/L rosmarinic acid in a shake-flask culture (a 63-fold improvement over the initial strain), which was the highest rosmarinic acid titer by engineered microbial cells reported to date. This work provides a promising platform for fermentative production of rosmarinic acid and offers a strategy to overcome the intrapathway competition.
Collapse
Affiliation(s)
- Pingping Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Chunlei Yue
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yuchen Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yan Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Xinyi Da
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Xiuqi Zhou
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
25
|
Noor S, Mohammad T, Rub MA, Raza A, Azum N, Yadav DK, Hassan MI, Asiri AM. Biomedical features and therapeutic potential of rosmarinic acid. Arch Pharm Res 2022; 45:205-228. [PMID: 35391712 PMCID: PMC8989115 DOI: 10.1007/s12272-022-01378-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
For decades, the use of secondary metabolites of various herbs has been an attractive strategy in combating human diseases. Rosmarinic acid (RA) is a bioactive phenolic compound commonly found in plants of Lamiaceae and Boraginaceae families. RA is biosynthesized using amino acids tyrosine and phenylalanine via enzyme-catalyzed reactions. However, the chemical synthesis of RA involves an esterification reaction between caffeic acid and 3,4-dihydroxy phenyl lactic acid contributing two phenolic rings to the structure of RA. Several studies have ascertained multiple therapeutic benefits of RA in various diseases, including cancer, diabetes, inflammatory disorders, neurodegenerative disorders, and liver diseases. Many previous scientific papers indicate that RA can be used as an anti-plasmodic, anti-viral and anti-bacterial drug. In addition, due to its high anti-oxidant capacity, this natural polyphenol has recently gained attention for its possible application as a nutraceutical compound in the food industry. Here we provide state-of-the-art, flexible therapeutic potential and biomedical features of RA, its implications and multiple uses. Along with various valuable applications in safeguarding human health, this review further summarizes the therapeutic advantages of RA in various human diseases, including cancer, diabetes, neurodegenerative diseases. Furthermore, the challenges associated with the clinical applicability of RA have also been discussed.
Collapse
Affiliation(s)
- Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Malik Abdul Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ali Raza
- Department of Medical Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsugu, Incheon, 21924, Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
26
|
Prospecting In Vitro Antioxidant and Photoprotective Properties of Rosmarinic Acid in a Sunscreen System Developed by QbD Containing Octyl p-Methoxycinnamate and Bemotrizinol. COSMETICS 2022. [DOI: 10.3390/cosmetics9020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Progressively growing diagnoses of skin cancer trigger public health concerns about excessive sun exposure, awareness of the deleterious effects of ultraviolet (UV) radiation on the skin, and the proper use of sunscreens. Studies show that bioactive molecules, such as rosmarinic acid (RA), may potentiate the photoprotective and antioxidant activity of topical formulations. This research presents the application of the concepts of quality by design (QbD) to evaluate the critical parameters of quality and the development of an optimized cosmetic formulation with RA by means of an understanding of product design space. Samples were developed using design of experiments (DoE) and they were evaluated for in vitro antioxidant activity and photoprotective efficacy, as well as for photostability through artificial irradiation. We were able to achieve the RA performance regarding antioxidant and SPF properties through in vitro experiments. We obtained the equations for predicting the in vitro antioxidant activity and SPF. Considering our sunscreen system, developed with octyl p-methoxycinnamate and bemotrizinol, the presence of RA increased its antioxidant capacity; however, the in vitro SPF was reduced when both UV filters were used. The development of multifunctional sunscreens is of utmost importance; moreover, there is a need for the rational development of formulations that ensure representative statistical tests of the effects and interactions among the components of a formulation on the desired critical quality attributes, including efficacy.
Collapse
|
27
|
Krzemińska M, Owczarek A, Gonciarz W, Chmiela M, Olszewska MA, Grzegorczyk-Karolak I. The Antioxidant, Cytotoxic and Antimicrobial Potential of Phenolic Acids-Enriched Extract of Elicited Hairy Roots of Salvia bulleyana. Molecules 2022; 27:992. [PMID: 35164257 PMCID: PMC8839693 DOI: 10.3390/molecules27030992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022] Open
Abstract
Hairy root cultures are valuable sources of a range of phytochemicals. Among them, Salvia bulleyana root culture is a promising source of polyphenols, especially rosmarinic acid (RA), a phenolic acid depside with pleiotropic activity and a wide application in medicine and cosmetology. The aim of the study was to enhance the culture productivity by finding suitable elicitation protocol and to determine its biological potential in terms of antioxidant, anticancer and antimicrobial properties. The total content of phenols and the levels of particular constituents in root extracts were analyzed using HPLC-PDA. Among four elicitors tested (yeast extract; methyl jasmonate, MJA; trans-anethol; and cadmium chloride), MJA was found to be the most effective. The greatest boost in phenolic production (up to 124.4 mg/g dry weight) was observed after three-day treatment with MJA at 100 µM, with an almost 100% improvement compared to the controls (non-treated root culture). The hydromethanolic extract from the elicited culture exhibited strong antioxidant activity with IC50 values of 11.1 µg/mL, 6.5 µg/mL and 69.5 µg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)) and superoxide anion radical, respectively. Moreover, in concentrations of 0.5-5 mg/mL the extract inhibited the growth of LoVo, AGS and HeLa cell lines, but was safe for the L929 cells up to the concentration of 5 mg/mL. The extract also exhibited moderate antimicrobial activity. Thus, the results confirmed that elicitation can be a beneficial strategy for increase the phenolic acid biosynthesis in hairy roots of S. bulleyana, and that such a highly productive culture can show significant biological potential.
Collapse
Affiliation(s)
- Marta Krzemińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (A.O.); (M.A.O.)
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Monika A. Olszewska
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (A.O.); (M.A.O.)
| | - Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
28
|
The Use of Bioactive Compounds in Hyperglycemia- and Amyloid Fibrils-Induced Toxicity in Type 2 Diabetes and Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14020235. [PMID: 35213966 PMCID: PMC8879577 DOI: 10.3390/pharmaceutics14020235] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
It has become increasingly apparent that defective insulin signaling may increase the risk for developing Alzheimer’s disease (AD), influence neurodegeneration through promotion of amyloid formation or by increasing inflammatory responses to intraneuronal β-amyloid. Recent work has demonstrated that hyperglycemia is linked to cognitive decline, with elevated levels of glucose causing oxidative stress in vulnerable tissues such as the brain. The ability of β-amyloid peptide to form β-sheet-rich aggregates and induce apoptosis has made amyloid fibrils a leading target for the development of novel pharmacotherapies used in managing and treatment of neuropathological conditions such as AD-related cognitive decline. Additionally, deposits of β-sheets folded amylin, a glucose homeostasis regulator, are also present in diabetic patients. Thus, therapeutic compounds capable of reducing intracellular protein aggregation in models of neurodegenerative disorders may prove useful in ameliorating type 2 diabetes mellitus symptoms. Furthermore, both diabetes and neurodegenerative conditions, such as AD, are characterized by chronic inflammatory responses accompanied by the presence of dysregulated inflammatory biomarkers. This review presents current evidence describing the role of various small bioactive molecules known to ameliorate amyloidosis and subsequent effects in prevention and development of diabetes and AD. It also highlights the potential efficacy of peptide–drug conjugates capable of targeting intracellular targets.
Collapse
|
29
|
Koprivica I, Jonić N, Diamantis D, Gajić D, Saksida T, Pejnović N, Tzakos AG, Stojanović I. Phenethyl ester of rosmarinic acid attenuates autoimmune responses during type 1 diabetes development in mice. Life Sci 2022; 288:120184. [PMID: 34838848 DOI: 10.1016/j.lfs.2021.120184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
AIMS Rosmarinic acid (RA) is a polyphenol that occurs in plants of the Lamiaceae family. Phenethyl ester of RA (PERA), a novel RA derivative, has been developed and evaluated in vivo in an animal model of type 1 diabetes (T1D). METHODS T1D was induced in male C57BL/6 mice using multiple low doses of streptozotocin (STZ) administered intraperitoneally for 5 consecutive days. Intraperitoneal administration of PERA (2.5 mg/kg bw) began from the first STZ injection and continued for 20 days. KEY FINDINGS PERA-treated mice exhibited lower incidence of T1D (monitored up to 38 days from the disease induction), and fluorescent histochemical analysis showed that their pancreatic islets expressed more insulin. PERA treatment significantly down-regulated the proportions of CD11b+ and CD11c+ myeloid cells in the immune cell infiltrates in the pancreatic islets early during T1D pathogenesis (on day 9 after T1D induction), while on day 15, PERA significantly reduced the proportions of CD11c+, CD8+, Th1 and Th17 cells. Simultaneously, it was found that the cells from the pancreatic infiltrates of PERA-treated mice produced significantly less reactive oxygen species than cells from the control group. SIGNIFICANCE These findings suggest that PERA efficiently prevented T1D development in mice. Interestingly, PERA attenuated the inflammatory process in the islets through temporally specific interference with the innate and adaptive immune response and therefore shows great promise for further clinical evaluation as a novel T1D therapeutic.
Collapse
Affiliation(s)
- Ivan Koprivica
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natalija Jonić
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dimitris Diamantis
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Dragica Gajić
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nada Pejnović
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andreas G Tzakos
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Ivana Stojanović
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
30
|
Rosmarinic Acid and Ulvan from Terrestrial and Marine Sources in Anti-Microbial Bionanosystems and Biomaterials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to increase their sustainability, antimicrobial renewable molecules are fundamental additions to consumer goods. Rosmarinic acid is extracted from several terrestrial plants and represents an effective anti-microbial agent. Ulvan, extracted from algae, is an anti-microbial polysaccharide. The present review is dedicated to discussing the sources and the extraction methodologies for obtaining rosmarinic acid and ulvan. Moreover, the preparation of bioanosystems, integrating the two molecules with organic or inorganic substrates, are reviewed as methodologies to increase their effectiveness and stability. Finally, the possibility of preparing functional biomaterials and anti-microbial final products is discussed, considering scientific literature. The performed analysis indicated that the production of both molecules is not yet performed with mature industrial technologies. Nevertheless, both molecules could potentially be used in the packaging, biomedical, pharmaceutical, cosmetic, sanitary and personal care sectors, despite some research being required for developing functional materials with specific properties to pave the way for many more applications.
Collapse
|
31
|
Sarkar K, Das RK. In Silico study of Rosmarinic Acid Derivatives as Novel Insulin Fibril Inhibitors. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The self-assembly of human insulin (HI) plays a crucial role in regulating amyloid fibrils. Therefore, it is a significant problem for the medical management of diabetes therapy and these findings have led us to investigate the amyloid formation and its inhibition. Few potential inhibitors have been identified to inhibit amyloid fibrils. Rosmarinic acid (RA) is one of the things that inhibits amyloid formation completely by increasing the resistivity of the amyloidogenic insulin (dimer) protein to thermal unfolding. Here, we choose different tested derivative compounds for designing amyloid inhibitors by substituting various functional groups of RA. These derivative compounds were subjected to in silico studies to determine the best drug candidates. In comparison to RA, 14 molecules have higher binding affinity and interactions with the target receptor. After frontier molecular orbitals study, ADME and toxicity analysis, the eight best compounds may act as the best inhibitors. The stability of the docked complexes was visualized by molecular dynamics (MD) simulations. This finding opens a new proposal to explore future studies with these best compounds to increase the thermal stability of the insulin dimers.
Collapse
Affiliation(s)
- Kaushik Sarkar
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Rajesh Kumar Das
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
32
|
Cartabia A, Tsiokanos E, Tsafantakis N, Lalaymia I, Termentzi A, Miguel M, Fokialakis N, Declerck S. The Arbuscular Mycorrhizal Fungus Rhizophagus irregularis MUCL 41833 Modulates Metabolites Production of Anchusa officinalis L. Under Semi-Hydroponic Cultivation. FRONTIERS IN PLANT SCIENCE 2021; 12:724352. [PMID: 34539717 PMCID: PMC8443025 DOI: 10.3389/fpls.2021.724352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/27/2021] [Indexed: 06/01/2023]
Abstract
Anchusa officinalis is recognized for its therapeutic properties, which are attributed to the production of different metabolites. This plant interacts with various microorganisms, including the root symbiotic arbuscular mycorrhizal fungi (AMF). Whether these fungi play a role in the metabolism of A. officinalis is unknown. In the present study, two independent experiments, associating A. officinalis with the AMF Rhizophagus irregularis MUCL 41833, were conducted in a semi-hydroponic (S-H) cultivation system. The experiments were intended to investigate the primary and secondary metabolites (PMs and SMs, respectively) content of shoots, roots, and exudates of mycorrhized (M) and non-mycorrhized (NM) plants grown 9 (Exp. 1) or 30 (Exp. 2) days in the S-H cultivation system. Differences in the PMs and SMs were evaluated by an untargeted ultrahigh-performance liquid chromatography high-resolution mass spectrometry metabolomics approach combined with multivariate data analysis. Differences in metabolite production were shown in Exp. 1. Volcano-plots analysis revealed a strong upregulation of 10 PMs and 23 SMs. Conversely, in Exp. 2, no significant differences in PMs and SMs were found in shoots or roots between M and NM plants whereas the coumarin scoparone and the furanocoumarin byakangelicin, accumulated in the exudates of the M plants. In Exp. 1, we noticed an enhanced production of PMs, including organic acids and amino acids, with the potential to act as precursors of other amino acids and as building blocks for the production of macromolecules. Similarly, SMs production was significantly affected in Exp 1. In particular, the phenolic compounds derived from the phenylpropanoid pathway. Fifteen di-, tri-, and tetra-meric C6-C3 derivatives of caffeic acid were induced mainly in the roots of M plants, while four oleanane-types saponins were accumulated in the shoots of M plants. Two new salvianolic acid B derivatives and one new rosmarinic acid derivative, all presenting a common substitution pattern (methylation at C-9"' and C-9' and hydroxylation at C-8), were detected in the roots of M plants. The accumulation of diverse compounds observed in colonized plants suggested that AMF have the potential to affect specific plant biosynthetic pathways.
Collapse
Affiliation(s)
- Annalisa Cartabia
- Applied Microbiology, Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Evangelia Tsiokanos
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tsafantakis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ismahen Lalaymia
- Applied Microbiology, Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Aikaterini Termentzi
- Laboratory of Pesticides' Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Maria Miguel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Nikolas Fokialakis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Stéphane Declerck
- Applied Microbiology, Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
33
|
Mainka M, Czerwińska ME, Osińska E, Ziaja M, Bazylko A. Screening of Antioxidative Properties and Inhibition of Inflammation-Linked Enzymes by Aqueous and Ethanolic Extracts of Plants Traditionally Used in Wound Healing in Poland. Antioxidants (Basel) 2021; 10:antiox10050698. [PMID: 33925100 PMCID: PMC8146166 DOI: 10.3390/antiox10050698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
A wide range of plant-derived preparations have been used against skin inflammatory disorders and as wound healing agents in traditional medicine. The purpose of the study was to determine the antioxidant activity of aqueous and 70% ethanolic extracts from eleven species of plants traditionally used in Poland to treat inflammatory skin diseases. The ability of extracts to scavenge 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), hydrogen peroxide (H2O2), and superoxide anion (O2•−), was studied. In non-cellular studies, an analysis of the anti-inflammatory effect on the activity of enzymes, such as hyaluronidase (HYAL) and lipoxygenase (LOX), was also performed. The chemical profiles of the most active extracts were achieved by applying the UHPLC-DAD-MSn method, and the sum of polyphenols in all tested extracts was determined by the colorimetric method with the Folin–Ciocalteu reagent. The scope of the extracts’ influence on enzyme activity was significantly lower than their antioxidant activity. All extracts have shown high activity in free radical scavenging against DPPH. The ethanolic extracts have shown high potential to scavenge H2O2. The study of composition showed that the main components of the tested extracts were flavonoids, such as luteolin, apigenin, kaempferol, and quercetin derivatives, as well as caffeoylquinic acids, caffeic acid, and its conjugates.
Collapse
Affiliation(s)
- Marta Mainka
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Warsaw Medical University, Banacha 1, 02-097 Warsaw, Poland; (M.M.); (M.E.C.)
| | - Monika E. Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Warsaw Medical University, Banacha 1, 02-097 Warsaw, Poland; (M.M.); (M.E.C.)
| | - Ewa Osińska
- Department of Vegetable and Medicinal Plants, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Maria Ziaja
- Institute of Physical Culture Studies, Rzeszów University, Cicha 2a, 35-326 Rzeszów, Poland;
| | - Agnieszka Bazylko
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Warsaw Medical University, Banacha 1, 02-097 Warsaw, Poland; (M.M.); (M.E.C.)
- Correspondence:
| |
Collapse
|
34
|
Graikou K, Damianakos H, Ganos C, Sykłowska-Baranek K, Jeziorek M, Pietrosiuk A, Roussakis C, Chinou I. Chemical Profile and Screening of Bioactive Metabolites of Rindera graeca (A. DC.) Bois. & Heldr. (Boraginaceae) In Vitro Cultures. PLANTS (BASEL, SWITZERLAND) 2021; 10:834. [PMID: 33919433 PMCID: PMC8143363 DOI: 10.3390/plants10050834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/05/2022]
Abstract
Rindera graeca is a rare endemic plant where in vitro culture has been used in order to investigate bioactive metabolites. Phytochemical study of the in vitro shoots and hairy roots led to the isolation of seven phenolic derivatives and the unusual furano-naphthoquinone rinderol. R. graeca was also analyzed for its pyrrolizidine alkaloids content by LC-MS, and it was found to contain echinatine together with echinatine and rinderine N-oxides. Rinderol, isolated only from in vitro hairy root culture for the first time in the genus, revealed promising bioactivities. It was evaluated in vitro against a panel of microorganisms, showing very strong activity specifically against Gram-positive bacteria (MIC values 0.98 × 10-2-1.18 µg/mL) as well as very interesting antiproliferative effect against the human non-small-cell bronchopulmonary carcinoma cell line NSCLC-N6-L16 and the epidermoid lung cancer cell line A549. These findings were compared with the chemical profile of the plant from nature, while this study is the first to report on the effects of R. graeca extracts obtained from in vitro culture, providing a valuable contribution to the scientific community towards this sustainable method of production of potential bioactive molecules.
Collapse
Affiliation(s)
- Konstantia Graikou
- Lab of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (K.G.); (H.D.); (C.G.)
| | - Harilaos Damianakos
- Lab of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (K.G.); (H.D.); (C.G.)
| | - Christos Ganos
- Lab of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (K.G.); (H.D.); (C.G.)
| | - Katarzyna Sykłowska-Baranek
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland; (K.S.-B.); (M.J.); (A.P.)
| | - Małgorzata Jeziorek
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland; (K.S.-B.); (M.J.); (A.P.)
| | - Agnieszka Pietrosiuk
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland; (K.S.-B.); (M.J.); (A.P.)
| | - Christos Roussakis
- IICi MED/EA 1155- Dept Cancer du Poumon et Cbles Moleculaires, UFR Sciences Pharmaceutiques- 9 rue Bias, CEDEX 1, 44035 Nantes, France;
| | - Ioanna Chinou
- Lab of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (K.G.); (H.D.); (C.G.)
| |
Collapse
|
35
|
Sarkar K, Das RK. Preliminary Identification of Hamamelitannin and Rosmarinic Acid as COVID-19 Inhibitors Based on Molecular Docking. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999200802032126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background:
Recently, novel coronavirus disease, COVID-19 caused the outbreak situation
of global public health. In this pandemic situation, all the people's lives of 212 Countries and
Territories have been affected due to partial or complete lockdown and also as a result of mandatory
isolations or quarantines. This is due to the non-availability of any secure vaccine.
Objective:
The present study helps us to identify and screen the best phytochemicals as potent inhibitors
against COVID-19.
Methods:
In this paper, we choose two standard drugs namely hamamelitannin and rosmarinic acid
as a probable inhibitor of pandemic COVID-19 receptor as compared to antimalarial drugs hydroxychloroquine,
anti-viral drug remdesivir, and also baricitinib. This study was done by taking
into consideration of molecular docking study, performed with Auto Dock 4.0 (AD4.0). All chemical
structures were optimized with the Avogadro suite by applying the MMFF94 force field and also
hamamelitannin, rosmarinic acid was optimized using the Gaussian G16 suite of UB3LYP/6-
311++G(d,p) basis set. Protein-ligand interaction was visualized by PyMOL software.
Results:
This work has provided an insightful understanding of protein-ligand interaction of hamamelitannin
and rosmarinic acid showing comparable binding energies than that of clinically applying
probable COVID-19 inhibitors hydroxychloroquine (an anti-malarial drug) and remdesivir (an
anti-viral drug).
Conclusions:
We will expect that if its anti-SARS-CoV-2 activity is validated in human clinical trials,
these two drugs may be developed as an effective antiviral therapeutics towards infected patients
in this outbreak and pandemic situation of COVID-19.
Collapse
Affiliation(s)
- Kaushik Sarkar
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Rajesh Kumar Das
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
36
|
Stefańska B, Sroka J, Katzer F, Goliński P, Nowak W. The effect of probiotics, phytobiotics and their combination as feed additives in the diet of dairy calves on performance, rumen fermentation and blood metabolites during the preweaning period. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
37
|
Touiss I, Ouahhoud S, Harnafi M, Khatib S, Bekkouch O, Amrani S, Harnafi H. Toxicological Evaluation and Hepatoprotective Efficacy of Rosmarinic Acid-Rich Extract from Ocimum basilicum L. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6676998. [PMID: 33603821 PMCID: PMC7870305 DOI: 10.1155/2021/6676998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 01/18/2023]
Abstract
Exposure to carbon tetrachloride (CCl4) induces acute and chronic liver injuries as well as oxidative stress in rats. The present study was designed to evaluate the in vivo toxicity of rosmarinic acid-rich extract from Ocimum basilicum (RAE). The acute and subchronic oral toxicity of RAE was evaluated in Albinos mice. Hepatotoxicity was induced by the administration of CCl4-induced hepatic injury in rats. The hepatoprotective effect of RAE on aspartate aminotransferase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, bilirubin, total protein, albumin, triglycerides, total cholesterol, low-density lipoprotein, high-density lipoprotein, plasmatic glucose, urea, creatinine, and malondialdehyde was determined in CCl4-intoxicated rat. The extract did not produce treatment-related signs of toxicity or mortality in any of the animals tested during acute as well as subchronic toxicity studies. The administration of CCl4 resulted in marked increase in plasma hepatic enzymes (p < 0.001) and significant decrease of total protein (p < 0.001) and albumin (p < 0.001) when compared to normal. The RAE at 200 mg/kg body weight lowered significantly (p < 0.001) plasma enzyme activities of liver, which is designation of hepatoprotective action of extract. The phenolic extract exerts a significant increase in total protein (p < 0.001), and albumin (p < 0.001), accompanied with a marked reduction in the levels of malondialdehyde (p < 0.001), as compared to CCl4-treated group. Our study suggests that RAE may be used as a hepatoprotective agent against toxic effects caused by CCl4 and other chemical agents in the liver.
Collapse
Affiliation(s)
- Ilham Touiss
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, 60000 Oujda, Morocco
| | - Sabir Ouahhoud
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, 60000 Oujda, Morocco
| | - Mohamed Harnafi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, 60000 Oujda, Morocco
| | - Saloua Khatib
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, 60000 Oujda, Morocco
| | - Oussama Bekkouch
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, 60000 Oujda, Morocco
| | - Souliman Amrani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, 60000 Oujda, Morocco
| | - Hicham Harnafi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, 60000 Oujda, Morocco
| |
Collapse
|
38
|
Bielecka M, Pencakowski B, Stafiniak M, Jakubowski K, Rahimmalek M, Gharibi S, Matkowski A, Ślusarczyk S. Metabolomics and DNA-Based Authentication of Two Traditional Asian Medicinal and Aromatic Species of Salvia subg. Perovskia. Cells 2021; 10:cells10010112. [PMID: 33435339 PMCID: PMC7826587 DOI: 10.3390/cells10010112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Subgenus Perovskia of the extended genus of Salvia comprises several Central Asian medicinal and aromatic species, of which S. yangii and S. abrotanoides are the most widespread. These plants are cultivated in Europe as robust ornamentals, and several cultivars are available. However, their medicinal potential remains underutilized because of limited information about their phytochemical and genetic diversity. Thus, we combined an ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS) based metabolomics with DNA barcoding approach based on trnH-psbA and ITS2 barcodes to clarify the relationships between these two taxa. Metabolomic analysis demonstrated that aerial parts are more similar than roots and none of the major compounds stand out as distinct. Sugiol in S. yangii leaves and carnosic acid quinone in S. abrotanoides were mostly responsible for their chemical differentiation, whereas in roots the distinction was supported by the presence of five norditerpenoids in S. yangii and two flavonoids and one norditerpenoid in S. abrotanoides. To verify the metabolomics-based differentiation, we performed DNA authentication that revealed S. yangii and S. abrotanoides to be very closely related but separate species. We demonstrated that DNA barcoding coupled with parallel LC-MS profiling constitutes a powerful tool in identification of taxonomically close Salvia species.
Collapse
Affiliation(s)
- Monika Bielecka
- Department of Pharmaceutical Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (B.P.); (M.S.)
- Correspondence: ; Tel.:+48-717840500
| | - Bartosz Pencakowski
- Department of Pharmaceutical Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (B.P.); (M.S.)
| | - Marta Stafiniak
- Department of Pharmaceutical Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (B.P.); (M.S.)
| | - Klemens Jakubowski
- Botanical Garden of Medicinal Plants, Wroclaw Medical University, Jana Kochanowskiego 14, 51-601 Wroclaw, Poland; (K.J.); (M.R.); (A.M.)
| | - Mehdi Rahimmalek
- Botanical Garden of Medicinal Plants, Wroclaw Medical University, Jana Kochanowskiego 14, 51-601 Wroclaw, Poland; (K.J.); (M.R.); (A.M.)
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 841583111, Iran
| | - Shima Gharibi
- Core Research Facility (CRF), Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan 8174673461, Iran;
| | - Adam Matkowski
- Botanical Garden of Medicinal Plants, Wroclaw Medical University, Jana Kochanowskiego 14, 51-601 Wroclaw, Poland; (K.J.); (M.R.); (A.M.)
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
39
|
Lyu J, Xue M, Li J, Lyu W, Wen Z, Yao P, Li J, Zhang Y, Gong Y, Xie Y, Chen K, Wang L, Chai Y. Clinical effectiveness and safety of salvia miltiorrhiza depside salt combined with aspirin in patients with stable angina pectoris: A multicenter, pragmatic, randomized controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153419. [PMID: 33360345 DOI: 10.1016/j.phymed.2020.153419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Salvia Miltiorrhiza Depside Salt (SMDS) was extracted from Salvia miltiorrhiza with high-quality control of active principles. In 2005, China's FDA approved the use of SMDS for stable angina pectoris (SAP), but the evidence of SMDS combined with aspirin remains unclear. PURPOSE The aim of this study was to assess the clinical effectiveness and safety of SMDS combined with aspirin in patients with SAP. METHODS A multicenter, pragmatic, three-armed parallel group and an individually randomized controlled superiority trial was designed. Participants aged 35 to 75 years old with SAP were recruited from four "Class Ⅲ Grade A" hospitals in China. Participants who were randomized into the SMDS group were treated with SMDS by intravenous drip. Participants in the control group received aspirin enteric-coated tablets (aspirin). Participants who were randomly assigned to the combination group received SMDS combined with aspirin. All participants received standard care from clinicians, without any restrictions. The primary outcome measure was thromboelastography (TEG). Secondary outcome measures included symptom score of the Seattle Angina Questionnaire (SAQ), visual analogue scale (VAS) score of traditional Chinese medicine (TCM) symptoms, platelet aggregation measured by light transmittance aggregometry (LTA), and fasting blood glucose. Effectiveness evaluation data were collected at baseline and ten days after treatment. Researchers followed up with participants for one month after treatment to determine whether adverse events (AEs) or adverse drug reactions (ADRs) such as bleeding tendency occurred. All statistical calculations were carried out with R 3.5.3 statistical analysis software. RESULTS A total of 135 participants completed follow-up data on the primary outcome after ten days of treatment. Participants in the SMDS combined aspirin group had the highest improvement rate of sensitivity in AA% [p < 0.001, 95% CI (0.00-0.00)], from 30.6% before treatment to 81.6% after treatment. Participants with drug resistance (AA% < 20%) in the SMDS combined with aspirin group also had the highest sensitivity rate [p < 0.001, 95% CI (0.00-0.00)] after treatment (accounting for 81.0% of the combination group and 60.7% of the sensitive participants). The improvement of TCM symptoms in participants treated with SMDS combined with aspirin was significantly better than that of the aspirin group [MD = 1.71, 95% CI (0.15-3.27), p = 0.032]. There were no significant differences in other indexes (R, TPI, MA, K, CI, α value) of TEG, SAQ, platelet aggregation and fasting blood glucose among the three groups. No bleeding tendency or ADRs occurred in all participants. CONCLUSION SMDS combined with aspirin is a clinically effective and safe intervention to treat adults aged 35 and older with SAP. This trial shows that SMDS combined with aspirin can significantly improve the sensitivity rate of AA% in TEG and the VAS score of TCM symptoms. Further large samples and high-quality research are needed to determine if certain participants might benefit more from SMDS combined with aspirin. The study protocol was registered in the Clinical Trials USA registry (registration No. NCT02694848).
Collapse
Affiliation(s)
- Jian Lyu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16 Nanxiaojie, Inner Dongzhimen, Beijing 100700, China
| | - Mei Xue
- XiYuan Hospital, China Academy of Chinese Medical Sciences, No.1 Xiyuan playground Road, Haidian District, Beijing 100091, China
| | - Jun Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, North Line Pavilion, Xicheng District, Beijing 100053, China
| | - Weihui Lyu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou 510120, China
| | - Zehuai Wen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou 510120, China
| | - Ping Yao
- Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou 510120, China
| | - Junxia Li
- General Hospital of Beijing PLA Military Region, No.5, Nan men Cang, Dongsishitiao, Dongcheng District, Beijing 100700, China
| | - Yanling Zhang
- General Hospital of Beijing PLA Military Region, No.5, Nan men Cang, Dongsishitiao, Dongcheng District, Beijing 100700, China
| | - Yumiao Gong
- General Hospital of Beijing PLA Military Region, No.5, Nan men Cang, Dongsishitiao, Dongcheng District, Beijing 100700, China
| | - Yanming Xie
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16 Nanxiaojie, Inner Dongzhimen, Beijing 100700, China.
| | - Keji Chen
- XiYuan Hospital, China Academy of Chinese Medical Sciences, No.1 Xiyuan playground Road, Haidian District, Beijing 100091, China.
| | - Lianxin Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16 Nanxiaojie, Inner Dongzhimen, Beijing 100700, China.
| | - Yan Chai
- Department of Epidemiology, University of California-Los Angeles, 405 Hilgard Avenue, California 90095, USA.
| |
Collapse
|
40
|
Khojasteh A, Mirjalili MH, Alcalde MA, Cusido RM, Eibl R, Palazon J. Powerful Plant Antioxidants: A New Biosustainable Approach to the Production of Rosmarinic Acid. Antioxidants (Basel) 2020; 9:E1273. [PMID: 33327619 PMCID: PMC7765155 DOI: 10.3390/antiox9121273] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Modern lifestyle factors, such as physical inactivity, obesity, smoking, and exposure to environmental pollution, induce excessive generation of free radicals and reactive oxygen species (ROS) in the body. These by-products of oxygen metabolism play a key role in the development of various human diseases such as cancer, diabetes, heart failure, brain damage, muscle problems, premature aging, eye injuries, and a weakened immune system. Synthetic and natural antioxidants, which act as free radical scavengers, are widely used in the food and beverage industries. The toxicity and carcinogenic effects of some synthetic antioxidants have generated interest in natural alternatives, especially plant-derived polyphenols (e.g., phenolic acids, flavonoids, stilbenes, tannins, coumarins, lignins, lignans, quinines, curcuminoids, chalcones, and essential oil terpenoids). This review focuses on the well-known phenolic antioxidant rosmarinic acid (RA), an ester of caffeic acid and (R)-(+)-3-(3,4-dihydroxyphenyl) lactic acid, describing its wide distribution in thirty-nine plant families and the potential productivity of plant sources. A botanical and phytochemical description is provided of a new rich source of RA, Satureja khuzistanica Jamzad (Lamiaceae). Recently reported approaches to the biotechnological production of RA are summarized, highlighting the establishment of cell suspension cultures of S. khuzistanica as an RA chemical biofactory.
Collapse
Affiliation(s)
- Abbas Khojasteh
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran;
| | - Miguel Angel Alcalde
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| | - Rosa M. Cusido
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| | - Regine Eibl
- Campus Grüental, Institute of Biotechnology, Biotechnological Engineering and Cell Cultivation Techniques, Zurich University of Applied Sciences, CH-8820 Wädenswill, Switzerland;
| | - Javier Palazon
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| |
Collapse
|
41
|
Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, Arnoux M, Drou N, Santos MP, Gunsalus KC, Voolstra CR, Amin SA. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci U S A 2020; 117:27445-27455. [PMID: 33067398 PMCID: PMC7959551 DOI: 10.1073/pnas.2012088117] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteria while simultaneously inhibiting growth of opportunistic ones. We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world's oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations.
Collapse
Affiliation(s)
- Ahmed A Shibl
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ashley Isaac
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- International Max Planck Research School of Marine Microbiology, University of Bremen, Bremen 28334, Germany
| | - Michael A Ochsenkühn
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz 78467, Germany
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Cong Fei
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Gregory Behringer
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Marc Arnoux
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Nizar Drou
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Miraflor P Santos
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| | - Christian R Voolstra
- Department of Biology, University of Konstanz, Konstanz 78467, Germany
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shady A Amin
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates;
| |
Collapse
|
42
|
Zhao C, Li S, Zhang J, Huang Y, Zhang L, Zhao F, Du X, Hou J, Zhang T, Shi C, Wang P, Huo R, Woodman OL, Qin CX, Xu H, Huang L. Current state and future perspective of cardiovascular medicines derived from natural products. Pharmacol Ther 2020; 216:107698. [PMID: 33039419 DOI: 10.1016/j.pharmthera.2020.107698] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
The contribution of natural products (NPs) to cardiovascular medicine has been extensively documented, and many have been used for centuries. Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Over the past 40 years, approximately 50% of newly developed cardiovascular drugs were based on NPs, suggesting that NPs provide essential skeletal structures for the discovery of novel medicines. After a period of lower productivity since the 1990s, NPs have recently regained scientific and commercial attention, leveraging the wealth of knowledge provided by multi-omics, combinatorial biosynthesis, synthetic biology, integrative pharmacology, analytical and computational technologies. In addition, as a crucial part of complementary and alternative medicine, Traditional Chinese Medicine has increasingly drawn attention as an important source of NPs for cardiovascular drug discovery. Given their structural diversity and biological activity NPs are one of the most valuable sources of drugs and drug leads. In this review, we briefly described the characteristics and classification of NPs in CVDs. Then, we provide an up to date summary on the therapeutic potential and the underlying mechanisms of action of NPs in CVDs, and the current view and future prospect of developing safer and more effective cardiovascular drugs based on NPs.
Collapse
Affiliation(s)
- Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sen Li
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Junhong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyun Huang
- Biology Department, Cornell University, Ithaca, NY 14850, United States of America
| | - Luoqi Zhang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Feng Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xia Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Jinli Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenjing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruili Huo
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia; School of Pharmaceutical Science, Shandong University, Shandong 250100, China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250100, China.
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
43
|
Mai P, Chen C, Xiao X, Ma X, Shi Y, Miao G, Zhang L. Rosmarinic acid protects against ulcerative colitis by regulating macrophage polarization depending on heme oxygenase-1 in mice. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220959916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ulcerative colitis (UC) is an unknown-cause inflammatory disease of colorectum. At present, there are no specific therapeutic drugs. We found that rosmarinic acid (RA) can significantly improve UC and further explored the relevant cellular and molecular mechanisms. Firstly, using F4/80 as marker for mouse macrophages, we found there were large numbers of macrophages infiltrating into colonic tissue of dextran sulfate sodium (DSS)-induced mice UC model. Meanwhile, RA markedly improved weight loss, diarrhea, hematochezia and colonic inflammation in mice with DSS treatment. Further, RA changed macrophage polarization in mouse colon, showing that classical activation (M1) phenotype decreased, alternative activation (M2) phenotype increased, and M1/M2 ratio reversed by Real-time PCR. In vitro, we cultured the peripheral blood macrophages (PBM) and found that RA inhibited PBM M1 polarization and favored M2 polarization directly. Heme oxygenase-1 (HO-1) mediated the anti-inflammatory effect of RA. RA induced HO-1 expression in PBM, and the HO-1 inhibitor, zinc protoporphyrin, blunted the inhibitory effect of RA on lipopolysaccharide (LPS)-induced nuclear factor-kappa B (NF-κB) translocation and M1 polarization. In addition, blocking NF-κB signal has no effect on the role of RA. In conclusion, RA protects against UC by regulating macrophage polarization depending on HO-1. These data suggest that reversing macrophage polarization can be used as a strategy for UC treatment and RA is an effective drug to cure UC by regulating macrophage polarization.
Collapse
Affiliation(s)
- Ping Mai
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Cheng Chen
- Department of Pathology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaohui Xiao
- Department of Pneumology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xin Ma
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yuping Shi
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Guoying Miao
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Liping Zhang
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
44
|
Ganos C, Aligiannis N, Chinou I, Naziris N, Chountoulesi M, Mroczek T, Graikou K. Rindera graeca (Boraginaceae) Phytochemical Profile and Biological Activities. Molecules 2020; 25:E3625. [PMID: 32784926 PMCID: PMC7464154 DOI: 10.3390/molecules25163625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022] Open
Abstract
Rindera graeca is a Greek endemic plant of the Boraginaceae family which has never been studied before. Consequently, this study attempted to phytochemically examine the aerial parts of this species. Nine phenolic secondary metabolites were identified, consisting of seven caffeic acid derivatives and two flavonol glucosides, namely rutin and quercetin-3-rutinoside-7-rhamnoside. These flavonoids, together with rosmarinic acid, were isolated via column chromatography and structurally determined through spectral analysis. Quercetin-3-rutinoside-7-rhamnoside is an unusual triglycoside, which is identified for the first time in Rindera genus and among Boraginaceae plants. This metabolite was further examined with thermal analysis and its 3D structure was simulated, revealing some intriguing information on its interaction with biological membrane models, which might have potential applications in microcirculation-related conditions. R. graeca was also analyzed for its pyrrolizidine alkaloids content, and it was found to contain echinatine together with echinatine N-oxide and rinderine N-oxide. Additionally, the total phenolic and flavonoid contents of R. graeca methanol extract were determined, along with free radical inhibition assays. High total phenolic content and almost complete inhibition at experimental doses at the free radical assays indicate a potent antioxidant profile for this plant. Overall, through phytochemical analysis and biological activity assays, insight was gained on an endemic Greek species of the little-studied Rindera genus, while its potential for further applications has been assessed.
Collapse
Affiliation(s)
- Christos Ganos
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, 15771 Zografou, Athens, Greece; (C.G.); (N.A.); (I.C.)
| | - Nektarios Aligiannis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, 15771 Zografou, Athens, Greece; (C.G.); (N.A.); (I.C.)
| | - Ioanna Chinou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, 15771 Zografou, Athens, Greece; (C.G.); (N.A.); (I.C.)
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, National & Kapodistrian University of Athens, 15771 Zografou, Athens, Greece; (N.N.); (M.C.)
| | - Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, National & Kapodistrian University of Athens, 15771 Zografou, Athens, Greece; (N.N.); (M.C.)
| | - Tomasz Mroczek
- Department of Pharmacognosy with Medicinal Plant Laboratory Unit, Medical University, ul. Chodźki 19, 20-093 Lublin, Poland;
| | - Konstantia Graikou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National & Kapodistrian University of Athens, 15771 Zografou, Athens, Greece; (C.G.); (N.A.); (I.C.)
| |
Collapse
|
45
|
Clapa D, Borsai O, Hârța M, Bonta V, Szabo K, Coman V, Bobiș O. Micropropagation, Genetic Fidelity and Phenolic Compound Production of Rheum rhabarbarum L. PLANTS 2020; 9:plants9050656. [PMID: 32456105 PMCID: PMC7284629 DOI: 10.3390/plants9050656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022]
Abstract
An efficient micropropagation protocol for Rheum rhabarbarum L. was developed in this study. The in vitro rhubarb plants obtained in the multiplication stage (proliferation rate: 5.0 ± 0.5) were rooted in vitro (96% rooting percentage) and acclimatized ex vitro in floating perlite, with 90% acclimatization percentage. To assess the genetic fidelity between the mother plant and in vitro propagated plants, sequence-related amplified polymorphism (SRAP) markers were used. All banding profiles from the micropropagated plants were monomorphic and similar to those of the mother plant indicating 100% similarity. Regarding the polyphenolic profile, gallic, protocatechuic, p-hydroxybenzoic, vanillic, chlorogenic, caffeic, syringic, p-coumaric and ferulic acid were present in different amounts (2.3-2690.3 μg g-1 dry plant), according to the extracted matrix. Aglicons and glycosides of different classes of flavonoids were also identified. The rhizome extracts (both from in vitro and field grown plants) contained resveratrol, a stilbene compound with high antioxidant properties, ranging between 229.4 to 371.7 μg g-1 plant. Our results suggest that in vitro propagation of Rheum rhabarbarum L. represents a reliable alternative to obtain a large number of true-to-type planting material with high bioactive compound content of this valuable nutritional and medicinal species.
Collapse
Affiliation(s)
- Doina Clapa
- Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur st. 3-5, 400372 Cluj-Napoca, Romania;
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur st. 3-5, 400372 Cluj-Napoca, Romania; (M.H.); (V.B.); (K.S.); (V.C.)
| | - Orsolya Borsai
- AgroTransilvania Cluster, Dezmir, Crișeni FN, 407039 Cluj, Romania
- Correspondence: (O.B.); (O.B.); Tel.: +40264-596384 (O.B. & O.B.); Fax: +40264-593792 (O.B. & O.B.)
| | - Monica Hârța
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur st. 3-5, 400372 Cluj-Napoca, Romania; (M.H.); (V.B.); (K.S.); (V.C.)
| | - Victoriţa Bonta
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur st. 3-5, 400372 Cluj-Napoca, Romania; (M.H.); (V.B.); (K.S.); (V.C.)
| | - Katalin Szabo
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur st. 3-5, 400372 Cluj-Napoca, Romania; (M.H.); (V.B.); (K.S.); (V.C.)
| | - Vasile Coman
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur st. 3-5, 400372 Cluj-Napoca, Romania; (M.H.); (V.B.); (K.S.); (V.C.)
| | - Otilia Bobiș
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur st. 3-5, 400372 Cluj-Napoca, Romania; (M.H.); (V.B.); (K.S.); (V.C.)
- Correspondence: (O.B.); (O.B.); Tel.: +40264-596384 (O.B. & O.B.); Fax: +40264-593792 (O.B. & O.B.)
| |
Collapse
|
46
|
Rahmani N, Radjabian T, Soltani BM. Impacts of foliar exposure to multi-walled carbon nanotubes on physiological and molecular traits of Salvia verticillata L., as a medicinal plant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:27-38. [PMID: 32109787 DOI: 10.1016/j.plaphy.2020.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Owing to the growing applications of the multi-walled carbon nanotubes (MWCNTs) in the communications and energy industries, they have attracted increasing attention for their effects on the environment and plants. Therefore, we investigated the impact of foliar exposure to MWCNTs on the oxidative stress responses in the Salvia verticillata as a medicinal plant. Furthermore, we evaluated the possible correlations between gene expression and activity of the key enzymes in the phenolic acids biosynthesis pathways and their accumulation in the treated leaves. The leaves of two-month-old plants were sprayed with different concentrations (0-1000 mg L-1) of MWCNTs. Raman's data and Transmission Electron Microscopy images have confirmed the absorption of MWCNTs via epidermal cells layer into the parenchymal cells of the exposed leaves. The results showed that exposure to MWCNTs led to a decrease in the photosynthetic pigments and increases in the oxidative stress indices (enzymatic and non-enzymatic antioxidants) in the leaves with a dose-dependent manner. The content of rosmarinic acid as a main phenolic acid was increased in the MWCNTs-exposed leaves to 50 and 1000 mg L-1, nearly four times relative to the control. Unlike with other examined enzymes, a positive correlation was deduced between the activity and gene expression patterns of the rosmarinic acid synthase with the rosmarinic acid accumulation in the treatments. Overall, MWCNTs at the low concentrations could promote the production of the pharmaceutical metabolites by the changes in the ROS generation. However, at the higher concentrations, MWCNTs were toxic and induced the oxidative damages in S. verticillata.
Collapse
Affiliation(s)
- Nosrat Rahmani
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Tayebeh Radjabian
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
| | - Bahram Mohammad Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
47
|
Xu JJ, Fang X, Li CY, Yang L, Chen XY. General and specialized tyrosine metabolism pathways in plants. ABIOTECH 2020; 1:97-105. [PMID: 36304719 PMCID: PMC9590561 DOI: 10.1007/s42994-019-00006-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022]
Abstract
The tyrosine metabolism pathway serves as a starting point for the production of a variety of structurally diverse natural compounds in plants, such as tocopherols, plastoquinone, ubiquinone, betalains, salidroside, benzylisoquinoline alkaloids, and so on. Among these, tyrosine-derived metabolites, tocopherols, plastoquinone, and ubiquinone are essential to plant survival. In addition, this pathway provides us essential micronutrients (e.g., vitamin E and ubiquinone) and medicine (e.g., morphine, salidroside, and salvianolic acid B). However, our knowledge of the plant tyrosine metabolism pathway remains rudimentary, and genes encoding the pathway enzymes have not been fully defined. In this review, we summarize and discuss recent advances in the tyrosine metabolism pathway, key enzymes, and important tyrosine-derived metabolites in plants.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602 People’s Republic of China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming, Kunming, 650201 Yunnan People’s Republic of China
| | - Chen-Yi Li
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 People’s Republic of China
- University of Chinese Academy of Sciences, Shanghai, 200032 People’s Republic of China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602 People’s Republic of China
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602 People’s Republic of China
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
48
|
Albogami S, Darwish H, Abdelmigid HM, Alotaibi S, El-Deen AN, Alnefaie A, Alattas A. Anticancer Potential of Calli Versus Seedling Extracts Derived from Rosmarinus officinalis and Coleus hybridus. Curr Pharm Biotechnol 2020; 21:1528-1538. [PMID: 32188380 DOI: 10.2174/1389201021666200318114817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 02/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In Saudi Arabia, the incidence and mortality rates of breast cancer are high. Although current treatments are effective, breast cancer cells develop resistance to these treatments. Numerous studies have demonstrated that active compounds in plant extracts, such as the phenolic compound Rosmarinic Acid (RA), exert anti-cancer effects. OBJECTIVE We investigated the anticancer properties of methanolic crude extracts of seedlings and calli of Rosmarinus officinalis and Coleus hybridus, two Lamiaceae species. METHODS MCF-7 human breast cancer cells were treated with methanolic crude extracts obtained from plant calli and seedlings generated in vitro, and cell proliferation was evaluated. Transcriptional profiling of the seedling and callus tissues was also conducted. RESULTS The mRNA expression levels of RA genes were higher in C. hybridus seedlings than in R. officinalis seedlings, as well as in C. hybridus calli than in R. officinalis calli, except for TAT and C4H. In addition, seedling and callus extracts of both R. officinalis and C. hybridus showed anti-proliferative effects against MCF-7 cells after 24 or 48 h of treatment. DISCUSSION At a low concentration of 10 μg/mL, C. hybridus calli and seedling extracts showed the most significant anti-proliferative effects after 24 and 48 h of exposure (p < 0.01); controls (doxorubicin) also showed significant inhibition, but lesser than that observed with C. hybridus (p < 0.05). Results with R. officinalis callus and seedling extracts did not significantly differ from those with untreated cells. CONCLUSION Methanolic extracts of R. officinalis and C. hybridus are potentially valuable options for breast cancer treatment.
Collapse
Affiliation(s)
- Sarah Albogami
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Hala M Abdelmigid
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Saqer Alotaibi
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed Nour El-Deen
- Department of Biology, Faculty of Sciences, Taif University, Saudi Arabia
| | - Alaa Alnefaie
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Afnan Alattas
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
49
|
Yahia Darwish H, Abdelmigid H, Albogami S, Alotaibi S, Nour El-Deen A, Alnefaie A. Induction of Biosynthetic Genes Related to Rosmarinic Acid in Plant Callus Culture and Antiproliferative Activity Against Breast Cancer Cell Line. Pak J Biol Sci 2020; 23:1025-1036. [PMID: 32700853 DOI: 10.3923/pjbs.2020.1025.1036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Rosmarinic acid is considered as one of the most important secondary metabolites in medicinal plants especially of family Lamiaceae. Rosmarinic acid can prevent both the tumor initiation and promotion stages of carcinogenesis. The aim of current study was to evaluate the antiproliferative effects of Hyssopus officinalis and Thymus vulgaris callus crude extracts contained rosmarinic acid on breast cancer cells with correlation to phenylpropanoid biosynthetic pathway genes expression. MATERIALS AND METHODS Calli of both plants were maintained on Murashige and Skoog medium supplemented with kinetin and 2,4-D. Rosmarinic acid was determined spectrophotometrically in both seed-germinated plants (control) and callus tissues. Transcriptional profiling of rosmarinic acid pathway genes was performed with RT-PCR system. The human breast cancer cell line MCF-7 was treated with different levels of crude extracts at different time intervals in order to show their effects on the cell proliferation using a cell viability colorimetric assay (MTT). RESULTS The results showed a significant increase of rosmarinic acid content up to 6.5% in callus compared to control. The transcriptional profile of the selected rosmarinic acid genes in callus tissues indicated significant effects on the rosmarinic acid content in both genotypes. T. vulgaris (90 μg mL-1) and H. officinalis (150 μg mL-1) callus extracts had exhibited highest reduction in the cell MCF-7 viability after 48 h of exposure. CONCLUSION It was concluded that rosmarinic acid production increased in callus tissue, showed the higher gene expression levels and remarkably inhibited growth of human breast cancer cell line.
Collapse
|
50
|
Yan Y, Jia P, Bai Y, Fan TP, Zheng X, Cai Y. Production of rosmarinic acid with ATP and CoA double regenerating system. Enzyme Microb Technol 2019; 131:109392. [PMID: 31615678 DOI: 10.1016/j.enzmictec.2019.109392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 12/24/2022]
Abstract
Rosmarinic acid (RA), as a hydroxycinnamic acid ester of caffeic acid (CA) and 3,4-dihydroxyphenyllactic acid (3,4-DHPL), is a phenylpropanoid-derived plant natural product and has diverse biological activities. This work acts as a modular platform for microbial production using a two-cofactor (ATP and CoA) regeneration system to product RA based on a cell-free biosynthetic approach. Optimal activity of the reaction system was pH 8 and 30 °C. Total turnover number for ATP and CoA was 820.60 ± 28.60 and 444.50 ± 9.65, respectively. Based on the first hour data, the RA productivity reached 320.04 mg L-1 h-1 (0.889 mM L-1 h-1).
Collapse
Affiliation(s)
- Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Pu Jia
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1T, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|