1
|
Dou Y, Fei X, He X, Huan Y, Wei J, Wu X, Lyu W, Fei Z, Li X, Fei F. Homer1a reduces inflammatory response after retinal ischemia/reperfusion injury. Neural Regen Res 2024; 19:1608-1617. [PMID: 38051906 PMCID: PMC10883521 DOI: 10.4103/1673-5374.386490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/25/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00042/figure1/v/2023-11-20T171125Z/r/image-tiff
Elevated intraocular pressure (IOP) is one of the causes of retinal ischemia/reperfusion injury, which results in NLRP3 inflammasome activation and leads to visual damage. Homer1a is reported to play a protective role in neuroinflammation in the cerebrum. However, the effects of Homer1a on NLRP3 inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown. In our study, animal models were constructed using C57BL/6J and Homer1flox/
–/Homer1a+/
–/Nestin-Cre+/
– mice with elevated IOP-induced retinal ischemia/reperfusion injury. For in vitro experiments, the oxygen-glucose deprivation/reperfusion injury model was constructed with Müller cells. We found that Homer1a overexpression ameliorated the decreases in retinal thickness and Müller cell viability after ischemia/reperfusion injury. Furthermore, Homer1a knockdown promoted NF-κB P65Ser536 activation via caspase-8, NF-κB P65 nuclear translocation, NLRP3 inflammasome formation, and the production and processing of interleukin-1β and interleukin-18. The opposite results were observed with Homer1a overexpression. Finally, the combined administration of Homer1a protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1flox/
–/Homer1a+/
–/Nestin-Cre+/
– mice and apoptosis in Müller cells after ischemia/reperfusion injury. Taken together, these studies demonstrate that Homer1a exerts protective effects on retinal tissue and Müller cells via the caspase-8/NF-κB P65/NLRP3 pathway after I/R injury.
Collapse
Affiliation(s)
- Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu Huan
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Weihao Lyu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
2
|
Calanni JS, Aranda ML, Dieguez HH, Dorfman D, Schmidt TM, Rosenstein RE. An ethologically relevant paradigm to assess defensive response to looming visual contrast stimuli. Sci Rep 2024; 14:12499. [PMID: 38822033 PMCID: PMC11143276 DOI: 10.1038/s41598-024-63458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
In the animal kingdom, threat information is perceived mainly through vision. The subcortical visual pathway plays a critical role in the rapid processing of visual information-induced fear, and triggers a response. Looming-evoked behavior in rodents, mimicking response to aerial predators, allowed identify the neural circuitry underlying instinctive defensive behaviors; however, the influence of disk/background contrast on the looming-induced behavioral response has not been examined, either in rats or mice. We studied the influence of the dark disk/gray background contrast in the type of rat and mouse defensive behavior in the looming arena, and we showed that rat and mouse response as a function of disk/background contrast adjusted to a sigmoid-like relationship. Both sex and age biased the contrast-dependent response, which was dampened in rats submitted to retinal unilateral or bilateral ischemia. Moreover, using genetically manipulated mice, we showed that the three type of photoresponsive retinal cells (i.e., cones, rods, and intrinsically photoresponsive retinal ganglion cells (ipRGCs)), participate in the contrast-dependent response, following this hierarchy: cones > > rods > > > ipRGCs. The cone and rod involvement was confirmed using a mouse model of unilateral non-exudative age-related macular degeneration, which only damages canonical photoreceptors and significantly decreased the contrast sensitivity in the looming arena.
Collapse
Affiliation(s)
- Juan S Calanni
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, School of Science/IQUIBICEN, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Marcos L Aranda
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Hernán H Dieguez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Damian Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, School of Science/IQUIBICEN, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Calanni JS, Aranda ML, Dieguez HH, Dorfman D, Schmidt TM, Rosenstein RE. An ethologically relevant paradigm to assess visual contrast sensitivity in rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583559. [PMID: 38496475 PMCID: PMC10942302 DOI: 10.1101/2024.03.05.583559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In the animal kingdom, threat information is perceived mainly through vision. The subcortical visual pathway plays a critical role in the rapid processing of visual information-induced fear, and triggers a response. Looming-evoked behavior in rodents, mimicking response to aerial predators, allowed identify the neural circuitry underlying instinctive defensive behaviors; however, the influence of disk/background contrast on the looming-induced behavioral response has not been examined, either in rats or mice. We studied the influence of the dark disk/gray background contrast in the type of rat and mouse defensive behavior in the looming arena, and we showed that rat and mouse response as a function of disk/background contrast adjusted to a sigmoid-like relationship. Both sex and age biased the contrast-dependent response, which was dampened in rats submitted to retinal unilateral or bilateral ischemia. Moreover, using genetically manipulated mice, we showed that the three type of photoresponsive retinal cells (i.e., cones, rods, and intrinsically photoresponsive retinal ganglion cells (ipRGCs)), participate in the contrast-dependent response, following this hierarchy: cones ˃> rods ˃>>ipRGCs. The cone and rod involvement was confirmed using a mouse model of unilateral non-exudative age-related macular degeneration, which only damages canonical photoreceptors and significantly decreased the contrast sensitivity in the looming arena.
Collapse
|
4
|
Norte-Muñoz M, Lucas-Ruiz F, Gallego-Ortega A, García-Bernal D, Valiente-Soriano FJ, de la Villa P, Vidal-Sanz M, Agudo-Barriuso M. Neuroprotection and Axonal Regeneration Induced by Bone Marrow Mesenchymal Stromal Cells Depend on the Type of Transplant. Front Cell Dev Biol 2021; 9:772223. [PMID: 34805178 PMCID: PMC8600074 DOI: 10.3389/fcell.2021.772223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy to treat neurodegenerative diseases has not been as successful as expected in some preclinical studies. Because preclinical research is so diverse, it is difficult to know whether the therapeutic outcome is due to the cell type, the type of transplant or the model of disease. Our aim here was to analyze the effect of the type of transplant on neuroprotection and axonal regeneration, so we tested MSCs from the same niche in the same model of neurodegeneration in the three transplantation settings: xenogeneic, syngeneic and allogeneic. For this, bone marrow mesenchymal stromal cells (BM-MSCs) isolated from healthy human volunteers or C57/BL6 mice were injected into the vitreous body of C57/BL6 mice (xenograft and syngraft) or BALB/c mice (allograft) right after optic nerve axotomy. As controls, vehicle matched groups were done. Retinal anatomy and function were analyzed in vivo by optical coherence tomography and electroretinogram, respectively. Survival of vision forming (Brn3a+) and non-vision forming (melanopsin+) retinal ganglion cells (RGCs) was assessed at 3, 5 and 90 days after the lesion. Regenerative axons were visualized by cholera toxin β anterograde transport. Our data show that grafted BM-MSCs did not integrate in the retina but formed a mesh on top of the ganglion cell layer. The xenotransplant caused retinal edema, detachment and folding, and a significant decrease of functionality compared to the murine transplants. RGC survival and axonal regeneration were significantly higher in the syngrafted retinas than in the other two groups or vehicle controls. Melanopsin+RGCs, but not Brn3a+RGCs, were also neuroprotected by the xenograft. In conclusion, the type of transplant has an impact on the therapeutic effect of BM-MSCs affecting not only neuronal survival but also the host tissue response. Our data indicate that syngrafts may be more beneficial than allografts and, interestingly, that the type of neuron that is rescued also plays a significant role in the successfulness of the cell therapy.
Collapse
Affiliation(s)
- María Norte-Muñoz
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) and Universidad de Murcia, Murcia, Spain
| | - Fernando Lucas-Ruiz
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) and Universidad de Murcia, Murcia, Spain
| | - Alejandro Gallego-Ortega
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) and Universidad de Murcia, Murcia, Spain
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Molecular Biology and Immunology Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) and Biochemistry, Universidad de Murcia, Murcia, Spain
| | - Francisco J Valiente-Soriano
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) and Universidad de Murcia, Murcia, Spain
| | - Pedro de la Villa
- Systems Biology Department, Faculty of Medicine, University of Alcalá, Alcalá de Henares, Spain
| | - Manuel Vidal-Sanz
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) and Universidad de Murcia, Murcia, Spain
| | - Marta Agudo-Barriuso
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) and Universidad de Murcia, Murcia, Spain
| |
Collapse
|
5
|
Melatonin Prevents Non-image-Forming Visual System Alterations Induced by Experimental Glaucoma in Rats. Mol Neurobiol 2021; 58:3653-3664. [PMID: 33786741 DOI: 10.1007/s12035-021-02374-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Glaucoma is a blindness-causing disease that involves selective damage to retinal ganglion cells (RGCs) and their axons. A subset of RGCs expressing the photopigment melanopsin regulates non-image-forming visual system functions, such as pupillary light reflex and circadian rhythms. We analyzed the effect of melatonin on the non-image-forming visual system alterations induced by experimental glaucoma. For this purpose, male Wistar rats were weekly injected with vehicle or chondroitin sulfate into the eye anterior chamber. The non-image-forming visual system was analyzed in terms of (1) melanopsin-expressing RGC number, (2) anterograde transport from the retina to the olivary pretectal nucleus and the suprachiasmatic nuclei, (3) blue- and white light-induced pupillary light reflex, (4) light-induced c-Fos expression in the suprachiasmatic nuclei, (5) daily rhythm of locomotor activity, and (6) mitochondria in melanopsin-expressing RGC cells. Melatonin prevented the effect of experimental glaucoma on melanopsin-expressing RGC number, blue- and white light-induced pupil constriction, retina-olivary pretectal nucleus, and retina- suprachiasmatic nuclei communication, light-induced c-Fos expression in the suprachiasmatic nuclei, and alterations in the locomotor activity daily rhythm. In addition, melatonin prevented the effect of glaucoma on melanopsin-expressing RGC mitochondrial alterations. These results support that melatonin protected the non-image-forming visual system against glaucoma, probably through a mitochondrial protective mechanism.
Collapse
|
6
|
Chronobiotic effect of melatonin in experimental optic neuritis. Neuropharmacology 2020; 182:108401. [PMID: 33197466 DOI: 10.1016/j.neuropharm.2020.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022]
Abstract
Optic neuritis (ON) is an inflammatory condition of the optic nerve, which leads to retinal ganglion cell (RGC) loss. A subset of RGCs expressing the photopigment melanopsin regulates non-image-forming visual system (NIFVS) functions such as pupillary light reflex (PLR) and circadian rhythms. Melatonin is a chronobiotic agent able to regulate the circadian system. We analyzed the effect of ON on the NIFVS, and the effect of melatonin on the NIFVS alterations induced by ON. For this purpose, optic nerves from male Wistar rats received vehicle or bacterial lipopolysaccharide (LPS), and one group of animals received a subcutaneous pellet of melatonin or a sham procedure. The NIFVS was analyzed in terms of: i) blue light-evoked PLR, ii) the communication between the retina and the suprachiasmatic nuclei (by anterograde transport, and ex vivo magnetic resonance images), iii) locomotor activity rhythm, and iv) Brn3a(+) and melanopsin(+) RGC number (by immunohistochemistry). Experimental ON significantly decreased the blue light-evoked PLR, induced a misconnection between the retina and the suprachiasmatic nuclei, decreased Brn3a(+) RGCs, but not melanopsin(+) RGC number. A bilateral injection of LPS significantly increased the light (but not dark) phase locomotor activity, rhythm periodicity, and time of offset activity. Melatonin prevented the decrease in blue light-evoked PLR, and locomotor activity rhythm alterations induced by ON. These results support that ON provoked alterations of the circadian physiology, and that melatonin could restore the circadian system misalignment.
Collapse
|
7
|
The “Use It or Lose It” Dogma in the Retina: Visual Stimulation Promotes Protection Against Retinal Ischemia. Mol Neurobiol 2019; 57:435-449. [DOI: 10.1007/s12035-019-01715-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/18/2019] [Indexed: 01/12/2023]
|
8
|
Lax P, Ortuño-Lizarán I, Maneu V, Vidal-Sanz M, Cuenca N. Photosensitive Melanopsin-Containing Retinal Ganglion Cells in Health and Disease: Implications for Circadian Rhythms. Int J Mol Sci 2019; 20:E3164. [PMID: 31261700 PMCID: PMC6651433 DOI: 10.3390/ijms20133164] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022] Open
Abstract
Melanopsin-containing retinal ganglion cells (mRGCs) represent a third class of retinal photoreceptors involved in regulating the pupillary light reflex and circadian photoentrainment, among other things. The functional integrity of the circadian system and melanopsin cells is an essential component of well-being and health, being both impaired in aging and disease. Here we review evidence of melanopsin-expressing cell alterations in aging and neurodegenerative diseases and their correlation with the development of circadian rhythm disorders. In healthy humans, the average density of melanopsin-positive cells falls after age 70, accompanied by age-dependent atrophy of dendritic arborization. In addition to aging, inner and outer retinal diseases also involve progressive deterioration and loss of mRGCs that positively correlates with progressive alterations in circadian rhythms. Among others, mRGC number and plexus complexity are impaired in Parkinson's disease patients; changes that may explain sleep and circadian rhythm disorders in this pathology. The key role of mRGCs in circadian photoentrainment and their loss in age and disease endorse the importance of eye care, even if vision is lost, to preserve melanopsin ganglion cells and their essential functions in the maintenance of an adequate quality of life.
Collapse
Affiliation(s)
- Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Isabel Ortuño-Lizarán
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, University of Murcia, 30120 Murcia, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
- Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, 03690 Alicante, Spain.
| |
Collapse
|
9
|
Lax P, Kutsyr O, Esquiva G, Altavilla C, Maneu V, Cuenca N. Cannabinoid-mediated retinal rescue correlates with improved circadian parameters in retinal dystrophic rats. Exp Eye Res 2019; 180:192-199. [DOI: 10.1016/j.exer.2018.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/13/2018] [Accepted: 12/30/2018] [Indexed: 11/15/2022]
|
10
|
Gubin DG, Malishevskaya ТN, Astakhov YS, Astakhov SY, Cornelissen G, Kuznetsov VA, Weinert D. Progressive retinal ganglion cell loss in primary open-angle glaucoma is associated with temperature circadian rhythm phase delay and compromised sleep. Chronobiol Int 2019; 36:564-577. [PMID: 30663431 DOI: 10.1080/07420528.2019.1566741] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Advanced primary open-angle glaucoma (POAG) is characterized by progressive retinal ganglion cell complex (RGCC) damage that may cause subsequent disruption of the circadian rhythms. Therefore, we evaluated circadian body temperature (BT) rhythm and sleep characteristics of 115 individuals (38 men and 77 women) diagnosed with POAG. GLV (global loss volume; %), a measure of RGCC damage, was estimated by high-definition optical coherence tomography, and RGC functional ability was assessed by pattern electroretinogram amplitude (PERGA). Depending on dynamics of POAG progression criteria, two groups were formed that were distinctively different in GLV: Stable POAG group (S-POAG; GLV = 5.95 ± 1.84, n = 65) and Progressive POAG group (P-POAG; GLV = 24.27 ± 5.09, n = 50). S-POAG and P-POAG groups were not different in mean age (67.61 ± 7.56 versus 69.98 ± 8.15) or body mass index (24.66 ± 3.03 versus 24.77 ± 2.90). All subjects performed 21 around-the-clock BT self-measurements during a 72-h period and kept activity/sleep diaries. Results showed pronounced disruption of circadian physiology in POAG and its progression with increasing severity of the disease. The daily mean of BT was unusually low, compared to age-matched controls. Moreover, our results revealed distinctive features of BT circadian rhythm alterations in POAG development and POAG progression. S-POAG is associated with lowered BT circadian rhythm robustness and inter-daily phase stability compared to controls. In the P-POAG group, the mean phase of the circadian BT rhythm was delayed by about 5 h and phases were highly scattered among individual patients, which led to reduced group mean amplitude. Circadian amplitudes of individuals were not different between the groups. Altogether, these results suggest that the body clock still works in POAG patients, but its entrainment to the 24-h environment is compromised. Probably because of the internal desynchronization, bedtime is delayed, and sleep duration is accordingly shortened by about 55 min in P-POAG compared to S-POAG patients. In the entire POAG cohort (both groups), later sleep phase and shorter mean sleep duration correlate with the delayed BT phase (r = 0.215; p = 0.021 and r = 0.322; p = 0.0004, respectively). An RGCC GLV of 15% apparently constitutes a threshold above which a delay of the circadian BT rhythm and a shortening of sleep duration occur.
Collapse
Affiliation(s)
- D G Gubin
- a Department of Biology , Medical University , Tyumen , Russia.,b Tyumen Cardiology Research Center , Tomsk National Research Medical Center, Russian Academy of Science , Tomsk , Russia
| | - Т N Malishevskaya
- c Department of Organization of Medical Care , State Autonomous Health Care Institution Tyumen Regional Ophthalmological Dispensary , Tyumen , Russia.,d Department of Ophthalmology and Optometry , West-Siberian Institute of Postgraduate Medical Education , Tyumen , Russia
| | - Y S Astakhov
- e Department of Ophthalmology , Pavlov First Saint Petersburg State Medical University , St. Petersburg , Russia
| | - S Y Astakhov
- e Department of Ophthalmology , Pavlov First Saint Petersburg State Medical University , St. Petersburg , Russia
| | - G Cornelissen
- f Halberg Chronobiology Center , University of Minnesota , Minneapolis , MN , USA
| | - V A Kuznetsov
- b Tyumen Cardiology Research Center , Tomsk National Research Medical Center, Russian Academy of Science , Tomsk , Russia
| | - D Weinert
- g Institute of Biology/Zoology , Martin Luther University , Halle-Wittenberg , Germany
| |
Collapse
|
11
|
Daniel S, Clark AF, McDowell CM. Subtype-specific response of retinal ganglion cells to optic nerve crush. Cell Death Discov 2018; 4:7. [PMID: 30062056 PMCID: PMC6054657 DOI: 10.1038/s41420-018-0069-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/03/2018] [Indexed: 01/09/2023] Open
Abstract
Glaucoma is a neurodegenerative disease with retinal ganglion cell (RGC) loss, optic nerve degeneration and subsequent vision loss. There are about 30 different subtypes of RGCs whose response to glaucomatous injury is not well characterized. The purpose of this study was to evaluate the response of 4 RGC subtypes in a mouse model of optic nerve crush (ONC). In this study, we also evaluated the pattern of axonal degeneration in RGC subtypes after nerve injury. We found that out of the 4 subtypes, transient-Off α RGCs are the most susceptible to injury followed by On-Off direction selective RGCs (DSGC). Non-image forming RGCs are more resilient with ipRGCs exhibiting the most resistance of them all. In contrast, axons degenerate irrespective of their retinal soma after ONC injury. In conclusion, we show that RGCs have subtype specific cell death response to ONC injury and that RGC axons disintegrate in an autonomous fashion undergoing Wallerian degeneration. These discoveries can further direct us towards effective diagnostic and therapeutic approaches to treat optic neuropathies, such as glaucoma.
Collapse
Affiliation(s)
- S. Daniel
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas United States
| | - AF Clark
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas United States
| | - CM McDowell
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas United States
| |
Collapse
|
12
|
Ortiz G, Lopez ES, Salica JP, Potilinski C, Fernández Acquier M, Chuluyan E, Gallo JE. Alpha-1-antitrypsin ameliorates inflammation and neurodegeneration in the diabetic mouse retina. Exp Eye Res 2018; 174:29-39. [PMID: 29778740 DOI: 10.1016/j.exer.2018.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 12/23/2022]
Abstract
Diabetic retinopathy (DR) is the most common cause of blindness in the working age population. Early events of DR are accompanied by neurodegeneration of the inner retina resulting in ganglion cell loss. These findings together with reduced retinal thickness are observed within the first weeks of experimental DR. Besides, an inflammatory process is triggered in DR in which the innate immune response plays a relevant role. Alpha 1 antitrypsin (AAT), an inhibitor of serine proteases, has shown anti-inflammatory properties in several diseases. We aimed at evaluating the use of AAT to prevent the early changes induced by DR. Diabetic AAT-treated mice showed a delay on ganglion cell loss and retinal thinning. These animals showed a markedly reduced inflammatory status. AAT was able to preserve systemic and retinal TNF-α level similar to that of control mice. Furthermore, retinal macrophages found in the AAT-treated diabetic mouse exhibited M2 profile (F4/80+CD206+) together with an anti-inflammatory microenvironment. We thus demonstrated that AAT-treated mice show less retinal neurodegenerative changes and have reduced levels of systemic and retinal TNF-α. Our results contribute to shed light on the use of AAT as a possible therapeutic option in DR.
Collapse
Affiliation(s)
- Gustavo Ortiz
- Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Consejo Nacional de Investigaciones en Ciencia y Tecnología (CONICET), Avenida Presidente Perón 1500, Pilar, Buenos Aires, Argentina.
| | - Emiliano S Lopez
- Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Consejo Nacional de Investigaciones en Ciencia y Tecnología (CONICET), Avenida Presidente Perón 1500, Pilar, Buenos Aires, Argentina.
| | - Juan P Salica
- Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Consejo Nacional de Investigaciones en Ciencia y Tecnología (CONICET), Avenida Presidente Perón 1500, Pilar, Buenos Aires, Argentina.
| | - Constanza Potilinski
- Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Consejo Nacional de Investigaciones en Ciencia y Tecnología (CONICET), Avenida Presidente Perón 1500, Pilar, Buenos Aires, Argentina.
| | | | - Eduardo Chuluyan
- Centro de Estudios Farmacológicos y Botánicos, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Juan E Gallo
- Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Consejo Nacional de Investigaciones en Ciencia y Tecnología (CONICET), Avenida Presidente Perón 1500, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Vidal-Sanz M, Galindo-Romero C, Valiente-Soriano FJ, Nadal-Nicolás FM, Ortin-Martinez A, Rovere G, Salinas-Navarro M, Lucas-Ruiz F, Sanchez-Migallon MC, Sobrado-Calvo P, Aviles-Trigueros M, Villegas-Pérez MP, Agudo-Barriuso M. Shared and Differential Retinal Responses against Optic Nerve Injury and Ocular Hypertension. Front Neurosci 2017; 11:235. [PMID: 28491019 PMCID: PMC5405145 DOI: 10.3389/fnins.2017.00235] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/07/2017] [Indexed: 12/05/2022] Open
Abstract
Glaucoma, one of the leading causes of blindness worldwide, affects primarily retinal ganglion cells (RGCs) and their axons. The pathophysiology of glaucoma is not fully understood, but it is currently believed that damage to RGC axons at the optic nerve head plays a major role. Rodent models to study glaucoma include those that mimic either ocular hypertension or optic nerve injury. Here we review the anatomical loss of the general population of RGCs (that express Brn3a; Brn3a+RGCs) and of the intrinsically photosensitive RGCs (that express melanopsin; m+RGCs) after chronic (LP-OHT) or acute (A-OHT) ocular hypertension and after complete intraorbital optic nerve transection (ONT) or crush (ONC). Our studies show that all of these insults trigger RGC death. Compared to Brn3a+RGCs, m+RGCs are more resilient to ONT, ONC, and A-OHT but not to LP-OHT. There are differences in the course of RGC loss both between these RGC types and among injuries. An important difference between the damage caused by ocular hypertension or optic nerve injury appears in the outer retina. Both axotomy and LP-OHT induce selective loss of RGCs but LP-OHT also induces a protracted loss of cone photoreceptors. This review outlines our current understanding of the anatomical changes occurring in rodent models of glaucoma and discusses the advantages of each one and their translational value.
Collapse
Affiliation(s)
- Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Francisco M Nadal-Nicolás
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Arturo Ortin-Martinez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Giuseppe Rovere
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Manuel Salinas-Navarro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Fernando Lucas-Ruiz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Maria C Sanchez-Migallon
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Paloma Sobrado-Calvo
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Marcelino Aviles-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| |
Collapse
|
14
|
FENG RUIQI, LI LIJUAN, YU HAIYAN, LIU MIN, ZHAO WEI. Melanopsin retinal ganglion cell loss and circadian dysfunction in Alzheimer's disease (Review). Mol Med Rep 2016; 13:3397-400. [PMID: 26935586 PMCID: PMC4805057 DOI: 10.3892/mmr.2016.4966] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/02/2016] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease affects 27 million individuals and is the most common cause of dementia worldwide. The pathology of Alzheimer's disease is primarily due to the β‑amyloid deposits and neurofibrillary tangles. These deposits exist largely in the cerebral blood vessels, but have also been shown to exist in retinal vessels. A new class of cells that were recently identified, known as melanopsin‑expressing retinal ganglion cells (mRGCs), are involved in the non‑image forming functions of the eye. These functions include circadian activities such as temperature rhythms, melatonin release and rest‑activity cycles. Circadian dysfunction has been investigated in many cases of Alzheimer's disease. In this review, we outline the current accepted Alzheimer's disease pathology, the role of mRCGs in optic neuropathies and the role of mRCGs, leading to circadian dysfunction, in Alzheimer's disease.
Collapse
Affiliation(s)
- RUIQI FENG
- Department of Geriatrics, Yunnan Provincial Mental Hospital, Kunming, Yunnan 650223, P.R. China
| | - LIJUAN LI
- Administrative Office, School of Public Health, Dali University, Dali, Yunnan 671000, P.R. China
| | - HAIYAN YU
- Department of Pharmacy, Yunnan Provincial Mental Hospital, Kunming, Yunnan 650223, P.R. China
| | - MIN LIU
- Administrative Office, School of Public Health, Dali University, Dali, Yunnan 671000, P.R. China
| | - WEI ZHAO
- Department of Ophthalmology, School of Clinical Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| |
Collapse
|
15
|
Lax P, Esquiva G, Fuentes-Broto L, Segura F, Sánchez-Cano A, Cuenca N, Pinilla I. Age-related changes in photosensitive melanopsin-expressing retinal ganglion cells correlate with circadian rhythm impairments in sighted and blind rats. Chronobiol Int 2016; 33:374-91. [DOI: 10.3109/07420528.2016.1151025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Dorfman D, Aranda ML, Rosenstein RE. Enriched Environment Protects the Optic Nerve from Early Diabetes-Induced Damage in Adult Rats. PLoS One 2015; 10:e0136637. [PMID: 26312758 PMCID: PMC4552300 DOI: 10.1371/journal.pone.0136637] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/05/2015] [Indexed: 01/13/2023] Open
Abstract
Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Axoglial alterations of the distal (close to the chiasm) optic nerve (ON) could be the first structural change of the visual pathway in streptozotocin (STZ)-induced diabetes in rats. We analyzed the effect of environmental enrichment on axoglial alterations of the ON provoked by experimental diabetes. For this purpose, three days after vehicle or STZ injection, animals were housed in enriched environment (EE) or remained in a standard environment (SE) for 6 weeks. Anterograde transport, retinal morphology, optic nerve axons (toluidine blue staining and phosphorylated neurofilament heavy immunoreactivity), microglia/macrophages (ionized calcium binding adaptor molecule 1 (Iba-1) immunoreactivity), astrocyte reactivity (glial fibrillary acid protein-immunostaining), myelin (myelin basic protein immunoreactivity), ultrastructure, and brain derived neurotrophic factor (BDNF) levels were assessed in non-diabetic and diabetic animals housed in SE or EE. No differences in retinal morphology or retinal ganglion cell number were observed among groups. EE housing which did not affect the STZ-induced weight loss and hyperglycemia, prevented a decrease in the anterograde transport from the retina to the superior colliculus, ON axon number, and phosphorylated neurofilament heavy immunoreactivity. Moreover, EE housing prevented an increase in Iba-1 immunoreactivity, and astrocyte reactivity, as well as ultrastructural myelin alterations in the ON distal portion at early stages of diabetes. In addition, EE housing avoided a decrease in BDNF levels induced by experimental diabetes. These results suggest that EE induced neuroprotection in the diabetic visual pathway.
Collapse
Affiliation(s)
- Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Marcos L. Aranda
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E. Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
17
|
Nissen C, Rönnbäck C, Sander B, Herbst K, Milea D, Larsen M, Lund-Andersen H. Dissociation of Pupillary Post-Illumination Responses from Visual Function in Confirmed OPA1 c.983A > G and c.2708_2711delTTAG Autosomal Dominant Optic Atrophy. Front Neurol 2015; 6:5. [PMID: 25699009 PMCID: PMC4316714 DOI: 10.3389/fneur.2015.00005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/09/2015] [Indexed: 12/03/2022] Open
Abstract
Purpose: To test whether the melanopsin-containing, intrinsically photosensitive retinal ganglion cells (ipRGCs), as evaluated by examination of the pupillary light reflex (PLR), are preserved in genetically confirmed autosomal dominant optic atrophy (ADOA). Method: Twenty-nine patients with either the c.983A > G (n = 14) or the c.2708_ 2711delTTAG mutation (n = 15) were examined with monochromatic pupillometry, using isoluminant (300 cd/m2), red (660 nm) or blue (470 nm) light, optical coherence tomography, automated visual field analysis, and with determination of best corrected visual acuity (BCVA). Since we examined two different mutations, initially we compared all outcome variables between the two, and finding no statistically significant difference, pooled them. Results: Despite a poor BCVA (56 letters, ETDRS) in the ADOA patients, their post-illuminatory pupil responses did not differ significantly from those of healthy controls (blue, p = 0.45, red, p = 0.49, t-test), and no statistically significant effect was noted of peripapillary retinal nerve fiber layer thickness, ganglion cell-inner plexiform layer thickness, or age. Conclusion: The PLR to blue light of high luminance (300 cd/m2) was preserved in both c.983A > G and c.2708_2711delTTAG ADOA despite severe visual loss and optic nerve atrophy. The study confirms, in a large sample of two genetically homogenous groups, that the ipRGCs are spared in ADOA.
Collapse
Affiliation(s)
- Claus Nissen
- Department of Ophthalmology, Glostrup Hospital, University of Copenhagen , Copenhagen , Denmark
| | - Cecilia Rönnbäck
- Department of Ophthalmology, Glostrup Hospital, University of Copenhagen , Copenhagen , Denmark
| | - Birgit Sander
- Department of Ophthalmology, Glostrup Hospital, University of Copenhagen , Copenhagen , Denmark
| | - Kristina Herbst
- Department of Ophthalmology, Glostrup Hospital, University of Copenhagen , Copenhagen , Denmark
| | - Dan Milea
- Department of Ophthalmology, Glostrup Hospital, University of Copenhagen , Copenhagen , Denmark ; Singapore National Eye Centre, Singapore Eye Research Institute, Duke-NUS Graduate Medical School Singapore , Singapore , Singapore ; Angers University Hospital , Angers , France
| | - Michael Larsen
- Department of Ophthalmology, Glostrup Hospital, University of Copenhagen , Copenhagen , Denmark
| | - Henrik Lund-Andersen
- Department of Ophthalmology, Glostrup Hospital, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|