1
|
Spišská V, Kubištová A, Novotný J, Bendová Z. Impact of Prenatal LPS and Early-life Constant Light Exposure on Circadian Gene Expression Profiles in Various Rat Tissues. Neuroscience 2024; 551:17-30. [PMID: 38777136 DOI: 10.1016/j.neuroscience.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Exposure to lipopolysaccharide (LPS) during prenatal development leads to various changes in neurobiological and behavioural patterns. Similarly, continuous exposure to constant light (LL) during the critical developmental period of the circadian system affects gene expression in various tissues in adulthood. Given the reciprocal nature of the interaction between the circadian and the immune systems, our study primarily investigated the individual effects of both interventions and, more importantly, their combined effect. We aimed to explore whether there might be a potential synergistic effect on circadian rhythms and their parameters, focussing on the expression of clock genes, immune-related genes, and specific genes in the hippocampus, pineal gland, spleen and adrenal gland of rats at postnatal day 30. Our results show a significant influence of prenatal LPS and postnatal LL on the expression profiles of all genes assessed. However, the combination of prenatal LPS and postnatal LL only revealed an enhanced negative effect in a minority of the comparisons. In most cases, it appeared to attenuate the changes induced by the individual interventions, restoring the measured parameters to values closer to those of the control group. In particular, genes such as Nr1d1, Aanat and Tph1 showed increased amplitude in the pineal gland and spleen, while the kynurenine enzymes Kynu and KatII developed circadian rhythmicity in the adrenal glands only after the combined interventions. Our data suggest that a mild immunological challenge during prenatal development may play a critical role in triggering an adaptive response of the circadian clock later in life.
Collapse
Affiliation(s)
- Veronika Spišská
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Aneta Kubištová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zdeňka Bendová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic; National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
2
|
Tuo Y, Tian C, Lu L, Xiang M. The paradoxical role of methionine enkephalin in tumor responses. Eur J Pharmacol 2020; 882:173253. [PMID: 32535097 DOI: 10.1016/j.ejphar.2020.173253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
Methionine enkephalin (MENK) is an opioid peptide composed of five amino acids with multiple biological activities. Since its discovery, MENK has become prominent in neuroregulation and immunoregulation. Tumors have increasingly been a spotlight because of their terrible trends and refractory characteristic. The therapeutic potential of MENK was investigated on a large scale, and there are numerous evidences that MENK exerts anti-tumor effects via two mechanisms. The first mechanism explains the enhanced anti-tumor immune effects of MENK. The second mechanism shows that MENK directly inhibits tumor cell proliferation. However, numerous reports have clarified the pro-tumor role of MENK by inhibiting T and B cell proliferation, promoting tumor cell growth by binding to opioid receptors, leading to desensitization of lymphocytes, and inducing tolerance. It is particularly intriguing that dual reactions are triggered when MENK combines with its opioid receptors; thus, anti-tumor response of the whole body is influenced. This review will expound the dual roles of MENK in tumor responses based on immune cells, cytokines, and tumor cells to provide better suggestions for its application in tumor treatment.
Collapse
Affiliation(s)
- Yali Tuo
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lili Lu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Huang Y, Xu C, He M, Huang W, Wu K. Saliva cortisol, melatonin levels and circadian rhythm alterations in Chinese primary school children with dyslexia. Medicine (Baltimore) 2020; 99:e19098. [PMID: 32028434 PMCID: PMC7015546 DOI: 10.1097/md.0000000000019098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 02/05/2023] Open
Abstract
Cortisol is the main end product of hypothalamic-pituitary-adrenal gland (HPA axis), and melatonin (MT) has a regulating effect on HPA axis, and both are closely related to individual behavior and cognitive function. We aimed to evaluate cortisol and MT roles on children dyslexia in this study.A total of 72 dyslexic children and 72 controls were recruited in this study. Saliva samples were collected in the morning, afternoon, and night, respectively. The levels of saliva cortisol and MT were measured by enzyme-linked immunosorbent assay method. Differences of cortisol and MT levels between dyslexic and normal children were compared, and the variation trend was also analyzed by dynamic monitoring in 3 time points.The levels of salivary cortisol and MT in children with dyslexia were all lower than those in normal children whether in the morning (7:30-8:30 AM ), at afternoon (15:30-16:30 PM ) or at night (21:30-22:30 PM ) (all P < .001). Compared with normal children, the circadian rhythm variations of salivary cortisol and MT in dyslexic children disappeared and became disordered. The salivary cortisol and MT levels in children with dyslexia were declined throughout the day; and the circadian rhythm was disordered or disappeared.The results suggest that cortisol and MT levels and their circadian rhythm may affect children dyslexia, but the mechanisms need further exploration.
Collapse
Affiliation(s)
| | | | - Meirong He
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| |
Collapse
|
4
|
Ramírez-Sánchez M, Prieto I, Segarra AB, Martínez-Cañamero M, Banegas I, de Gasparo M. Enkephalinase regulation. VITAMINS AND HORMONES 2019; 111:105-129. [PMID: 31421697 DOI: 10.1016/bs.vh.2019.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After millennia of knowledge of opium, it was only recently that endogenous substances called opioids with similar properties to opium and derivatives were discovered. The first to be discovered were enkephalins. In addition to the regulation of their synthesis and expression of receptors, an important mechanism for the regulation of their functions carried out by multiple proteolytic enzymes acting at all levels of their structure is described. The action of such enzymes, known as enkephalinases, is also regulated by endogenous and exogenous factors which ultimately affect the control of the enkephalins's action. For therapeutic purposes, it is not only necessary to develop specific inhibitors but also to acquire a deep knowledge of the influence that such factors exert on their activities. This knowledge could help us to establish adapted therapeutic strategies in the treatment of pain or other processes in which enkephalinases are involved. In this chapter, some of these regulatory factors are discussed, such as regional and subcellular distribution, developmental changes, diurnal variations, hormonal influences, stress, dietary factors or interactions with other neurotransmitters.
Collapse
Affiliation(s)
| | - Isabel Prieto
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | | | | | - Marc de Gasparo
- Cardiovascular & Metabolic Syndrome Adviser, Rossemaison, Switzerland
| |
Collapse
|
5
|
Ouyang JQ, Davies S, Dominoni D. Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function. ACTA ACUST UNITED AC 2018; 221:221/6/jeb156893. [PMID: 29545373 DOI: 10.1242/jeb.156893] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alternation between day and night is a predictable environmental fluctuation that organisms use to time their activities. Since the invention of artificial lighting, this predictability has been disrupted and continues to change in a unidirectional fashion with increasing urbanization. As hormones mediate individual responses to changing environments, endocrine systems might be one of the first systems affected, as well as being the first line of defense to ameliorate any negative health impacts. In this Review, we first highlight how light can influence endocrine function in vertebrates. We then focus on four endocrine axes that might be affected by artificial light at night (ALAN): pineal, reproductive, adrenal and thyroid. Throughout, we highlight key findings, rather than performing an exhaustive review, in order to emphasize knowledge gaps that are hindering progress on proposing impactful and concrete plans to ameliorate the negative effects of ALAN. We discuss these findings with respect to impacts on human and animal health, with a focus on the consequences of anthropogenic modification of the night-time environment for non-human organisms. Lastly, we stress the need for the integration of field and lab experiments as well as the need for long-term integrative eco-physiological studies in the rapidly expanding field of light pollution.
Collapse
Affiliation(s)
- Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Scott Davies
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA.,Department of Biological Sciences, Quinnipiac University, Hamden, CT 06518, USA
| | - Davide Dominoni
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 Wageningen, The Netherlands.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
6
|
Guerrero-Vargas NN, Navarro-Espíndola R, Guzmán-Ruíz MA, Basualdo MDC, Espitia-Bautista E, López-Bago A, Lascurain R, Córdoba-Manilla C, Buijs RM, Escobar C. Circadian disruption promotes tumor growth by anabolic host metabolism; experimental evidence in a rat model. BMC Cancer 2017; 17:625. [PMID: 28874144 PMCID: PMC5585981 DOI: 10.1186/s12885-017-3636-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/28/2017] [Indexed: 01/01/2023] Open
Abstract
Background Light at night creates a conflicting signal to the biological clock and disrupts circadian physiology. In rodents, light at night increases the risk to develop mood disorders, overweight, disrupted energy metabolism, immune dysfunction and cancer. We hypothesized that constant light (LL) in rats may facilitate tumor growth via disrupted metabolism and increased inflammatory response in the host, inducing a propitious microenvironment for tumor cells. Methods Male Wistar rats were exposed to LL or a regular light-dark cycle (LD) for 5 weeks. Body weight gain, food consumption, triglycerides and glucose blood levels were evaluated; a glucose tolerance test was also performed. Inflammation and sickness behavior were evaluated after the administration of intravenous lipopolysaccharide. Tumors were induced by subcutaneous inoculation of glioma cells (C6). In tumor-bearing rats, the metabolic state and immune cells infiltration to the tumor was investigated by using immunohistochemistry and flow cytometry. The mRNA expression of genes involved metabolic, growth, angiogenes and inflammatory pathways was measured in the tumor microenvironment by qPCR. Tumor growth was also evaluated in animals fed with a high sugar diet. Results We found that LL induced overweight, high plasma triglycerides and glucose levels as well as reduced glucose clearance. In response to an LPS challenge, LL rats responded with higher pro-inflammatory cytokines and exacerbated sickness behavior. Tumor cell inoculation resulted in increased tumor volume in LL as compared with LD rats, associated with high blood glucose levels and decreased triglycerides levels in the host. More macrophages were recruited in the LL tumor and the microenvironment was characterized by upregulation of genes involved in lipogenesis (Acaca, Fasn, and Pparγ), glucose uptake (Glut-1), and tumor growth (Vegfα, Myc, Ir) suggesting that LL tumors rely on these processes in order to support their enhanced growth. Genes related with the inflammatory state in the tumor microenvironment were not different between LL and LD conditions. In rats fed a high caloric diet tumor growth was similar to LL conditions. Conclusions Data indicates that circadian disruption by LL provides a favorable condition for tumor growth by promoting an anabolic metabolism in the host. Electronic supplementary material The online version of this article (10.1186/s12885-017-3636-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Raful Navarro-Espíndola
- Departamento de Anatomía, Facultad de Medicina, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Mara A Guzmán-Ruíz
- Departamento de Anatomía, Facultad de Medicina, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico.,Departamento de Medicina experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - María Del Carmen Basualdo
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, CP, Mexico
| | - Estefania Espitia-Bautista
- Departamento de Anatomía, Facultad de Medicina, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Ana López-Bago
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, CP, Mexico
| | - Ricardo Lascurain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, CP, Mexico
| | - Cinthya Córdoba-Manilla
- Departamento de Anatomía, Facultad de Medicina, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Ruud M Buijs
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, CP, Mexico
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico.
| |
Collapse
|
7
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
8
|
Smolensky MH, Sackett-Lundeen LL, Portaluppi F. Nocturnal light pollution and underexposure to daytime sunlight: Complementary mechanisms of circadian disruption and related diseases. Chronobiol Int 2015; 32:1029-48. [PMID: 26374931 DOI: 10.3109/07420528.2015.1072002] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Routine exposure to artificial light at night (ALAN) in work, home, and community settings is linked with increased risk of breast and prostate cancer (BC, PC) in normally sighted women and men, the hypothesized biological rhythm mechanisms being frequent nocturnal melatonin synthesis suppression, circadian time structure (CTS) desynchronization, and sleep/wake cycle disruption with sleep deprivation. ALAN-induced perturbation of the CTS melatonin synchronizer signal is communicated maternally at the very onset of life and after birth via breast or artificial formula feedings. Nighttime use of personal computers, mobile phones, electronic tablets, televisions, and the like--now epidemic in adolescents and adults and highly prevalent in pre-school and school-aged children--is a new source of ALAN. However, ALAN exposure occurs concomitantly with almost complete absence of daytime sunlight, whose blue-violet (446-484 nm λ) spectrum synchronizes the CTS and whose UV-B (290-315 nm λ) spectrum stimulates vitamin D synthesis. Under natural conditions and clear skies, day/night and annual cycles of UV-B irradiation drive corresponding periodicities in vitamin D synthesis and numerous bioprocesses regulated by active metabolites augment and strengthen the biological time structure. Vitamin D insufficiency and deficiency are widespread in children and adults in developed and developing countries as a consequence of inadequate sunlight exposure. Past epidemiologic studies have focused either on exposure to too little daytime UV-B or too much ALAN, respectively, on vitamin D deficiency/insufficiency or melatonin suppression in relation to risk of cancer and other, e.g., psychiatric, hypertensive, cardiac, and vascular, so-called, diseases of civilization. The observed elevated incidence of medical conditions the two are alleged to influence through many complementary bioprocesses of cells, tissues, and organs led us to examine effects of the totality of the artificial light environment in which humans reside today. Never have chronobiologic or epidemiologic investigations comprehensively researched the potentially deleterious consequences of the combination of suppressed vitamin D plus melatonin synthesis due to life in today's man-made artificial light environment, which in our opinion is long overdue.
Collapse
Affiliation(s)
- Michael H Smolensky
- a Department of Biomedical Engineering , Cockrell School of Engineering, The University of Texas at Austin , Austin , TX , USA
| | - Linda L Sackett-Lundeen
- b American Association for Clinical Chronobiology and Chronotherapeutics , Roseville , MN , USA , and
| | - Francesco Portaluppi
- c Hypertension Center, S. Anna University Hospital, University of Ferrara , Ferrara , Italy
| |
Collapse
|