1
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Klein K, Kollmann S, Hiesinger A, List J, Kendler J, Klampfl T, Rhandawa M, Trifinopoulos J, Maurer B, Grausenburger R, Betram CA, Moriggl R, Rülicke T, Mullighan CG, Witalisz-Siepracka A, Walter W, Hoermann G, Sexl V, Gotthardt D. A lineage-specific STAT5BN642H mouse model to study NK-cell leukemia. Blood 2024; 143:2474-2489. [PMID: 38498036 PMCID: PMC11208297 DOI: 10.1182/blood.2023022655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Patients with T- and natural killer (NK)-cell neoplasms frequently have somatic STAT5B gain-of-function mutations. The most frequent STAT5B mutation is STAT5BN642H, which is known to drive murine T-cell leukemia, although its role in NK-cell malignancies is unclear. Introduction of the STAT5BN642H mutation into human NK-cell lines enhances their potential to induce leukemia in mice. We have generated a mouse model that enables tissue-specific expression of STAT5BN642H and have selectively expressed the mutated STAT5B in hematopoietic cells (N642Hvav/+) or exclusively in NK cells (N642HNK/NK). All N642Hvav/+ mice rapidly develop an aggressive T/NKT-cell leukemia, whereas N642HNK/NK mice display an indolent NK-large granular lymphocytic leukemia (NK-LGLL) that progresses to an aggressive leukemia with age. Samples from patients with NK-cell leukemia have a distinctive transcriptional signature driven by mutant STAT5B, which overlaps with that of murine leukemic N642HNK/NK NK cells. To our knowledge, we have generated the first reliable STAT5BN642H-driven preclinical mouse model that displays an indolent NK-LGLL progressing to aggressive NK-cell leukemia. This novel in vivo tool will enable us to explore the transition from an indolent to an aggressive disease and will thus permit the study of prevention and treatment options for NK-cell malignancies.
Collapse
Affiliation(s)
- Klara Klein
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sebastian Kollmann
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Angela Hiesinger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Julia List
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jonatan Kendler
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thorsten Klampfl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mehak Rhandawa
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Trifinopoulos
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Maurer
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhard Grausenburger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christof A. Betram
- Department for Biological Sciences and Pathobiology, Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Department for Biological Sciences and Pathobiology, Animal Breeding and Genetics, Unit for Functional Cancer Genomics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Department for Biological Sciences and Pathobiology and Ludwig Boltzmann Institute for Hematology and Oncology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Charles G. Mullighan
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| | - Agnieszka Witalisz-Siepracka
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- Division Pharmacology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | | | | | - Veronika Sexl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | - Dagmar Gotthardt
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
3
|
Sobah ML, Liongue C, Ward AC. Stat3 Regulates Developmental Hematopoiesis and Impacts Myeloid Cell Function via Canonical and Non-Canonical Modalities. J Innate Immun 2024; 16:262-282. [PMID: 38643762 PMCID: PMC11249464 DOI: 10.1159/000538364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024] Open
Abstract
INTRODUCTION Signal transducer and activator of transcription (STAT) 3 is extensively involved in the development, homeostasis, and function of immune cells, with STAT3 disruption associated with human immune-related disorders. The roles ascribed to STAT3 have been assumed to be due to its canonical mode of action as an inducible transcription factor downstream of multiple cytokines, although alternative noncanonical functional modalities have also been identified. The relative involvement of each mode was further explored in relevant zebrafish models. METHODS Genome editing with CRISPR/Cas9 was used to generate mutants of the conserved zebrafish Stat3 protein: a loss of function knockout (KO) mutant and a mutant lacking C-terminal sequences including the transactivation domain (ΔTAD). Lines harboring these mutations were analyzed with respect to blood and immune cell development and function in comparison to wild-type zebrafish. RESULTS The Stat3 KO mutant showed perturbation of hematopoietic lineages throughout primitive and early definitive hematopoiesis. Neutrophil numbers did not increase in response to lipopolysaccharide (LPS) or granulocyte colony-stimulating factor (G-CSF) and their migration was significantly diminished, the latter correlating with abrogation of the Cxcl8b/Cxcr2 pathway, with macrophage responses perturbed. Intriguingly, many of these phenotypes were not shared by the Stat3 ΔTAD mutant. Indeed, only neutrophil and macrophage development were disrupted in these mutants with responsiveness to LPS and G-CSF maintained, and neutrophil migration actually increased. CONCLUSION This study has identified roles for zebrafish Stat3 within hematopoietic stem cells impacting multiple lineages throughout primitive and early definitive hematopoiesis, myeloid cell responses to G-CSF and LPS and neutrophil migration. Many of these roles showed conservation, but notably several involved noncanonical modalities, providing additional insights for relevant diseases.
Collapse
Affiliation(s)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| |
Collapse
|
4
|
Leonard WJ, Lin JX. Strategies to therapeutically modulate cytokine action. Nat Rev Drug Discov 2023; 22:827-854. [PMID: 37542128 DOI: 10.1038/s41573-023-00746-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 08/06/2023]
Abstract
Cytokines are secreted or membrane-presented molecules that mediate broad cellular functions, including development, differentiation, growth and survival. Accordingly, the regulation of cytokine activity is extraordinarily important both physiologically and pathologically. Cytokine and/or cytokine receptor engineering is being widely investigated to safely and effectively modulate cytokine activity for therapeutic benefit. IL-2 in particular has been extensively engineered, to create IL-2 variants that differentially exhibit activities on regulatory T cells to potentially treat autoimmune disease versus effector T cells to augment antitumour effects. Additionally, engineering approaches are being applied to many other cytokines such as IL-10, interferons and IL-1 family cytokines, given their immunosuppressive and/or antiviral and anticancer effects. In modulating the actions of cytokines, the strategies used have been broad, including altering affinities of cytokines for their receptors, prolonging cytokine half-lives in vivo and fine-tuning cytokine actions. The field is rapidly expanding, with extensive efforts to create improved therapeutics for a range of diseases.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Assmann JL, Vlachonikola E, Kolijn PM, Agathangelidis A, Pechlivanis N, Papalexandri A, Stamatopoulos K, Chatzidimitriou A, Langerak AW. Context-dependent T-cell Receptor Gene Repertoire Profiles in Proliferations of T Large Granular Lymphocytes. Hemasphere 2023; 7:e929. [PMID: 37469801 PMCID: PMC10353713 DOI: 10.1097/hs9.0000000000000929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
T cell large granular lymphocyte (T-LGL) lymphoproliferations constitute a disease spectrum ranging from poly/oligo to monoclonal. Boundaries within this spectrum of proliferations are not well established. T-LGL lymphoproliferations co-occur with a wide variety of other diseases ranging from autoimmune disorders, solid tumors, hematological malignancies, post solid organ, and hematopoietic stem cell transplantation, and can therefore arise as a consequence of a wide variety of antigenic triggers. Persistence of a dominant malignant T-LGL clone is established through continuous STAT3 activation. Using next-generation sequencing, we profiled a cohort of 27 well-established patients with T-LGL lymphoproliferations, aiming to identify the subclonal architecture of the T-cell receptor beta (TRB) chain gene repertoire. Moreover, we searched for associations between TRB gene repertoire patterns and clinical manifestations, with the ultimate objective of discriminating between T-LGL lymphoproliferations developing in different clinical contexts and/or displaying distinct clinical presentation. Altogether, our data demonstrates that the TRB gene repertoire of patients with T-LGL lymphoproliferations is context-dependent, displaying distinct clonal architectures in different settings. Our results also highlight that there are monoclonal T-LGL cells with or without STAT3 mutations that cause symptoms such as neutropenia on one end of a spectrum and reactive oligoclonal T-LGL lymphoproliferations on the other. Longitudinal analysis revealed temporal clonal dynamics and showed that T-LGL cells might arise as an epiphenomenon when co-occurring with other malignancies, possibly reactive toward tumor antigens.
Collapse
Affiliation(s)
- Jorn L.J.C. Assmann
- Laboratory for Medical Immunology, Department of Immunology, Erasmus MC, Rotterdam, Netherlands
| | | | - Pieter M. Kolijn
- Laboratory for Medical Immunology, Department of Immunology, Erasmus MC, Rotterdam, Netherlands
| | | | - Nikolaos Pechlivanis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Greece
| | | | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Greece
| | | | - Anton W. Langerak
- Laboratory for Medical Immunology, Department of Immunology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
6
|
Mackie J, Ma CS, Tangye SG, Guerin A. The ups and downs of STAT3 function: too much, too little and human immune dysregulation. Clin Exp Immunol 2023; 212:107-116. [PMID: 36652220 PMCID: PMC10128169 DOI: 10.1093/cei/uxad007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 01/18/2023] [Indexed: 01/19/2023] Open
Abstract
The STAT3 story has almost 30 years of evolving history. First identified in 1994 as a pro-inflammatory transcription factor, Signal Transducer and Activator of Transcription 3 (STAT3) has continued to be revealed as a quintessential pleiotropic signalling module spanning fields including infectious diseases, autoimmunity, vaccine responses, metabolism, and malignancy. In 2007, germline heterozygous dominant-negative loss-of-function variants in STAT3 were discovered as the most common cause for a triad of eczematoid dermatitis with recurrent skin and pulmonary infections, first described in 1966. This finding established that STAT3 plays a critical non-redundant role in immunity against some pathogens, as well as in the connective tissue, dental and musculoskeletal systems. Several years later, in 2014, heterozygous activating gain of function germline STAT3 variants were found to be causal for cases of early-onset multiorgan autoimmunity, thereby underpinning the notion that STAT3 function needed to be regulated to maintain immune homeostasis. As we and others continue to interrogate biochemical and cellular perturbations due to inborn errors in STAT3, we will review our current understanding of STAT3 function, mechanisms of disease pathogenesis, and future directions in this dynamic field.
Collapse
Affiliation(s)
- Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Antoine Guerin
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
7
|
Savola P, Bhattacharya D, Huuhtanen J. The spectrum of somatic mutations in large granular lymphocyte leukemia, rheumatoid arthritis and Felty's syndrome. Semin Hematol 2022; 59:123-130. [DOI: 10.1053/j.seminhematol.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
|
8
|
Outcomes for patients with severe chronic neutropenia treated with granulocyte colony-stimulating factor. Blood Adv 2022; 6:3861-3869. [PMID: 35476051 PMCID: PMC9278291 DOI: 10.1182/bloodadvances.2021005684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 04/06/2022] [Indexed: 11/20/2022] Open
Abstract
Severe chronic neutropenia (SCN), defined as blood neutrophils < 0.5 x 109/L for more than 3 months, is an uncommon hematological condition associated with recurrent and severe bacterial infections. After short-term clinical trials showed the benefits of granulocyte colony-stimulating factor (G-CSF) treatment for SCN, the Severe Chronic Neutropenia International Registry (SCNIR) opened to determine the long-term benefits and safety of this treatment. This report summarizes findings from more than 16 000 patient-years of prospective observations for patients with congenital and acquired SCN. We observed that adverse outcomes depend on the underlying etiology. MDS and AML occur infrequently and largely in patients with congenital neutropenias. Having cyclic or chronic autoimmune/idiopathic neutropenia portends a favorable prognosis. A few patients with idiopathic neutropenia evolve to develop lymphoid malignancies, but they do not appear to be at increased risk of myeloid malignancies, even with very long-term G-CSF therapy. Progression to systemic autoimmune diseases, bone marrow failure, aplastic anemia, or non-myeloid malignancies are not expected consequences of SCN or treatment with G-CSF.
Collapse
|
9
|
Bhattacharya D, Teramo A, Gasparini VR, Huuhtanen J, Kim D, Theodoropoulos J, Schiavoni G, Barilà G, Vicenzetto C, Calabretto G, Facco M, Kawakami T, Nakazawa H, Falini B, Tiacci E, Ishida F, Semenzato G, Kelkka T, Zambello R, Mustjoki S. Identification of novel STAT5B mutations and characterization of TCRβ signatures in CD4+ T-cell large granular lymphocyte leukemia. Blood Cancer J 2022; 12:31. [PMID: 35210405 PMCID: PMC8873566 DOI: 10.1038/s41408-022-00630-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
CD4+ T-cell large granular lymphocyte leukemia (T-LGLL) is a rare subtype of T-LGLL with unknown etiology. In this study, we molecularly characterized a cohort of patients (n = 35) by studying their T-cell receptor (TCR) repertoire and the presence of somatic STAT5B mutations. In addition to the previously described gain-of-function mutations (N642H, Y665F, Q706L, S715F), we discovered six novel STAT5B mutations (Q220H, E433K, T628S, P658R, P702A, and V712E). Multiple STAT5B mutations were present in 22% (5/23) of STAT5B mutated CD4+ T-LGLL cases, either coexisting in one clone or in distinct clones. Patients with STAT5B mutations had increased lymphocyte and LGL counts when compared to STAT5B wild-type patients. TCRβ sequencing showed that, in addition to large LGL expansions, non-leukemic T cell repertoires were more clonal in CD4+ T-LGLL compared to healthy. Interestingly, 25% (15/59) of CD4+ T-LGLL clonotypes were found, albeit in much lower frequencies, in the non-leukemic CD4+ T cell repertoires of the CD4+ T-LGLL patients. Additionally, we further confirmed the previously reported clonal dominance of TRBV6-expressing clones in CD4+ T-LGLL. In conclusion, CD4+ T-LGLL patients have a typical TCR and mutation profile suggestive of aberrant antigen response underlying the disease.
Collapse
Affiliation(s)
- Dipabarna Bhattacharya
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Antonella Teramo
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova and Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Vanessa Rebecca Gasparini
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova and Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,Department of Computer Science, Aalto University, Espoo, Finland
| | - Daehong Kim
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Jason Theodoropoulos
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,Department of Computer Science, Aalto University, Espoo, Finland
| | - Gianluca Schiavoni
- Institute of Hematology and Center for Hemato-Oncology Research, University and Hospital of Perugia, Perugia, Italy
| | - Gregorio Barilà
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova and Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Cristina Vicenzetto
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova and Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giulia Calabretto
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova and Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Monica Facco
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova and Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Toru Kawakami
- Department of Internal Medicine, Division of Hematology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideyuki Nakazawa
- Department of Internal Medicine, Division of Hematology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncology Research, University and Hospital of Perugia, Perugia, Italy
| | - Enrico Tiacci
- Institute of Hematology and Center for Hemato-Oncology Research, University and Hospital of Perugia, Perugia, Italy
| | - Fumihiro Ishida
- Department of Biomedical Laboratory Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova and Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Tiina Kelkka
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Renato Zambello
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova and Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland. .,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland. .,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
10
|
Zeinalzadeh E, Valerievich Yumashev A, Rahman HS, Marofi F, Shomali N, Kafil HS, Solali S, Sajjadi-Dokht M, Vakili-Samiani S, Jarahian M, Hagh MF. The Role of Janus Kinase/STAT3 Pathway in Hematologic Malignancies With an Emphasis on Epigenetics. Front Genet 2021; 12:703883. [PMID: 34992627 PMCID: PMC8725977 DOI: 10.3389/fgene.2021.703883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway has been known to be involved in cell growth, cellular differentiation processes development, immune cell survival, and hematopoietic system development. As an important member of the STAT family, STAT3 participates as a major regulator of cellular development and differentiation-associated genes. Prolonged and persistent STAT3 activation has been reported to be associated with tumor cell survival, proliferation, and invasion. Therefore, the JAK-STAT pathway can be a potential target for drug development to treat human cancers, e.g., hematological malignancies. Although STAT3 upregulation has been reported in hematopoietic cancers, protein-level STAT3 mutations have also been reported in invasive leukemias/lymphomas. The principal role of STAT3 in tumor cell growth clarifies the importance of approaches that downregulate this molecule. Epigenetic modifications are a major regulatory mechanism controlling the activity and function of STAT3. So far, several compounds have been developed to target epigenetic regulatory enzymes in blood malignancies. Here, we discuss the current knowledge about STAT3 abnormalities and carcinogenic functions in hematopoietic cancers, novel STAT3 inhibitors, the role of epigenetic mechanisms in STAT3 regulation, and targeted therapies, by focusing on STAT3-related epigenetic modifications.
Collapse
Affiliation(s)
- Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| | - Faroogh Marofi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| | - Saeed Solali
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sajjadi-Dokht
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Vakili-Samiani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| | - Majid Farshdousti Hagh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Assmann JLJC, Leon LG, Stavast CJ, van den Bogaerdt SE, Schilperoord-Vermeulen J, Sandberg Y, Bellido M, Erkeland SJ, Feith DJ, Loughran TP, Langerak AW. miR-181a is a novel player in the STAT3-mediated survival network of TCRαβ+ CD8+ T large granular lymphocyte leukemia. Leukemia 2021; 36:983-993. [PMID: 34873301 PMCID: PMC8979821 DOI: 10.1038/s41375-021-01480-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022]
Abstract
T-LGL cells arise as a consequence of chronic antigenic stimulation and inflammation and thrive because of constitutive activation of the STAT3 and ERK pathway. Notably, in 40% of patients, constitutive STAT3 activation is due to STAT3 activating mutations, whereas in 60% this is unknown. As miRNAs are amongst the most potent regulators in health and disease, we hypothesized that aberrant miRNA expression could contribute to dysregulation of these pathways. miRNA sequencing in T-LGL leukemia cases and aged-matched healthy control TEMRA cells revealed overexpression of miR-181a. Furthermore, geneset enrichment analysis (GSEA) of downregulated targets of miR-181a implicated involvement in regulating STAT3 and ERK1/2 pathways. Flow cytometric analyses showed increased SOCS3+ and DUSP6+ T-LGL cells upon miR-181a inhibition. In addition, miR-181a-transfected human CD8+ T cells showed increased basal STAT3 and ERK1/2 phosphorylation. By using TL1, a human T-LGL cell line, we could show that miR-181a is an actor in T-LGL leukemia, driving STAT3 activation by SOCS3 inhibition and ERK1/2 phosphorylation by DUSP6 inhibition and verified this mechanism in an independent cell line. In addition, miR-181a inhibition resulted in a higher sensitivity to FAS-mediated apoptosis. Collectively, our data show that miR-181a could be the missing link to explain why STAT3-unmutated patients show hyperactive STAT3.
Collapse
Affiliation(s)
- Jorn L J C Assmann
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Leticia G Leon
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christiaan J Stavast
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sanne E van den Bogaerdt
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joyce Schilperoord-Vermeulen
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Yorick Sandberg
- Department of Hematology, Maasstadziekenhuis, Rotterdam, The Netherlands
| | - Mar Bellido
- Department of Hematology, Faculty of Medical Sciences, Groningen University Medical Center, Groningen, The Netherlands
| | - Stefan J Erkeland
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - David J Feith
- Division of Hematology/Oncology, Department of Medicine, UVA Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Thomas P Loughran
- Division of Hematology/Oncology, Department of Medicine, UVA Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Anton W Langerak
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands. .,ACE Rare Immunological Diseases Center, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Kim D, Park G, Huuhtanen J, Ghimire B, Rajala H, Moriggl R, Chan WC, Kankainen M, Myllymäki M, Mustjoki S. STAT3 activation in large granular lymphocyte leukemia is associated with cytokine signaling and DNA hypermethylation. Leukemia 2021; 35:3430-3443. [PMID: 34075200 PMCID: PMC8632689 DOI: 10.1038/s41375-021-01296-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
Large granular lymphocyte leukemia (LGLL) is characterized by somatic gain-of-function STAT3 mutations. However, the functional effects of STAT3 mutations on primary LGLL cells have not been studied in detail. In this study, we show that CD8+ T cells isolated from STAT3 mutated LGLL patients have high protein levels of epigenetic regulators, such as DNMT1, and are characterized by global hypermethylation. Correspondingly, treatment of healthy CD8+ T cells with IL-6, IL-15, and/or MCP-1 cytokines resulted in STAT3 activation, increased DNMT1, EZH2, c-MYC, l-MYC, MAX, and NFκB levels, increased DNA methylation, and increased oxidative stress. Similar results were discovered in KAI3 NK cells overexpressing gain-of-function STAT3Y640F and STAT3G618R mutants compared to KAI3 NK cells overexpressing STAT3WT. Our results also confirm that STAT3 forms a direct complex with DNMT1, EZH2, and HDAC1. In STAT3 mutated LGLL cells, DNA methyltransferase (DNMT) inhibitor azacitidine abrogated the activation of STAT3 via restored SHP1 expression. In conclusion, STAT3 mutations cause DNA hypermethylation resulting in sensitivity to DNMT inhibitors, which could be considered as a novel treatment option for LGLL patients with resistance to standard treatments.
Collapse
Affiliation(s)
- Daehong Kim
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Giljun Park
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Bishwa Ghimire
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Hanna Rajala
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Matti Kankainen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Mikko Myllymäki
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
13
|
Tsilifis C, Freeman AF, Gennery AR. STAT3 Hyper-IgE Syndrome-an Update and Unanswered Questions. J Clin Immunol 2021; 41:864-880. [PMID: 33932191 PMCID: PMC8249299 DOI: 10.1007/s10875-021-01051-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022]
Abstract
The hyper-IgE syndromes (HIES) are a heterogeneous group of inborn errors of immunity sharing manifestations including increased infection susceptibility, eczema, and raised serum IgE. Since the prototypical HIES description 55 years ago, areas of significant progress have included description of key disease-causing genes and differentiation into clinically distinct entities. The first two patients reported had what is now understood to be HIES from dominant-negative mutations in signal transduction and activator of transcription 3 (STAT3-HIES), conferring a broad immune defect across both innate and acquired arms, as well as defects in skeletal, connective tissue, and vascular function, causing a clinical phenotype including eczema, staphylococcal and fungal skin and pulmonary infection, scoliosis and minimal trauma fractures, and vascular tortuosity and aneurysm. Due to the constitutionally expressed nature of STAT3, initial reports at treatment with allogeneic stem cell transplantation were not positive and treatment has hinged on aggressive antimicrobial prophylaxis and treatment to prevent the development of end-organ disease such as pneumatocele. Research into the pathophysiology of STAT3-HIES has driven understanding of the interface of several signaling pathways, including the JAK-STAT pathways, interleukins 6 and 17, and the role of Th17 lymphocytes, and has been expanded by identification of phenocopies such as mutations in IL6ST and ZNF341. In this review we summarize the published literature on STAT3-HIES, present the diverse clinical manifestations of this syndrome with current management strategies, and update on the uncertain role of stem cell transplantation for this disease. We outline key unanswered questions for further study.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital (GNCH), Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew R Gennery
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital (GNCH), Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
14
|
Untwining Anti-Tumor and Immunosuppressive Effects of JAK Inhibitors-A Strategy for Hematological Malignancies? Cancers (Basel) 2021; 13:cancers13112611. [PMID: 34073410 PMCID: PMC8197909 DOI: 10.3390/cancers13112611] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is aberrantly activated in many malignancies. Inhibition of this pathway via JAK inhibitors (JAKinibs) is therefore an attractive therapeutic strategy underlined by Ruxolitinib (JAK1/2 inhibitor) being approved for the treatment of myeloproliferative neoplasms. As a consequence of the crucial role of the JAK-STAT pathway in the regulation of immune responses, inhibition of JAKs suppresses the immune system. This review article provides a thorough overview of the current knowledge on JAKinibs’ effects on immune cells in the context of hematological malignancies. We also discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of the malignancy. Abstract The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway propagates signals from a variety of cytokines, contributing to cellular responses in health and disease. Gain of function mutations in JAKs or STATs are associated with malignancies, with JAK2V617F being the main driver mutation in myeloproliferative neoplasms (MPN). Therefore, inhibition of this pathway is an attractive therapeutic strategy for different types of cancer. Numerous JAK inhibitors (JAKinibs) have entered clinical trials, including the JAK1/2 inhibitor Ruxolitinib approved for the treatment of MPN. Importantly, loss of function mutations in JAK-STAT members are a cause of immune suppression or deficiencies. MPN patients undergoing Ruxolitinib treatment are more susceptible to infections and secondary malignancies. This highlights the suppressive effects of JAKinibs on immune responses, which renders them successful in the treatment of autoimmune diseases but potentially detrimental for cancer patients. Here, we review the current knowledge on the effects of JAKinibs on immune cells in the context of hematological malignancies. Furthermore, we discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of malignancies. In summary, this review underlines the necessity of a robust immune profiling to provide the best benefit for JAKinib-treated patients.
Collapse
|
15
|
Deregulation of the Interleukin-7 Signaling Pathway in Lymphoid Malignancies. Pharmaceuticals (Basel) 2021; 14:ph14050443. [PMID: 34066732 PMCID: PMC8151260 DOI: 10.3390/ph14050443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
The cytokine interleukin-7 (IL-7) and its receptor are critical for lymphoid cell development. The loss of IL-7 signaling causes severe combined immunodeficiency, whereas gain-of-function alterations in the pathway contribute to malignant transformation of lymphocytes. Binding of IL-7 to the IL-7 receptor results in the activation of the JAK-STAT, PI3K-AKT and Ras-MAPK pathways, each contributing to survival, cell cycle progression, proliferation and differentiation. Here, we discuss the role of deregulated IL-7 signaling in lymphoid malignancies of B- and T-cell origin. Especially in T-cell leukemia, more specifically in T-cell acute lymphoblastic leukemia and T-cell prolymphocytic leukemia, a high frequency of mutations in components of the IL-7 signaling pathway are found, including alterations in IL7R, IL2RG, JAK1, JAK3, STAT5B, PTPN2, PTPRC and DNM2 genes.
Collapse
|
16
|
Faletti L, Ehl S, Heeg M. Germline STAT3 gain-of-function mutations in primary immunodeficiency: Impact on the cellular and clinical phenotype. Biomed J 2021; 44:412-421. [PMID: 34366294 PMCID: PMC8514798 DOI: 10.1016/j.bj.2021.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/25/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a key transcription factor involved in regulation of immune cell activation and differentiation. Recent discoveries highlight the role of germline activating STAT3 mutations in inborn errors of immunity characterized by early-onset multi-organ autoimmunity and lymphoproliferation. Much progress has been made in defining the clinical spectrum of STAT3 GOF disease and unraveling the molecular and cellular mechanisms underlying this disease. In this review, we summarize our current understanding of the disease and discuss the clinical phenotype, diagnostic approach, cellular and molecular effects of STAT3 GOF mutations and therapeutic concepts for these patients.
Collapse
Affiliation(s)
- Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Gorodetskiy VR, Sidorova YV, Kupryshina NA, Vasilyev VI, Probatova NA, Ryzhikova NV, Sudarikov AB. Analysis of a single-institution cohort of patients with Felty's syndrome and T-cell large granular lymphocytic leukemia in the setting of rheumatoid arthritis. Rheumatol Int 2020; 41:147-156. [PMID: 33280072 PMCID: PMC7806571 DOI: 10.1007/s00296-020-04757-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022]
Abstract
T-cell large granular lymphocytic leukemia (T-LGLL) is a lymphoproliferative disorder characterized by a persistent increase in the number of large granular lymphocytes (LGLs), neutropenia, and splenomegaly. Clinical manifestations of T-LGLL in the setting of rheumatoid arthritis (RA) are often identical to those in which one would suspect Felty's syndrome (FS). These disorders are distinguished by the presence of T-cell clonality, which is present in T-LGLL but not in FS. Mutations in the signal transducer and activator of transcription 3 (STAT3) and 5b (STAT5b) genes can be used as molecular markers of T-LGLL, but their prevalence in FS is unknown.Eighty-one patients with RA and unexplained neutropenia or/and an increase in the number of LGLs above 2 × 109/L were stratified into RA-associated T-LGLL (N = 56) or FS (N = 25) groups based on the presence or absence of T-cell clonality. STAT3 and STAT5b gene mutations were assessed in each group by means of allele-specific polymerase chain reaction assays. Clinical, immunological, laboratory data and the results of immunophenotyping of blood and bone marrow lymphocytes were also evaluated.Mutations of the STAT3 gene and an increase in the number of LGLs above 2 × 109/L were detected in RA-associated T-LGLL, but not in FS (39% vs 0% and 21% vs 0%, respectively). Mutations in the STAT5b gene were not observed in either group. Expression of CD57, CD16, and CD5-/dim on CD3+CD8+ T-lymphocytes was observed in both RA-associated T-LGLL and FS.STAT3 gene mutations or LGL counts over 2 × 109/L in RA patients are indicative of T-LGLL.
Collapse
Affiliation(s)
- Vadim Romanovich Gorodetskiy
- Department of Intensive Methods of Therapy, V.A. Nasonova Research Institute of Rheumatology, Kashirskoye shosse 34A, Moscow, 115522 Russia
| | | | | | | | | | | | | |
Collapse
|
18
|
Statuto T, D'Auria F, Del Vecchio L, Mansueto GR, Villani O, Lalinga AV, Possidente L, Nozza F, Vona G, Rago L, Storto G, Gasparini VR, Zambello R, D'Arena G, Valvano L. Atypical Mature T-Cell Neoplasms: The Relevance of the Role of Flow Cytometry. Onco Targets Ther 2020; 13:7605-7614. [PMID: 32848413 PMCID: PMC7425660 DOI: 10.2147/ott.s258512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022] Open
Abstract
Lymphoproliferative disorders are a heterogeneous group of malignant clonal proliferations of lymphocytes whose diagnosis remains challenging, despite diagnostic criteria are now well established, due to their heterogeneity in clinical presentation and immunophenotypic profile. Lymphoid T-cell disorders are more rarely seen than B-cell entities and more difficult to diagnose for the absence of a specific immunophenotypic signature. Flow cytometry is a useful tool in diagnosing T-cell lymphoproliferative disorders since it is not only able to better characterize T-cell neoplasms but also to resolve some very complicated cases, in particular those in which a small size population of neoplastic cells is available for the analysis. Here, we report three patients with mature T-cell neoplasms with atypical clinical and biological features in which analysis of peripheral blood and bone marrow specimens by means of multicolor flow cytometry was very useful to identify and characterize three rare T-cell lymphoproliferative disorders, such as angioimmunoblastic T-cell lymphoma, peripheral T-cell lymphoma not otherwise specified and T-cell prolymphocytic leukemia. The aim of this case series report is not only to describe three rare cases of lymphoproliferative neoplasms but also to raise awareness that a fast, highly sensitive, and reproducible procedure, such as flow cytometry immunophenotyping, can have a determinant diagnostic role in these patients.
Collapse
Affiliation(s)
- Teodora Statuto
- Laboratory of Clinical Research and Advanced Diagnostics, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Fiorella D'Auria
- Unit of Clinical Pathology, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Luigi Del Vecchio
- CEINGE Biotecnologie Avanzate S.c.a.r.l, Federico II University, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology (DMMBM), Federico II University, Naples, Italy
| | - Giovanna Rosaria Mansueto
- Hematology Department of Basilicata, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Oreste Villani
- Hematology Department of Basilicata, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Anna Vittoria Lalinga
- Pathology Unit, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Luciana Possidente
- Pathology Unit, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Filomena Nozza
- Laboratory of Clinical Research and Advanced Diagnostics, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Gabriella Vona
- Laboratory of Clinical Research and Advanced Diagnostics, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Luciana Rago
- Radiotherapy Unit, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Giovanni Storto
- Department of Nuclear Medicine, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Vanessa Rebecca Gasparini
- Department of Medicine, University of Padova - Veneto Institute of Molecular Medicine, VIMM, Padova, PD, Italy
| | - Renato Zambello
- Hematology and Clinical Immunology, Department of Medicine, Padua School of Medicine, Padova, PD, Italy
| | - Giovanni D'Arena
- Hematology Department of Basilicata, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Luciana Valvano
- Laboratory of Clinical Research and Advanced Diagnostics, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| |
Collapse
|
19
|
Terry J, Langlois S, Rupps R, Gill H. Prenatal Autoimmune Disease, Multisystem, Infantile Onset-like Phenotype and Proximal Renal Tubular Dysplasia Associated With STAT3 Mutation. Pediatr Dev Pathol 2020; 23:306-311. [PMID: 31771449 DOI: 10.1177/1093526619890734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activating heterozygous germline mutations in the signal transducer and activator of transcription 3 (STAT3) gene are associated with the rare autoimmune disorder autoimmune disease, multisystem, infantile onset (ADMIO). The phenotype of ADMIO is typified by hypogammaglobulinemia and onset of autoimmune phenomena during early childhood that include diabetes and autoimmune enteritis. This case report describes in utero onset of precocious lymphocyte maturation, autoimmune enteropathy-like inflammation, and proximal renal tubular dysplasia associated with a novel de novo heterozygous STAT3 mutation. The findings expand the phenotype associated with activating STAT3 mutations and suggest that the impact of the immunological abnormalities associated with ADMIO can begin prior to birth.
Collapse
Affiliation(s)
- Jefferson Terry
- Department of Pathology, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Sylvie Langlois
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rosemarie Rupps
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Harinder Gill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Olson KC, Moosic KB, Jones MK, Larkin PMK, Olson TL, Toro MF, Fox TE, Feith DJ, Loughran TP. Large granular lymphocyte leukemia serum and corresponding hematological parameters reveal unique cytokine and sphingolipid biomarkers and associations with STAT3 mutations. Cancer Med 2020; 9:6533-6549. [PMID: 32710512 PMCID: PMC7520360 DOI: 10.1002/cam4.3246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/22/2020] [Accepted: 05/31/2020] [Indexed: 12/26/2022] Open
Abstract
Large granular lymphocyte (LGL) leukemia is a rare hematological disorder with expansion of the T-cell or natural killer (NK) cell lineage. Signal transducer and activator of transcription 3 (STAT3) exhibits somatic activating mutations in 30%-40% of LGL leukemia cases. Transcriptional targets of STAT3 include inflammatory cytokines, thus previous studies have measured cytokine levels of LGL leukemia patients compared to normal donors. Sphingolipid metabolism is a growing area of cancer research, with efforts focused on drug discovery. To date, no studies have examined serum sphingolipids in LGL leukemia patients, and only one study compared a subset of cytokines between the T-LGL and NK-LGL subtypes. Therefore, here, we included both LGL leukemia subtypes with the goals of (a) measuring serum sphingolipids for the first time, (b) measuring cytokines to find distinctions between the subtypes, and (c) establishing relationships with STAT3 mutations and clinical data. The serum analyses identified cytokines (EGF, IP-10, G-CSF) and sphingolipids (SMC22, SMC24, SMC20, LysoSM) significantly different in the LGL leukemia group compared to normal donors. In a mixed STAT3 mutation group, D661Y samples exhibited the highest mean corpuscular volume (MCV) values. We explored this further by expanding the cohort to include larger groups of single STAT3 mutations. Male D661Y STAT3 samples had lower Hgb and higher MCV compared to wild type (WT) or Y640F counterparts. This is the first report examining large groups of individual STAT3 mutations. Overall, our results revealed novel serum biomarkers and evidence that D661Y mutation may show different clinical manifestation compared to WT or Y640F STAT3.
Collapse
Affiliation(s)
- Kristine C. Olson
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Katharine B. Moosic
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA,Department of PathologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Marieke K. Jones
- Health Sciences LibraryUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Paige M. K. Larkin
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA,Department of PathologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA,Present address:
Department of Pathology and Laboratory MedicineUniversity of California Los AngelesLos AngelesCAUSA
| | - Thomas L. Olson
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Mariella F. Toro
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Todd E. Fox
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of PharmacologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - David J. Feith
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Thomas P. Loughran
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| |
Collapse
|
21
|
Gasparini VR, Binatti A, Coppe A, Teramo A, Vicenzetto C, Calabretto G, Barilà G, Barizza A, Giussani E, Facco M, Mustjoki S, Semenzato G, Zambello R, Bortoluzzi S. A high definition picture of somatic mutations in chronic lymphoproliferative disorder of natural killer cells. Blood Cancer J 2020; 10:42. [PMID: 32321919 PMCID: PMC7176632 DOI: 10.1038/s41408-020-0309-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
The molecular pathogenesis of chronic lymphoproliferative disorder of natural killer (NK) cells (CLPD-NK) is poorly understood. Following the screening of 57 CLPD-NK patients, only five presented STAT3 mutations. WES profiling of 13 cases negative for STAT3/STAT5B mutations uncovered an average of 18 clonal, population rare and deleterious somatic variants per patient. The mutational landscape of CLPD-NK showed that most patients carry a heavy mutational burden, with major and subclonal deleterious mutations co-existing in the leukemic clone. Somatic mutations hit genes wired to cancer proliferation, survival, and migration pathways, in the first place Ras/MAPK, PI3K-AKT, in addition to JAK/STAT (PIK3R1 and PTK2). We confirmed variants with putative driver role of MAP10, MPZL1, RPS6KA1, SETD1B, TAOK2, TMEM127, and TNFRSF1A genes, and of genes linked to viral infections (DDX3X and RSF1) and DNA repair (PAXIP1). A truncating mutation of the epigenetic regulator TET2 and a variant likely abrogating PIK3R1-negative regulatory activity were validated. This study significantly furthered the view of the genes and pathways involved in CLPD-NK, indicated similarities with aggressive diseases of NK cells and detected mutated genes targetable by approved drugs, being a step forward to personalized precision medicine for CLPD-NK patients.
Collapse
Affiliation(s)
- Vanessa Rebecca Gasparini
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Andrea Binatti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Alessandro Coppe
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Antonella Teramo
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Cristina Vicenzetto
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giulia Calabretto
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gregorio Barilà
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Annica Barizza
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Edoardo Giussani
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Monica Facco
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.
| | - Renato Zambello
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Stefania Bortoluzzi
- Department of Molecular Medicine, University of Padova, Padova, Italy
- CRIBI Interdepartmental Research Center for Innovative Biotechnologies (CRIBI), University of Padova, Padova, Italy
| |
Collapse
|
22
|
Subclonal STAT3 mutations solidify clonal dominance. Blood Adv 2020; 3:917-921. [PMID: 30898763 DOI: 10.1182/bloodadvances.2018027862] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/20/2019] [Indexed: 11/20/2022] Open
Abstract
T large granular lymphocyte leukemia (T-LGLL) is a clonal lymphoproliferative disorder that can arise in the context of pathologic or physiologic cytotoxic T-cell (CTL) responses. STAT3 mutations are often absent in typical T-LGLL, suggesting that in a significant fraction of patients, antigen-driven expansion alone can maintain LGL clone persistence. We set out to determine the relationship between activating STAT3 hits and CTL clonal selection at presentation and in response to therapy. Thus, a group of patients with T-LGLL were serially subjected to deep next-generation sequencing (NGS) of the T-cell receptor (TCR) Vβ complementarity-determining region 3 (CDR3) and STAT3 to recapitulate clonal hierarchy and dynamics. The results of this complex analysis demonstrate that STAT3 mutations produce either a sweeping or linear subclone within a monoclonal CTL population either early or during the course of disease. Therapy can extinguish a LGL clone, silence it, or adapt mechanisms to escape elimination. LGL clones can persist on elimination of STAT3 subclones, and alternate STAT3-negative CTL clones can replace therapy-sensitive CTL clones. LGL clones can evolve and are fueled by a nonextinguished antigenic drive. STAT3 mutations can accelerate this process or render CTL clones semiautonomous and not reliant on physiologic stimulation.
Collapse
|
23
|
Mimpen M, Smolders J, Hupperts R, Damoiseaux J. Natural killer cells in multiple sclerosis: A review. Immunol Lett 2020; 222:1-11. [PMID: 32113900 DOI: 10.1016/j.imlet.2020.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
As the most common non-traumatic disabling disease among adolescents, multiple sclerosis (MS) is a devastating neurological inflammatory disease of the central nervous system. Research has not yet fully elucidated its pathogenesis, but it has shown MS to be a complex, multifactorial disease with many interplaying factors. One of these factors, natural killer (NK) cells, lymphocytes of the innate immune system, have recently gained attention due to the effects of daclizumab therapy, causing an expansion of the immunoregulatory subset of NK cells. Since then, NK cells and their relation to MS have been the focus of research, with many new findings being published in the last decade. In this review, NK cells are pictured as potent cytotoxic killers, as well as unique immune-regulators. Additionally, an overview of our current knowledge regarding NK cells in MS is given. The role of NK cells in MS is reviewed in the context of well-established environmental factors and current disease modifying therapies to gain further understanding of the pathogenesis and treatment options in MS.
Collapse
Affiliation(s)
- Max Mimpen
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht The Netherlands
| | - Joost Smolders
- Department of Neurology, Erasmus University Medical Center, Rotterdam The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam The Netherlands
| | - Raymond Hupperts
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht The Netherlands; Department of Neurology, Zuyderland Medical Center, Sittard The Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht The Netherlands.
| |
Collapse
|
24
|
Brachet-Botineau M, Polomski M, Neubauer HA, Juen L, Hédou D, Viaud-Massuard MC, Prié G, Gouilleux F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers (Basel) 2020; 12:E240. [PMID: 31963765 PMCID: PMC7016966 DOI: 10.3390/cancers12010240] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| | - Marion Polomski
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - Ludovic Juen
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Damien Hédou
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Marie-Claude Viaud-Massuard
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Gildas Prié
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| |
Collapse
|
25
|
Wang TT, Yang J, Dighe S, Schmachtenberg MW, Leigh NT, Farber E, Onengut-Gumuscu S, Feith DJ, Ratan A, Loughran TP, Olson TL. Whole Genome Sequencing of Spontaneously Occurring Rat Natural Killer Large Granular Lymphocyte Leukemia Identifies JAK1 Somatic Activating Mutation. Cancers (Basel) 2020; 12:cancers12010126. [PMID: 31947841 PMCID: PMC7017127 DOI: 10.3390/cancers12010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 02/08/2023] Open
Abstract
Large granular lymphocyte (LGL) leukemia arises spontaneously in elderly Fischer (F344) rats. This rodent model has been shown to emulate many aspects of the natural killer (NK) variant of human LGL leukemia. Previous transplantation of leukemic material into young F344 rats resulted in several strains of rat NK (RNK) primary leukemic cells. One strain, RNK-16, was adapted into the RNK-16 cell line and established as an aggressive NK-LGL leukemia model. Whole genome sequencing of the RNK-16 cell line identified 255,838 locations where the RNK16 had an alternate allele that was different from F334, including a mutation in Jak1. Functional studies showed Jak1 Y1034C to be a somatic activating mutation that mediated increased STAT signaling, as assessed by phosphoprotein levels. Sanger sequencing of Jak1 in RNK-1, -3, -7, and -16 found only RNK-16 to harbor the Y1034C Jak1 mutation. In vivo studies revealed that rats engrafted with RNK-16 primary material developed leukemia more rapidly than those engrafted with RNK-1, -3, and -7. Additionally, ex vivo RNK-16 spleen cells from leukemic rats exhibited increased STAT1, STAT3, and STAT5 phosphorylation compared to other RNK strains. Therefore, we report and characterize a novel gain-of-function Jak1 mutation in a spontaneous LGL leukemia model that results in increased downstream STAT signaling.
Collapse
Affiliation(s)
- T. Tiffany Wang
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Jun Yang
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Shubha Dighe
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Matthew W. Schmachtenberg
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Nathan T. Leigh
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; (E.F.); (S.O.-G.); (A.R.)
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; (E.F.); (S.O.-G.); (A.R.)
| | - David J. Feith
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; (E.F.); (S.O.-G.); (A.R.)
| | - Thomas P. Loughran
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Thomas L. Olson
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
- Correspondence: ; Tel.: +1-(434)-243-8332
| |
Collapse
|
26
|
Gotthardt D, Trifinopoulos J, Sexl V, Putz EM. JAK/STAT Cytokine Signaling at the Crossroad of NK Cell Development and Maturation. Front Immunol 2019; 10:2590. [PMID: 31781102 PMCID: PMC6861185 DOI: 10.3389/fimmu.2019.02590] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/18/2019] [Indexed: 01/14/2023] Open
Abstract
Natural Killer (NK) cells are cytotoxic lymphocytes of the innate immune system and play a critical role in anti-viral and anti-tumor responses. NK cells develop in the bone marrow from hematopoietic stem cells (HSCs) that differentiate through common lymphoid progenitors (CLPs) to NK lineage-restricted progenitors (NKPs). The orchestrated action of multiple cytokines is crucial for NK cell development and maturation. Many of these cytokines such as IL-2, IL-7, IL-12, IL-15, IL-21, IL-27, and interferons (IFNs) signal via the Janus Kinase / Signal Transducer and Activator of Transcription (JAK/STAT) pathway. We here review the current knowledge about these cytokines and the downstream signaling involved in the development and maturation of conventional NK cells and their close relatives, innate lymphoid cells type 1 (ILC1). We further discuss the role of suppressor of cytokine signaling (SOCS) proteins in NK cells and highlight their potential for therapeutic application.
Collapse
Affiliation(s)
- Dagmar Gotthardt
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Trifinopoulos
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Maria Putz
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
27
|
Wang TT, Yang J, Zhang Y, Zhang M, Dubois S, Conlon KC, Tagaya Y, Hamele CE, Dighe S, Olson TL, Feith DJ, Azimi N, Waldmann TA, Loughran TP. IL-2 and IL-15 blockade by BNZ-1, an inhibitor of selective γ-chain cytokines, decreases leukemic T-cell viability. Leukemia 2019; 33:1243-1255. [PMID: 30353031 PMCID: PMC6478569 DOI: 10.1038/s41375-018-0290-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
Interleukin-15 (IL-15) and IL-2 drive T-cell malignancies including T-cell large granular lymphocyte leukemia (T-LGLL) and HTLV-1 driven adult T-cell leukemia (ATL). Both cytokines share common γ-chain receptors and downstream signaling pathways. T-LGLL is characterized by clonal expansion of cytotoxic T cells and is associated with abnormal JAK/STAT signaling. ATL is an aggressive CD4+ T-cell neoplasm associated with HTLV-1. T-LGLL and ATL share dependence on IL-2 and IL-15 for survival and both diseases lack effective therapies. BNZ-1 is a pegylated peptide designed to specifically bind the γc receptor to selectively block IL-2, IL-15, and IL-9 signaling. We hypothesized that treatment with BNZ-1 would reduce cytokine-mediated proliferation and viability. Our results demonstrated that in vitro treatment of a T-LGLL cell line and ex vivo treatment of T-LGLL patient cells with BNZ-1 inhibited cytokine-mediated viability. Furthermore, BNZ-1 blocked downstream signaling and increased apoptosis. These results were mirrored in an ATL cell line and in ex vivo ATL patient cells. Lastly, BNZ-1 drastically reduced leukemic burden in an IL-15-driven human ATL mouse xenograft model. Thus, BNZ-1 shows great promise as a novel therapy for T-LGLL, ATL, and other IL-2 or IL-15 driven hematopoietic malignancies.
Collapse
Affiliation(s)
- T Tiffany Wang
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jun Yang
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Yong Zhang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Meili Zhang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - Sigrid Dubois
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yutaka Tagaya
- BIONIZ Therapeutics, Irvine, CA, 92618, USA
- Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Cait E Hamele
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Shubha Dighe
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Thomas L Olson
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - David J Feith
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | | | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Thomas P Loughran
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
28
|
Abstract
Cytokines are secreted or otherwise released polypeptide factors that exert autocrine and/or paracrine actions, with most cytokines acting in the immune and/or hematopoietic system. They are typically pleiotropic, controlling development, cell growth, survival, and/or differentiation. Correspondingly, cytokines are clinically important, and augmenting or attenuating cytokine signals can have deleterious or therapeutic effects. Besides physiological fine-tuning of cytokine signals, altering the nature or potency of the signal can be important in pathophysiological responses and can also provide novel therapeutic approaches. Here, we give an overview of cytokines, their signaling and actions, and the physiological mechanisms and pharmacologic strategies to fine-tune their actions. In particular, the differential utilization of STAT proteins by a single cytokine or by different cytokines and STAT dimerization versus tetramerization are physiological mechanisms of fine-tuning, whereas anticytokine and anticytokine receptor antibodies and cytokines with altered activities, including cytokine superagonists, partial agonists, and antagonists, represent new ways of fine-tuning cytokine signals.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA; ,
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA; ,
| |
Collapse
|
29
|
Lokau J, Garbers C. Activating mutations of the gp130/JAK/STAT pathway in human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:283-309. [PMID: 31036294 DOI: 10.1016/bs.apcsb.2018.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytokines of the interleukin-6 (IL-6) family are involved in numerous physiological and pathophysiological processes. Dysregulated and increased activities of its members can be found in practically all human inflammatory diseases including cancer. All cytokines activate several intracellular signaling cascades, including the Jak/STAT, MAPK, PI3K, and Src/YAP signaling pathways. Additionally, several mutations in proteins involved in these signaling cascades have been identified in human patients, which render these proteins constitutively active and result in a hyperactivation of the signaling pathway. Interestingly, some of these mutations are associated with or even causative for distinct human diseases, making them interesting targets for therapy. This chapter describes the basic biology of the gp130/Jak/STAT pathway, summarizes what is known about the molecular mechanisms of the activating mutations, and gives an outlook how this knowledge can be exploited for targeted therapy in human diseases.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
30
|
Olson KC, Kulling Larkin PM, Signorelli R, Hamele CE, Olson TL, Conaway MR, Feith DJ, Loughran TP. Vitamin D pathway activation selectively deactivates signal transducer and activator of transcription (STAT) proteins and inflammatory cytokine production in natural killer leukemic large granular lymphocytes. Cytokine 2018; 111:551-562. [PMID: 30455079 DOI: 10.1016/j.cyto.2018.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/06/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022]
Abstract
Calcitriol, the active form of vitamin D, has been well documented to act directly on immune cells and malignant cells. Activated T cells are one of the best characterized targets of calcitriol, with effects including decreasing inflammatory cytokine output and promoting anti-inflammatory cytokine production. However, the effects of calcitriol on natural killer (NK) cells are less clear. Reports suggest that only immature NK cell populations are affected by calcitriol treatment resulting in impaired cytotoxic function and cytokine production, while mature NK cells may have little or no response. NK cell large granular lymphocyte leukemia (NK-LGLL) is a rare leukemia with CD3-CD16+CD56+NK cell clonal expansion. The current standard treatments are immunosuppressant therapies, which are not curative. The Janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathway is hyperactivated in LGLL and is one pathway of interest in new drug target investigations. We previously demonstrated the ability of calcitriol to decrease STAT1 tyrosine 701 (p-STAT1) and STAT3 tyrosine 705 (p-STAT3) phosphorylation as well as inflammatory cytokine output of T cell large granular lymphocyte leukemia cells, but did not determine the effects of calcitriol on NK-LGLL. Therefore, in the present study, we investigated whether NKL cells, a model of NK-LGLL, and NK-LGLL patient peripheral blood mononuclear cells (PBMCs) are susceptible to treatment with calcitriol or seocalcitol (EB1089), a potent analog of calcitriol. NKL cells are dependent on interleukin (IL)-2 for survival and we show here for the first time that treatment with IL-2 induced tyrosine phosphorylation of STATs 1 through 6. Both calcitriol and EB1089 caused significant upregulation of the vitamin D receptor (VDR). IL-2 induction of p-STAT1 and p-STAT3 phosphorylation was significantly decreased after calcitriol or EB1089 treatment. Additionally, IL-10, interferon (IFN)-γ, and FMS-like tyrosine kinase 3 ligand (Flt-3L) extracellular output was significantly decreased at 100 nM EB1089 and intracellular IL-10 was decreased with either calcitriol or EB1089 treatment. We treated NK-LGLL patient PBMCs with calcitriol or EB1089 and found decreased p-STAT1 and p-STAT3 while VDR increased, which matched the NKL cell line data. We then measured 75 serum cytokines in NK-LGLL patients (n = 8) vs. age- and sex-matched normal healthy donors (n = 8), which is the first serum cytokine study for this LGLL subtype. We identified 15 cytokines, including IL-10 and Flt-3L, which were significantly different between normal donors and NK-LGLL patients. Overall, our results suggest that activating the vitamin D pathway could be a mechanism to decrease STAT1 and 3 activation and inflammatory cytokine output in NK-LGLL patients.
Collapse
Affiliation(s)
- Kristine C Olson
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Paige M Kulling Larkin
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Rossana Signorelli
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Cait E Hamele
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Thomas L Olson
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mark R Conaway
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - David J Feith
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Thomas P Loughran
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
31
|
The Cooperative Relationship between STAT5 and Reactive Oxygen Species in Leukemia: Mechanism and Therapeutic Potential. Cancers (Basel) 2018; 10:cancers10100359. [PMID: 30262727 PMCID: PMC6210354 DOI: 10.3390/cancers10100359] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are now recognized as important second messengers with roles in many aspects of signaling during leukemogenesis. They serve as critical cell signaling molecules that regulate the activity of various enzymes including tyrosine phosphatases. ROS can induce inactivation of tyrosine phosphatases, which counteract the effects of tyrosine kinases. ROS increase phosphorylation of many proteins including signal transducer and activator of transcription-5 (STAT5) via Janus kinases (JAKs). STAT5 is aberrantly activated through phosphorylation in many types of cancer and this constitutive activation is associated with cell survival, proliferation, and self-renewal. Such leukemic activation of STAT5 is rarely caused by mutation of the STAT5 gene itself but instead by overactive mutant receptors with tyrosine kinase activity as well as JAK, SRC family protein tyrosine kinases (SFKs), and Abelson murine leukemia viral oncogene homolog (ABL) kinases. Interestingly, STAT5 suppresses transcription of several genes encoding antioxidant enzymes while simultaneously enhancing transcription of NADPH oxidase. By doing so, STAT5 activation promotes an overall elevation of ROS level, which acts as a feed-forward loop, especially in high risk Fms-related tyrosine kinase 3 (FLT3) mutant leukemia. Therefore, efforts have been made recently to target ROS in cancer cells. Drugs that are able to either quench ROS production or inversely augment ROS-related signaling pathways both have potential as cancer therapies and may afford some selectivity by activating feedback inhibition of the ROS-STAT5 kinome. This review summarizes the cooperative relationship between ROS and STAT5 and explores the pros and cons of emerging ROS-targeting therapies that are selective for leukemia characterized by persistent STAT5 phosphorylation.
Collapse
|
32
|
Combination statin and chemotherapy inhibits proliferation and cytotoxicity of an aggressive natural killer cell leukemia. Biomark Res 2018; 6:26. [PMID: 30116531 PMCID: PMC6085711 DOI: 10.1186/s40364-018-0140-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/29/2018] [Indexed: 12/19/2022] Open
Abstract
Background Aggressive natural killer cell leukemia is a devastating disease, with an average patient survival time of less than 2 months following diagnosis. Due to P-glycoprotein-mediated resistance of the tumor cells most forms of chemotherapy are of limited efficacy, therefore new treatment strategies are needed. Statin drugs have recently been found to inhibit the growth of various tumor cell types. Methods We investigated the effects of statin drug-mediated mevalonate pathway inhibition on cell proliferation, tumor-induced cytotoxicity, cell cycle progression and ERK MAP kinase signal transduction pathway activation. Flow cytometry was used to perform the cytotoxicity and cell cycle analyses and Western blotting was used to investigate ERK MAP kinase activation. Statistical significance was assessed by Student’s t-test. Results Fluvastatin and atorvastatin were found to inhibit cell growth and tumor-induced cytotoxicity. These effects were reversed by the addition of mevalonate, signifying that the impact of the drugs were on the mevalonate pathway. Both drugs affected cell cycle progression by causing a significant increase in the percentage of cells in the G0/G1 phase and a reduction in the S phase and the G2/M phases of the cell cycle. Low concentrations of statin drugs were able to abrogate ERK MAP kinase pathway activation, which is typically constitutively activated in aggressive natural killer cell leukemias and important in tumor-mediated cytotoxicity. Addition of statins to chemotherapy caused enhanced inhibition of cell growth and cytotoxicity, compared to either agent alone; a combination therapy that could conceivably benefit some patients. Conclusions These investigations suggest that inhibiting the mevalonate pathway might provide a more effective therapy against this deadly disease when combined with chemotherapy. Given that millions of people are currently taking statin drugs to lower cholesterol levels, the risk profile for statin drugs and their side effects are well-known. Our studies suggest that it may be beneficial to explore statin-chemotherapy combination in the treatment of aggressive natural killer cell leukemias.
Collapse
|
33
|
Neff JL, Rangan A, Jevremovic D, Nguyen PL, Chiu A, Go RS, Chen D, Morice WG, Shi M. Mixed-phenotype large granular lymphocytic leukemia: a rare subtype in the large granular lymphocytic leukemia spectrum. Hum Pathol 2018; 81:96-104. [PMID: 29949739 DOI: 10.1016/j.humpath.2018.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/01/2018] [Accepted: 06/09/2018] [Indexed: 01/18/2023]
Abstract
Large granular lymphocytic leukemia (LGLL) is a chronic proliferation of cytotoxic lymphocytes in which more than 70% of patients develop cytopenia(s) requiring therapy. LGLL includes T-cell LGLL and chronic lymphoproliferative disorder of natural killer (NK) cells. The neoplastic cells in LGLL usually exhibit a single immunophenotype in a patient, with CD8-positive/αβ T-cell type being the most common, followed by NK-cell, γδ T-cell, and CD4-positive/αβ T-cell types. We investigated a total of 220 LGLL cases and identified 12 mixed-phenotype LGLLs (5%): 7 cases with coexistent αβ T-cell and NK-cell clones and 5 with coexistent αβ and γδ T-cell clones. With a median follow-up of 48 months, the clinicopathological characteristics of these patients seemed similar to those of typical LGLL patients. Treatment was instituted in 9 patients, and 5 patients (55%) attained complete hematologic response or partial response. The therapeutic response rate of this cohort is comparable to the reported overall response rate of 40% to 60% in typical LGLL patients. Three patients who did not receive any treatment had progressive or persistent cytopenias. Interestingly, inverted proportions of 2 clones at disease recurrence were identified in 4 patients (36%) and stable clonal proportions in 7 patients (64%). Mixed-phenotype LGLL is rare, and this study underscores the importance of recognizing this rare type of LGLL in patients who may benefit from LGLL treatment.
Collapse
Affiliation(s)
- Jadee L Neff
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Aruna Rangan
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Dragan Jevremovic
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Phuong L Nguyen
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - April Chiu
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Ronald S Go
- Division of Hematology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Dong Chen
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - William G Morice
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Min Shi
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
34
|
TRAIL mediates and sustains constitutive NF-κB activation in LGL leukemia. Blood 2018; 131:2803-2815. [PMID: 29699990 DOI: 10.1182/blood-2017-09-808816] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/24/2018] [Indexed: 12/21/2022] Open
Abstract
Large granular lymphocyte (LGL) leukemia results from clonal expansion of CD3+ cytotoxic T lymphocytes or CD3- natural killer (NK) cells. Chronic antigen stimulation is postulated to promote long-term survival of LGL leukemia cells through constitutive activation of multiple survival pathways, resulting in global dysregulation of apoptosis and resistance to activation-induced cell death. We reported previously that nuclear factor κB (NF-κB) is a central regulator of the survival network for leukemic LGL. However, the mechanisms that trigger constitutive activation of NF-κB in LGL leukemia remain undefined. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known to induce apoptosis in tumor cells but can also activate NF-κB through interaction with TRAIL receptors 1, 2, and 4 (also known as DR4, DR5, and DcR2, respectively). The role of TRAIL has not been studied in LGL leukemia. In this study, we hypothesized that TRAIL interaction with DcR2 contributes to NF-κB activation in LGL leukemia. We observed upregulated TRAIL messenger RNA and protein expression in LGL leukemia cells with elevated levels of soluble TRAIL protein in LGL leukemia patient sera. We also found that DcR2 is the predominant TRAIL receptor in LGL leukemia cells. We demonstrated that TRAIL-induced activation of DcR2 led to increased NF-κB activation in leukemic LGL. Conversely, interruption of TRAIL-DcR2 signaling led to decreased NF-κB activation. Finally, a potential therapeutic application of proteasome inhibitors (bortezomib and ixazomib), which are known to inhibit NF-κB, was identified through their ability to decrease proliferation and increase apoptosis in LGL leukemia cell lines and primary patient cells.
Collapse
|
35
|
Shahmarvand N, Nagy A, Shahryari J, Ohgami RS. Mutations in the signal transducer and activator of transcription family of genes in cancer. Cancer Sci 2018; 109:926-933. [PMID: 29417693 PMCID: PMC5891179 DOI: 10.1111/cas.13525] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/21/2017] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
In recent years, it has become clear that members of the signal transducer and activator of transcription (STAT) family of genes play an important role in cancer. The STAT family consists of seven genes, STAT1‐4,STAT5A, STAT5B and STAT6, that are involved in regulating cellular proliferation, apoptosis, angiogenesis and the immune system response. Constitutive activation of STAT3, via mutational changes, is important in oncogenesis in both solid and hematopoietic cancers. In the case of hematopoietic neoplasms, STAT3 driver mutations have been described in T‐cell large granular lymphocytic (T‐LGL) leukemia and chronic natural killer lymphoproliferative disorders (CLPD‐NK) and are seen in 30%‐40% of T‐LGL leukemia patients. STAT5B is also mutated in T‐LGL leukemia and CLPD‐NK, but in a much smaller proportion. Here we review past and current research on STAT genes in hematopoietic and solid cancers with emphasis on STAT3 and STAT5B and their roles in the pathogenesis of hematopoietic malignancies, particularly T‐LGL leukemia and CLPD‐NK.
Collapse
Affiliation(s)
| | - Alexandra Nagy
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Robert S Ohgami
- Department of Pathology, Stanford University, Stanford, CA, USA
| |
Collapse
|
36
|
Kulling PM, Olson KC, Olson TL, Hamele CE, Carter KN, Feith DJ, Loughran TP. Calcitriol-mediated reduction in IFN-γ output in T cell large granular lymphocytic leukemia requires vitamin D receptor upregulation. J Steroid Biochem Mol Biol 2018; 177:140-148. [PMID: 28736298 PMCID: PMC5775933 DOI: 10.1016/j.jsbmb.2017.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/06/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023]
Abstract
Constitutively activated STAT1 and elevated IFN-γ are both characteristic of T cell large granular lymphocytic leukemia (T-LGLL), a rare incurable leukemia with clonal expansion of cytotoxic T cells due to defective apoptosis. Interferon gamma (IFN-γ) is an inflammatory cytokine that correlates with worse progression and symptomology in multiple autoimmune diseases and cancers. In canonical IFN-γ-STAT1 signaling, IFN-γ activates STAT1, a transcription factor, via phosphorylation of tyrosine residue 701 (p-STAT1). p-STAT1 then promotes transcription of IFN-γ, creating a positive feedback loop. We previously found that calcitriol treatment of the TL-1 cell line, a model of T-LGLL, significantly decreased IFN-γ secretion and p-STAT1 while increasing the vitamin D receptor (VDR) protein. Here we further explore these observations. Using TL-1 cells, IFN-γ decreased starting at 4h following calcitriol treatment, with a reduction in the intracellular and secreted protein levels as well as the mRNA content. A similar reduction in IFN-γ transcript levels was observed in primary T-LGLL patient peripheral blood mononuclear cells (PBMCs). p-STAT1 inhibition followed a similar temporal pattern and VDR upregulation inversely correlated with IFN-γ levels. Using EB1089 and 25(OH)D3, which have high or low affinity for VDR, respectively, we found that the decrease in IFN-γ correlated with the ability of EB1089, but not 25(OH)D3, to upregulate VDR. However, both compounds inhibited p-STAT1; thus the reduction of p-STAT1 is not solely responsible for IFN-γ inhibition. Conversely, cells treated with VDR siRNA exhibited decreased basal IFN-γ production upon VDR knockdown in a dose-dependent manner. Calcitriol treatment upregulated VDR and decreased IFN-γ regardless of initial VDR knockdown efficiency, strengthening the connection between VDR upregulation and IFN-γ reduction. Our findings suggest multiple opportunities to further explore the clinical relevance of the vitamin D pathway and the potential role for vitamin D supplementation in T-LGLL.
Collapse
Affiliation(s)
- Paige M Kulling
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 29908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 29908, USA; Department of Pathology, University of Virginia, Charlottesville, VA, 29908, USA
| | - Kristine C Olson
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 29908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 29908, USA
| | - Thomas L Olson
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 29908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 29908, USA
| | - Cait E Hamele
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 29908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 29908, USA
| | - Kathryn N Carter
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 29908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 29908, USA
| | - David J Feith
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 29908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 29908, USA
| | - Thomas P Loughran
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 29908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 29908, USA.
| |
Collapse
|
37
|
Kulling PM, Olson KC, Hamele CE, Toro MF, Tan SF, Feith DJ, Loughran TP. Dysregulation of the IFN-γ-STAT1 signaling pathway in a cell line model of large granular lymphocyte leukemia. PLoS One 2018; 13:e0193429. [PMID: 29474442 PMCID: PMC5825082 DOI: 10.1371/journal.pone.0193429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/09/2018] [Indexed: 02/04/2023] Open
Abstract
T cell large granular lymphocyte leukemia (T-LGLL) is a rare incurable disease that is characterized by defective apoptosis of cytotoxic CD8+ T cells. Chronic activation of the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a hallmark of T-LGLL. One manifestation is the constitutive phosphorylation of tyrosine 701 of STAT1 (p-STAT1). T-LGLL patients also exhibit elevated serum levels of the STAT1 activator, interferon-γ (IFN-γ), thus contributing to an inflammatory environment. In normal cells, IFN-γ production is tightly controlled through induction of IFN-γ negative regulators. However, in T-LGLL, IFN-γ signaling lacks this negative feedback mechanism as evidenced by excessive IFN-γ production and decreased levels of suppressors of cytokine signaling 1 (SOCS1), a negative regulator of IFN-γ. Here we characterize the IFN-γ-STAT1 pathway in TL-1 cells, a cell line model of T-LGLL. TL-1 cells exhibited lower IFN-γ receptor protein and mRNA expression compared to an IFN-γ responsive cell line. Furthermore, IFN-γ treatment did not induce JAK2 or STAT1 activation or transcription of IFN-γ-inducible gene targets. However, IFN-β induced p-STAT1 and subsequent STAT1 gene transcription, demonstrating a specific IFN-γ signaling defect in TL-1 cells. We utilized siRNA targeting of STAT1, STAT3, and STAT5b to probe their role in IL-2-mediated IFN-γ regulation. These studies identified STAT5b as a positive regulator of IFN-γ production. We also characterized the relationship between STAT1, STAT3, and STAT5b proteins. Surprisingly, p-STAT1 was positively correlated with STAT3 levels while STAT5b suppressed the activation of both STAT1 and STAT3. Taken together, these results suggest that the dysregulation of the IFN-γ-STAT1 signaling pathway in TL-1 cells likely results from low levels of the IFN-γ receptor. The resulting inability to induce negative feedback regulators explains the observed elevated IL-2 driven IFN-γ production. Future work will elucidate the best way to target this pathway, with the ultimate goal to find a better therapeutic for T-LGLL.
Collapse
Affiliation(s)
- Paige M. Kulling
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
- Department of Pathology, University of Virginia; Charlottesville, VA United States of America
| | - Kristine C. Olson
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
| | - Cait E. Hamele
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
| | - Mariella F. Toro
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
| | - Su-Fern Tan
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
| | - David J. Feith
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
| | - Thomas P. Loughran
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
- * E-mail:
| |
Collapse
|
38
|
Pharmacologic inhibition of STAT5 in acute myeloid leukemia. Leukemia 2018; 32:1135-1146. [PMID: 29472718 PMCID: PMC5940656 DOI: 10.1038/s41375-017-0005-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022]
Abstract
The transcription factor STAT5 is an essential downstream mediator of many tyrosine kinases (TKs), particularly in hematopoietic cancers. STAT5 is activated by FLT3-ITD, which is a constitutively active TK driving the pathogenesis of acute myeloid leukemia (AML). Since STAT5 is a critical mediator of diverse malignant properties of AML cells, direct targeting of STAT5 is of significant clinical value. Here, we describe the development and preclinical evaluation of a novel, potent STAT5 SH2 domain inhibitor, AC-4–130, which can efficiently block pathological levels of STAT5 activity in AML. AC-4–130 directly binds to STAT5 and disrupts STAT5 activation, dimerization, nuclear translocation, and STAT5-dependent gene transcription. Notably, AC-4–130 substantially impaired the proliferation and clonogenic growth of human AML cell lines and primary FLT3-ITD+ AML patient cells in vitro and in vivo. Furthermore, AC-4–130 synergistically increased the cytotoxicity of the JAK1/2 inhibitor Ruxolitinib and the p300/pCAF inhibitor Garcinol. Overall, the synergistic effects of AC-4–130 with TK inhibitors (TKIs) as well as emerging treatment strategies provide new therapeutic opportunities for leukemia and potentially other cancers.
Collapse
|
39
|
Savola P, Brück O, Olson T, Kelkka T, Kauppi MJ, Kovanen PE, Kytölä S, Sokka-Isler T, Loughran TP, Leirisalo-Repo M, Mustjoki S. Somatic STAT3 mutations in Felty syndrome: an implication for a common pathogenesis with large granular lymphocyte leukemia. Haematologica 2017; 103:304-312. [PMID: 29217783 PMCID: PMC5792275 DOI: 10.3324/haematol.2017.175729] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/06/2017] [Indexed: 11/15/2022] Open
Abstract
Felty syndrome is a rare disease defined by neutropenia, splenomegaly, and rheumatoid arthritis. Sometimes the differential diagnosis between Felty syndrome and large granular lymphocyte leukemia is problematic. Recently, somatic STAT3 and STAT5B mutations were discovered in 30–40% of patients with large granular lymphocyte leukemia. Herein, we aimed to study whether these mutations can also be detected in Felty syndrome, which would imply the existence of a common pathogenic mechanism between these two disease entities. We collected samples and clinical information from 14 Felty syndrome patients who were monitored at the rheumatology outpatient clinic for Felty syndrome. Somatic STAT3 mutations were discovered in 43% (6/14) of Felty syndrome patients with deep amplicon sequencing targeting all STAT3 exons. Mutations were located in the SH2 domain of STAT3, which is a known mutational hotspot. No STAT5B mutations were found. In blood smears, overrepresentation of large granular lymphocytes was observed, and in the majority of cases the CD8+ T-cell receptor repertoire was skewed when analyzed by flow cytometry. In bone marrow biopsies, an increased amount of phospho-STAT3 positive cells was discovered. Plasma cytokine profiling showed that ten of the 92 assayed cytokines were elevated both in Felty syndrome and large granular lymphocyte leukemia, and three of these cytokines were also increased in patients with uncomplicated rheumatoid arthritis. In conclusion, somatic STAT3 mutations and STAT3 activation are as frequent in Felty syndrome as they are in large granular lymphocyte leukemia. Considering that the symptoms and treatment modalities are also similar, a unified reclassification of these two syndromes is warranted.
Collapse
Affiliation(s)
- Paula Savola
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Finland
| | - Oscar Brück
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Finland
| | - Thomas Olson
- University of Virginia Cancer Center; University of Virginia, Charlottesville, VA, USA
| | - Tiina Kelkka
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Finland
| | - Markku J Kauppi
- Päijät-Häme Central Hospital, Lahti, Finland.,Faculty of Medicine, Tampere University, Finland
| | - Panu E Kovanen
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Finland
| | - Soili Kytölä
- Laboratory of Genetics, HUSLAB, Helsinki University Hospital, Finland
| | | | - Thomas P Loughran
- University of Virginia Cancer Center; University of Virginia, Charlottesville, VA, USA
| | | | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Finland .,Department of Clinical Chemistry and Hematology, University of Helsinki, Finland
| |
Collapse
|
40
|
Systematic STAT3 sequencing in patients with unexplained cytopenias identifies unsuspected large granular lymphocytic leukemia. Blood Adv 2017; 1:1786-1789. [PMID: 29296824 DOI: 10.1182/bloodadvances.2017011197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023] Open
|
41
|
Zhang L, Van den Bergh M, Sokol L. CD4-Positive T-Cell Large Granular Lymphocytosis Mimicking Sezary Syndrome in a Patient With Mycosis Fungoides. Cancer Control 2017; 24:207-212. [PMID: 28441377 DOI: 10.1177/107327481702400215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A white woman aged 65 years presented with a macular, nonscaly, nonpruritic, erythematous lesion on her right breast. Test results revealed histological features similar to lichenoid dermatitis and early-phase primary cutaneous T-cell lymphoma with a subtype of mycosis fungoides (MF). Despite topical therapy with steroids, her skin disease continued to progress, so she underwent polymerase chain reaction and gene mutation testing. Two missense mutations were detected. The overall findings supported a diagnosis of co-occurring, CD4-positive large granular lymphocytosis and stage IA MF. The patient continued to receive topical steroids and maintenance phototherapy, and her skin lesions completely resolved after 14 weeks of therapy. Approximately 5 years after her initial presentation, she was free of symptoms, cytopenia, and no skin lesions were present. CD4-positive, large granular lymphocytosis was persistent. This patient case - to our knowledge, the first of its kind - posed dilemmas of a diagnostic and therapeutic nature. Correctly staging the lymphoma helped to aid the diagnosis and can help prevent patients similar to the one in this case from receiving unnecessary therapy.
Collapse
Affiliation(s)
- Ling Zhang
- Hematopathology & Laboratory Medicine Program, Moffitt Cancer Center, Tampa, FL.
| | | | | |
Collapse
|
42
|
Cytokine receptor signaling is required for the survival of ALK- anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations. Proc Natl Acad Sci U S A 2017; 114:3975-3980. [PMID: 28356514 DOI: 10.1073/pnas.1700682114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activating Janus kinase (JAK) and signal transducer and activator of transcription (STAT) mutations have been discovered in many T-cell malignancies, including anaplastic lymphoma kinase (ALK)- anaplastic large cell lymphomas (ALCLs). However, such mutations occur in a minority of patients. To investigate the clinical application of targeting JAK for ALK- ALCL, we treated ALK- cell lines of various histological origins with JAK inhibitors. Interestingly, most exogenous cytokine-independent cell lines responded to JAK inhibition regardless of JAK mutation status. JAK inhibitor sensitivity correlated with the STAT3 phosphorylation status of tumor cells. Using retroviral shRNA knockdown, we have demonstrated that these JAK inhibitor-sensitive cells are dependent on both JAK1 and STAT3 for survival. JAK1 and STAT3 gain-of-function mutations were found in some, but not all, JAK inhibitor-sensitive cells. Moreover, the mutations alone cannot explain the JAK1/STAT3 dependency, given that wild-type JAK1 or STAT3 was sufficient to promote cell survival in the cells that had either JAK1or STAT3 mutations. To investigate whether other mechanisms were involved, we knocked down upstream receptors GP130 or IL-2Rγ. Knockdown of GP130 or IL-2Rγ induced cell death in selected JAK inhibitor-sensitive cells. High expression levels of cytokines, including IL-6, were demonstrated in cell lines as well as in primary ALK- ALCL tumors. Finally, ruxolitinib, a JAK1/2 inhibitor, was effective in vivo in a xenograft ALK- ALCL model. Our data suggest that cytokine receptor signaling is required for tumor cell survival in diverse forms of ALK- ALCL, even in the presence of JAK1/STAT3 mutations. Therefore, JAK inhibitor therapy might benefit patients with ALK- ALCL who are phosphorylated STAT3<sup/>.
Collapse
|
43
|
Waldmann TA, Chen J. Disorders of the JAK/STAT Pathway in T Cell Lymphoma Pathogenesis: Implications for Immunotherapy. Annu Rev Immunol 2017; 35:533-550. [PMID: 28182501 DOI: 10.1146/annurev-immunol-110416-120628] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Common gamma receptor-dependent cytokines and their JAK/STAT pathways play pivotal roles in T cell immunity. Abnormal activation of this system was pervasive in diverse T cell malignancies assessed by pSTAT3/pSTAT5 phosphorylation. Activating mutations were described in some but not all cases. JAK1 and STAT3 were required for proliferation and survival of these T cell lines whether or not JAKs or STATs were mutated. Activating JAK and STAT mutations were not sufficient to initiate leukemic cell proliferation but rather only augmented signals from upstream in the cytokine pathway. Activation required the full pathway, including cytokine receptors acting as scaffolds and docking sites for required downstream JAK/STAT proteins. JAK kinase inhibitors have depressed leukemic T cell line proliferation. The insight that JAK/STAT system activation is pervasive in T cell malignancies suggests novel therapeutic approaches that include antibodies to common gamma cytokines, inhibitors of cytokine-receptor interactions, and JAK kinase inhibitors that may revolutionize therapy for T cell malignancies.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892;
| | - Jing Chen
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
44
|
Genomic landscape characterization of large granular lymphocyte leukemia with a systems genetics approach. Leukemia 2017; 31:1243-1246. [PMID: 28167832 PMCID: PMC5419584 DOI: 10.1038/leu.2017.49] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
LGL leukemia: from pathogenesis to treatment. Blood 2017; 129:1082-1094. [PMID: 28115367 DOI: 10.1182/blood-2016-08-692590] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/27/2016] [Indexed: 11/20/2022] Open
Abstract
Large granular lymphocyte (LGL) leukemia has been recognized by the World Health Organization classifications amongst mature T-cell and natural killer (NK) cell neoplasms. There are 3 categories: chronic T-cell leukemia and NK-cell lymphocytosis, which are similarly indolent diseases characterized by cytopenias and autoimmune conditions as opposed to aggressive NK-cell LGL leukemia. Clonal LGL expansion arise from chronic antigenic stimulation, which promotes dysregulation of apoptosis, mainly due to constitutive activation of survival pathways including Jak/Stat, MapK, phosphatidylinositol 3-kinase-Akt, Ras-Raf-1, MEK1/extracellular signal-regulated kinase, sphingolipid, and nuclear factor-κB. Socs3 downregulation may also contribute to Stat3 activation. Interleukin 15 plays a key role in activation of leukemic LGL. Several somatic mutations including Stat3, Stat5b, and tumor necrosis factor alpha-induced protein 3 have been demonstrated recently in LGL leukemia. Because these mutations are present in less than half of the patients, they cannot completely explain LGL leukemogenesis. A better mechanistic understanding of leukemic LGL survival will allow future consideration of a more targeted therapeutic approach than the current practice of immunosuppressive therapy.
Collapse
|
46
|
Bagacean C, Tempescul A, Patiu M, Fetica B, Bumbea H, Zdrenghea M. Atypical aleukemic presentation of large granular lymphocytic leukemia: a case report. Onco Targets Ther 2016; 10:31-34. [PMID: 28031720 PMCID: PMC5182032 DOI: 10.2147/ott.s115892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Large granular lymphocytic leukemia (LGLL) is a rare lymphoproliferative disorder of transformed natural killer or T-cells attributed to chronic exposure to the proinflammatory cytokine IL-15. Diagnosis of the majority of T-cell LGLL is established by documenting clonal large granular lymphocytes (LGLs) in peripheral blood, by morphology and immunophenotype. The proteasome inhibitor bortezomib is known to target molecular pathways downstream of the IL-15 receptor signaling and has been proposed as a therapy in these patients. We report an uncommon presentation of LGLL with chronic neutropenia lacking typical blood LGLs, which failed to respond to bortezomib but obtained a very good partial remission with a classical methotrexate regimen.
Collapse
Affiliation(s)
- Cristina Bagacean
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Laboratory of Immunology and Immunotherapy, University Hospital Brest
| | - Adrian Tempescul
- Department of Hematology, Institute of Cancerology and Hematology, Brest University Medical School, Brest, France
| | - Mariana Patiu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca
| | - Bogdan Fetica
- Department of Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca
| | - Horia Bumbea
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca
| |
Collapse
|
47
|
Olson KC, Kulling PM, Olson TL, Tan SF, Rainbow RJ, Feith DJ, Loughran TP. Vitamin D decreases STAT phosphorylation and inflammatory cytokine output in T-LGL leukemia. Cancer Biol Ther 2016; 18:290-303. [PMID: 27715403 DOI: 10.1080/15384047.2016.1235669] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Large granular lymphocyte leukemia (LGLL) is a rare incurable chronic disease typically characterized by clonal expansion of CD3+ cytotoxic T-cells. Two signal transducer and activator of transcription factors, STAT1 and STAT3, are constitutively active in T-LGLL. Disruption of this activation induces apoptosis in T-LGLL cells. Therefore, considerable efforts are focused on developing treatments that inhibit STAT activation. Calcitriol, the active form of vitamin D, has been shown to decrease STAT1 and STAT3 phosphorylation in cancer cell lines and autoimmune disease mouse models. Thus, we investigated whether calcitriol could be a valid therapeutic for T-LGLL. Calcitriol treatment of the TL-1 cell line (model of T-LGLL) led to decreased phospho-Y701 STAT1 and phospho-Y705 STAT3 and increased vitamin D receptor (VDR) levels. Doses of 10 and 100 nM calcitriol also significantly decreased the inflammatory cytokine IFN-γ in the TL-1 cell line. The overall cell viability did not change when the TL-1 cell line was treated with 0.1 to 1000 nM calcitriol. Studies with primary T-LGLL patient peripheral blood mononuclear cells showed that the majority of T-LGLL patients have detectable VDR and activated STATs in contrast to normal donor controls. Treatment of primary T-LGLL patient cells with calcitriol recapitulated findings from the TL-1 cell line. Overall, our results suggest that calcitriol may reprogram T-cells to decrease essential STAT activation and pro-inflammatory cytokine output. These data support further investigation into calcitriol as an experimental therapeutic for T-LGLL.
Collapse
Affiliation(s)
- Kristine C Olson
- a University of Virginia Cancer Center , University of Virginia , Charlottesville , VA , USA.,b Department of Medicine, Division of Hematology/Oncology , University of Virginia , Charlottesville , VA , USA
| | - Paige M Kulling
- a University of Virginia Cancer Center , University of Virginia , Charlottesville , VA , USA.,b Department of Medicine, Division of Hematology/Oncology , University of Virginia , Charlottesville , VA , USA.,c Department of Pathology , University of Virginia , Charlottesville , VA , USA
| | - Thomas L Olson
- a University of Virginia Cancer Center , University of Virginia , Charlottesville , VA , USA.,b Department of Medicine, Division of Hematology/Oncology , University of Virginia , Charlottesville , VA , USA
| | - Su-Fern Tan
- a University of Virginia Cancer Center , University of Virginia , Charlottesville , VA , USA.,b Department of Medicine, Division of Hematology/Oncology , University of Virginia , Charlottesville , VA , USA
| | - Rebecca J Rainbow
- a University of Virginia Cancer Center , University of Virginia , Charlottesville , VA , USA.,b Department of Medicine, Division of Hematology/Oncology , University of Virginia , Charlottesville , VA , USA
| | - David J Feith
- a University of Virginia Cancer Center , University of Virginia , Charlottesville , VA , USA.,b Department of Medicine, Division of Hematology/Oncology , University of Virginia , Charlottesville , VA , USA
| | - Thomas P Loughran
- a University of Virginia Cancer Center , University of Virginia , Charlottesville , VA , USA.,b Department of Medicine, Division of Hematology/Oncology , University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
48
|
Flow Cytometric Immunophenotyping Is Sensitive for the Early Diagnosis of De Novo Aggressive Natural Killer Cell Leukemia (ANKL): A Multicenter Retrospective Analysis. PLoS One 2016; 11:e0158827. [PMID: 27483437 PMCID: PMC4970793 DOI: 10.1371/journal.pone.0158827] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 06/22/2016] [Indexed: 12/18/2022] Open
Abstract
Aggressive natural killer cell leukemia (ANKL) is a fatal hematological neoplasm characterized by a fulminating clinical course and extremely high mortality. Current diagnosis of this disease is not effective during the early stages and it is easily misdiagnosed as other NK cell disorders. We retrospectively analyzed the clinical characteristics and flow cytometric immunophenotype of 47 patients with ANKL. Patients with extranodal NK/T cell lymphoma, nasal type (ENKTL) and chronic lymphoproliferative disorder of NK cell (CLPD-NK), who were diagnosed during the same time period were used for comparisons. Abnormal NK cells in ANKL were found to have a distinctiveCD56bright/CD16dim immunophenotype and markedly increased Ki-67 expression, whereas CD57 negativity and reduced expression of killer immunoglobulin-like receptor (KIR), CD161, CD7, CD8 and perforin were exhibited compared with other NK cell proliferative disorders (p<0.05). The positive rates of flow cytometry detection (97.4%) was higher than those of cytomorphological (89.5%), immunohistochemical (90%), cytogenetic (56.5%) and F-18 fluorodeoxyglucose positron emission tomography/computer tomography (18-FDG-PET/CT) examinations (50%) (p<0.05). ANKL is a highly aggressive leukemia with high mortality. Flow cytometry detection is sensitive for the early and differential diagnosis of ANKL with high specificity.
Collapse
|
49
|
Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies. Leukemia 2016; 30:2142-2151. [PMID: 27461062 DOI: 10.1038/leu.2016.208] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
Sphingolipids, such as ceramide, sphingosine and sphingosine 1-phosphate (S1P) are bioactive molecules that have important functions in a variety of cellular processes, which include proliferation, survival, differentiation and cellular responses to stress. Sphingolipids have a major impact on the determination of cell fate by contributing to either cell survival or death. Although ceramide and sphingosine are usually considered to induce cell death, S1P promotes survival of cells. Sphingosine kinases (SPHKs) are the enzymes that catalyze the conversion of sphingosine to S1P. There are two isoforms, SPHK1 and SPHK2, which are encoded by different genes. SPHK1 has recently been implicated in contributing to cell transformation, tumor angiogenesis and metastatic spread, as well as cancer cell multidrug-resistance. More recent findings suggest that SPHK2 also has a role in cancer progression. This review is an overview of our understanding of the role of SPHKs and S1P in hematopoietic malignancies and provides information on the current status of SPHK inhibitors with respect to their therapeutic potential in the treatment of hematological cancers.
Collapse
|
50
|
Pilati C, Zucman-Rossi J. Mutations leading to constitutive active gp130/JAK1/STAT3 pathway. Cytokine Growth Factor Rev 2015; 26:499-506. [DOI: 10.1016/j.cytogfr.2015.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022]
|