1
|
Tabatabaei FS, Shafeghat M, Azimi A, Akrami A, Rezaei N. Endosomal Toll-Like Receptors intermediate negative impacts of viral diseases, autoimmune diseases, and inflammatory immune responses on the cardiovascular system. Expert Rev Clin Immunol 2024:1-13. [PMID: 39137281 DOI: 10.1080/1744666x.2024.2392815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of morbidity globally, with chronic inflammation as a key modifiable risk factor. Toll-like receptors (TLRs), pivotal components of the innate immune system, including TLR-3, -7, -8, and -9 within endosomes, trigger intracellular cascades, leading to inflammatory cytokine production by various cell types, contributing to systemic inflammation and atherosclerosis. Recent research highlights the role of endosomal TLRs in recognizing self-derived nucleic acids during sterile inflammation, implicated in autoimmune conditions like myocarditis. AREAS COVERED This review explores the impact of endosomal TLRs on viral infections, autoimmunity, and inflammatory responses, shedding light on their intricate involvement in cardiovascular health and disease by examining literature on TLR-mediated mechanisms and their roles in CVD pathophysiology. EXPERT OPINION Removal of endosomal TLRs mitigates myocardial damage and immune reactions, applicable in myocardial injury. Targeting TLRs with agonists enhances innate immunity against fatal viruses, lowering viral loads and mortality. Prophylactic TLR agonist administration upregulates TLRs, protecting against fatal viruses and improving survival. TLRs play a complex role in CVDs like atherosclerosis and myocarditis, with therapeutic potential in modulating TLR reactions for cardiovascular health.
Collapse
Affiliation(s)
- Fatemeh Sadat Tabatabaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Melika Shafeghat
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Azimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashley Akrami
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
2
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
3
|
Toll-like receptor 7 regulates cardiovascular diseases. Int Immunopharmacol 2022; 113:109390. [DOI: 10.1016/j.intimp.2022.109390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
|
4
|
Komal S, Komal N, Mujtaba A, Wang SH, Zhang LR, Han SN. Potential therapeutic strategies for myocardial infarction: the role of Toll-like receptors. Immunol Res 2022; 70:607-623. [PMID: 35608723 DOI: 10.1007/s12026-022-09290-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/06/2022] [Indexed: 11/27/2022]
Abstract
Myocardial infarction (MI) is a life-threatening condition among patients with cardiovascular diseases. MI increases the risk of stroke and heart failure and is a leading cause of morbidity and mortality worldwide. Several genetic and epigenetic factors contribute to the development of MI, suggesting that further understanding of the pathomechanism of MI might help in the early management and treatment of this disease. Toll-like receptors (TLRs) are well-known members of the pattern recognition receptor (PRR) family and contribute to both adaptive and innate immunity. Collectively, studies suggest that TLRs have a cardioprotective effect. However, prolonged TLR activation in the response to signals generated by damage-associated molecular patterns (DAMPs) results in the release of inflammatory cytokines and contributes to the development and exacerbation of myocardial inflammation, MI, ischemia-reperfusion injury, myocarditis, and heart failure. The objective of this review is to discuss and summarize the association of TLRs with MI, highlighting their therapeutic potential for the development of advanced TLR-targeted therapies for MI.
Collapse
Affiliation(s)
- Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Nimrah Komal
- Department of Pharmacology, Mohi-Ud-Din Islamic Medical College, Azad Jammu & Kashmir, Mirpur, 10250, Pakistan
| | - Ali Mujtaba
- Department of Pharmacology, Mohi-Ud-Din Islamic Medical College, Azad Jammu & Kashmir, Mirpur, 10250, Pakistan
| | - Shu-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
5
|
Altered Phenotype of Circulating Dendritic Cells and Regulatory T Cells from Patients with Acute Myocarditis. J Immunol Res 2022; 2022:8873146. [PMID: 35265721 PMCID: PMC8901353 DOI: 10.1155/2022/8873146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) and regulatory T cells (Tregs) play an essential role in myocarditis. However, a particular DC phenotype in this disease has not been assessed. Herein, we aim to evaluate myeloid (mDCs) and plasmacytoid DC (pDC) phenotype, as well as Treg levels from myocarditis patients and healthy controls. Using multiparametric flow cytometry, we evaluated the levels of myeloid DCs (mDCs), plasmacytoid DCs (pDCs), and Tregs in peripheral blood from myocarditis patients (n = 16) and healthy volunteers (n = 16) and performed correlation analysis with clinical parameters through Sperman test. DCs from myocarditis patients showed a higher expression of costimulatory molecules while a diminished expression of the inhibitory receptors, ILT2 and ILT4. Even more, Treg cells from myocarditis patients displayed higher levels of FOXP3 compared to controls. Clinically, the increased levels of mDCs and their higher expression of costimulatory molecules correlate with a worse myocardial function, higher levels of acute phase reactants, and higher cardiac enzymes. This study shows an activating phenotype of circulating DCs from myocarditis patients. This proinflammatory status may contribute to the pathogenesis and immune deregulation in acute myocarditis.
Collapse
|
6
|
Bayer AL, Alcaide P. MyD88: At the heart of inflammatory signaling and cardiovascular disease. J Mol Cell Cardiol 2021; 161:75-85. [PMID: 34371036 PMCID: PMC8629847 DOI: 10.1016/j.yjmcc.2021.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide and is associated with systemic inflammation. In depth study of the cell-specific signaling mechanisms mediating the inflammatory response is vital to improving anti-inflammatory therapies that reduce mortality and morbidity. Cellular damage in the cardiovascular system results in the release of damage associated molecular patterns (DAMPs), also known as "alarmins," which activate myeloid cells through the adaptor protein myeloid differentiation primary response 88 (MyD88). MyD88 is broadly expressed in most cell types of the immune and cardiovascular systems, and its role often differs in a cardiovascular disease context and cell specific manner. Herein we review what is known about MyD88 in the setting of a variety of cardiovascular diseases, discussing cell specific functions and the relative contributions of MyD88-dependent vs. independent alarmin triggered inflammatory signaling. The widespread involvement of these pathways in cardiovascular disease, and their largely unexplored complexity, sets the stage for future in depth mechanistic studies that may place MyD88 in both immune and non-immune cell types as an attractive target for therapeutic intervention in cardiovascular disease.
Collapse
Affiliation(s)
- Abraham L Bayer
- Department of Immunology, Tufts University School of Medicine. 136 Harrison Ave, Boston, MA 02111, United States of America.
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine. 136 Harrison Ave, Boston, MA 02111, United States of America.
| |
Collapse
|
7
|
Nie X, Li H, Wang J, Cai Y, Fan J, Dai B, Chen C, Wang DW. Expression Profiles and Potential Functions of Long Non-Coding RNAs in the Heart of Mice With Coxsackie B3 Virus-Induced Myocarditis. Front Cell Infect Microbiol 2021; 11:704919. [PMID: 34504807 PMCID: PMC8423026 DOI: 10.3389/fcimb.2021.704919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Aims Long non-coding RNAs (lncRNAs) are critical regulators of viral infection and inflammatory responses. However, the roles of lncRNAs in acute myocarditis (AM), especially fulminant myocarditis (FM), remain unclear. Methods FM and non-fulminant myocarditis (NFM) were induced by coxsackie B3 virus (CVB3) in different mouse strains. Then, the expression profiles of the lncRNAs in the heart tissues were detected by sequencing. Finally, the patterns were analyzed by Pearson/Spearman rank correlation, Kyoto Encyclopedia of Genes and Genomes, and Cytoscape 3.7. Results First, 1,216, 983, 1,606, and 2,459 differentially expressed lncRNAs were identified in CVB3-treated A/J, C57BL/6, BALB/c, and C3H mice with myocarditis, respectively. Among them, 88 lncRNAs were commonly dysregulated in all four models. Quantitative real-time polymerase chain reaction analyses further confirmed that four out of the top six commonly dysregulated lncRNAs were upregulated in all four models. Moreover, the levels of ENSMUST00000188819, ENSMUST00000199139, and ENSMUST00000222401 were significantly elevated in the heart and spleen and correlated with the severity of cardiac inflammatory infiltration. Meanwhile, 923 FM-specific dysregulated lncRNAs were detected, among which the levels of MSTRG.26098.49, MSTRG.31307.11, MSTRG.31357.2, and MSTRG.32881.28 were highly correlated with LVEF. Conclusion Expression of lncRNAs is significantly dysregulated in acute myocarditis, which may play different roles in the progression of AM.
Collapse
Affiliation(s)
- Xiang Nie
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Li
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Cai
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Fan
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Beibei Dai
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Favere K, Bosman M, Klingel K, Heymans S, Van Linthout S, Delputte PL, De Sutter J, Heidbuchel H, Guns PJ. Toll-Like Receptors: Are They Taking a Toll on the Heart in Viral Myocarditis? Viruses 2021; 13:v13061003. [PMID: 34072044 PMCID: PMC8227433 DOI: 10.3390/v13061003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Myocarditis is an inflammatory disease of the heart with viral infections being the most common aetiology. Its complex biology remains poorly understood and its clinical management is one of the most challenging in the field of cardiology. Toll-like receptors (TLRs), a family of evolutionarily conserved pattern recognition receptors, are increasingly known to be implicated in the pathophysiology of viral myocarditis. Their central role in innate and adaptive immune responses, and in the inflammatory reaction that ensues, indeed makes them prime candidates to profoundly affect every stage of the disease process. This review describes the pathogenesis and pathophysiology of viral myocarditis, and scrutinises the role of TLRs in every phase. We conclude with directions for future research in this field.
Collapse
Affiliation(s)
- Kasper Favere
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; (M.B.); (P.-J.G.)
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium;
- Department of Cardiology, Antwerp University Hospital, 2650 Antwerp, Belgium
- Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium;
- Correspondence:
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; (M.B.); (P.-J.G.)
| | - Karin Klingel
- Cardiopathology, Institute for Pathology, University Hospital Tuebingen, 72076 Tuebingen, Germany;
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany;
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Peter L. Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Antwerp, Belgium;
| | - Johan De Sutter
- Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium;
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium;
- Department of Cardiology, Antwerp University Hospital, 2650 Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; (M.B.); (P.-J.G.)
| |
Collapse
|
9
|
Chen L, Zheng L, Chen P, Liang G. Myeloid Differentiation Primary Response Protein 88 (MyD88): The Central Hub of TLR/IL-1R Signaling. J Med Chem 2020; 63:13316-13329. [DOI: 10.1021/acs.jmedchem.0c00884] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lingfeng Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Pengqin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
10
|
de Kleijn DPV, Chong SY, Wang X, Yatim SMJM, Fairhurst AM, Vernooij F, Zharkova O, Chan MY, Foo RSY, Timmers L, Lam CSP, Wang JW. Toll-like receptor 7 deficiency promotes survival and reduces adverse left ventricular remodelling after myocardial infarction. Cardiovasc Res 2020; 115:1791-1803. [PMID: 30830156 DOI: 10.1093/cvr/cvz057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
AIMS The Toll-like receptor 7 (TLR7) is an intracellular innate immune receptor activated by nucleic acids shed from dying cells leading to activation of the innate immune system. Since innate immune system activation is involved in the response to myocardial infarction (MI), this study aims to identify if TLR7 is involved in post-MI ischaemic injury and adverse remodelling after MI. METHODS AND RESULTS TLR7 involvement in MI was investigated in human tissue from patients with ischaemic heart failure, as well as in a mouse model of permanent left anterior descending artery occlusion in C57BL/6J wild type and TLR7 deficient (TLR7-/-) mice. TLR7 expression was up-regulated in human and mouse ischaemic myocardium after MI. Compared to wild type mice, TLR7-/- mice had less acute cardiac rupture associated with blunted activation of matrix metalloproteinase 2, increased expression of tissue inhibitor of metalloproteinase 1, recruitment of more myofibroblasts, and the formation of a myocardial scar with higher collagen fibre density. Furthermore, inflammatory cell influx and inflammatory cytokine expression post-MI were reduced in the TLR7-/- heart. During a 28-day follow-up after MI, TLR7 deficiency resulted in less chronic adverse left ventricular remodelling and better cardiac function. Bone marrow (BM) transplantation experiments showed that TLR7 deficiency in BM-derived cells preserved cardiac function after MI. CONCLUSIONS In acute MI, TLR7 mediates the response to acute cardiac injury and chronic remodelling probably via modulation of post-MI scar formation and BM-derived inflammatory infiltration of the myocardium.
Collapse
Affiliation(s)
- Dominique P V de Kleijn
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore.,Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore
| | - Siti Maryam J M Yatim
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore
| | - Anna-Marie Fairhurst
- Singapore Immunology Network (SIgN), A*STAR Research Entities, Singapore, Singapore
| | - Flora Vernooij
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olga Zharkova
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore
| | - Mark Y Chan
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University Heart Centre Singapore (NUHCS), Singapore, Singapore
| | - Roger S Y Foo
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Leo Timmers
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carolyn S P Lam
- National Heart Centre Singapore (NHCS), Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Cardiology, University Medical Center, Groningen, The Netherlands
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Root-Bernstein R. Synergistic Activation of Toll-Like and NOD Receptors by Complementary Antigens as Facilitators of Autoimmune Disease: Review, Model and Novel Predictions. Int J Mol Sci 2020; 21:ijms21134645. [PMID: 32629865 PMCID: PMC7369971 DOI: 10.3390/ijms21134645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/29/2022] Open
Abstract
Persistent activation of toll-like receptors (TLR) and nucleotide-binding oligomerization domain-containing proteins (NOD) in the innate immune system is one necessary driver of autoimmune disease (AD), but its mechanism remains obscure. This study compares and contrasts TLR and NOD activation profiles for four AD (autoimmune myocarditis, myasthenia gravis, multiple sclerosis and rheumatoid arthritis) and their animal models. The failure of current AD theories to explain the disparate TLR/NOD profiles in AD is reviewed and a novel model is presented that explains innate immune support of persistent chronic inflammation in terms of unique combinations of complementary AD-specific antigens stimulating synergistic TLRs and/or NODs. The potential explanatory power of the model is explored through testable, novel predictions concerning TLR- and NOD-related AD animal models and therapies.
Collapse
|
12
|
Zheng Z, Yu L, Wu Y, Wu H. FGL2 knockdown improves heart function through regulation of TLR9 signaling in the experimental autoimmune myocarditis rats. Immunol Res 2018; 66:52-58. [PMID: 29128901 PMCID: PMC11025570 DOI: 10.1007/s12026-017-8965-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fibrinogen-like protein 2 (FGL2) is an important immune regulator of both innate and adaptive response. It is present on the surface of macrophages and endothelial cells, and can be constitutively secreted by CD4+CD8+ T cells. Previous studies showed that FGL2 is a potential target for the treatment of experimental autoimmune myocarditis. However, the molecular mechanism of the roles of FGL2 in experimental autoimmune myocarditis is poorly understood. Here, we silenced FGL2 gene by using FGL2-RNAi lentivirus to reveal the heart function in experimental autoimmune myocarditis rats. We found that the cardiac myosin of pigs' hearts induced Lewis rats to come into being as autoimmune myocarditis. TLR9 was upregulated in the heart of experimental autoimmune myocarditis rats. After primary immunization (21 day), the cardiac function of the myocarditis model group improved (P < 0.05). Significantly, the levels of INF-α and NF-κB in the FGL2-RNAi-treated group were lower compared to those in the myocarditis model (EAM) group (P < 0.05). Notably, the inflammation score correspondence with the protein and mRNA levels of TLR9 in myocardial tissues was markedly reduced compared to that in the EAM group (P < 0.05). These results support a role of FGL2 to alleviate inflammatory situation in the myocardium through regulation of the TLR9 signaling pathway in the experimental autoimmune myocarditis rats.
Collapse
Affiliation(s)
- Zhenzhong Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Longhui Yu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yujing Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Frantz S, Falcao-Pires I, Balligand JL, Bauersachs J, Brutsaert D, Ciccarelli M, Dawson D, de Windt LJ, Giacca M, Hamdani N, Hilfiker-Kleiner D, Hirsch E, Leite-Moreira A, Mayr M, Thum T, Tocchetti CG, van der Velden J, Varricchi G, Heymans S. The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. Eur J Heart Fail 2018; 20:445-459. [PMID: 29333691 PMCID: PMC5993315 DOI: 10.1002/ejhf.1138] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/03/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022] Open
Abstract
Activation of the immune system in heart failure (HF) has been recognized for over 20 years. Initially, experimental studies demonstrated a maladaptive role of the immune system. However, several phase III trials failed to show beneficial effects in HF with therapies directed against an immune activation. Preclinical studies today describe positive and negative effects of immune activation in HF. These different effects depend on timing and aetiology of HF. Therefore, herein we give a detailed review on immune mechanisms and their importance for the development of HF with a special focus on commonalities and differences between different forms of cardiomyopathies. The role of the immune system in ischaemic, hypertensive, diabetic, toxic, viral, genetic, peripartum, and autoimmune cardiomyopathy is discussed in depth. Overall, initial damage to the heart leads to disease specific activation of the immune system whereas in the chronic phase of HF overlapping mechanisms occur in different aetiologies.
Collapse
Affiliation(s)
- Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Germany; Department of Internal Medicine III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ines Falcao-Pires
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC), and Clinique Universitaire Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Medizinische Hochschule, Hannover, Germany
| | | | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Dana Dawson
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, Scotland
| | - Leon J de Windt
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB) and Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Nazha Hamdani
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Denise Hilfiker-Kleiner
- Molecular Cardiology, Department of Cardiology and Angiology, Medizinische Hochschule, Hannover, Germany
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery and Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuel Mayr
- The James Black Centre and King's British Heart Foundation Centre, King's College, University of London, London, UK
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, and REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Jolanda van der Velden
- Department of Physiology, VU University Medical Center, Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Federico II University, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Cardiovascular Sciences, Leuven University, Leuven, Belgium
| |
Collapse
|
14
|
The Role of Toll-Like Receptors and Vitamin D in Cardiovascular Diseases-A Review. Int J Mol Sci 2017; 18:ijms18112252. [PMID: 29077004 PMCID: PMC5713222 DOI: 10.3390/ijms18112252] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Therefore, a better understanding of their pathomechanisms and the subsequent implementation of optimal prophylactic and therapeutic strategies are of utmost importance. A growing body of evidence states that low-grade inflammation is a common feature for most of the cardiovascular diseases in which the contributing factors are the activation of toll-like receptors (TLRs) and vitamin D deficiency. In this article, available data concerning the association of cardiovascular diseases with TLRs and vitamin D status are reviewed, followed by a discussion of new possible approaches to cardiovascular disease management.
Collapse
|
15
|
Heymans S, Eriksson U, Lehtonen J, Cooper LT. The Quest for New Approaches in Myocarditis and Inflammatory Cardiomyopathy. J Am Coll Cardiol 2016; 68:2348-2364. [PMID: 27884253 DOI: 10.1016/j.jacc.2016.09.937] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022]
Abstract
Myocarditis is a diverse group of heart-specific immune processes classified by clinical and histopathological manifestations. Up to 40% of dilated cardiomyopathy is associated with inflammation or viral infection. Recent experimental studies revealed complex regulatory roles for several microribonucleic acids and T-cell and macrophage subtypes. Although the prevalence of myocarditis remained stable between 1990 and 2013 at about 22 per 100,000 people, overall mortality from cardiomyopathy and myocarditis has decreased since 2005. The diagnostic and prognostic value of cardiac magnetic resonance has increased with new, higher-sensitivity sequences. Positron emission tomography has emerged as a useful tool for diagnosis of cardiac sarcoidosis. The sensitivity of endomyocardial biopsy may be increased, especially in suspected sarcoidosis, by the use of electrogram guidance to target regions of abnormal signal. Investigational treatments on the basis of mechanistic advances are entering clinical trials. Revised management recommendations regarding athletic participation after acute myocarditis have heightened the importance of early diagnosis.
Collapse
Affiliation(s)
- Stephane Heymans
- Department of Cardiology, CARIM, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Urs Eriksson
- GZO Regional Health Center, Wetzikon & Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | | | - Leslie T Cooper
- Cardiovascular Department, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
16
|
Jang B, Kim HW, Kim JS, Kim WS, Lee BR, Kim S, Kim H, Han SJ, Ha SJ, Shin SJ. Peptidylarginine deiminase inhibition impairs Toll-like receptor agonist-induced functional maturation of dendritic cells, resulting in the loss of T cell-proliferative capacity: a partial mechanism with therapeutic potential in inflammatory settings. J Leukoc Biol 2014; 97:351-62. [PMID: 25420918 DOI: 10.1189/jlb.3a0314-142rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cl-amidine, which is a small-molecule inhibitor of PAD, has therapeutic potential for inflammation-mediated diseases. However, little is known regarding the manner by which PAD inhibition by Cl-amidine regulates inflammatory conditions. Here, we investigated the effects of PAD inhibition by Cl-amidine on the functioning of DCs, which are pivotal immune cells that mediate inflammatory diseases. When DC maturation was induced by TLR agonists, reduced cytokine levels (IL-6, IL-1β, and IL-12p70) were observed in Cl-amidine-treated DCs. Cl-amidine-treated, LPS-activated DCs exhibited alterations in their mature and functional statuses with up-regulated antigen uptake, down-regulated CD80, and MHC molecules. In addition, Cl-amidine-treated DCs dysregulated peptide-MHC class formations. Interestingly, the decreased cytokines were independent of MAPK/NF-κB signaling pathways and transcription levels, indicating that PAD inhibition by Cl-amidine may be involved in post-transcriptional steps of cytokine production. Transmission electron microscopy revealed morphotypical changes with reduced dendrites in the Cl-amidine-treated DCs, along with altered cellular compartments, including fragmented ERs and the formation of foamy vesicles. Furthermore, in vitro and in vivo Cl-amidine treatments impaired the proliferation of naïve CD4(+) and CD8(+) T cells. Overall, our findings suggest that Cl-amidine has therapeutic potential for treating inflammation-mediated diseases.
Collapse
Affiliation(s)
- Byungki Jang
- *Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ho Won Kim
- *Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jong-Seok Kim
- *Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Woo Sik Kim
- *Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Bo Ryeong Lee
- *Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sojeong Kim
- *Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hongmin Kim
- *Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Seung Jung Han
- *Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sang-Jun Ha
- *Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sung Jae Shin
- *Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
17
|
Wagner KB, Felix SB, Riad A. Innate immune receptors in heart failure: Side effect or potential therapeutic target? World J Cardiol 2014; 6:791-801. [PMID: 25228958 PMCID: PMC4163708 DOI: 10.4330/wjc.v6.i8.791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/18/2014] [Accepted: 06/11/2014] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a leading cause of mortality and morbidity in western countries and occasions major expenses for public health systems. Although optimal medical treatment is widely available according to current guidelines, the prognosis of patients with HF is still poor. Despite the etiology of the disease, increased systemic or cardiac activation of the innate immune system is well documented in several types of HF. In some cases there is evidence of an association between innate immune activation and clinical outcome of patients with this disease. However, the few large trials conducted with the use of anti-inflammatory medication in HF have not revealed its benefits. Thus, greater understanding of the relationship between alteration in the immune system and development and progression of HF is urgently necessary: prior to designing therapeutic interventions that target pathological inflammatory processes in preventing harmful cardiac effects of immune modulatory therapy. In this regard, relatively recently discovered receptors of the innate immune system, i.e., namely toll-like receptors (TLRs) and nod-like receptors (NLRs)-are the focus of intense cardiovascular research. These receptors are main up-stream regulators of cytokine activation. This review will focus on current knowledge of the role of TLRs and NLRs, as well as on downstream cytokine activation, and will discuss potential therapeutic implications.
Collapse
|
18
|
Ohm IK, Alfsnes K, Belland Olsen M, Ranheim T, Sandanger Ø, Dahl TB, Aukrust P, Finsen AV, Yndestad A, Vinge LE. Toll-like receptor 9 mediated responses in cardiac fibroblasts. PLoS One 2014; 9:e104398. [PMID: 25126740 PMCID: PMC4134207 DOI: 10.1371/journal.pone.0104398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/14/2014] [Indexed: 01/11/2023] Open
Abstract
Altered cardiac Toll-like receptor 9 (TLR9) signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C) and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β). Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and -C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088) or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions) corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions.
Collapse
Affiliation(s)
- Ingrid Kristine Ohm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- * E-mail:
| | - Katrine Alfsnes
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Trine Ranheim
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Øystein Sandanger
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Tuva Børresdatter Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Alexandra Vanessa Finsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Leif Erik Vinge
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K.G. Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Abstract
Multiple intracellular RNA sensing innate immune pathways have been linked to autoimmune disease. RNA-related ligands taken up by the endocytic pathway activate TLRs, and affect primarily immune cells. This type of activation is enhanced by nucleic acid-specific antibodies and induces an inflammatory program. In contrast, spontaneous activation of cytoplasmic RNA sensing pathways targets mostly non-hematopoietic tissues and their effect on autoimmune disease is secondary to the release of interferon in the circulation. The fact that pathologies result from spontaneous activation of innate pathways implies that endogenous RNA ligands that might be sensed as pathogenic are commonly found in both immune and non-immune cells.
Collapse
|
20
|
Nakayama H, Otsu K. Translation of hemodynamic stress to sterile inflammation in the heart. Trends Endocrinol Metab 2013; 24:546-53. [PMID: 23850260 DOI: 10.1016/j.tem.2013.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/13/2013] [Accepted: 06/15/2013] [Indexed: 12/19/2022]
Abstract
Recently, growing evidence suggests that cardiac inflammation contributes to progression of heart failure (HF). However, the precise mechanism has been elusive. Autophagy is well-known phenomenon which plays essential roles in the maintenance of cardiomyocyte homeostasis by clearing damaged proteins and organelles, and dysfunction of this system evokes HF. Although emerging roles of mitochondria in inflammasome development are highlighted in immune cells, an involvement in the heart has not been defined until recently. This review discusses recent advances in understanding the complex mechanisms underlying cardiac inflammation: these studies have revealed that a combination of mitochondrial autophagy and innate immune responses to mitochondrial DNA during increased hemodynamic stress contribute to cardiac inflammation.
Collapse
Affiliation(s)
- Hiroyuki Nakayama
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
21
|
Bartlett A, Buhlmann JE, Stone J, Lim B, Barrington RA. Multiple checkpoint breach of B cell tolerance in Rasgrp1-deficient mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:3605-13. [PMID: 23997211 DOI: 10.4049/jimmunol.1202892] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lymphopenic hosts offer propitious microenvironments for expansion of autoreactive B and T cells. Despite this, many lymphopenic hosts do not develop autoimmune disease, suggesting that additional factors are required for breaching self-tolerance in the setting of lymphopenia. Mice deficient in guanine nucleotide exchange factor Rasgrp1 develop a lymphoproliferative disorder with features of human systemic lupus erythematosus. Early in life, Rasgrp1-deficient mice have normal B cell numbers but are T lymphopenic, leading to defective homeostatic expansion of CD4 T cells. To investigate whether B cell-intrinsic mechanisms also contribute to autoimmunity, Rasgrp1-deficient mice were bred to mice containing a knockin autoreactive BCR transgene (564Igi), thereby allowing the fate of autoreactive B cells to be assessed. During B cell development, the frequency of receptor-edited 564Igi B cells was reduced in Rasrp1-deficient mice compared with Rasgrp1-sufficient littermate control mice, suggesting that tolerance was impaired. In addition, the number of 564Igi transitional B cells was increased in Rasgrp1-deficient mice compared with control mice. Immature 564Igi B cells in bone marrow and spleen lacking RasGRP1 expressed lower levels of Bim mRNA and protein, suggesting that autoreactive B cells elude clonal deletion during development. Concomitant with increased serum autoantibodies, Rasgrp1-deficient mice developed spontaneous germinal centers at 8-10 wk of age. The frequency and number of 564Igi B cells within these germinal centers were significantly increased in Rasgrp1-deficient mice relative to control mice. Taken together, these studies suggest that autoreactive B cells lacking Rasgrp1 break central and peripheral tolerance through both T cell-independent and -dependent mechanisms.
Collapse
Affiliation(s)
- Amber Bartlett
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL 36688
| | | | | | | | | |
Collapse
|
22
|
Abstract
Dendritic cells (DCs) initiate and shape both the innate and adaptive immune responses. Accordingly, recent evidence from clinical studies and experimental models implicates DCs in the pathogenesis of most autoimmune diseases. However, fundamental questions remain unanswered concerning the actual roles of DCs in autoimmunity, both in general and, in particular, in specific diseases. In this Review, we discuss the proposed roles of DCs in immunological tolerance, the effect of the gain or loss of DCs on autoimmunity and DC-intrinsic molecular regulators that help to prevent the development of autoimmunity. We also review the emerging roles of DCs in several autoimmune diseases, including autoimmune myocarditis, multiple sclerosis, psoriasis, type 1 diabetes and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Dipyaman Ganguly
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | |
Collapse
|
23
|
Abston ED, Coronado MJ, Bucek A, Onyimba JA, Brandt JE, Frisancho JA, Kim E, Bedja D, Sung YK, Radtke AJ, Gabrielson KL, Mitzner W, Fairweather D. TLR3 deficiency induces chronic inflammatory cardiomyopathy in resistant mice following coxsackievirus B3 infection: role for IL-4. Am J Physiol Regul Integr Comp Physiol 2012; 304:R267-77. [PMID: 23255589 DOI: 10.1152/ajpregu.00516.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent findings indicate that TLR3 polymorphisms increase susceptibility to enteroviral myocarditis and inflammatory dilated cardiomyopathy (iDCM) in patients. TLR3 signaling has been found to inhibit coxsackievirus B3 (CVB3) replication and acute myocarditis in mouse models, but its role in the progression from myocarditis to iDCM has not been previously investigated. In this study we found that TLR3 deficiency increased acute (P = 5.9 × 10(-9)) and chronic (P = 6.0 × 10(-7)) myocarditis compared with WT B6.129, a mouse strain that is resistant to chronic myocarditis and iDCM. Using left ventricular in vivo hemodynamic assessment, we found that TLR3-deficient mice developed progressively worse chronic cardiomyopathy. TLR3 deficiency significantly increased viral replication in the heart during acute myocarditis from day 3 through day 12 after infection, but infectious virus was not detected in the heart during chronic disease. TLR3 deficiency increased cytokines associated with a T helper (Th)2 response, including IL-4 (P = 0.03), IL-10 (P = 0.008), IL-13 (P = 0.002), and TGF-β(1) (P = 0.005), and induced a shift to an immunoregulatory phenotype in the heart. However, IL-4-deficient mice had improved heart function during acute CVB3 myocarditis by echocardiography and in vivo hemodynamic assessment compared with wild-type mice, indicating that IL-4 impairs cardiac function during myocarditis. IL-4 deficiency increased regulatory T-cell and macrophage populations, including FoxP3(+) T cells (P = 0.005) and Tim-3(+) macrophages (P = 0.004). Thus, TLR3 prevents the progression from myocarditis to iDCM following CVB3 infection by reducing acute viral replication and IL-4 levels in the heart.
Collapse
Affiliation(s)
- Eric D Abston
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health and School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fairweather D, Petri MA, Coronado MJ, Cooper LT. Autoimmune heart disease: role of sex hormones and autoantibodies in disease pathogenesis. Expert Rev Clin Immunol 2012; 8:269-84. [PMID: 22390491 DOI: 10.1586/eci.12.10] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) and autoimmune diseases (ADs) are the first and third highest causes of death in the USA, respectively. Men have an increased incidence of the majority of CVDs, including atherosclerosis, myocarditis, dilated cardiomyopathy and heart failure. By contrast, nearly 80% of all ADs occur in women. However, in one category of ADs, rheumatic diseases, CVD is the main cause of death. Factors that link rheumatic ADs to CVD are inflammation and the presence of autoantibodies. In this review we will examine recent findings regarding sex differences in the immunopathogenesis of CVD and ADs, explore possible reasons for the increased occurrence of CVD within rheumatic ADs and discuss whether autoantibodies, including rheumatoid factor, could be involved in disease pathogenesis.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Johns Hopkins University Bloomberg School of Public Health, Department of Environmental Health Sciences, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
Human heart failure is a disease with multifactorial causes, considerable morbidity, and high mortality. Several circulating autoantibodies, some of them being heart-specific, play a crucial role in the progression and induction of heart failure. However the precise mechanisms on how these autoantibodies perpetuate or even induce an organ specific autoimmune response are not yet fully understood. Also it is being a matter of current research to elucidate a potential pathophysiological role of the innate immune system in generating auto-reactive antibodies. In this review we will summarize the current available literature on circulating autoantibodies which are related to human heart failure. We will present clinical and animal studies that demonstrate the occurrence and pathophysiological relevance of several autoantibodies in heart failure, as well as point out biological mechanisms on molecular and cellular level. Finally the beneficial therapeutic effects of numerous clinical studies that target the humoral arm of the immune system by using either intravenous immunoglobulins and/or immunoadsorption will be critically discussed.
Collapse
Affiliation(s)
- Ziya Kaya
- From the Department of Internal Medicine III (Z.K., C.L., H.A.K.), University of Heidelberg, Germany
| | - Christoph Leib
- From the Department of Internal Medicine III (Z.K., C.L., H.A.K.), University of Heidelberg, Germany
| | - Hugo A. Katus
- From the Department of Internal Medicine III (Z.K., C.L., H.A.K.), University of Heidelberg, Germany
| |
Collapse
|
26
|
Feng Y, Chao W. Toll-like receptors and myocardial inflammation. Int J Inflam 2011; 2011:170352. [PMID: 21977329 PMCID: PMC3182762 DOI: 10.4061/2011/170352] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 05/24/2011] [Accepted: 06/12/2011] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptors (TLRs) are a member of the innate immune system. TLRs detect invading pathogens through the pathogen-associated molecular patterns (PAMPs) recognition and play an essential role in the host defense. TLRs can also sense a large number of endogenous molecules with the damage-associated molecular patterns (DAMPs) that are produced under various injurious conditions. Animal studies of the last decade have demonstrated that TLR signaling contributes to the pathogenesis of the critical cardiac conditions, where myocardial inflammation plays a prominent role, such as ischemic myocardial injury, myocarditis, and septic cardiomyopathy. This paper reviews the animal data on (1) TLRs, TLR ligands, and the signal transduction system and (2) the important role of TLR signaling in these critical cardiac conditions.
Collapse
Affiliation(s)
- Yan Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
27
|
Abstract
Recent studies suggest that the heart possesses an innate immune system that is intended to delimit tissue injury, as well as orchestrate homoeostatic responses, within the heart. The extant literature suggests that this intrinsic stress response system is mediated, at least in part, by a family of pattern recognition receptors, most notably the Toll-like receptors. Although the innate immune system provides a short-term adaptive response to tissue injury, the beneficial effects of this phylogenetically ancient system may be lost if innate immune signaling becomes sustained and/or excessive; in which case, the salutary effects of activation of these pathways are contravened by the known deleterious effects of inflammatory signaling. Herein, the biology of innate immune signaling in the heart is reviewed, as well as the literature suggesting that the innate immune system is involved in the pathogenesis of atherosclerosis, acute coronary syndromes, stroke, viral myocarditis, sepsis, ischemia/reperfusion injury, and heart failure. The review concludes by discussing new therapies that are being developed to modulate the innate immune system.
Collapse
Affiliation(s)
- Douglas L Mann
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
28
|
The essential roles of Toll-like receptor signaling pathways in sterile inflammatory diseases. Int Immunopharmacol 2011; 11:1422-32. [PMID: 21600309 DOI: 10.1016/j.intimp.2011.04.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 04/29/2011] [Accepted: 04/30/2011] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) form a family of pattern recognition receptors with at least 11 members in human and 13 in mouse. TLRs recognize a wide variety of putative host-derived agonists that have emerged as key mediators of innate immunity. TLR signaling also plays an important role in the activation of the adaptive immune system by inducing pro-inflammatory cytokines and upregulating costimulatory molecules of antigen presenting cells. Inappropriate activation of TLRs by self-components generated by damaged tissues may result in sterile inflammation. This review discusses the contribution of TLR signaling to the initiation and progression of non-infectious inflammatory processes, such as ischemia and reperfusion (I/R) injury, tissue repair and regeneration and autoimmune diseases. The involvement of TLR signaling in the pathogenesis of sterile inflammation-related diseases may provide novel targets for the development of therapeutics.
Collapse
|
29
|
Hofmann U, Ertl G, Frantz S. Toll-like receptors as potential therapeutic targets in cardiac dysfunction. Expert Opin Ther Targets 2011; 15:753-65. [PMID: 21385118 DOI: 10.1517/14728222.2011.566560] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The innate immune system can detect the highly conserved, relatively invariant structural motifs of pathogens. The most important innate immune receptors, Toll-like receptors (TLRs), represent a first line of defense against infectious pathogens, and play a pivotal role in initiating and shaping innate and adaptive immune responses. TLRs are not only expressed in immune cells, but also in cardiovascular cells. In addition to their role in response to microbial infections, evidence suggests that TLRs can also recognize endogenous ligands and may play a role in mediating cardiomyocyte cell death and survival after non-infectious injury. AREAS COVERED TLRs could be a link between cardiovascular diseases and the immune system. Experimentally, there is good evidence that TLR activation contributes to development and progression of both acute cardiac injury and chronic heart failure. The role of TLRs in myocardial ischemia-reperfusion, remodeling, septic cardiomyoparthy, autoimmune- and viral myocarditis, anthracycline-induced cardiomyopathy and cardiac hypertrophy, in basic as well as clinical science are discussed. EXPERT OPINION Evidence, mainly from animal experiments, indicates that TLRs contribute to all of the myocardial disease states reviewed in this paper. However, the relevance of TLRs as therapeutic targets remains to be defined as clinical data is sparse.
Collapse
Affiliation(s)
- Ulrich Hofmann
- University Hospital Würzburg, Department of Internal Medicine I, Oberdürrbacherstraße 6, 97080 Würzburg, Germany
| | | | | |
Collapse
|
30
|
Barry SP, Townsend PA. What causes a broken heart--molecular insights into heart failure. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 284:113-79. [PMID: 20875630 DOI: 10.1016/s1937-6448(10)84003-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our understanding of the molecular processes which regulate cardiac function has grown immeasurably in recent years. Even with the advent of β-blockers, angiotensin inhibitors and calcium modulating agents, heart failure (HF) still remains a seriously debilitating and life-threatening condition. Here, we review the molecular changes which occur in the heart in response to increased load and the pathways which control cardiac hypertrophy, calcium homeostasis, and immune activation during HF. These can occur as a result of genetic mutation in the case of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) or as a result of ischemic or hypertensive heart disease. In the majority of cases, calcineurin and CaMK respond to dysregulated calcium signaling and adrenergic drive is increased, each of which has a role to play in controlling blood pressure, heart rate, and left ventricular function. Many major pathways for pathological remodeling converge on a set of transcriptional regulators such as myocyte enhancer factor 2 (MEF2), nuclear factors of activated T cells (NFAT), and GATA4 and these are opposed by the action of the natriuretic peptides ANP and BNP. Epigenetic modification has emerged in recent years as a major influence cardiac physiology and histone acetyl transferases (HATs) and histone deacetylases (HDACs) are now known to both induce and antagonize hypertrophic growth. The newly emerging roles of microRNAs in regulating left ventricular dysfunction and fibrosis also has great potential for novel therapeutic intervention. Finally, we discuss the role of the immune system in mediating left ventricular dysfunction and fibrosis and ways this can be targeted in the setting of viral myocarditis.
Collapse
Affiliation(s)
- Seán P Barry
- Institute of Molecular Medicine, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | | |
Collapse
|