1
|
Qiu AY, Leng S, McCormack M, Peden DB, Sood A. Lung Effects of Household Air Pollution. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2807-2819. [PMID: 36064186 DOI: 10.1016/j.jaip.2022.08.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Biomass fuel smoke, secondhand smoke, and oxides of nitrogen are common causes of household air pollution (HAP). Almost 2.4 billion people worldwide use solid fuels for cooking and heating, mostly in low- and middle-income countries. Wood combustion for household heating is also common in many areas of high-income countries, and minorities are particularly vulnerable. HAP in low- and middle-income countries is associated with asthma, acute respiratory tract infections in adults and children, chronic obstructive pulmonary disease, lung cancer, tuberculosis, and respiratory mortality. Although wood smoke exposure levels in high-income countries are typically lower than in lower-income countries, it is similarly associated with accelerated lung function decline, higher prevalence of airflow obstruction and chronic bronchitis, and higher all-cause and respiratory cause-specific mortality. Household air cleaners with high-efficiency particle filters have mixed effects on asthma and chronic obstructive pulmonary disease outcomes. Biomass fuel interventions in low-income countries include adding chimneys to cookstoves, improving biomass fuel combustion stoves, and switching fuel to liquid petroleum gas. Still, the impact on health outcomes is inconsistent. In high-income countries, strategies for reducing biomass fuel-related HAP are centered on community-level woodstove changeout programs, although the results are again inconsistent. In addition, initiatives to encourage home smoking bans have mixed success in households with children. Environmental solutions to reduce HAP have varying success in reducing pollutants and health problems. Improved understanding of indoor air quality factors and actions that prevent degradation or improve polluted indoor air may lead to enhanced environmental health policies, but health outcomes must be rigorously examined.
Collapse
Affiliation(s)
- Anna Y Qiu
- Johns Hopkins University, School of Medicine, Baltimore, Md
| | - Shuguang Leng
- University of New Mexico School of Medicine, Albuquerque, NM; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | | | - David B Peden
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Akshay Sood
- University of New Mexico School of Medicine, Albuquerque, NM; Miners Colfax Medical Center, Raton, NM.
| |
Collapse
|
2
|
Leng S, Picchi MA, Meek PM, Jiang M, Bayliss SH, Zhai T, Bayliyev RI, Tesfaigzi Y, Campen MJ, Kang H, Zhu Y, Lan Q, Sood A, Belinsky SA. Wood smoke exposure affects lung aging, quality of life, and all-cause mortality in New Mexican smokers. Respir Res 2022; 23:236. [PMID: 36076291 PMCID: PMC9454202 DOI: 10.1186/s12931-022-02162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background The role of wood smoke (WS) exposure in the etiology of chronic obstructive pulmonary disease (COPD), lung cancer (LC), and mortality remains elusive in adults from countries with low ambient levels of combustion-emitted particulate matter. This study aims to delineate the impact of WS exposure on lung health and mortality in adults age 40 and older who ever smoked. Methods We assessed health impact of self-reported “ever WS exposure for over a year” in the Lovelace Smokers Cohort using both objective measures (i.e., lung function decline, LC incidence, and deaths) and two health related quality-of-life questionnaires (i.e., lung disease-specific St. George's Respiratory Questionnaire [SGRQ] and the generic 36-item short-form health survey). Results Compared to subjects without WS exposure, subjects with WS exposure had a more rapid decline of FEV1 (− 4.3 ml/s, P = 0.025) and FEV1/FVC ratio (− 0.093%, P = 0.015), but not of FVC (− 2.4 ml, P = 0.30). Age modified the impacts of WS exposure on lung function decline. WS exposure impaired all health domains with the increase in SGRQ scores exceeding the minimal clinically important difference. WS exposure increased hazard for incidence of LC and death of all-cause, cardiopulmonary diseases, and cancers by > 50% and shortened the lifespan by 3.5 year. We found no evidence for differential misclassification or confounding from socioeconomic status for the health effects of WS exposure. Conclusions We identified epidemiological evidence supporting WS exposure as an independent etiological factor for the development of COPD through accelerating lung function decline in an obstructive pattern. Time-to-event analyses of LC incidence and cancer-specific mortality provide human evidence supporting the carcinogenicity of WS exposure. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02162-y.
Collapse
Affiliation(s)
- Shuguang Leng
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA. .,Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA. .,Lung Cancer Program, Lovelace Biomedical Research Institute, Albuquerque, NM, 87108, USA.
| | - Maria A Picchi
- Lung Cancer Program, Lovelace Biomedical Research Institute, Albuquerque, NM, 87108, USA
| | - Paula M Meek
- College of Nursing, University of Utah, Salt Lake City, UT, 84112, USA
| | - Menghui Jiang
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Samuel H Bayliss
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ting Zhai
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ruslan I Bayliyev
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Yohannes Tesfaigzi
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 01255, USA
| | - Matthew J Campen
- Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA.,College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Huining Kang
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA.,Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Yiliang Zhu
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Akshay Sood
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Steven A Belinsky
- Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA.,Lung Cancer Program, Lovelace Biomedical Research Institute, Albuquerque, NM, 87108, USA
| |
Collapse
|
3
|
Rohr AC, Campleman SL, Long CM, Peterson MK, Weatherstone S, Quick W, Lewis A. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:8542-605. [PMID: 26206568 PMCID: PMC4515735 DOI: 10.3390/ijerph120708542] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/03/2015] [Accepted: 07/14/2015] [Indexed: 12/19/2022]
Abstract
Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios--pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended.
Collapse
Affiliation(s)
- Annette C Rohr
- Electric Power Research Institute, Palo Alto, CA 94304, USA.
| | | | | | | | - Susan Weatherstone
- ON Technologies (Ratcliffe) Ltd., Ratcliffe on Soar, Nottinghamshire, NG11 0EE, UK.
| | - Will Quick
- ON Technologies (Ratcliffe) Ltd., Ratcliffe on Soar, Nottinghamshire, NG11 0EE, UK.
| | | |
Collapse
|
4
|
Zu K, Tao G, Long C, Goodman J, Valberg P. Long-range fine particulate matter from the 2002 Quebec forest fires and daily mortality in Greater Boston and New York City. AIR QUALITY, ATMOSPHERE, & HEALTH 2015; 9:213-221. [PMID: 27158279 PMCID: PMC4837205 DOI: 10.1007/s11869-015-0332-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/19/2015] [Indexed: 06/01/2023]
Abstract
During July 2002, forest fires in Quebec, Canada, blanketed the US East Coast with a plume of wood smoke. This "natural experiment" exposed large populations in northeastern US cities to significantly elevated concentrations of fine particulate matter (PM2.5), providing a unique opportunity to test the association between daily mortality and ambient PM2.5 levels that are uncorrelated with societal activity rhythms. We obtained PM2.5 measurement data and mortality data for a 4-week period in July 2002 for the Greater Boston metropolitan area (which has a population of over 1.7 million people) and New York City (which has a population of over 8 million people). Daily average PM2.5 concentrations were markedly increased for 3 days over this period, reaching as high as 63 μg/m3 for Greater Boston and 86 μg/m3 for New York City from background ambient levels of 4-48 μg/m3 in the non-smoke days. We examined temporal patterns of natural-cause deaths and 24-h ambient PM2.5 concentrations in July 2002 and did not observe any discernible increase in daily mortality subsequent to the dramatic elevation in ambient PM2.5 levels. Comparison to mortality rates over the same time periods in 2001 and 2003 showed no evidence of impact. Results from Poisson regression analyses suggest that 24-h ambient PM2.5 concentrations were not associated with daily mortality. In conclusion, substantial short-term elevation in PM2.5 concentrations from forest fire smoke were not followed by increased daily mortality in Greater Boston or New York City.
Collapse
Affiliation(s)
- Ke Zu
- Gradient, 20 University Road, Cambridge, MA 02138 USA
| | - Ge Tao
- Gradient, 20 University Road, Cambridge, MA 02138 USA
| | | | - Julie Goodman
- Gradient, 20 University Road, Cambridge, MA 02138 USA
| | - Peter Valberg
- Gradient, 20 University Road, Cambridge, MA 02138 USA
| |
Collapse
|
5
|
Montaño M, Sansores RH, Becerril C, Cisneros J, González-Avila G, Sommer B, Ochoa L, Herrera I, Ramírez-Venegas A, Ramos C. FEV1 inversely correlates with metalloproteinases 1, 7, 9 and CRP in COPD by biomass smoke exposure. Respir Res 2014; 15:74. [PMID: 24980707 PMCID: PMC4086695 DOI: 10.1186/1465-9921-15-74] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 06/16/2014] [Indexed: 01/25/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) and C-reactive protein (CRP) are involved in chronic obstructive pulmonary disease (COPD) pathogenesis. The aim of the present work was to determine plasma concentrations of MMPs and CRP in COPD associated to biomass combustion exposure (BE) and tobacco smoking (TS). Methods Pulmonary function tests, plasma levels of MMP-1, MMP-7, MMP-9, MMP-9/TIMP-1 and CRP were measured in COPD associated to BE (n = 40) and TS (n =40) patients, and healthy non-smoking (NS) healthy women (controls, n = 40). Results Plasma levels of MMP-1, MMP-7, MMP-9, and MMP-9/TIMP-1 and CRP were higher in BE and TS than in the NS healthy women (p <0.01). An inverse correlation between MMP-1, MMP-7, MMP-9, MMP-9/TIMP-1 and CRP plasma concentrations and FEV1 was observed. Conclusions Increase of MMPs and CRP plasma concentrations in BE suggests a systemic inflammatory phenomenon similar to that observed in COPD associated to tobacco smoking, which may also play a role in COPD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Carlos Ramos
- Departamento de Fibrosis Pulmonar, Calzada de Tlalpan 4502, Tlalpan D,F, México, C,P, 14080 México, DF, Mexico.
| |
Collapse
|
8
|
Montaño M, Cisneros J, Ramírez-Venegas A, Pedraza-Chaverri J, Mercado D, Ramos C, Sansores RH. Malondialdehyde and superoxide dismutase correlate with FEV(1) in patients with COPD associated with wood smoke exposure and tobacco smoking. Inhal Toxicol 2010; 22:868-74. [PMID: 20583895 DOI: 10.3109/08958378.2010.491840] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tobacco smoking is the primary risk factor for chronic obstructive pulmonary disease (COPD). However, recent epidemiological studies have established domestic exposure to wood smoke and other biomass fuels as additional important risk factors, characteristic in developing countries. Oxidative stress is one of the mechanisms concerned with pathogenesis of COPD. However, the molecular mechanisms involved in the onset and progress of COPD associated with biomass and specifically that derived from wood smoke exposure remain unknown. We analyzed the relationship between forced expiratory volume in first second (FEV(1)) with plasma malondialdehyde (MDA) concentration and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) in COPD patients associated with wood smoke (WSG; n = 30), tobacco smoking (TSG; n = 30), and healthy control subjects (HCG; n = 30). Differences between FEV(1) from WSG and TSG (58 +/- 22% and 51 +/- 24%, respectively) with HCG (100 +/- 6%) were observed (P < 0.01). Plasma MDA concentration was higher in both WSG and TSG (1.87 +/- 0.81 and 1.68 +/- 0.82 nmol/mL, respectively) compared with HCG (0.42 +/- 0.17 nmol/mL; P < 0.01). SOD activity showed a significant increase in both WSG and TSG (0.36 +/- 0.12 and 0.37 +/- 0.13 U/mL) compared with HCG (0.19 +/- 0.04 U/mL; P < 0.01). No differences were shown regarding GPx, GR, and GST activities between COPD and control groups. Inverse correlations were founded between MDA and SOD with FEV(1) in both COPD patients and control subjects (P < 0.001). These results indicate a role for oxidative stress in COPD associated with wood smoke similar to that observed with tobacco smoking in subjects who ceased at least 10 years previous to this study.
Collapse
Affiliation(s)
- Martha Montaño
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de, Enfermedades Respiratorias Ismael Cosío Villegas, D. F., México
| | | | | | | | | | | | | |
Collapse
|