1
|
Pavan C, Bianco P, Tammaro O, Castellino M, Marocco A, Petriglieri JR, Tomatis M, Pansini M, Esposito S, Turci F. Atmospheric environment shapes surface reactivity of Fe(0)-doped lunar dust simulant: Potential toxicological implications. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138096. [PMID: 40222059 DOI: 10.1016/j.jhazmat.2025.138096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
The toxicity of lunar dust (LD), anecdotally reported by Apollo astronauts, raises concerns for future missions involving prolonged human presence on the Moon. LD toxicity is thought to involve oxidative stress driven by nanophase metallic iron (np-Fe0), a peculiar feature of LD. In life-supporting lunar habitat, np-Fe0 embedded in the amorphous phases of LD may react with O2 prior to accessing the lung, complicating toxicity assessments. Due to limited availability of real LD samples, toxicological evaluations rely on lunar dust simulants (LDS). A novel Simulant Moon Agglutinate (SMA), composed of a glassy matrix with np-Fe0, was produced and ball milled in an inert atmosphere to expose non-oxidized Fe0 surface centers and to obtain a dust with respirable particle size. Physicochemical properties, oxidative activity, and iron release in simulated body fluids were assessed on selected SMA samples. SMA were aged in air, and the kinetics of free radical generation revealed a strong redox activity that decreased with aging. After an oxidative ageing of 1 month, SMA was still active in generating free radicals, to a higher extent that other LD simulants like JSC-1A-vf, highlighting the key role of np-Fe0 in eliciting LD peculiar reactivity. In vitro tests showed that SMA caused no cell membrane damage, suggesting that LD toxicity mechanisms might involve free radicals and may differ from terrestrial toxic dust, such as quartz.
Collapse
Affiliation(s)
- Cristina Pavan
- Department of Chemistry, University of Turin, via P. Giuria 7, Torino 10125, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, via P. Giuria 7, Torino 10125, Italy; Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université catholique de Louvain, Brussels 1200, Belgium
| | - Piero Bianco
- Department of Chemistry, University of Turin, via P. Giuria 7, Torino 10125, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, via P. Giuria 7, Torino 10125, Italy
| | - Olimpia Tammaro
- Department of Applied Science and Technology and INSTM Unit of Torino, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Micaela Castellino
- Department of Applied Science and Technology and INSTM Unit of Torino, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Antonello Marocco
- Department of Civil and Mechanical Engineering and INSTM Research Unit, Università degli Studi di Cassino e del Lazio Meridionale, Via G. Di Biasio 43, Cassino, FR 03043, Italy
| | - Jasmine Rita Petriglieri
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, via P. Giuria 7, Torino 10125, Italy; Department of Earth Sciences, University of Turin, Turin 10125, Italy
| | - Maura Tomatis
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, via P. Giuria 7, Torino 10125, Italy; Department of Veterinary Sciences, University of Turin, Largo Braccini, 2, Grugliasco, TO, Italy
| | - Michele Pansini
- Department of Civil and Mechanical Engineering and INSTM Research Unit, Università degli Studi di Cassino e del Lazio Meridionale, Via G. Di Biasio 43, Cassino, FR 03043, Italy
| | - Serena Esposito
- Department of Applied Science and Technology and INSTM Unit of Torino, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
| | - Francesco Turci
- Department of Chemistry, University of Turin, via P. Giuria 7, Torino 10125, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, via P. Giuria 7, Torino 10125, Italy.
| |
Collapse
|
2
|
Crucian BE, Quiriarte H, Lam CW, Nelman M, Colorado AA, Diak DM, James JT. Pulmonary and systemic immune alterations in rats exposed to airborne lunar dust. Front Immunol 2025; 16:1538421. [PMID: 39981230 PMCID: PMC11840967 DOI: 10.3389/fimmu.2025.1538421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Background Due to cosmic radiation bombardment and over 4 billion meteorite and micrometeoroid impacts on the airless Moon, the lunar surface is covered by a layer of fine, reactive dust. Very little is known regarding the toxicity of lunar dust on human physiology. This study assessed airborne lunar dust exposure in rats on localized pulmonary and systemic immune parameters. Methods Rats were exposed to 0 (air only), 20.8 (low), and 60.6 (high) mg/m3 of respirable-size lunar dust for 4 weeks (6 h/day, 5 days/week). Rats were then euthanized either 1 day, 7 days, 4 weeks, or 13 weeks after the last exposure. Peripheral blood and lung lavage fluid samples were collected for analysis. Assays included leukocyte distribution by multicolor flow cytometry and electron/fluorescent microscopy to visualize cell-particulate interactions and lavage/plasma cytokine concentration. Mitogen-stimulated cytokine production profiles, as a measure of cellular function, were performed on whole blood samples only. Results Untreated lavage fluid was comprised primarily of pulmonary macrophages. High-dose lunar dust inhalation (60.6 mg/m3) resulted in an influx of both neutrophils and lymphocytes. Although the percentage of lymphocytes increased, the T-cell CD4:CD8 ratio was unchanged. Cytokine analysis of the lavage fluid showed increased levels of IL-1β and TNFα. These alterations generally persisted through the 13-week sampling. Blood analysis showed few systemic immune alterations from the lunar dust inhalation. By week 4, the peripheral granulocyte percentage was elevated in the treated rats. Plasma cytokine levels were unchanged in all treated rats compared to controls; however, altered mitogen-stimulated cytokine production profiles were observed consisting of increased IL-1β and IL-6 and decreased IL-2. There were minimal adverse immune effects, in both lung or peripheral blood, following low-dose exposure to 20.8 mg/m3 lunar dust. Conclusion Exposures to high concentrations of lunar dust resulted in persistent lung inflammation and some systemic immune dysregulation that did not subside even 13 weeks after the dust exposure. This information is beneficial in deriving an exposure limit to airborne lunar dust and for spacecraft engineers considering dust mitigation systems in lunar landers or habitats.
Collapse
Affiliation(s)
- Brian E. Crucian
- Environmental Sciences Branch, NASA Johnson Space Center, Houston, TX, United States
| | - Heather Quiriarte
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| | - Chiu-wing Lam
- Toxicology Laboratory, KBR, Inc., Houston, TX, United States
| | - Mayra Nelman
- Immunology/Virology Laboratory, KBR, Inc., Houston, TX, United States
| | | | - Douglass M. Diak
- Immunology/Virology Laboratory, Aegis Aerospace, Inc., Houston, TX, United States
| | - John T. James
- Environmental Sciences Branch, NASA Johnson Space Center, Houston, TX, United States
| |
Collapse
|
3
|
Wang J, Lei M, Xue Y, Tan Q, He X, Guan J, Song W, Ma H, Wu B, Cui X. Assessment of toxicity changes induced by exposure of human cells to lunar dust simulant. Sci Rep 2024; 14:24781. [PMID: 39433758 PMCID: PMC11494017 DOI: 10.1038/s41598-024-69259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/02/2024] [Indexed: 10/23/2024] Open
Abstract
The toxicity of lunar dust (LD) to astronauts' health has been confirmed in the Apollo missions and subsequent biological experiments. Therefore, it is crucial to understand the biological toxicity of lunar dust for future human missions to the Moon. In this study, we exposed human lung epithelial cells (BEAS-2B) and peripheral blood B lymphocytes (AHH-1) to varying concentrations (0, 500, 1000, and 1500 μg/ml) of a lunar dust simulant (LDS) called CLDS-i for 24 and 48 h. The results provided the following key findings: (1) LDS induction of cell damage occurred through oxidative stress, with the levels of reactive oxygen species (ROS) in BEAS-2B cells being dependent on the duration of exposure. (2) Necrosis and early apoptosis were observed in BEAS-2B cells and AHH-1 cells, respectively. In addition, both cells showed lysosomal damage. (3) Genes CXCL1, SPP1, CSF2, MMP1, and POSTN are implicated in immune response and cytoskeletal arrangement regulation in BEAS-2B cells. Considering the similarities in composition and properties between CLDS-i and real lunar dust, our findings not only enhance the understanding of LDS toxicity, but also contribute to a better comprehension of the genomic alterations and molecular mechanisms underlying cellular toxicity induced by LD. These insights will contribute to the development of a biotoxicology framework aimed at safeguarding the health of astronauts and, consequently, facilitating future human missions to the Moon.
Collapse
Affiliation(s)
- Jintao Wang
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Lei
- China Astronaut Research and Training Center, Beijing, China
| | - Yuan Xue
- China Astronaut Research and Training Center, Beijing, China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinxing He
- China Astronaut Research and Training Center, Beijing, China
| | - Jian Guan
- Aier Eye Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wei Song
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Honglei Ma
- China Astronaut Research and Training Center, Beijing, China.
| | - Bin Wu
- China Astronaut Research and Training Center, Beijing, China.
| | - Xinguang Cui
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Pohlen M. Space Radiology: Emerging Nonsonographic Medical Imaging Techniques and the Potential Applications for Human Spaceflight. Wilderness Environ Med 2024:10806032241283380. [PMID: 39360501 DOI: 10.1177/10806032241283380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Space medicine is a multidisciplinary field that requires the integration of medical imaging techniques and expertise in diagnosing and treating a wide range of acute and chronic conditions to maintain astronaut health. Medical imaging within this domain has been viewed historically through the lens of inflight point-of-care ultrasound and predominantly research uses of cross-sectional imaging before and after flight. However, space radiology, a subfield defined here as the applications of imaging before, during, and after spaceflight, will grow to necessitate the involvement of more advanced imaging techniques and subspecialist expertise as missions increase in length and complexity. While the performance of imaging in spaceflight is limited by equipment mass and volume, power supply, radiation exposure, communication delays, and personnel training, recent developments in nonsonographic modalities have opened the door to their potential for in-mission use. Additionally, improved exam protocols and scanner technology in combination with artificial intelligence algorithms have greatly advanced the utility of possible pre- and postflight studies. This article reviews the past and present of space radiology and discusses possible use cases, knowledge gaps, and future research directions for radiography, fluoroscopy, computed tomography, and magnetic resonance imaging within space medicine, including both the performance of new exam types for new indications and the increased extraction of information from exams already routinely obtained. Through thoughtfully augmenting the use of these tools, medical mission risk may be reduced substantially through preflight screening, inflight diagnosis and management, and inflight and postflight surveillance.
Collapse
Affiliation(s)
- Michael Pohlen
- Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Neukart F. Towards sustainable horizons: A comprehensive blueprint for Mars colonization. Heliyon 2024; 10:e26180. [PMID: 38404830 PMCID: PMC10884476 DOI: 10.1016/j.heliyon.2024.e26180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
This paper thoroughly explores the feasibility, challenges, and proposed solutions for establishing a sustainable human colony on Mars. We quantitatively and qualitatively analyze the Martian environment, highlighting key challenges such as radiation exposure, which astronauts could experience at minimum levels of 0.66 sieverts during a round trip, and the complications arising from Mars' thin atmosphere and extreme temperature variations. Technological advancements are examined, including developing Martian concrete, which utilizes sulfur as a binding agent, and innovative life support strategies like aeroponics and algae bioreactors. The human aspect of colonization is addressed, focusing on long-term space habitation's psychological and physiological impacts. We also present a cost-benefit analysis of in-situ resource utilization versus Earth-based supply missions, emphasizing economic viability with the potential reduction in launch costs through reusable rocket technology. A timeline for the colonization process is suggested, spanning preliminary unmanned missions for resource assessment, followed by short-term manned missions leading to sustainable settlements over several decades. The paper concludes with recommendations for future research, particularly in refining resource utilization techniques and advancing health and life support systems, to solidify the foundation for Mars colonization. This comprehensive assessment aims to guide researchers, policymakers, and stakeholders in planning and executing a strategic and informed approach to making Mars colonization a reality.
Collapse
Affiliation(s)
- Florian Neukart
- Leiden Institute of Advanced Computer Science, Snellius Gebouw, Niels Bohrweg 1, Leiden, 2333 CA, South Holland, Netherlands
- Terra Quantum AG, Kornhausstrasse 25, St. Gallen, 9000, St. Gallen, Switzerland
| |
Collapse
|
6
|
Gu C, Sun Y, Mao M, Liu J, Li X, Zhang X. Mechanism of simulated lunar dust-induced lung injury in rats based on transcriptomics. Toxicol Res (Camb) 2024; 13:tfad108. [PMID: 38179001 PMCID: PMC10762671 DOI: 10.1093/toxres/tfad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024] Open
Abstract
Lunar dust particles are an environmental threat to lunar astronauts, and inhalation of lunar dust can cause lung damage. The current study explored the mechanism of lunar dust simulant (CLDS-i) inducing inflammatory pulmonary injury. Wistar rats were exposed to CLDS-i for 4 h/d and 7d/week for 4 weeks. Pathological results showed that a large number of inflammatory cells gathered and infiltrated in the lung tissues of the simulated lunar dust group, and the alveolar structures were destroyed. Transcriptome analysis confirmed that CLDS-i was mainly involved in the regulation of activation and differentiation of immune inflammatory cells, activated signaling pathways related to inflammatory diseases, and promoted the occurrence and development of inflammatory injury in the lung. Combined with metabolomics analysis, the results of joint analysis of omics were found that the genes Kmo, Kynu, Nos3, Arg1 and Adh7 were involved in the regulation of amino acid metabolism in rat lung tissues, and these genes might be the key targets for the treatment of amino acid metabolic diseases. In addition, the imbalance of amino acid metabolism might be related to the activation of nuclear factor kappaB (NF-κB) signaling pathway. The results of quantitative real-time polymerase chain reaction and Western blot further confirmed that CLDS-i may promote the occurrence and development of lung inflammation and lead to abnormal amino acid metabolism by activating the B cell activation factor (BAFF)/ B cell activation factor receptor (BAFFR)-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chen Gu
- College of Basic Medical Sciences, Shenyang Medical College, Huanghe North Street 146, Shenyang 110034, China
| | - Yan Sun
- School of Pharmacy, Shenyang Medical College, Huanghe North Street 146, Shenyang 110034, China
| | - Meiqi Mao
- College of Basic Medical Sciences, Shenyang Medical College, Huanghe North Street 146, Shenyang 110034, China
| | - Jinguo Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Nanta Street 114, Shenyang 110016, China
| | - Xiongyao Li
- Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Lincheng West Road 99, Guiyang 550081, China
| | - Xiaoping Zhang
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Weilong Road, Taipa, Macau 999078, China
| |
Collapse
|
7
|
Cui X, Song W, Xue Y, Jing H, Lei M, Ma H, He X, Zou P, Wu B, Wang J. Numerical analysis of micro lunar dust deposition in the human nasal airway. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132682. [PMID: 37793250 DOI: 10.1016/j.jhazmat.2023.132682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
The toxicity of Lunar dust (LD) is well-known to harm astronauts' health. However, the characteristics of micro-LD deposition in the human nasal airway remains unknown, and studying it through experiments is challenging. Therefore, this study employs numerical investigations to address this issue. Our findings reveal that LD larger than 4 µm primarily (>50%) deposit in the nasal cavity at an inspiration flow rate of Q= 40 L/min, while LD smaller than 8 µm are more likely (>50%) to enter the lung lobe at Q= 15 L/min. The right upper lung lobe receives a higher deposit fraction of LD compared to other lobes, reaching a maximum of 31%. The ratio of deposition fraction in the right lung and left lung can reach to 3.0. Accurately predicting LD deposition in the upper airway and entire lung is possible using mathematical expressions, but the prediction becomes more challenging for the bronchial airway and lung lobes. These results indicate that micro-LD deposition characteristics in the human nasal airway are influenced by LD size and astronauts' activity level. The deposition fractions can be used to assess the health risk from lunar dust to astronauts and provide insights into developing protective measures against LD exposure.
Collapse
Affiliation(s)
- Xinguang Cui
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wei Song
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Xue
- China Astronaut Research and Training Center, Beijing, China
| | - Hao Jing
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Lei
- China Astronaut Research and Training Center, Beijing, China
| | - Honglei Ma
- China Astronaut Research and Training Center, Beijing, China
| | - Xinxing He
- China Astronaut Research and Training Center, Beijing, China
| | - Pengfei Zou
- China Astronaut Research and Training Center, Beijing, China
| | - Bin Wu
- China Astronaut Research and Training Center, Beijing, China
| | - Jintao Wang
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Gu C, Yin Y, Sun Y, Liu J, Li X, Zhang X. Exploring the mechanism of lung injury induced by lunar dust simulant in rats based on metabolomic analysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:184-198. [PMID: 37681755 DOI: 10.1002/tox.23967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/30/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Inflammatory response and oxidative stress are considered to be important mechanisms of lung injury induced by lunar dust. However, the pulmonary toxicological mechanism remains unclear. In the present study, Wistar rats were exposed to CLDS-i 7 days/week, 4 h/day, for 4 weeks in the mouth and nose. Lung tissue samples were collected for histopathological analysis and ultra-performance liquid chromatography-mass spectrometry analysis. Enzyme activities and expression levels of key metabolic enzymes were detected by biochemical analysis and real-time PCR. The pathological features of lung tissue showed that CLDS-i caused congestion and inflammation in the lungs, and the lung structure was severely damaged. Metabolomics analysis showed that 141 metabolites were significantly changed in the lung tissue of the CLDS-i group compared with the control group. Combined with Kegg pathway analysis, it was found that the changes of amino acid metabolites were involved in these pathways, indicating that the simulated lunar dust exposure had the most obvious effect on amino acid metabolism in the lung tissue of rats. Real-time PCR analysis showed that the mRNA expression of six key enzymes related to amino acid metabolism was changed, and the enzyme activities of these key enzymes were also changed, which were consistent with the results of qPCR. These results suggest that changes in amino acid metabolism may be closely related to the pathogenesis of lung injury induced by lunar dust, and amino acid metabolism may be a potential biomarker of lung diseases related to lunar dust exposure.
Collapse
Affiliation(s)
- Chen Gu
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Yuhang Yin
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Yan Sun
- College of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Jinguo Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Xiongyao Li
- Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Xiaoping Zhang
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
9
|
Lam CW, Castranova V, Driscoll K, Warheit D, Ryder V, Zhang Y, Zeidler-Erdely P, Hunter R, Scully R, Wallace W, James J, Crucian B, Nelman M, McCluskey R, Gardner D, Renne R, McClellan R. A review of pulmonary neutrophilia and insights into the key role of neutrophils in particle-induced pathogenesis in the lung from animal studies of lunar dusts and other poorly soluble dust particles. Crit Rev Toxicol 2023; 53:441-479. [PMID: 37850621 PMCID: PMC10872584 DOI: 10.1080/10408444.2023.2258925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 10/19/2023]
Abstract
The mechanisms of particle-induced pathogenesis in the lung remain poorly understood. Neutrophilic inflammation and oxidative stress in the lung are hallmarks of toxicity. Some investigators have postulated that oxidative stress from particle surface reactive oxygen species (psROS) on the dust produces the toxicopathology in the lungs of dust-exposed animals. This postulate was tested concurrently with the studies to elucidate the toxicity of lunar dust (LD), which is believed to contain psROS due to high-speed micrometeoroid bombardment that fractured and pulverized lunar surface regolith. Results from studies of rats intratracheally instilled (ITI) with three LDs (prepared from an Apollo-14 lunar regolith), which differed 14-fold in levels of psROS, and two toxicity reference dusts (TiO2 and quartz) indicated that psROS had no significant contribution to the dusts' toxicity in the lung. Reported here are results of further investigations by the LD toxicity study team on the toxicological role of oxidants in alveolar neutrophils that were harvested from rats in the 5-dust ITI study and from rats that were exposed to airborne LD for 4 weeks. The oxidants per neutrophils and all neutrophils increased with dose, exposure time and dust's cytotoxicity. The results suggest that alveolar neutrophils play a critical role in particle-induced injury and toxicity in the lung of dust-exposed animals. Based on these results, we propose an adverse outcome pathway (AOP) for particle-associated lung disease that centers on the crucial role of alveolar neutrophil-derived oxidant species. A critical review of the toxicology literature on particle exposure and lung disease further supports a neutrophil-centric mechanism in the pathogenesis of lung disease and may explain previously reported animal species differences in responses to poorly soluble particles. Key findings from the toxicology literature indicate that (1) after exposures to the same dust at the same amount, rats have more alveolar neutrophils than hamsters; hamsters clear more particles from their lungs, consequently contributing to fewer neutrophils and less severe lung lesions; (2) rats exposed to nano-sized TiO2 have more neutrophils and more severe lesions in their lungs than rats exposed to the same mass-concentration of micron-sized TiO2; nano-sized dust has a greater number of particles and a larger total particle-cell contact surface area than the same mass of micron-sized dust, which triggers more alveolar epithelial cells (AECs) to synthesize and release more cytokines that recruit a greater number of neutrophils leading to more severe lesions. Thus, we postulate that, during chronic dust exposure, particle-inflicted AECs persistently release cytokines, which recruit neutrophils and activate them to produce oxidants resulting in a prolonged continuous source of endogenous oxidative stress that leads to lung toxicity. This neutrophil-driven lung pathogenesis explains why dust exposure induces more severe lesions in rats than hamsters; why, on a mass-dose basis, nano-sized dusts are more toxic than the micron-sized dusts; why lung lesions progress with time; and why dose-response curves of particle toxicity exhibit a hockey stick like shape with a threshold. The neutrophil centric AOP for particle-induced lung disease has implications for risk assessment of human exposures to dust particles and environmental particulate matter.
Collapse
Affiliation(s)
- Chiu-wing Lam
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Biomedical & Environmental Research Department, KBR Toxicology & Environmental Chemistry, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX, USA
| | - Vincent Castranova
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kevin Driscoll
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | | | - Valerie Ryder
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Ye Zhang
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Utilization and Life Sciences Office, Kennedy Space Center, Merritt Island, FL, USA
| | - Patti Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Robert Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX, USA
| | - Robert Scully
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Biomedical & Environmental Research Department, KBR Toxicology & Environmental Chemistry, Houston, TX, USA
| | - William Wallace
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Biomedical & Environmental Research Department, KBR Toxicology & Environmental Chemistry, Houston, TX, USA
| | - John James
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Brian Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Mayra Nelman
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Biomedical & Environmental Research Department, KBR Toxicology & Environmental Chemistry, Houston, TX, USA
| | | | | | - Roger Renne
- Roger Renne ToxPath Consulting Inc., Sumner, WA, USA
| | - Roger McClellan
- Toxicology and Human Health Risk Analysis, Albuquerque, NM, USA
| |
Collapse
|
10
|
Miranda S, Marchal S, Cumps L, Dierckx J, Krüger M, Grimm D, Baatout S, Tabury K, Baselet B. A Dusty Road for Astronauts. Biomedicines 2023; 11:1921. [PMID: 37509559 PMCID: PMC10377461 DOI: 10.3390/biomedicines11071921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
The lunar dust problem was first formulated in 1969 with NASA's first successful mission to land a human being on the surface of the Moon. Subsequent Apollo missions failed to keep the dust at bay, so exposure to the dust was unavoidable. In 1972, Harrison Schmitt suffered a brief sneezing attack, red eyes, an itchy throat, and congested sinuses in response to lunar dust. Some additional Apollo astronauts also reported allergy-like symptoms after tracking dust into the lunar module. Immediately following the Apollo missions, research into the toxic effects of lunar dust on the respiratory system gained a lot of interest. Moreover, researchers believed other organ systems might be at risk, including the skin and cornea. Secondary effects could translocate to the cardiovascular system, the immune system, and the brain. With current intentions to return humans to the moon and establish a semi-permanent presence on or near the moon's surface, integrated, end-to-end dust mitigation strategies are needed to enable sustainable lunar presence and architecture. The characteristics and formation of Martian dust are different from lunar dust, but advances in the research of lunar dust toxicity, mitigation, and protection strategies can prove strategic for future operations on Mars.
Collapse
Affiliation(s)
- Silvana Miranda
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Lina Cumps
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Department of Astronomy, Faculty of Science, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jenne Dierckx
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Department of Astronomy, Faculty of Science, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
| |
Collapse
|
11
|
Zhang Y, Story M, Yeshitla S, Wang X, Scully RR, Theriot C, Wu H, Ryder VE, Lam CW. Persistent changes in expression of genes involved in inflammation and fibrosis in the lungs of rats exposed to airborne lunar dust. Inhal Toxicol 2023; 35:139-156. [PMID: 36966416 DOI: 10.1080/08958378.2023.2172485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
NASA is currently planning return missions to the Moon for further exploration and research. The Moon is covered by a layer of potentially reactive fine dust, which could pose a toxicological risk of exposure to explorers. To assess this risk, we exposed rats to lunar dust (LD) that was collected during the Apollo14 mission. Rats were exposed to respirable sizes of LD at concentrations of 0, 2.1, 6.8, 20.8, or 60.6 mg/m3 for 4 weeks. One day, and one, four, and thirteen weeks after exposure, we assessed 44,000 gene transcripts and found the expression of 614 genes with known functions were significantly altered in the rats exposed to the 2 higher concentrations of LD, whereas few changes in gene expression were detected in the group exposed to the lowest concentration of LD. Many of the significant changes in gene expression involved genes known to be associated with inflammation or fibrosis. Four genes encoding pro-inflammatory chemokines were analyzed further using real-time polymerase chain reaction. The expression of these genes was altered in a dose- and time-dependent manner and persistently changed in the lungs of the rats exposed to the two higher concentrations of LD. Their expressions are consistent with changes we detected in pulmonary toxicity biomarkers and pathology in these animals during a previous study. Because Apollo-14 LD contains common mineral oxides similar to an Arizona volcanic ash, besides revealing the toxicity of LD, our findings could help elucidate the genomic and molecular mechanisms involved in pulmonary toxicity induced by terrestrial mineral dusts.
Collapse
Affiliation(s)
- Ye Zhang
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- KBR Toxicology & Environmental Chemistry, Biomedical & Environmental Research Department, Houston, TX, USA
- NASA Kennedy Space Center, Cape Canaveral, FL, USA
| | - Michael Story
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samrawit Yeshitla
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Xiaoyu Wang
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert R Scully
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- KBR Toxicology & Environmental Chemistry, Biomedical & Environmental Research Department, Houston, TX, USA
| | - Corey Theriot
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- KBR Toxicology & Environmental Chemistry, Biomedical & Environmental Research Department, Houston, TX, USA
| | - Honglu Wu
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Valerie E Ryder
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Chiu-Wing Lam
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- KBR Toxicology & Environmental Chemistry, Biomedical & Environmental Research Department, Houston, TX, USA
- Dept. of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
12
|
Pohlen M, Carroll D, Prisk GK, Sawyer AJ. Overview of lunar dust toxicity risk. NPJ Microgravity 2022; 8:55. [PMID: 36460679 PMCID: PMC9718825 DOI: 10.1038/s41526-022-00244-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/03/2022] [Indexed: 12/04/2022] Open
Abstract
Lunar dust (LD), the component of lunar regolith with particle sizes less than 20 μm, covers the surface of the Moon. Due to its fineness, jagged edges, and electrostatic charge, LD adheres to and coats almost any surface it contacts. As a result, LD poses known risks to the proper functioning of electronic and mechanical equipment on the lunar surface. However, its mechanical irritancy and chemical reactivity may also pose serious health risks to humans by a number of mechanisms. While Apollo astronauts reported mild short-lived respiratory symptoms, the spectrum of health effects associated with high-dose acute exposure or chronic low-dose exposure are not yet well-understood. This paper explores known and potential human risks of exposure to LD which are thought to be important in planning upcoming lunar missions and planetary surface work.
Collapse
Affiliation(s)
| | - Danielle Carroll
- University of California, San Diego, USA
- University of California San Francisco, San Francisco, USA
- Translational Research Institute for Space Health (TRISH), Houston, USA
- Eastern Virginia Medical School, Norfolk, USA
| | | | - Aenor J Sawyer
- University of California San Francisco, San Francisco, USA.
- Translational Research Institute for Space Health (TRISH), Houston, USA.
- UC Space Health, University of California, San Francisco, USA.
| |
Collapse
|
13
|
Lam CW, Castranova V, Zeidler-Erdely PC, Renne R, Hunter R, McCluskey R, Scully RR, Wallace WT, Zhang Y, Ryder VE, Cooper B, McKay D, McClellan RO, Driscoll KE, Gardner DE, Barger M, Meighan T, James JT. Comparative pulmonary toxicities of lunar dusts and terrestrial dusts (TiO 2 & SiO 2) in rats and an assessment of the impact of particle-generated oxidants on the dusts' toxicities. Inhal Toxicol 2022; 34:51-67. [PMID: 35294311 DOI: 10.1080/08958378.2022.2038736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Humans will set foot on the Moon again soon. The lunar dust (LD) is potentially reactive and could pose an inhalation hazard to lunar explorers. We elucidated LD toxicity and investigated the toxicological impact of particle surface reactivity (SR) using three LDs, quartz, and TiO2. We first isolated the respirable-size-fraction of an Apollo-14 regolith and ground two coarser samples to produce fine LDs with increased SR. SR measurements of these five respirable-sized dusts, determined by their in-vitro ability to generate hydroxyl radicals (•OH), showed that ground LDs > unground LD ≥ TiO2 ≥ quartz. Rats were each intratracheally instilled with 0, 1, 2.5, or 7.5 mg of a test dust. Toxicity biomarkers and histopathology were assessed up to 13 weeks after the bolus instillation. All dusts caused dose-dependent-increases in pulmonary lesions and toxicity biomarkers. The three LDs, which possessed mineral compositions/properties similar to Arizona volcanic ash, were moderately toxic. Despite a 14-fold •OH difference among these three LDs, their toxicities were indistinguishable. Quartz produced the lowest •OH amount but showed the greatest toxicity. Our results showed no correlation between the toxicity of mineral dusts and their ability to generate free radicals. We also showed that the amounts of oxidants per neutrophil increased with doses, time and the cytotoxicity of the dusts in the lung, which supports our postulation that dust-elicited neutrophilia is the major persistent source of oxidative stress. These results and the discussion of the crucial roles of the short-lived, continuously replenished neutrophils in dust-induced pathogenesis are presented.
Collapse
Affiliation(s)
- Chiu-Wing Lam
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA.,Human Health and Performance Contract, KBR, Houston, TX, USA.,Department of Pathology and Laboratory Medicine, University of Texas Medical School, Houston, TX, USA
| | - Vincent Castranova
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Roger Renne
- Roger Renne ToxPath Consulting Inc, Sumner, WA, USA
| | - Robert Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Medical School, Houston, TX, USA
| | | | - Robert R Scully
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA.,Human Health and Performance Contract, KBR, Houston, TX, USA
| | - William T Wallace
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA.,Human Health and Performance Contract, KBR, Houston, TX, USA
| | - Ye Zhang
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA.,Utilization & Life Sciences Office, NASA Kennedy Space Center, FL, USA
| | - Valerie E Ryder
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Bonnie Cooper
- Astromaterials Research and Exploration Systems, NASA Johnson Space Center, Houston, TX, USA
| | - David McKay
- Astromaterials Research and Exploration Systems, NASA Johnson Space Center, Houston, TX, USA
| | | | - Kevin E Driscoll
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | | | - Mark Barger
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Terence Meighan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - John T James
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| |
Collapse
|
14
|
Hendrix DA, Hurowitz JA, Glotch TD, Schoonen MAA. Olivine Dissolution in Simulated Lung and Gastric Fluid as an Analog to the Behavior of Lunar Particulate Matter Inside the Human Respiratory and Gastrointestinal Systems. GEOHEALTH 2021; 5:e2021GH000491. [PMID: 34849441 PMCID: PMC8609536 DOI: 10.1029/2021gh000491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
With the Artemis III mission scheduled to land humans on the Moon in 2025, work must be done to understand the hazards lunar dust inhalation would pose to humans. In this study, San Carlos olivine was used as an analog of lunar olivine, a common component of lunar dust. Olivine was dissolved in a flow-through apparatus in both simulated lung fluid and 0.1 M HCl (simulated gastric fluid) over a period of approximately 2 weeks at physiological temperature, 37°C. Effluent samples were collected periodically and analyzed for pH, iron, silicon, and magnesium ion concentrations. The dissolution rate data derived from our measurements allow us to estimate that an inhaled 1.0 μm diameter olivine particle would take approximately 24 years to dissolve in the human lungs and approximately 3 weeks to dissolve in gastric fluid. Results revealed that inhaled olivine particles may generate the toxic chemical, hydroxyl radical, for up to 5-6 days in lung fluid. Olivine dissolved in 0.1 M HCl for 2 weeks transformed to an amorphous silica-rich solid plus the ferric iron oxy-hydroxide ferrihydrite. Olivine dissolved in simulated lung fluid shows no detectable change in composition or crystallinity. Equilibrium thermodynamic models indicate that olivine in the human lungs can precipitate secondary minerals with fibrous crystal structures that have the potential to induce detrimental health effects similar to asbestos exposure. Our work indicates that inhaled lunar dust containing olivine can settle in the human lungs for years and could induce long-term potential health effects like that of silicosis.
Collapse
Affiliation(s)
| | | | | | - Martin A. A. Schoonen
- Environment, Biology, Nuclear Science, & NonproliferationBrookhaven National LaboratoryUptonNYUSA
| |
Collapse
|
15
|
Prisk GK. Pulmonary challenges of prolonged journeys to space: taking your lungs to the moon. Med J Aust 2019; 211:271-276. [PMID: 31420881 DOI: 10.5694/mja2.50312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Space flight presents a set of physiological challenges to the space explorer which result from the absence of gravity (or in the case of planetary exploration, partial gravity), radiation exposure, isolation and a prolonged period in a confined environment, distance from Earth, the need to venture outside in the hostile environment of the destination, and numerous other factors. Gravity affects regional lung function, and the human lung shows considerable alteration in function in low gravity; however, this alteration does not result in deleterious changes that compromise lung function upon return to Earth. The decompression stress associated with extravehicular activity, or spacewalk, does not appear to compromise lung function, and future habitat (living quarter) designs can be engineered to minimise this stress. Dust exposure is a significant health hazard in occupational settings such as mining, and exposure to extraterrestrial dust is an almost inevitable consequence of planetary exploration. The combination of altered pulmonary deposition of extraterrestrial dust and the potential for the dust to be highly toxic likely makes dust exposure the greatest threat to the lung in planetary exploration.
Collapse
Affiliation(s)
- G Kim Prisk
- University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Sun Y, Zhang L, Liu J, Zhang X, Su Y, Yin Q, He S. Effects of lunar dust simulant on cardiac function and fibrosis in rats. Toxicol Res (Camb) 2019; 8:499-508. [PMID: 31367333 PMCID: PMC6622043 DOI: 10.1039/c8tx00329g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/04/2019] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to investigate the effects of lunar dust simulant (LDS) on cardiac function and fibrosis. In an in vivo experiment, after 3 weeks of exposure, electrocardiography (ECG) and histopathological and immunohistochemical analyses of the cardiac tissue were performed. Systemic inflammatory markers and genes and proteins associated with cardiac tissue fibrosis were examined. In an in vitro experiment, fibrosis-related factors were detected in H9c2 cells by western blot and the mechanism of myocardial fibrosis by LDS exposure was explored. LDS exposure significantly altered heart rate indicators, implying altered cardiac and autonomic system functions. LDS dose-dependently increased the type and number of ECG abnormalities, and increased serum inflammatory factors. In addition, pathological changes in the myocardial tissue were observed through hematoxylin and eosin, Masson, and immunohistochemical staining; the expression of genes and proteins related to fibrosis in the myocardial tissue was also altered. These findings indicate that LDS exposure causes systemic inflammatory lesions that affect autonomic function, leading to inflammatory myocardial fibrosis. And its mechanisms involve the mediation of the nuclear factor-E2-related factor (Nrf2)/nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) redox balance.
Collapse
Affiliation(s)
- Yan Sun
- College of Basic Medical Sciences , Shenyang Medical College , Shenyang 110034 , China .
- Lunar and Planetary Science Laboratory , MUST-Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration , CAS , China
- State Key Laboratory of Robotics , Shenyang Institute of Automation , Chinese Academy of Sciences , Shenyang 110016 , China
| | - Lu Zhang
- Key Laboratory of Space Utilization , Technology and Engineering Center for Space Utilization , Chinese Academy of Sciences , Beijing 100094 , China
| | - Jinguo Liu
- State Key Laboratory of Robotics , Shenyang Institute of Automation , Chinese Academy of Sciences , Shenyang 110016 , China
| | - Xiaoping Zhang
- Lunar and Planetary Science Laboratory , MUST-Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration , CAS , China
- Lunar and Planetary Science Laboratory , Macau University of Science and Technology , Macau , China
| | - Yan Su
- College of Basic Medical Sciences , Shenyang Medical College , Shenyang 110034 , China .
| | - Quanling Yin
- College of Basic Medical Sciences , Shenyang Medical College , Shenyang 110034 , China .
| | - Shuangxi He
- China Astronaut Research and Training Center , Beijing 100094 , China
| |
Collapse
|
17
|
Borisova T. Express assessment of neurotoxicity of particles of planetary and interstellar dust. NPJ Microgravity 2019; 5:2. [PMID: 30729153 PMCID: PMC6361920 DOI: 10.1038/s41526-019-0062-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/15/2019] [Indexed: 12/23/2022] Open
Abstract
Establishment of high-quality, consistent on-board assessment of the neurotoxicity of planetary, and interstellar dust particles will be required to predict their potential threat to human health during long-term space missions. This Perspective article proposes an approach for the rapid assessment of potential neurotoxicity of micro-sized and nano-sized dust particles based on experimental results with other neurotoxic particles. Capacity of particles to affect membrane potential, integrity of nerve terminals, and consequently key synaptic transmission characteristics can be assessed using a planar lipid bilayer technique by monitoring artificial membrane conductivity in the presence of particles. Preliminary neurotoxicity data of nanoparticles, including lunar and Martian dust simulants, obtained using a planar lipid bilayer technique, is compared with that acquired using more-established methodological approaches. Under space flight conditions, neurotoxicity assessments of particulate matter could be rapidly and reproducibly performed using a planar lipid bilayer technique, which does not require biological material.
Collapse
Affiliation(s)
- Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01030 Ukraine
| |
Collapse
|
18
|
Sun Y, Liu J, Zhang X, Li X, Zhou B, Lv Z. Mechanisms involved in inflammatory pulmonary fibrosis induced by lunar dust simulant in rats. ENVIRONMENTAL TOXICOLOGY 2019; 34:131-140. [PMID: 30496634 DOI: 10.1002/tox.22665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 06/09/2023]
Abstract
Lunar dust is one of the biggest risk factors in the future manned exploration mission. Much is not known about the pulmonary toxicity of lunar dust. The aim of this study was to evaluate the lung inflammation and oxidative stress induced by subacute exposure to lunar dust stimulant (LDS) in rats. Wistar rats were intratracheally administered LDS, twice a week for 3 weeks. Inflammatory cell counting and cytokine assays using bronchoalveolar lavage fluid (BALF) were performed. Lung tissues were processed for histopathological examination and immunohistochemical staining. Biomarkers of oxidative stress and genes and proteins related to inflammation and fibrosis in lung tissue were also determined. The neutrophil count in the BALF of LDS-exposed groups was higher than that in controls (P < .05). LDS caused a significant increase in some of biochemical indicators and proinflammatory factors levels in BALF compared with control group. The normal balance between oxidation and antioxidation was broken by LDS. Pathological characteristics of lung tissue and immunohistochemical results for α-smooth muscle actin (α-SMA) indicated that inflammatory response was an extremely important passage to pulmonary fibrosis. Real-time PCR analysis showed elevated levels of nitric oxide synthase (NOS) and nicotinamide adenine dinucleotide phosphate oxidase (NOX) mRNA in the lungs (P < .05). Western blotting results were consistent with immunohistochemistry and qPCR results. These results indicate that inhalation of lunar dust may cause inflammatory pulmonary fibrosis. NOX4 may be a key potential therapeutic target for inflammatory injury and fibrosis in the lung.
Collapse
Affiliation(s)
- Yan Sun
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
- Lunar and Planetary Science Laboratory, MUST-Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration, CAS, Macau, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Jinguo Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Xiaoping Zhang
- Lunar and Planetary Science Laboratory, MUST-Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration, CAS, Macau, China
- Lunar and Planetary Science Laboratory, Macau University of Science and Technology, Macau, China
| | - Xiongyao Li
- Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Baichu Zhou
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Zengjing Lv
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| |
Collapse
|
19
|
Yan S, Guo LJ, Di KY, Sen HJ, Ping ZX. Effects of Lunar Soil Simulant on Systemic Oxidative Stress and Immune Response in Acute Rat Lung Injury. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.766.772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Caston R, Luc K, Hendrix D, Hurowitz JA, Demple B. Assessing Toxicity and Nuclear and Mitochondrial DNA Damage Caused by Exposure of Mammalian Cells to Lunar Regolith Simulants. GEOHEALTH 2018; 2:139-148. [PMID: 32159013 PMCID: PMC7007071 DOI: 10.1002/2017gh000125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 06/10/2023]
Abstract
Previous missions to the lunar surface implicated potential dangers of lunar soil. In future explorations, astronauts may spend weeks or months on the Moon, increasing the risk of inhaling lunar dust. In an effort to understand the biological impact of lunar regolith, cell cultures derived from lung or neuronal cells were challenged with lunar soil simulants to assess cell survival and genotoxicity. Lunar soil simulants were capable of causing cell death and DNA damage in neuronal and lung cell lines, and freshly crushed lunar soil simulants were more effective at causing cell death and DNA damage than were simulants as received from the supplier. The ability of the simulants to generate reactive oxygen species in aqueous suspensions was not correlated with their cytotoxic or genotoxic affects. Furthermore, the cytotoxicity was not correlated with the accumulation of detectable DNA lesions. These results determine that lunar soil simulants are, with variable activity, cytotoxic and genotoxic to both neuronal and lung-derived cells in culture.
Collapse
Affiliation(s)
- Rachel Caston
- Department of Pharmacological SciencesStony Brook University School of MedicineStony BrookNYUSA
- Program in GeneticsStony Brook UniversityStony BrookNYUSA
| | - Katie Luc
- Department of Pharmacological SciencesStony Brook University School of MedicineStony BrookNYUSA
| | - Donald Hendrix
- Department of GeosciencesStony Brook UniversityStony BrookNYUSA
| | | | - Bruce Demple
- Department of Pharmacological SciencesStony Brook University School of MedicineStony BrookNYUSA
- Program in GeneticsStony Brook UniversityStony BrookNYUSA
| |
Collapse
|
21
|
Turci F, Corazzari I, Alberto G, Martra G, Fubini B. Free-radical chemistry as a means to evaluate lunar dust health hazard in view of future missions to the moon. ASTROBIOLOGY 2015; 15:371-380. [PMID: 25946080 DOI: 10.1089/ast.2014.1216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lunar dust toxicity has to be evaluated in view of future manned missions to the Moon. Previous studies on lunar specimens and simulated dusts have revealed an oxidant activity assigned to HO· release. However, the mechanisms behind the reactivity of lunar dust are still quite unclear at the molecular level. In the present study, a complementary set of tests--including terephthalate (TA) hydroxylation, free radical release as measured by means of the spin-trapping/electron paramagnetic resonance (EPR) technique, and cell-free lipoperoxidation--is proposed to investigate the reactions induced by the fine fraction of a lunar dust analogue (JSC-1A-vf) in biologically relevant experimental environments. Our study proved that JSC-1A-vf is able to hydroxylate TA also in anaerobic conditions, which indicates that molecular oxygen is not involved in such a reaction. Spin-trapping/EPR measures showed that the HO· radical is not the reactive intermediate involved in the oxidative potential of JSC-1A-vf. A surface reactivity implying a redox cycle of phosphate-complexed iron via a Fe(IV) state is proposed. The role of this iron species was investigated by assessing the reactivity of JSC-1A-vf toward hydrogen peroxide (Fenton-like activity), formate ions (homolytic rupture of C-H bond), and linoleic acid (cell-free lipoperoxidation). JSC-1A-vf was active in all tests, confirming that redox centers of transition metal ions on the surface of the dust may be responsible for dust reactivity and that the TA assay may be a useful field probe to monitor the surface oxidative potential of lunar dust.
Collapse
Affiliation(s)
- Francesco Turci
- 1Dipartimento di Chimica, University of Torino, Torino, Italy
- 2"G. Scansetti" Interdepartmental Center, University of Torino, Torino, Italy
- 3NIS Excellence Center, University of Torino, Torino, Italy
| | - Ingrid Corazzari
- 1Dipartimento di Chimica, University of Torino, Torino, Italy
- 2"G. Scansetti" Interdepartmental Center, University of Torino, Torino, Italy
| | - Gabriele Alberto
- 1Dipartimento di Chimica, University of Torino, Torino, Italy
- 3NIS Excellence Center, University of Torino, Torino, Italy
| | - Gianmario Martra
- 1Dipartimento di Chimica, University of Torino, Torino, Italy
- 2"G. Scansetti" Interdepartmental Center, University of Torino, Torino, Italy
- 3NIS Excellence Center, University of Torino, Torino, Italy
| | - Bice Fubini
- 1Dipartimento di Chimica, University of Torino, Torino, Italy
- 2"G. Scansetti" Interdepartmental Center, University of Torino, Torino, Italy
- 3NIS Excellence Center, University of Torino, Torino, Italy
| |
Collapse
|