1
|
Chen Z, Downing S, Tzanakakis ES. Four Decades After the Discovery of Regenerating Islet-Derived (Reg) Proteins: Current Understanding and Challenges. Front Cell Dev Biol 2019; 7:235. [PMID: 31696115 PMCID: PMC6817481 DOI: 10.3389/fcell.2019.00235] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Regenerating islet-derived (Reg) proteins have emerged as multifunctional agents with pro-proliferative, anti-apoptotic, differentiation-inducing and bactericidal properties. Over the last 40 years since first discovered, Reg proteins have been implicated in a gamut of maladies including diabetes, various types of cancer of the digestive tract, and Alzheimer disease. Surprisingly though, a consensus is still absent on the regulation of their expression, and molecular underpinning of their function. Here, we provide a critical appraisal of recent findings in the field of Reg protein biology. Specifically, the structural characteristics are reviewed particularly in connection with established or purported functions of different members of the Reg family. Moreover, Reg expression patterns in different tissues both under normal and pathophysiological conditions are summarized. Putative receptors and cascades reported to relay Reg signaling inciting cellular responses are presented aiming at a better appreciation of the biological activities of the distinct Reg moieties. Challenges are also discussed that have hampered thus far the rapid progress in this field such as the use of non-standard nomenclature for Reg molecules among various research groups, the existence of multiple Reg members with significant degree of homology and possibly compensatory modes of action, and the need for common assays with robust readouts of Reg activity. Coordinated research is warranted going forward, given that several research groups have independently linked Reg proteins to diseased states and raised the possibility that these biomolecules can serve as therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
| | - Shawna Downing
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States.,Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
2
|
Yu L, Li X, Zhang Z, Du P, Liu JL, Li Y, Yin T, Yu W, Sun H, Wang M, Luo C. Dimorphic autoantigenic and protective effects of Reg2 peptide in the treatment of diabetic β-cell loss. Diabetes Obes Metab 2019; 21:1209-1222. [PMID: 30690849 DOI: 10.1111/dom.13644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/26/2022]
Abstract
AIMS The potential effect of regenerating (Reg) proteins in the treatment of diabetes has been indicated in the past decade, but the clinical use of Reg proteins requires more advances in translational medicine. In the present study, we produced recombinant regenerating protein 2 (rReg2), to prove its protective effect against streptozocin (STZ)-induced diabetes in BALB/c mice. MATERIALS AND METHODS rReg2 was administrated in STZ-induced diabetic mice. Blood glucose, body weight, serum insulin and islet β-cell loss were determined. However, Reg2 has also been reported to serve as an autoantigen that induces autoimmune attacks on islets and aggravates diabetic development in non-obese diabetic mice. To address this contradiction, complete Freund's adjuvant was injected to generate a model that was hypersensitive to Reg2. In this model, islet CD8 T-cell infiltration, serum Reg2 antibody and interleukin (IL)-4 and IL-10, and splenic CD4+/interferon (IFN)-γ+ T cells were determined. RESULTS Direct rReg2 pretreatment preserved islet β-cell mass against STZ and improved glycaemia, body weight and serum insulin content. The protection against cell death was further confirmed in cultured mouse islets and MIN6 cells. On the other hand, significant elevations of serum Reg2 antibody and splenic CD4+/IFN-γ+ T cells, and decreases in serum IL-4 and IL-10 were detected in rReg2-vaccinated mice, which may contribute to the accelerated diabetes. Interestingly, these mice, upon further rReg2 treatment, exhibited alleviated diabetic conditions with less islet CD8+ T-cell infiltration. CONCLUSION rReg2 treatment ameliorated STZ-induced diabetes in normal BALB/c mice. By contrast, rReg2 vaccination exacerbated, but further rReg2 treatment alleviated, the severity of STZ-induced diabetes. Thus, the protective effect of rReg2 is predominant over the autoantigenic β-cell destruction, supporting the potential of rReg2 in the clinical treatment of diabetes.
Collapse
Affiliation(s)
- Luting Yu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Xiang Li
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhiyuan Zhang
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Pei Du
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun-Li Liu
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Youjie Li
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Tianqi Yin
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Weihong Yu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hao Sun
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Min Wang
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Chen Luo
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Li Q, Li B, Miao X, Ramgattie C, Gao ZH, Liu JL. Reg2 Expression Is Required for Pancreatic Islet Compensation in Response to Aging and High-Fat Diet-Induced Obesity. Endocrinology 2017; 158:1634-1644. [PMID: 28009527 DOI: 10.1210/en.2016-1551] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
Abstract
Maintaining pancreatic β-cell mass and function is essential for normal insulin production and glucose homeostasis. Regenerating islet-derived 2 (Reg2, Reg II, human ortholog Reg1B) gene is normally expressed in pancreatic acinar cells and is significantly induced in response to diabetes, pancreatitis, and high-fat diet (HFD) and during pancreatic regeneration. To evaluate the role of endogenous Reg2 production in normal β-cell function, we characterized Reg2 gene-deficient (Reg2-/-) mice under normal conditions and when subjected to several pathological challenges. At a young age, Reg2 gene deficiency caused no obvious change in normal islet morphology or glucose tolerance. There was no change in the severity of streptozotocin-induced diabetes or caerulein-induced acute pancreatitis in the Reg2-/- mice, indicating that the increased Reg2 expression under those conditions was not essential to protect the islet or acinar cells. However, 13- to 14-month-old Reg2-/- mice developed glucose intolerance associated with significantly decreased islet β-cell ratio and serum insulin level. Similarly, after young mice were fed an HFD for 19 weeks, diminished islet mass expansion and serum insulin level were observed in Reg2-/- vs wild-type mice. This was associated with a decline in the rate of individual β-cell proliferation measured by Ki67 labeling. In both conditions, the β-cells were smaller in gene-deficient vs wild-type mice. Our results indicate that normal expression of Reg2 gene is required for appropriate compensations in pancreatic islet proliferation and expansion in response to obesity and aging.
Collapse
Affiliation(s)
- Qing Li
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Bing Li
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Xiaoliang Miao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 21009, China
| | - Christopher Ramgattie
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Zu-Hua Gao
- Department of Pathology, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Jun-Li Liu
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- Montreal Diabetes Research Centre, Montreal, Quebec H2X 0A9, Canada
| |
Collapse
|
4
|
Xiong X, Li Q, Cui W, Gao ZH, Liu JL. Deteriorated high-fat diet-induced diabetes caused by pancreatic β-cell-specific overexpression of Reg3β gene in mice. Endocrine 2016; 54:360-370. [PMID: 27259509 DOI: 10.1007/s12020-016-0998-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022]
Abstract
Reg family proteins have long been implicated in islet β-cell proliferation, survival, and regeneration. In our previous study, we reported that Reg3β overexpression did not increase islet growth but prevented streptozotocin-induced islet damage by inducing specific genes. In order to explore its role in type 2 diabetes (T2D), we established high-fat diet (HFD)-induced obesity and diabetes in RIP-I/Reg3β mice. Glucose and insulin tolerance tests, immunofluorescence for insulin, eIF2α, and GLUT2 in islets, Western blots on phosphorylated AMPKα and hepatic histology were performed. Both RIP-I/Reg3β and wild-type mice gained weight rapidly and became hyperglycemic after 10 weeks on the HFD. However, the transgenic mice exhibited more significant acceleration in blood glucose levels, further deterioration of glucose intolerance and insulin resistance, and a lower intensity of insulin staining. Immunofluorescence revealed similar magnitude of islet compensation to a wild-type HFD. The normal GLUT2 distribution in the transgenic β-cells was disrupted and the staining was obviously diminished on the cell membrane. HFD feeding also caused a further decrease in the level of AMPKα phosphorylation in the transgenic islets. Our results suggest that unlike its protective effect against T1D, overexpressed Reg3β was unable to protect the β-cells against HFD-induced damage.
Collapse
Affiliation(s)
- Xiaoquan Xiong
- Fraser Laboratories for Diabetes Research, Department of Medicine, RI-McGill University Health Centre, Room E02.7220, 1001 Décarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Qing Li
- Fraser Laboratories for Diabetes Research, Department of Medicine, RI-McGill University Health Centre, Room E02.7220, 1001 Décarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Wei Cui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zu-Hua Gao
- Department of Pathology, RI-McGill University Health Centre, Room E04.1820, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Jun-Li Liu
- Fraser Laboratories for Diabetes Research, Department of Medicine, RI-McGill University Health Centre, Room E02.7220, 1001 Décarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Montreal Diabetes Research Centre, Montreal, Canada.
| |
Collapse
|
5
|
Wang Y, He D, Ni C, Zhou H, Wu S, Xue Z, Zhou Z. Vitamin D induces autophagy of pancreatic β-cells and enhances insulin secretion. Mol Med Rep 2016; 14:2644-50. [PMID: 27430408 DOI: 10.3892/mmr.2016.5531] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 06/21/2016] [Indexed: 11/06/2022] Open
Abstract
Epidemiological evidence indicates that vitamin D is involved in defense against diabetes; however, the precise underlying mechanism remains to be elucidated. In the present study, the effect of vitamin D on the pathogenesis of diabetes was investigated, with an emphasis on its direct effect on pancreatic β‑cells. A streptozotocin (STZ)‑induced type 1 diabetes mellitus (T1DM) mouse model and MIN6 mouse insulinoma β‑cells were subjected to vitamin D treatment. Histopathological analysis of pancreatic islets was performed to investigate insulitis, and reverse transcription-quantitative polymerase chain reaction and western blotting were used to determine the mRNA and protein expression levels of markers of autophagy [microtubule-associated protein 1A/1B‑light chain 3 (LC3) and Beclin 1] and regulation of apoptosis [B-cell lymphoma 2 (Bcl-2)]. Apoptosis of MIN6 cells was examined by flow cytometry following annexin V/propidium iodide labeling. The secretion of insulin was measured by ELISA. The results revealed that vitamin D reduced the incidence of T1DM, enhanced insulin secretion and relieved pancreatic inflammation in STZ‑treated mice. Furthermore, vitamin D increased the mRNA expression levels of LC3 and Beclin 1, and increased Bcl‑2 protein expression levels in STZ‑treated MIN6 cells, while decreasing the apoptosis rate. The results of the present study demonstrated, for the first time to the best of our knowledge, that vitamin D induces autophagy and suppresses apoptosis of pancreatic β‑cells, as well as preventing insulitis. These findings regarding vitamin D provide insights into its involvement in diabetes, and suggest a potential novel strategy for the treatment of diabetes via agents enhancing autophagy in pancreatic β-cells.
Collapse
Affiliation(s)
- Yubin Wang
- Laboratory Animal Center, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Dawei He
- Laboratory Animal Center, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Chengpei Ni
- Laboratory Animal Center, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Huiying Zhou
- Laboratory Animal Center, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shuyan Wu
- Laboratory Animal Center, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhimou Xue
- Laboratory Animal Center, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhengyu Zhou
- Laboratory Animal Center, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
6
|
Ruiz-Laguna J, Vélez JM, Pueyo C, Abril N. Global gene expression profiling using heterologous DNA microarrays to analyze alterations in the transcriptome of Mus spretus mice living in a heavily polluted environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5853-5867. [PMID: 26590064 DOI: 10.1007/s11356-015-5824-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Microarray platforms are a good approach for assessing biological responses to pollution as they enable the simultaneous analyses of changes in the expression of thousands of genes. As an omic and non-targeted methodology, this technique is open to unforeseen responses under particular environmental conditions. In this study, we successfully apply a commercial oligonucleotide microarray containing Mus musculus whole-genome probes to compare and assess the biological effects of living in a heavily polluted settlement, the Domingo Rubio stream (DRS), at the Huelva Estuary (SW Spain), on inhabitant free-living Mus spretus mice. Our microarray results show that mice living in DRS suffer dramatic changes in gene and protein expression compared with reference specimens. DRS mice showed alteration in the oxidative status of hepatocytes, with activation of both the innate and the acquired immune responses and the induction of chronic inflammation, accompanied by metabolic alterations that imply the accumulation of lipids in the liver (hepatic steatosis). The identified deregulated genes may be useful as biomarkers of environmental pollution.
Collapse
Affiliation(s)
- Julia Ruiz-Laguna
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain
| | - José M Vélez
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain
| | - Carmen Pueyo
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain.
| |
Collapse
|
7
|
Zhao Y, Zhang X, Chen J, Lin C, Shao R, Yan C, Chen C. Hexarelin Protects Rodent Pancreatic Β-Cells Function from Cytotoxic Effects of Streptozotocin Involving Mitochondrial Signalling Pathways In Vivo and In Vitro. PLoS One 2016; 11:e0149730. [PMID: 26918825 PMCID: PMC4769129 DOI: 10.1371/journal.pone.0149730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/04/2016] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial functions are crucial for pancreatic β-cell survival and glucose-induced insulin secretion. Hexarelin (Hex) is a synthetic small peptide ghrelin analogue, which has been shown to protect cardiomyocytes from the ischemia-reperfusion process. In this study, we used in vitro and in vivo models of streptozotocin (STZ)-induced β-cell damage to study the protective effect of Hex and the associated mechanisms. We found that STZ produced a cytotoxic effect in a dose- and time-dependent manner in MIN6 cells (a mouse β-cell line). Hex (1.0 μM) decreased the STZ-induced damage in β-cells. Rhodamine 123 assay and superoxide DHE production assay revealed that Hex ameliorated STZ-induced mitochondrial damage and excessive superoxide activity in β-cells. In addition, Hex significantly reduced STZ-induced expression of cleaved Caspases-3, Caspases-9 and the ratio of pro-apoptotic protein Bax to anti-apoptotic protein Bcl-2 in MIN6 cells. We further examined the in vivo effect of Hex in a rat model of type 1 diabetes induced by STZ injection. Hex ameliorated STZ-induced decrease in plasma insulin and protected the structure of islets from STZ-induced disruption. Hex also ameliorated STZ-induced expression of cleaved Caspase-9 and the Bax in β-cells. In conclusion, our data indicate that Hex is able to protects β-cell mass from STZ-caused cytotoxic effects involving mitochondrial pathways in vitro and in vivo. Hex may serve as a potential protective agent for the management of diabetes.
Collapse
Affiliation(s)
- Yan Zhao
- Institute of Basic Medicine Science, Xi'an Medical University, Xi'an, China
- Department of Forensic Science, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Xinli Zhang
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jiezhong Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Chao Lin
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Renfu Shao
- Gene Cology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Chunxia Yan
- Department of Forensic Science, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
- * E-mail:
| |
Collapse
|
8
|
Yu LT, Yang MQ, Liu JL, Alfred MO, Li X, Zhang XQ, Zhang J, Wu MY, Wang M, Luo C. Recombinant Reg3α protein protects against experimental acute pancreatitis in mice. Mol Cell Endocrinol 2016; 422:150-159. [PMID: 26683606 DOI: 10.1016/j.mce.2015.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/19/2015] [Accepted: 12/01/2015] [Indexed: 12/27/2022]
Abstract
Regenerating gene 3α (Reg3α) protein is a trophic factor that stimulates cell and tissue proliferation, neogenesis and also acts against apoptosis and necrosis. In order to explore the potential roles of recombinant Reg3α (rReg3α), we produced a mature rReg3α polypeptide for direct administration in l-arginine (L-Arg) induced acute pancreatitis (AP) in mice. Our results showed that rReg3α stimulated cell proliferation through Erk1/2 and p38 phosphorylation and also cyclin D1 upregulation mediated by Akt/ATF-2 signaling. Moreover, rReg3α administration significantly reduced the pancreatic damage caused by L-Arg injection, as shown in histological examination and serum amylase, lipase and C-reactive protein (CRP) assays. Not only acinar cell necrosis but also apoptosis found in the pancreas of AP mice were alleviated by rReg3α. Finally, upregulated Bcl-2 and Bcl-xL and suppressed poly (ADP-ribose) synthetase/polymerase (PARP) levels were detected as being relevant to the mechanism of rReg3α protection. We therefore conclude that rReg3α acts as a protective polypeptide against AP in mice by enhancing Bcl-2 and Bcl-xL expressions and suppressing PARP level.
Collapse
MESH Headings
- Acinar Cells/drug effects
- Animals
- Antigens, Neoplasm/administration & dosage
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/pharmacology
- Apoptosis/drug effects
- Arginine/adverse effects
- Biomarkers, Tumor/administration & dosage
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/pharmacology
- Cell Line
- Cell Proliferation
- Disease Models, Animal
- Female
- Gene Expression Regulation/drug effects
- Humans
- Lectins, C-Type/administration & dosage
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mice
- Pancreatitis/chemically induced
- Pancreatitis/pathology
- Pancreatitis/prevention & control
- Pancreatitis-Associated Proteins
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/pharmacology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Lu-Ting Yu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Meng-Qi Yang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Jun-Li Liu
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Martin O Alfred
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Xiang Li
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Xue-Qing Zhang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Juan Zhang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines China Pharmaceutical University, Nanjing, China
| | - Ming-Yuan Wu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Min Wang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines China Pharmaceutical University, Nanjing, China.
| | - Chen Luo
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
9
|
Nikoopour E, Bellemore SM, Singh B. IL-22, cell regeneration and autoimmunity. Cytokine 2015; 74:35-42. [PMID: 25467639 DOI: 10.1016/j.cyto.2014.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/18/2014] [Accepted: 09/20/2014] [Indexed: 12/16/2022]
Abstract
IL-22 as a cytokine is described with opposing pro-inflammatory and anti-inflammatory functions. Cell regeneration, tissue remodelling and balance between commensal bacteria in the gut and host immune system are considered as anti-inflammatory features of IL-22, whereas production of IL-22 from Th17 cells links this cytokine to pro-inflammatory pathways. Th17 cells and group 3 innate lymphoid cells (ILC3) are two major producers of IL-22 and both cell types express ROR-γt and Aryl hydrocarbon receptor (AhR) transcription factors. Typically, the immune system cells are the main producers of IL-22. However, targets of this cytokine are mostly non-hematopoietic cells such as hepatocytes, keratinocytes, and epithelial cells of lung and intestine. Association of IL-22 with other cytokines or transcription factors in different cell types might explain its contrasting role in health and disease. In this review we discuss the regulation of IL-22 production by AhR- and IL-23-driven pathways. A clear understanding of the biology of IL-22 will provide new opportunities for its application to improve human health involving many debilitating conditions.
Collapse
Affiliation(s)
- Enayat Nikoopour
- Centre for Human Immunology, Department of Microbiology and Immunology, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Stacey M Bellemore
- Centre for Human Immunology, Department of Microbiology and Immunology, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Bhagirath Singh
- Centre for Human Immunology, Department of Microbiology and Immunology, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
10
|
Liu L, Chowdhury S, Uppal S, Fang X, Liu JL, Srikant CB. mReg2 inhibits nuclear entry of apoptosis-inducing factor in mouse insulinoma cells. Growth Factors 2015; 33:1-7. [PMID: 25370781 DOI: 10.3109/08977194.2014.980041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have reported earlier that murine-regenerating gene mReg2 protects MIN6 mouse insulinoma cells from ER stress and caspase-mediated apoptosis. In apoptotic cells, DNA damage is induced by the nuclear translocation of mitochondrial apoptosis-inducing factor (AIF). Here we tested the hypothesis that mReg2 may regulate Scythe and/or hsp70 which influence the nuclear import of AIF. Treatment with thapsigargin (Tg) or doxorubicin induced an increase in nuclear AIF in MIN6 cells carrying the empty transfection vector (MIN6-VC) but not in cells overexpressing mReg2 (MIN6-mReg2). On one hand, nuclear Scythe was higher in the nucleus of MIN6-mReg2 compared with that in MIN6-VC cells. mReg2 did not alter the expression of AIF or Scythe. On the other hand, mReg2 induced the expression of hsp70 which is known to promote cytosolic retention of AIF. We conclude that mReg2 inhibits AIF-mediated apoptosis by promoting the nuclear presence of Scythe and inducing hsp70.
Collapse
Affiliation(s)
- Lu Liu
- Fraser Laboratories, Department of Medicine, McGill University Health Science Centre and Royal Victoria Hospital , Montreal, Quebec , Canada
| | | | | | | | | | | |
Collapse
|
11
|
Liu L, Chowdhury S, Fang X, Liu JL, Srikant CB. Attenuation of unfolded protein response and apoptosis by mReg2 induced GRP78 in mouse insulinoma cells. FEBS Lett 2014; 588:2016-24. [PMID: 24801175 DOI: 10.1016/j.febslet.2014.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/07/2014] [Accepted: 04/21/2014] [Indexed: 01/11/2023]
Abstract
Murine regenerating (mReg) genes have been implicated in preserving islet cell biology. Expanding on our previous work showing that overexpression of mReg2 protects MIN6 insulinoma cells against streptozotocin-induced apoptosis, we now demonstrate that mReg2 induces glucose-regulated peptide 78 (GRP78) expression via the Akt-mTORC1 axis and protects MIN6 cells against ER stress induced by thapsigargin and glucolipotoxicity. Activation of mTORC1 activity results from both mReg2-induced increased mTOR phosphorylation as well as increased expression of Raptor and GβL. Inhibition of Akt and mTORC1 blunted the ability of mReg2 to induce GRP78 and attenuate unfolded protein response (UPR). Knockdown of GRP78 sensitized the cells overexpressing mReg2 to UPR without affecting its ability to activate Akt-mTORC1 signaling. Induced expression of mReg2 may protect insulin producing cells from ER stress in diabetes.
Collapse
Affiliation(s)
- Lu Liu
- Fraser Laboratories, Department of Medicine, McGill University Health Centre and Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada
| | - Subrata Chowdhury
- Fraser Laboratories, Department of Medicine, McGill University Health Centre and Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada
| | - Xin Fang
- Fraser Laboratories, Department of Medicine, McGill University Health Centre and Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada
| | - Jun-Li Liu
- Fraser Laboratories, Department of Medicine, McGill University Health Centre and Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada
| | - Coimbatore B Srikant
- Fraser Laboratories, Department of Medicine, McGill University Health Centre and Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada.
| |
Collapse
|
12
|
Li B, Luo C, Chowdhury S, Gao ZH, Liu JL. Parp1 deficient mice are protected from streptozotocin-induced diabetes but not caerulein-induced pancreatitis, independent of the induction of Reg family genes. ACTA ACUST UNITED AC 2013; 186:83-91. [PMID: 23954400 DOI: 10.1016/j.regpep.2013.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 06/12/2013] [Accepted: 07/13/2013] [Indexed: 12/12/2022]
Abstract
Poly(ADP-ribose) polymerase (Parp) 1 is a key regulator of cell death, its inhibition prevented streptozotocin-induced diabetes and attenuated caerulein-induced acute pancreatitis. Reg family proteins are significantly induced by Parp1 inhibitor, experimental diabetes and/or acute pancreatitis. We propose that Reg proteins are involved in the protection of pancreatic cells by Parp1 inhibition. To test this possibility, Parp1-/- and wild-type mice were injected with streptozotocin to induce diabetes. Separately, acute pancreatitis was induced with repeated injections of caerulein. Upon streptozotocin administration, Parp1-/- mice displayed much decreased hyperglycemia and preserved serum insulin level. The treatment induced similar levels of Reg1, -2, -3α and -3β genes in the pancreas of both wild-type and Parp1-/- mice, suggesting that the upregulation of Reg family genes during streptozotocin-induced diabetes was independent of Parp1 ablation. In caerulein-induced pancreatitis, unlike being reported, Parp1 knockout caused no relief on the severity of pancreatitis; the upregulation of pancreatic Reg1, -2, -3α and -3β genes upon caerulein was unaffected by Parp1 deletion. Our results reconfirmed the protective effect of Parp1 gene deletion on islet β-cells but questioned its effect on the acinar cells. In either case, the significant induction of Reg family genes seemed independent of Parp1-mediated cell death.
Collapse
Affiliation(s)
- Bing Li
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | | | | | | | | |
Collapse
|
13
|
Luo C, Li B, Liu L, Yin HP, Wang M, Liu JL. Transcriptional activation of Reg2 and Reg3β genes by glucocorticoids and interleukin-6 in pancreatic acinar and islet cells. Mol Cell Endocrinol 2013; 365:187-96. [PMID: 23147030 DOI: 10.1016/j.mce.2012.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/21/2012] [Accepted: 10/18/2012] [Indexed: 12/27/2022]
Abstract
Reg family proteins are expressed in the pancreas and involved in pancreatitis and islet β-cell growth. In order to explore transcriptional control, we transfected luciferase reporter genes driven by Reg promoters into acinar AR42J and islet MIN6 cells. Dexamethasone (DEX) significantly increased the promoter expression of Reg2 and Reg3β genes and the levels of endogenous Reg3β mRNA and protein in AR42J cells. DEX-induced promoter activation was inhibited by the inhibitor of poly(ADP-ribose) polymerase, nicotinamide. In MIN6 cells, DEX moderately stimulated the transcription of Reg3β but not Reg2 promoter. While IL-6 alone had no effect, coculture with DEX produced a remarkable synergism on Reg3β gene transcription, which was abolished by nicotinamide. Our results demonstrated a significant and direct stimulation of Reg2 and Reg3β genes by glucocorticoids, all three were activated in response to inflammation such as in pancreatitis. Prominent stimulation of specific Reg genes by glucocorticoids may constitute a functional synergism.
Collapse
Affiliation(s)
- Chen Luo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China; Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Singh B, Nikoopour E, Huszarik K, Elliott JF, Jevnikar AM. Immunomodulation and regeneration of islet Beta cells by cytokines in autoimmune type 1 diabetes. J Interferon Cytokine Res 2011; 31:711-9. [PMID: 21851268 DOI: 10.1089/jir.2011.0025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Juvenile or type 1 diabetes (T1D) involves autoimmune-mediated destruction of insulin-producing β cells in the islets of Langerhans in the pancreas. Lack of insulin prevents the absorption and metabolism of glucose throughout the body by interfering with cell signaling. Cytokines have been shown to play a key role in β cell destruction and regulation of autoimmunity in T1D. The multiple roles of cytokines in T1D pathogenesis, regulation, and regeneration of β cells presents both promise and challenge for their use in immunotherapy. We found that mycobacterial adjuvants induce various regulatory T cells in the non-obese diabetic (NOD) mouse model of T1D. Cytokines produced by these cells not only regulate innate and adaptive immunity but also prevent the development of diabetes and partially restored normoglycemia in diabetic NOD mice. We discovered that adjuvant immunotherapy upregulated Regenerating (Reg) genes in the islets and induced interleukin 22 (IL-22)-producing Th17 cells. IL-22 is known to upregulate Reg gene expression in islets and could potentially induce regeneration of β cells and prevent their apoptosis. Therefore, cytokines both induce and regulate T1D and have the potential to regenerate and preserve insulin-producing β cells in the islets.
Collapse
Affiliation(s)
- Bhagirath Singh
- Centre for Human Immunology, Department of Microbiology and Immunology and Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
15
|
Wang Y, Jacovetti C, Li B, Siddique T, Xiong X, Yin H, Wang M, Zhao H, Liu JL. Coordinated age-dependent and pancreatic-specific expression of mouse Reg2Reg3α, and Reg3β genes. Growth Factors 2011; 29:72-81. [PMID: 21410322 DOI: 10.3109/08977194.2011.562866] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Reg family proteins such as Reg1 and islet neogenesis-associated protein (INGAP) have long been implicated in the growth and/or neogenesis of pancreatic islet cells. Recent reports further suggest similar roles to be played by new members such as Reg2, Reg3α, and Reg3β. We have studied their age-, isoform-, and tissue-specific expressions. RNA and protein were isolated from C57BL/6 mice aged 7, 30, and 90 days. Using real-time polymerase chain reaction, the levels of Reg gene expression in the pancreas were 20-600-fold higher than that in other tissues (≫duodenum>stomach>liver); gene expression of Reg2, Reg3α, and Reg3β was age dependent as it was hardly detectable at day 7, increased drastically at day 30, and significantly decreased at day 90; the levels of pancreatic proteins displayed similar age-dependent variations. Using dual-labeled immunofluorescence, Reg2, Reg3α, and Reg3β were abundantly expressed in most acinar cells of the pancreas, in contrast to INGAP which exhibited stepwise increases from day 7 to day 90 and colocalized with the α-cells. These new Reg genes were mainly expressed in the pancreas, with clear age-dependent and isoform-specific patterns.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xiong X, Wang X, Li B, Chowdhury S, Lu Y, Srikant CB, Ning G, Liu JL. Pancreatic islet-specific overexpression of Reg3β protein induced the expression of pro-islet genes and protected the mice against streptozotocin-induced diabetes mellitus. Am J Physiol Endocrinol Metab 2011; 300:E669-80. [PMID: 21245462 DOI: 10.1152/ajpendo.00600.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reg family proteins have been implicated in islet β-cell proliferation, survival, and regeneration. The expression of Reg3β (pancreatitis-associated protein) is highly induced in experimental diabetes and acute pancreatitis, but its precise role has not been established. Through knockout studies, this protein was shown to be mitogenic, antiapoptotic, and anti-inflammatory in the liver and pancreatic acinars. To test whether it can promote islet cell growth or survival against experimental damage, we developed β-cell-specific overexpression using rat insulin I promoter, evaluated the changes in normal islet function, gene expression profile, and the response to streptozotocin-induced diabetes. Significant and specific overexpression of Reg3β was achieved in the pancreatic islets of RIP-I/Reg3β mice, which exhibited normal islet histology, β-cell mass, and in vivo and in vitro insulin secretion in response to high glucose yet were slightly hyperglycemic and low in islet GLUT2 level. Upon streptozotocin treatment, in contrast to wild-type littermates that became hyperglycemic in 3 days and lost 15% of their weight, RIP-I/Reg3β mice were significantly protected from hyperglycemia and weight loss. To identify specific targets affected by Reg3β overexpression, a whole genome DNA microarray on islet RNA isolated from the transgenic mice revealed more than 45 genes significantly either up- or downregulated. Among them, islet-protective osteopontin/SPP1 and acute responsive nuclear protein p8/NUPR1 were significantly induced, a result further confirmed by real-time PCR, Western blots, and immunohistochemistry. Our results suggest that Reg3β is unlikely an islet growth factor but a putative protector that prevents streptozotocin-induced damage by inducing the expression of specific genes.
Collapse
Affiliation(s)
- Xiaoquan Xiong
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|