1
|
Williams I, Zasadzinski JA, Squires TM. Interfacial rheology and direct imaging reveal domain-templated network formation in phospholipid monolayers penetrated by fibrinogen. SOFT MATTER 2019; 15:9076-9084. [PMID: 31651923 PMCID: PMC6937482 DOI: 10.1039/c9sm01519a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phospholipids are found throughout the natural world, including the lung surfactant (LS) layer that reduces pulmonary surface tension and enables breathing. Fibrinogen, a protein involved in the blood clotting process, is implicated in LS inactivation and the progression of disorders such as acute respiratory distress syndrome. However, the interaction between fibrinogen and LS at the air-water interface is poorly understood. Through a combined microrheological, confocal and epifluorescence microscopy approach we quantify the interfacial shear response and directly image the morphological evolution when a model LS monolayer is penetrated by fibrinogen. When injected into the subphase beneath a monolayer of the phospholipid dipalmitoylphosphatidylcholine (DPPC, the majority component of LS), fibrinogen preferentially penetrates disordered liquid expanded (LE) regions and accumulates on the boundaries between LE DPPC and liquid condensed (LC) DPPC domains. Thus, fibrinogen is line active. Aggregates grow from the LC domain boundaries, ultimately forming a percolating network. This network stiffens the interface compared to pure DPPC and imparts the penetrated monolayer with a viscoelastic character reminiscent of a weak gel. When the DPPC monolayer is initially compressed beyond LE-LC coexistence, stiffening is significantly more modest and the penetrated monolayer retains a viscous-dominated, DPPC-like character.
Collapse
Affiliation(s)
- Ian Williams
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Joseph A Zasadzinski
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Todd M Squires
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
2
|
Hollis CP, Dozier AK, Knutson BL, Li T. Preparation and characterization of multimodal hybrid organic and inorganic nanocrystals of camptothecin and gold. Acta Pharm Sin B 2019; 9:128-134. [PMID: 30766784 PMCID: PMC6361724 DOI: 10.1016/j.apsb.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 02/08/2023] Open
Abstract
We demonstrate a novel inorganic-organic crystalline nanoconstruct, where gold atoms were imbedded in the crystal lattices as defects of camptothecin nanocrystals, suggesting its potential use as simultaneous agents for cancer therapy and bioimaging. The incorporation of gold, a potential computed tomography (CT) contrast agent, in the nanocrystals of camptothecin was detected by transmission electron microscope (TEM) and further quantified by energy dispersive X-ray spectrometry (EDS) and inductively coupled plasma-optical emission spectrometers (ICP-OES). Due to gold's high attenuation coefficient, only a relatively small amount needs to be present in order to create a good noise-to-contrast ratio in CT imaging. The imbedded gold atoms and clusters are expected to share the same biological fate as the camptothecin nanocrystals, reaching and accumulating in tumor site due to the enhanced permeation and retention (EPR) effect.
Collapse
|
3
|
Zhan H, Liang JF. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid. Sci Rep 2016; 6:38668. [PMID: 27934922 PMCID: PMC5146679 DOI: 10.1038/srep38668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/11/2016] [Indexed: 01/21/2023] Open
Abstract
Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC50 < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field.
Collapse
Affiliation(s)
- Honglei Zhan
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Jun F Liang
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
4
|
Arouri A, Trojnar J, Schmidt S, Hansen AH, Mollenhauer J, Mouritsen OG. Development of a cell-based bioassay for phospholipase A2-triggered liposomal drug release. PLoS One 2015; 10:e0125508. [PMID: 25945937 PMCID: PMC4422686 DOI: 10.1371/journal.pone.0125508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/21/2015] [Indexed: 01/16/2023] Open
Abstract
The feasibility of exploiting secretory phospholipase A2 (sPLA2) enzymes, which are overexpressed in tumors, to activate drug release from liposomes precisely at the tumor site has been demonstrated before. Although the efficacy of the developed formulations was evaluated using in vitro and in vivo models, the pattern of sPLA2-assisted drug release is unknown due to the lack of a suitable bio-relevant model. We report here on the development of a novel bioluminescence living-cell-based luciferase assay for the monitoring of sPLA2-triggered release of luciferin from liposomes. To this end, we engineered breast cancer cells to produce both luciferase and sPLA2 enzymes, where the latter is secreted to the extracellular medium. We report on setting up a robust and reproducible bioassay for testing sPLA2-sensitive, luciferin remote-loaded liposomal formulations, using 1,2-distearoyl-sn-glycero-3-phosphatidylcholine/1,2-distearoyl-sn-glycero-3-phosphatidylglycerol (DSPC/DSPG) 7:3 and DSPC/DSPG/cholesterol 4:3:3 as initial test systems. Upon their addition to the cells, the liposomes were degraded almost instantaneously by sPLA2 releasing the encapsulated luciferin, which provided readout from the luciferase-expressing cells. Cholesterol enhanced the integrity of the formulation without affecting its susceptibility to sPLA2. PEGylation of the liposomes only moderately broadened the release profile of luciferin. The provided bioassay represents a useful tool for monitoring active drug release in situ in real time as well as for testing and optimizing of sPLA2-sensitive lipid formulations. In addition, the bioassay will pave the way for future in-depth in vitro and in vivo studies.
Collapse
Affiliation(s)
- Ahmad Arouri
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark
- Lundbeckfonden Center of Excellence NanoCAN, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- * E-mail:
| | - Jakub Trojnar
- Lundbeckfonden Center of Excellence NanoCAN, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Molecular Oncology Group, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Steffen Schmidt
- Lundbeckfonden Center of Excellence NanoCAN, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Molecular Oncology Group, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anders H. Hansen
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark
- Lundbeckfonden Center of Excellence NanoCAN, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jan Mollenhauer
- Lundbeckfonden Center of Excellence NanoCAN, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Molecular Oncology Group, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ole G. Mouritsen
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark
- Lundbeckfonden Center of Excellence NanoCAN, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Kandadai MA, Meunier JM, Hart K, Holland CK, Shaw GJ. Plasmin-loaded echogenic liposomes for ultrasound-mediated thrombolysis. Transl Stroke Res 2015; 6:78-87. [PMID: 25411015 PMCID: PMC4298464 DOI: 10.1007/s12975-014-0376-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 01/15/2023]
Abstract
Plasmin, a direct fibrinolytic, shows a significantly superior hemostatic safety profile compared to recombinant tissue plasminogen activator (rtPA), the only FDA-approved thrombolytic for the treatment of acute ischemic stroke. The improved safety of plasmin is attributed to the rapid inhibition of free plasmin by endogenous plasmin inhibitors present in very high concentrations (1 μM). However, this rapid inhibition prevents the intravenous (IV) administration of plasmin. In emergency situations, catheter-based local administration is not practical. There is a need for an alternative technique for IV administration of plasmin. A possible solution is the encapsulation of plasmin in echogenic liposomes (ELIP) for protection from inhibitors until ultrasound (US)-triggered release at the clot site. ELIP are bilayer phospholipid vesicles with encapsulated gas microbubbles. US induces oscillation and collapse of the gas bubbles, which facilitates ELIP rupture and delivery of the encapsulated contents. Plasmin-loaded ELIP (PELIP) were manufactured and characterized for size, gas and drug encapsulations, and in vitro thrombolytic efficacy using a human whole blood clot model. Clots were exposed to PELIP with and without exposure to US (center frequency 120 kHz, pulse repetition frequency 1667 Hz, peak-to-peak pressure of 0.35 MPa, 50 % duty cycle). Thrombolytic efficacy was calculated by measuring the change in clot width over a 30-min treatment period using an edge detection MATLAB program. The mean clot lysis obtained with PELIP in the presence of US exposure was 31 % higher than that obtained without US exposure and 15 % higher than that obtained with rtPA treatment (p < 0.05).The enhanced clot lysis is attributed to the US-mediated release of plasmin from the liposomes.
Collapse
Affiliation(s)
- Madhuvanthi A Kandadai
- Department of Emergency Medicine, University of Cincinnati, 231 Albert Sabin Way, Suite 1551, Cincinnati, OH, 45267, USA,
| | | | | | | | | |
Collapse
|
6
|
Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. J Control Release 2013; 172:12-21. [PMID: 23920039 DOI: 10.1016/j.jconrel.2013.06.039] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 01/01/2023]
Abstract
Paclitaxel (PTX) nanocrystals (200 nm) were produced by crystallization from a solution. Antitumor efficacy and toxicity were examined through a survival study in a human HT-29 colon cancer xenograft murine model. The antitumor activity of the nanocrystal treatments was comparable with that by the conventional solubilization formulation (Taxol®), but yielded less toxicity as indicated by the result of a survival study. Tritium-labeled PTX nanocrystals were further produced with a near infrared (NIR) fluorescent dye physically integrated in the crystal lattice. Biodistribution and tumor accumulation of the tritium-labeled PTX nanocrystals were determined immediately after intravenous administration and up to 48 h by scintillation counting. Whole-body optical imaging of animals was concurrently carried out; fluorescent intensities were also measured from excised tumors and major organs of euthanized animals. It was found that drug accumulation in the tumor was less than 1% of 20mg/kg intravenous dose. Qualitatively correlation was identified between the biodistribution determined by using tritium-labeled particles and that using optical imaging, but quantitative divergence existed. The divergent results suggest possible ways to improve the design of hybrid nanocrystals for cancer therapy and diagnosis. The study also raises questions of the general role of the enhanced permeability and retention (EPR) effect in tumor targeting and the effectiveness of bioimaging, specifically for theranostics, in tracking drug distribution and pharmacokinetics.
Collapse
|
7
|
Mijajlovic M, Wright D, Zivkovic V, Bi J, Biggs M. Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems. Colloids Surf B Biointerfaces 2013; 104:276-81. [DOI: 10.1016/j.colsurfb.2012.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/09/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
|
8
|
Sen K, Mandal M. Second generation liposomal cancer therapeutics: transition from laboratory to clinic. Int J Pharm 2013; 448:28-43. [PMID: 23500602 DOI: 10.1016/j.ijpharm.2013.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/03/2013] [Accepted: 03/06/2013] [Indexed: 01/10/2023]
Abstract
Recent innovations and developments in nanotechnology have revolutionized cancer therapeutics. Engineered nanomaterials are the current workhorses in the emerging field of cancer nano-therapeutics. Lipid vesicles bearing anti-tumor drugs have turned out to be a clinically feasible and promising nano-therapeutic approach to treat cancer. Efficient entrapment of therapeutics, biocompatibility, biodegradability, low systemic toxicity, low immunogenicity and ability to bypass multidrug resistance mechanisms has made liposomes a versatile drug/gene delivery system in cancer chemotherapy. The present review attempts to explore the recent key advances in liposomal research and the vast arsenal of liposomal formulations currently being utilized in treatment and diagnosis of cancer.
Collapse
Affiliation(s)
- Kacoli Sen
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | | |
Collapse
|
9
|
Membrane-perturbing effect of fatty acids and lysolipids. Prog Lipid Res 2013; 52:130-40. [DOI: 10.1016/j.plipres.2012.09.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/20/2012] [Accepted: 09/13/2012] [Indexed: 12/13/2022]
|
10
|
Zhang H, Hollis CP, Zhang Q, Li T. Preparation and antitumor study of camptothecin nanocrystals. Int J Pharm 2011; 415:293-300. [PMID: 21679755 DOI: 10.1016/j.ijpharm.2011.05.075] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 04/23/2011] [Accepted: 05/28/2011] [Indexed: 11/27/2022]
Abstract
Camptothecin (CPT) is a potent, broad spectrum antitumor agent that inhibits the activity of DNA topoisomerase I. Due to its poor solubility and stability and consequent delivery challenges, its clinical use is nevertheless limited. We aim to use nanocrystal formulation as a way to circumvent the difficult solubilization practice. Specifically, camptothecin nanocrystals were prepared with a sonication-precipitation method without additional stabilizing surfactants. Particle characteristics, cellular cytotoxicity, and animal antitumor effect were examined. CPT nanocrystals were tested to be more potent to MCF-7 cells than CPT solution in vitro. When tested in MCF-7 xenografted BALB/c mice, the CPT nanocrystals exhibited significant suppression of tumor growth. The drug concentration in the tumor was five times more at 24h by using the nanocrystal treatment than by using the drug salt solution. Storage stability study indicated that the nanocrystals were stable for at least six months. Overall, CPT nanocrystals were considered to be potentially feasible to overcome formulation challenges for drug delivery and to be used in clinic.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | | | | | | |
Collapse
|
11
|
Zhang XX, McIntosh TJ, Grinstaff MW. Functional lipids and lipoplexes for improved gene delivery. Biochimie 2011; 94:42-58. [PMID: 21621581 DOI: 10.1016/j.biochi.2011.05.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/06/2011] [Indexed: 12/17/2022]
Abstract
Cationic lipids are the most common non-viral vectors used in gene delivery with a few currently being investigated in clinical trials. However, like most other synthetic vectors, these vectors suffer from low transfection efficiencies. Among the various approaches to address this challenge, functional lipids (i.e., lipids responding to a stimuli) offer a myriad of opportunities for basic studies of nucleic acid-lipid interactions and for in vitro and in vivo delivery of nucleic acid for a specific biological/medical application. This manuscript reviews recent advances in pH, redox, and charge-reversal sensitive lipids.
Collapse
Affiliation(s)
- Xiao-Xiang Zhang
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
12
|
Arouri A, Mouritsen OG. Anticancer double lipid prodrugs: liposomal preparation and characterization. J Liposome Res 2011; 21:296-305. [DOI: 10.3109/08982104.2011.563365] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Jahn A, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M. Microfluidic directed formation of liposomes of controlled size. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:6289-93. [PMID: 17451256 DOI: 10.1021/la070051a] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A new method to tailor liposome size and size distribution in a microfluidic format is presented. Liposomes are spherical structures formed from lipid bilayers that are from tens of nanometers to several micrometers in diameter. Liposome size and size distribution are tailored for a particular application and are inherently important for in vivo applications such as drug delivery and transfection across nuclear membranes in gene therapy. Traditional laboratory methods for liposome preparation require postprocessing steps, such as sonication or membrane extrusion, to yield formulations of appropriate size. Here we describe a method to engineer liposomes of a particular size and size distribution by changing the flow conditions in a microfluidic channel, obviating the need for postprocessing. A stream of lipids dissolved in alcohol is hydrodynamically focused between two sheathed aqueous streams in a microfluidic channel. The laminar flow in the microchannel enables controlled diffusive mixing at the two liquid interfaces where the lipids self-assemble into vesicles. The liposomes formed by this self-assembly process are characterized using asymmetric flow field-flow fractionation combined with quasi-elastic light scattering and multiangle laser-light scattering. We observe that the vesicle size and size distribution are tunable over a mean diameter from 50 to 150 nm by adjusting the ratio of the alcohol-to-aqueous volumetric flow rate. We also observe that liposome formation depends more strongly on the focused alcohol stream width and its diffusive mixing with the aqueous stream than on the sheer forces at the solvent-buffer interface.
Collapse
Affiliation(s)
- Andreas Jahn
- Semiconductor Electronics Division and Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | | | | | | | |
Collapse
|
14
|
Bae SC, Granick S. Molecular Motion at Soft and Hard Interfaces: From Phospholipid Bilayers to Polymers and Lubricants. Annu Rev Phys Chem 2007; 58:353-74. [PMID: 17090226 DOI: 10.1146/annurev.physchem.58.032806.104527] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spatially resolved and time-resolved understanding of complex fluid situations compose a new frontier in physical chemistry. Here we draw attention to the significance of spatially resolving systems whose ensemble average differs fundamentally from the spatially resolved individual elements. We take examples from the field of fluid phospholipid bilayers, to which macromolecules adsorb; the field of polymer physics, when flexible chains adsorb to the solid-liquid interface; and from the field of lubrication, when two solids are squeezed close together with confined fluid retained between them.
Collapse
Affiliation(s)
- Sung Chul Bae
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
15
|
Almiñana N, Polo D, Rodríguez L, Reig F. Biodistribution Study of Doxorubicin Encapsulated in Liposomes: Influence of Peptide Coating and Lipid Composition. Prep Biochem Biotechnol 2004; 34:77-96. [PMID: 15046298 DOI: 10.1081/pb-120027116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this paper we describe the biodistribution of doxorubicin (DXR) encapsulated in three different types of liposomes. Common composition was hydrogenated phosphatidylcholine (HPC)/phosphatidylglycerol (PG) cholesterol (Chol)/X, X being either 10% N-glutaryl phosphatidylethanolamine (NGPE), 10% NGPE + 6% distearoyl-phosphatidylethanolamine-polyethyleneglycol 2000 (DSPE-PEG), or 10% NGPE + 6% DSPE-PEG-COOH. These series of vesicles were coated with an active or an inactive sequence of laminin (laminin receptors, integrins, are overexpressed in tumor cells). Single doses of these preparations were injected, i.v., into healthy mice. For biodistribution experiments, mice were sacrificed at three different time-points post-treatment. Doxorubicin and doxorubicinol (DXOH) levels were determined in plasma, heart, lung, kidney, spleen, and liver using HPLC with daunorubicin (DNR) as internal standard. The results obtained indicate that compositions containing DSPE-PEG have the longest half-lives in plasma, as was to be expected according to the data in the literature. However, the presence of the peptides on the surface of liposomes reduces concentration values in this tissue. Distribution in other organs reveals high differences, among the liposomal samples studied, depending mainly on the presence of active or inactive peptide on the surface of vesicles. Liposomes coated with the laminin active sequence show lower accumulation in studied tissues than free DXR. This indicates that heart toxicity, associated to DXR treatments, could be diminished, and open promising perspectives for its future study in tumor-bearing animals.
Collapse
|
16
|
Feng ZV, Granick S, Gewirth AA. Modification of a supported lipid bilayer by polyelectrolyte adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:8796-8804. [PMID: 15379509 DOI: 10.1021/la049030w] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Addition of a weak polyelectrolyte, poly(methacrylic acid) (PMA), to a supported phospholipid bilayer made from 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) depresses the melting temperature and alters the morphology of the bilayer in the gel phase. Ellipsometry measurements show that PMA adsorption lowers the phase transition temperature by 2.4 degrees C. Atomic force microscopy (AFM) showed no visible contrast in the fluid phase (above the melting temperature) but a rich morphology in the gel phase. In the gel phase, adsorption leads to formation of significantly less mobile phospholipid islands and other defects. One consequence of this lower mobility is a decrease in the implied cooperativity number of the phase transition, N, when polymer is added. Additionally, AFM images of the gel-phase bilayer show a highly defected structure that anneals significantly more slowly than in the absence of adsorbed polymer. Tentatively, we suggest that PMA preferentially decorates island and defect edges of the DMPC bilayer.
Collapse
Affiliation(s)
- Z Vivian Feng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | | | | |
Collapse
|
17
|
Pata V, Ahmed F, Discher DE, Dant N. Membrane solubilization by detergent: resistance conferred by thickness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:3888-93. [PMID: 15969375 DOI: 10.1021/la035734e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The commonly held model for membrane dissolution by detergents/surfactants requires lipid transport from the inner to the outer bilayer leaflet ('flip-flop'). Although applicable to many systems, it fails in cases where cross-bilayer transport of membrane components is suppressed. In this paper we investigate the mechanism for surfactant-induced solubilization of polymeric bilayers. To that end, we examine the dissolution of a series of increasingly thick, polymer-based vesicles (polymersomes) by a nonionic surfactant, Triton X-100, using dynamic light scattering. We find that increasing the bilayer thickness imparts better resistance to dissolution, so that the concentration required for solubilization, after a fixed amount of time, increases nearly linearly with membrane thickness. Combining our experimental data with a theoretical model, we show that the dominant mechanism for the surfactant-induced dissolution of polymeric vesicles, where polymer flip-flop across the membrane is suppressed, is the surfactant transport through the bilayer. This mechanism is different both qualitatively and quantitatively from the mechanisms by which surfactants dissolve pure lipid vesicles.
Collapse
Affiliation(s)
- Veena Pata
- Department of Chemical Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
18
|
Song SC, Lee SB, Lee BH, Ha HW, Lee KT, Sohn YS. Synthesis and antitumor activity of novel thermosensitive platinum(II)-cyclotriphosphazene conjugates. J Control Release 2003; 90:303-11. [PMID: 12880697 DOI: 10.1016/s0168-3659(03)00199-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Thermosensitive cyclotriphosphazenes bearing alkoxy poly(ethylene glycol) and amino acid esters as side groups could be functionalized to chelate the antitumor (diamine)platinum(II) moiety through the dicarboxylate group of the amino acid substituent on the cyclic phosphazene ring. Surprisingly, like the precursor cyclotriphosphazenes, these (diamine)platinum(II)-cyclotriphosphazene conjugates were also found to exhibit variable lower critical solution temperatures (LCST) in the wide range of 12 to 92 degrees C. Furthermore, the present conjugates have shown outstanding in vitro and in vivo antitumor activities due to controlled release of the antitumor (diamine)platinum(II) moiety with hydrolytic degradation of the phosphazene ring. A few of these conjugates have shown LCSTs below body temperature, and it has been shown from a model animal experiment that the conjugates with a LCST below body temperature may be applied to local drug delivery by direct intratumoral injection.
Collapse
Affiliation(s)
- Soo-Chang Song
- Division of Life Science, Korea Institute of Science & Technology, 130-650 Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Steve Brocchini
- Biomedical Polymer Group, Department of Pharmaceutics, School of Pharmacy, University of London, 29-39 Brunswick Square, WC1N 1AX, London, UK
| |
Collapse
|
20
|
Abstract
Liposome researchers have created a hugh variety of liposomal drug carriers in the past thirty years mainly by small-scale laboratory techniques using more or less well defined raw materials. Only a few of these liposomal preparations have made their way to approved drugs for clinical use in humans so far. The review gives a critical literature survey over key technologies, which are used to evaluate an appropriate lipid formula and to prepare, size, load and sterilise liposomes. It also deals with quality and shelf stability aspects of liposomal drug carriers.
Collapse
Affiliation(s)
- M Brandl
- Univesitetet i Tromsø, Institutt for Farmasi, Avdeling for Galenisk Farmasi, N-9037 Tromsø, Norway
| |
Collapse
|
21
|
Almiñana N, Polo D, Alsina MA, Reig F. Optimization study of doxorubicin liposomal preparations coated with laminin fragments. Prep Biochem Biotechnol 2002; 32:1-16. [PMID: 11934073 DOI: 10.1081/pb-120013157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Immunoliposomes, coated with two peptide sequences and loaded with doxorubicin, were prepared. The influence of different parameters in the sequential steps of liposomal preparations was studied as, for instance, lipid composition, size reduction methods, elimination of non-entrapped drug, and peptide coating sequence. Results were evaluated, such as entrapment efficiency, phospholipid/drug and phospholipid/peptide relationship, and size of final preparations. Effective size reduction was only achieved through probe sonication and the presence of peptides on the surface of liposomes, which does not modify, significantly, the final phospholipid/drug relationship, related to the initial values; however, they promoted a slight increase in the size of final preparations. Dialysis was the most suitable method to wash liposomes from reactants, drug and peptides, as well as being the cleanest process to avoid microbial contamination without significant dilution. Peptide coating yields were similar for liposomal compositions presenting free carboxyl groups on the surface. As determined by other authors, the presence of polyethylene glycol monomethoxy chains on the surface reduces the reactivity of NPGE carboxylic groups.
Collapse
|