1
|
Boyd A, Byrne S, Middleton RJ, Banati RB, Liu GJ. Control of Neuroinflammation through Radiation-Induced Microglial Changes. Cells 2021; 10:2381. [PMID: 34572030 PMCID: PMC8468704 DOI: 10.3390/cells10092381] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Microglia, the innate immune cells of the central nervous system, play a pivotal role in the modulation of neuroinflammation. Neuroinflammation has been implicated in many diseases of the CNS, including Alzheimer's disease and Parkinson's disease. It is well documented that microglial activation, initiated by a variety of stressors, can trigger a potentially destructive neuroinflammatory response via the release of pro-inflammatory molecules, and reactive oxygen and nitrogen species. However, the potential anti-inflammatory and neuroprotective effects that microglia are also thought to exhibit have been under-investigated. The application of ionising radiation at different doses and dose schedules may reveal novel methods for the control of microglial response to stressors, potentially highlighting avenues for treatment of neuroinflammation associated CNS disorders, such as Alzheimer's disease and Parkinson's disease. There remains a need to characterise the response of microglia to radiation, particularly low dose ionising radiation.
Collapse
Affiliation(s)
- Alexandra Boyd
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia; (A.B.); (S.B.); (R.J.M.); (R.B.B.)
| | - Sarah Byrne
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia; (A.B.); (S.B.); (R.J.M.); (R.B.B.)
| | - Ryan J. Middleton
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia; (A.B.); (S.B.); (R.J.M.); (R.B.B.)
| | - Richard B. Banati
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia; (A.B.); (S.B.); (R.J.M.); (R.B.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia; (A.B.); (S.B.); (R.J.M.); (R.B.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
2
|
Behl T, Kaur G, Sehgal A, Zengin G, Singh S, Ahmadi A, Bungau S. Flavonoids, the Family of Plant-derived Antioxidants making inroads into Novel Therapeutic Design against IR-induced Oxidative Stress in Parkinson's Disease. Curr Neuropharmacol 2021; 20:324-343. [PMID: 34030619 PMCID: PMC9413797 DOI: 10.2174/1570159x19666210524152817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/17/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Ionizing radiation from telluric sources is unceasingly an unprotected pitfall to humans. Thus, the foremost contributors to human exposure are global and medical radiations. Various evidences assembled during preceding years reveal the pertinent role of ionizing radiation-induced oxidative stress in the progression of neurodegenerative insults, such as Parkinson’s disease, which have been contributing to increased proliferation and generation of reactive oxygen species. Objective: This review delineates the role of ionizing radiation-induced oxidative stress in Parkinson’s disease and proposes novel therapeutic interventions of flavonoid family, offering effective management and slowing down the progression of Parkinson’s disease. Methods: Published papers were searched in MEDLINE, PubMed, etc., published to date for in-depth database collection. Results: The oxidative damage may harm the non-targeted cells. It can also modulate the functions of the central nervous system, such as protein misfolding, mitochondria dysfunction, increased levels of oxidized lipids, and dopaminergic cell death, which accelerate the progression of Parkinson’s disease at the molecular, cellular, or tissue levels. In Parkinson’s disease, reactive oxygen species exacerbate the production of nitric oxides and superoxides by activated microglia, rendering death of dopaminergic neuronal cell through different mechanisms. Conclusion: Rising interest has extensively engrossed in the clinical trial designs based on the plant-derived family of antioxidants. They are known to exert multifarious impact on neuroprotection via directly suppressing ionizing radiation-induced oxidative stress and reactive oxygen species production or indirectly increasing the dopamine levels and activating the glial cells.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gagandeep Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari. Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea. Romania
| |
Collapse
|
3
|
Parente A, Maciel ES, J O Dierckx RA, Langendijk JA, de Vries EFJ, Doorduin J. Delayed effects of a single-dose whole-brain radiation therapy on glucose metabolism and myelin density: a longitudinal PET study. Int J Radiat Biol 2020; 96:1135-1143. [PMID: 32602390 DOI: 10.1080/09553002.2020.1787542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Radiotherapy is an important treatment option for brain tumors, but the unavoidable irradiation of normal brain tissue can lead to delayed cognitive impairment. The mechanisms involved are still not well explained and, therefore, new tools to investigate the processes leading to the delayed symptoms of brain irradiation are warranted. In this study, positron emission tomography (PET) is used to explore delayed functional changes induced by brain irradiation. MATERIALS AND METHODS Male Wistar rats were subjected to a single 25-Gy dose of whole brain X-ray irradiation, or sham-irradiation. To investigate delayed effects of radiation on cerebral glucose metabolism and myelin density, 18F-fluorodeoxyglucose (18F-FDG) PET scans were performed at baseline and on day 64 and 94, whereas N-11C-methyl-4,4'-diaminostilbene (11C-MeDAS) PET scans were performed at baseline and on day 60 and 90 post-irradiation. In addition, the open field test (OFT) and novel spatial recognition (NSR) test were performed at baseline and on days 59 and 89 to investigate whether whole brain irradiation induces behavioral changes. RESULTS Whole-brain irradiation caused loss of bodyweight and delayed cerebral hypometabolism, with 18F-FDG uptake in all brain regions being significantly decreased in irradiated rat on day 64 while it remained unchanged in control animals. Only amygdala and cortical brain regions of irradiated rats still showed reduced 18F-FDG uptake on day 94. 11C-MeDAS uptake in control animals was significantly lower on days 60 and 90 than at the baseline, suggesting a reduction in myelin density in young adults. In irradiated animals, 11C-MeDAS uptake was similarly reduced on day 60, but on day 90 tracer uptake was somewhat increased and not significantly different from baseline anymore. Behavioral tests showed a similar pattern in control and irradiated animals. In both groups, the OFT showed significantly reduced mobility on days 59 and 89, whereas the NSR did not reveal any significant changes in spatial memory over time. Interestingly, a positive correlation between the NSR and 11C-MeDAS uptake was observed in irradiated rats. CONCLUSIONS Whole-brain irradiation causes delayed brain hypometabolism, which is not accompanied by white matter loss. Irradiated animals showed similar behavioral changes over time as control animals and, therefore, cerebral hypometabolism could not be linked to behavioral abnormalities. However, spatial memory seems to be associated with myelin density in irradiated rats.
Collapse
Affiliation(s)
- Andrea Parente
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisa Scandiuzzi Maciel
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Metabolite differences between glutamate carboxypeptidase II gene knockout mice and their wild-type littermates after traumatic brain injury: a 7-tesla 1H-MRS study. BMC Neurosci 2018; 19:75. [PMID: 30458729 PMCID: PMC6245916 DOI: 10.1186/s12868-018-0473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 11/03/2018] [Indexed: 11/30/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a complex condition and remains a prominent public and medical health issue in individuals of all ages. A rapid increase in extracellular glutamate occurs after TBI, leading to glutamate-induced excitotoxicity, which causes neuronal damage and further functional impairments. Although inhibition of glutamate carboxypeptidase II (GCP II) is considered a potential approach for reducing glutamate-induced excitotoxicity after TBI, further detailed evidence regarding its efficacy is required. Therefore, in this study, we examined the differences in the metabolite status between wild-type (WT) and GCP II gene-knockout (KO) mice after TBI using proton magnetic resonance spectroscopy (1H-MRS) and T2-weighted magnetic resonance (MR) imaging with a 7-tesla imaging system, and brain water-content analysis. Results Evaluation of glutamate and N-acetylaspartate concentrations revealed a decrease in both levels in the ipsilateral hippocampus at 24 h post-TBI; however, the reduction in glutamate and N-acetylaspartate levels was less marked in GCP II-KO mice than in WT mice (p < 0.05). T2 MR data and brain water-content analysis demonstrated that the extent of cortical edema and brain swelling was less in KO than in WT mice after TBI (p < 0.05). Conclusion Using two non-invasive methods, 1H-MRS and T2 MR imaging, as well as in vitro brain-water content measurements, we demonstrated that the mechanism underlying the neuroprotective effects of GCP II-KO against brain swelling in TBI involves changes in glutamate and N-acetylaspartate levels. This knowledge may contribute towards the development of therapeutic strategies for TBI.
Collapse
|
5
|
Pérès EA, Etienne O, Grigis A, Boumezbeur F, Boussin FD, Le Bihan D. Longitudinal Study of Irradiation-Induced Brain Microstructural Alterations With S-Index, a Diffusion MRI Biomarker, and MR Spectroscopy. Int J Radiat Oncol Biol Phys 2018; 102:1244-1254. [DOI: 10.1016/j.ijrobp.2018.01.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/19/2017] [Accepted: 01/22/2018] [Indexed: 01/19/2023]
|
6
|
Chen H, Cheng YS, Zhou ZR. Long-term Brain Tissue Monitoring after Semi-brain Irradiation in Rats Using Proton Magnetic Resonance Spectroscopy: A Preliminary Study In vivo. Chin Med J (Engl) 2017; 130:957-963. [PMID: 28397726 PMCID: PMC5407043 DOI: 10.4103/0366-6999.204097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND In head and neck neoplasm survivors treated with brain irradiation, metabolic alterations would occur in the radiation-induced injury area. The mechanism of these metabolic alterations has not been fully understood, while the alternations could be sensitively detected by proton (1H) nuclear magnetic resonance spectroscopy (MRS). In this study, we investigated the metabolic characteristics of radiation-induced brain injury through a long-term follow-up after radiation treatment using MRS in vivo. METHODS A total of 12 adult Sprague-Dawley rats received a single dose of 30 Gy radiation treatment to semi-brain (field size: 1.0 cm × 2.0 cm; anterior limit: binocular posterior inner canthus connection; posterior limit: external acoustic meatus connection; internal limit: sagittal suture). Conventional magnetic resonance imaging and single-voxel 1H-MRS were performed at different time points (in month 0 before irradiation as well as in the 1st, 3rd, 5th, 7th, and 9th months after irradiation) to investigate the alternations in irradiation field. N-acetylaspartate/choline (NAA/Cho), NAA/creatinine (Cr), and Cho/Cr ratios were measured in the bilateral hippocampus and quantitatively analyzed with a repeated-measures mixed-effects model and multiple comparison test. RESULTS Significant changes in the ratios of NAA/Cho (F = 57.37, P<sub>g < 0.001), NAA/Cr (F = 54.49, P<sub>g < 0.001), and Cho/Cr (F = 9.78, P<sub>g = 0.005) between the hippocampus region of the irradiated semi-brain and the contralateral semi-brain were observed. There were significant differences in NAA/Cho (F = 9.17, P<sub>t < 0.001) and NAA/Cr (F = 13.04, P<sub>t < 0.001) ratios over time. The tendency of NAA/Cr to change with time showed no significant difference between the irradiated and contralateral sides. Nevertheless, there were significant differences in the Cho/Cr ratio between these two sides. CONCLUSIONS MRS can sensitively detect metabolic alternations. Significant changes of metabolites ratio in the first few months after radiation treatment reflect the metabolic disturbance in the acute and early-delayed stages of radiation-induced brain injuries.
Collapse
Affiliation(s)
- Hong Chen
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Shu Cheng
- Department of Radiology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Zheng-Rong Zhou
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Olsen RHJ, Weber SJ, Akinyeke T, Raber J. Enhanced cued fear memory following post-training whole body irradiation of 3-month-old mice. Behav Brain Res 2017; 319:181-187. [PMID: 27865918 PMCID: PMC5924676 DOI: 10.1016/j.bbr.2016.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/12/2016] [Accepted: 11/15/2016] [Indexed: 12/25/2022]
Abstract
Typically, in studies designed to assess effects of irradiation on cognitive performance the animals are trained and tested for cognitive function following irradiation. Little is known about post-training effects of irradiation on cognitive performance. In the current study, 3-month-old male mice were irradiated with X-rays 24h following training in a fear conditioning paradigm and cognitively tested starting two weeks later. Average motion during the extinction trials, measures of anxiety in the elevated zero maze, and body weight changes over the course of the study were assessed as well. Exposure to whole body irradiation 24h following training in a fear conditioning resulted in greater freezing levels 2 weeks after training. In addition, motion during both contextual and cued extinction trials was lower in irradiated than sham-irradiated mice. In mice trained for cued fear conditioning, activity levels in the elevated zero maze 12days after sham-irradiation or irradiation were also lower in irradiated than sham-irradiated mice. Finally, the trajectory of body weight changes was affected by irradiation, with lower body weights in irradiated than sham-irradiated mice, with the most profound effect 7days after training. These effects were associated with reduced c-Myc protein levels in the amygdala of the irradiated mice. These data indicate that whole body X ray irradiation of mice at 3 months of age causes persistent alterations in the fear response and activity levels in a novel environment, while the effects on body weight seem more transient.
Collapse
Affiliation(s)
- Reid H J Olsen
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sydney J Weber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tunde Akinyeke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
8
|
Betlazar C, Middleton RJ, Banati RB, Liu GJ. The impact of high and low dose ionising radiation on the central nervous system. Redox Biol 2016; 9:144-156. [PMID: 27544883 PMCID: PMC4993858 DOI: 10.1016/j.redox.2016.08.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
Responses of the central nervous system (CNS) to stressors and injuries, such as ionising radiation, are modulated by the concomitant responses of the brains innate immune effector cells, microglia. Exposure to high doses of ionising radiation in brain tissue leads to the expression and release of biochemical mediators of ‘neuroinflammation’, such as pro-inflammatory cytokines and reactive oxygen species (ROS), leading to tissue destruction. Contrastingly, low dose ionising radiation may reduce vulnerability to subsequent exposure of ionising radiation, largely through the stimulation of adaptive responses, such as antioxidant defences. These disparate responses may be reflective of non-linear differential microglial activation at low and high doses, manifesting as an anti-inflammatory or pro-inflammatory functional state. Biomarkers of pathology in the brain, such as the mitochondrial Translocator Protein 18 kDa (TSPO), have facilitated in vivo characterisation of microglial activation and ‘neuroinflammation’ in many pathological states of the CNS, though the exact function of TSPO in these responses remains elusive. Based on the known responsiveness of TSPO expression to a wide range of noxious stimuli, we discuss TSPO as a potential biomarker of radiation-induced effects. Ionising radiation can modulate responses of microglial cells in the CNS. High doses can induce ROS formation, oxidative stress and neuroinflammation. Low doses can mitigate tissue damage via antioxidant defences. TSPO as a potential biomarker and modulator of radiation induced effects in the CNS. Non-linear differential microglial activation to high and low doses is proposed.
Collapse
Affiliation(s)
- Calina Betlazar
- Bioanalytics group, Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia; Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, 75 East Street, Lidcombe, NSW 2141, Australia
| | - Ryan J Middleton
- Bioanalytics group, Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Richard B Banati
- Bioanalytics group, Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia; Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, 75 East Street, Lidcombe, NSW 2141, Australia.
| | - Guo-Jun Liu
- Bioanalytics group, Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia; Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, 75 East Street, Lidcombe, NSW 2141, Australia.
| |
Collapse
|
9
|
Mishra SK, Rana P, Khushu S, Gangenahalli G. Therapeutic Prospective of Infused Allogenic Cultured Mesenchymal Stem Cells in Traumatic Brain Injury Mice: A Longitudinal Proton Magnetic Resonance Spectroscopy Assessment. Stem Cells Transl Med 2016; 6:316-329. [PMID: 28170180 PMCID: PMC5442758 DOI: 10.5966/sctm.2016-0087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/16/2016] [Indexed: 12/13/2022] Open
Abstract
Improved therapeutic assessment of experimental traumatic brain injury (TBI), using mesenchymal stem cells (MSCs), would immensely benefit its therapeutic management. Neurometabolite patterns at injury site, measured with proton magnetic resonance spectroscopy (1H‐MRS) after MSCs transplantation, may serve as a bio‐indicator of the recovery mechanism. This study used in vivo magnetic resonance imaging and 1H‐MRS to evaluate the therapeutic prospects of implanted MSCs at injury site in experimental mice longitudinally up to 21 days. Negative tissue contrast and cytotoxic edema formation were observed in susceptibility‐based contrast (T2*) and an apparent diffusion coefficient map, respectively. Lesion site showed decreased N‐acetylaspartate, total choline, myo‐inositol, total creatine, glutamate‐glutamine complex, and taurine neurometabolic concentrations by 1H‐MRS investigation. There was a considerable decrease in locomotor activity, depression index, and cognitive index after TBI. It may, therefore, be inferred that MSC transplantation prompted recovery by decreasing negative signals and edema, restoring metabolites to baseline concentrations, and enhancing behavioral activity. Overall findings support the potential of MSC transplantation for the enhancement of endogenous neuroprotective responses, which may provide future clinical applications for translating laboratory research into therapeutic clinical advances. Stem Cells Translational Medicine2017;6:316–329
Collapse
Affiliation(s)
- Sushanta Kumar Mishra
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organisation, Timarpur, Delhi, India
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Timarpur, Delhi, India
| | - Poonam Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organisation, Timarpur, Delhi, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organisation, Timarpur, Delhi, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Timarpur, Delhi, India
| |
Collapse
|
10
|
Olsen RHJ, Marzulla T, Raber J. Impairment in extinction of contextual and cued fear following post-training whole-body irradiation. Front Behav Neurosci 2014; 8:231. [PMID: 25071488 PMCID: PMC4078460 DOI: 10.3389/fnbeh.2014.00231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/07/2014] [Indexed: 12/30/2022] Open
Abstract
Because of the use of radiation in cancer therapy, the risk of nuclear contamination from power plants, military conflicts, and terrorism, there is a compelling scientific and public health interest in the effects of environmental radiation exposure on brain function, in particular hippocampal function and learning and memory. Previous studies have emphasized changes in learning and memory following radiation exposure. These approaches have ignored the question of how radiation exposure might impact recently acquired memories, which might be acquired under traumatic circumstances (cancer treatment, nuclear disaster, etc.). To address the question of how radiation exposure might affect the processing and recall of recently acquired memories, we employed a fear conditioning paradigm wherein animals were trained, and subsequently irradiated (whole-body X-ray irradiation) 24 h later. Animals were given 2 weeks to recover, and were tested for retention and extinction of hippocampus-dependent contextual fear conditioning or hippocampus-independent cued fear conditioning. Exposure to irradiation following training was associated with reduced daily increases in body weights over the 22-days of the study and resulted in greater freezing levels and aberrant extinction 2 weeks later. This was also observed when the intensity of the training protocol was increased. Cued freezing levels and measures of anxiety 2 weeks after training were also higher in irradiated than sham-irradiated mice. In contrast to contextual freezing levels, cued freezing levels were even higher in irradiated mice receiving 5 shocks during training than sham-irradiated mice receiving 10 shocks during training. In addition, the effects of radiation on extinction of contextual fear were more profound than those on the extinction of cued fear. Thus, whole-body irradiation elevates contextual and cued fear memory recall.
Collapse
Affiliation(s)
- Reid H J Olsen
- Department of Behavioral Neuroscience, Oregon Health and Science University , Portland, OR , USA
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, Oregon Health and Science University , Portland, OR , USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University , Portland, OR , USA ; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University , Portland, OR , USA ; Department of Neurology, Oregon Health and Science University , Portland, OR , USA ; Department of Radiation Medicine, Oregon Health and Science University , Portland, OR , USA
| |
Collapse
|
11
|
Gupta M, Rana P, Trivedi R, Kumar BSH, Khan AR, Soni R, Rathore RKS, Khushu S. Comparative evaluation of brain neurometabolites and DTI indices following whole body and cranial irradiation: a magnetic resonance imaging and spectroscopy study. NMR IN BIOMEDICINE 2013; 26:1733-1741. [PMID: 24038203 DOI: 10.1002/nbm.3010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Understanding early differential response of brain during whole body radiation or cranial radiation exposure is of significant importance for better injury management during accidental or intentional exposure to ionizing radiation. We investigated the early microstructural and metabolic profiles using in vivo diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy ((1)H MRS) following whole body and cranial radiation exposure of 8 Gy in mice using a 7.0 T animal MRI system and compared profiles with sham controls at days 1, 3, 5 and 10 post irradiation. A significant decrease in fractional anisotropy (FA) values was found in hippocampus, thalamic and hypothalamic regions (p < 0.05) in both whole body and cranial irradiated groups compared with controls, suggesting radiation induced reactive astrogliosis or neuroinflammatory response. In animals exposed to whole body radiation, FA was significantly decreased in some additional brain regions such as sensory motor cortex and corpus callosum in comparison with cranial irradiation groups and controls. Changes in FA were observed till day 10 post irradiation in both the groups. However, MRS study from hippocampus revealed changes only in the whole body radiation dose group. Significant reduction in the ratios of the metabolites myoinositol (mI, p = 0.02) and taurine (tau, p = 0.03) to total creatine were observed, and these metabolic alterations persisted till day 10 post irradiation. To the best of our knowledge this study has for the first time documented a comparative account of microstructural and metabolic aspects of whole body and cranial radiation induced early brain injury using in vivo MRI. Overall our findings suggest differential response at microstructure and metabolite levels following cranial or whole body radiation exposure.
Collapse
Affiliation(s)
- Mamta Gupta
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|