1
|
Nejatian M, Ghandehari Yazdi AP, Fattahi R, Saberian H, Bazsefidpar N, Assadpour E, Jafari SM. Improving the storage and oxidative stability of essential fatty acids by different encapsulation methods; a review. Int J Biol Macromol 2024; 260:129548. [PMID: 38246446 DOI: 10.1016/j.ijbiomac.2024.129548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Linoleic acid and α-linolenic acid are the only essential fatty acids (EFAs) known to the human body. Other fatty acids (FAs) of the omega-6 and omega-3 families originate from linoleic acid and α-linolenic acid, respectively, by the biological processes of elongation and desaturation. In diets with low fish consumption or vegetarianism, these FAs play an exclusive role in providing two crucial FAs for maintaining our body's vital functions; docosahexaenoic acid and arachidonic acid. However, these polyunsaturated FAs are inherently sensitive to oxidation, thereby adversely affecting the storage stability of oils containing them. In this study, we reviewed encapsulation as one of the promising solutions to increase the stability of EFAs. Accordingly, five main encapsulation techniques could be classified: (i) spray drying, (ii) freeze drying, (iii) emulsification, (iv) liposomal entrapment, and (v) other methods, including electrospinning/spraying, complex coacervation, etc. Among these, spray drying was the frequently applied technique for encapsulation of EFAs, followed by freeze dryers. In addition, maltodextrin and gum Arabic were the main wall materials in carriers. Paying attention to industrial scalability and lower cost of the encapsulation process by the other methods are the important aspects that should be given more attention in the future.
Collapse
Affiliation(s)
- Mohammad Nejatian
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran; Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Pouya Ghandehari Yazdi
- Department of Research and Development, Zarmacaron Company, Zar Industrial and Research Group, Alborz, Iran.
| | - Reza Fattahi
- Department of Research and Development, Zarmacaron Company, Zar Industrial and Research Group, Alborz, Iran
| | - Hamed Saberian
- Technical Centre of Agriculture, Academic Center for Education, Culture and Research (ACECR), Isfahan University of Technology, Isfahan, Iran
| | - Nooshin Bazsefidpar
- Department of Research and Development, Zarmacaron Company, Zar Industrial and Research Group, Alborz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Hands JM, Anderson ML, Cooperman T, Frame LA. A Multi-Year Rancidity Analysis of 72 Marine and Microalgal Oil Omega-3 Supplements. J Diet Suppl 2023; 21:195-206. [PMID: 37712532 DOI: 10.1080/19390211.2023.2252064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
There exists significant heterogeneity in the 'freshness' of consumer marine- and plant-derived omega-3 (Ω3) supplements. Fears of rancidity, or the oxidation of consumer Ω3 supplements, has been debated in the literature with several prior authors reporting contradictory findings. We report the peroxide value (PV), para-anisidine value (p-AV) and total oxidation values (TOTOX) associated with 72 consumer Ω3 supplements sold in the United States sampled from 2014-2020. The effect of flavoring on the oxidation of the supplements was examined in an adjusted fixed effects model controlling for type of delivery system (enteric, liquid, animal- and vegetable-derived gelatin softgel, spray), source (algae, calamari, fish, krill, mussels), and certifications assigned by third-party organizations (e.g. USP). Overall, our results revealed that 68% (23/34) of flavored and 13% (5/38) unflavored consumer Ω3 supplements exceeded the TOTOX upper limit set by the Global Organization for EPA and DHA (GOED) voluntary monograph standard of ≤ 26, with 65% (22/34) flavored supplements and 32% (12/38) unflavored supplements failing the PV upper limit of ≤ 5 and 62% (21/34) flavored supplements exceeding the p-AV upper limit of ≤ 20. To our knowledge, no prior authors have modeled the impact of flavoring on oxidative status in 72 marine- and plant-derived Ω3 products sold in the U.S. We present our findings in this context and discuss the clinical implications related to the consumption of oxidized consumer fish oils and their effects on human health.
Collapse
Affiliation(s)
- Jacob M Hands
- The George Washington University School of Medicine & Health Sciences, Washington, District of Columbia, USA
| | | | | | - Leigh A Frame
- Integrative Medicine, The George Washington University School of Medicine & Health Sciences, Washington, District of Columbia, USA
- Resiliency & Well-being Center, The George Washington University School of Medicine & Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Role of Omega-3 Fatty Acids in Cardiovascular Disease: the Debate Continues. Curr Atheroscler Rep 2023; 25:1-17. [PMID: 36580204 PMCID: PMC9834373 DOI: 10.1007/s11883-022-01075-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW The omega-3 fatty acids (n3-FAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have recently undergone testing for their ability to reduce residual cardiovascular (CV) risk among statin-treated subjects. The outcome trials have yielded highly inconsistent results, perhaps attributable to variations in dosage, formulation, and composition. In particular, CV trials using icosapent ethyl (IPE), a highly purified ethyl ester of EPA, reproducibly reduced CV events and progression of atherosclerosis compared with mixed EPA/DHA treatments. This review summarizes the mechanistic evidence for differences among n3-FAs on the development and manifestations of atherothrombotic disease. RECENT FINDINGS Large randomized clinical trials with n3-FAs have produced discordant outcomes despite similar patient profiles, doses, and triglyceride (TG)-lowering effects. A large, randomized trial with IPE, a prescription EPA only formulation, showed robust reduction in CV events in statin treated patients in a manner proportional to achieved blood EPA concentrations. Multiple trials using mixed EPA/DHA formulations have not shown such benefits, despite similar TG lowering. These inconsistencies have inspired investigations into mechanistic differences among n3-FAs, as EPA and DHA have distinct membrane interactions, metabolic products, effects on cholesterol efflux, antioxidant properties, and tissue distribution. EPA maintains normal membrane cholesterol distribution, enhances endothelial function, and in combination with statins improves features implicated in plaque stability and reduces lipid content of plaques. Insights into reductions in residual CV risk have emerged from clinical trials using different formulations of n3-FAs. Among high-risk patients on contemporary care, mixed n3-FA formulations showed no reduction in CV events. The distinct benefits of IPE in multiple trials may arise from pleiotropic actions that correlate with on-treatment EPA levels beyond TG-lowering. These effects include altered platelet function, inflammation, cholesterol distribution, and endothelial dysfunction. Elucidating such mechanisms of vascular protection for EPA may lead to new interventions for atherosclerosis, a disease that continues to expand worldwide.
Collapse
|
4
|
Mason RP, Sherratt SCR, Eckel RH. Omega-3-fatty acids: Do they prevent cardiovascular disease? Best Pract Res Clin Endocrinol Metab 2022; 37:101681. [PMID: 35739003 DOI: 10.1016/j.beem.2022.101681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Despite cardiovascular disease (CVD) reductions with high-intensity statins, there remains residual risk among patients with metabolic disorders. Alongside low-density lipoproteins (LDL-C), elevated triglycerides (TG) are associated with incident CVD events. Omega-3 fatty acids (n3-FAs), specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), lower TG levels, but their ability to reduce CV risk has been highly inconsistent. Trials using icosapent ethyl (IPE), a purified EPA ethyl ester, produced reductions in CVD events and atherosclerotic plaque regression compared with mixed EPA/DHA formulations despite similar TG-reductions. The separate effects of EPA and DHA on tissue distribution, oxidative stress, inflammation, membrane structure and endothelial function may contribute to these discordant outcomes. Additional mechanistic trials will provide further insights into the role of n3-FAs in reducing CVD risk beyond TG lowering.
Collapse
Affiliation(s)
- R Preston Mason
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Samuel C R Sherratt
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03823, USA
| | - Robert H Eckel
- Division of Endocrinology, Metabolism & Diabetes, Division of Cardiology, University of Colorado Anschutz Medical Campus, 1635 Aurora Court, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Ozyurt G, Ekmen D, Durmuş M, Ucar Y. Assessment of the safety of dietary fish oil supplements in terms of content and quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25006-25019. [PMID: 34837607 DOI: 10.1007/s11356-021-17581-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The fatty acid composition of top-selling fish oil dietary supplements in the markets was compared with the content stated on product label, and their oxidative qualities and heavy metal contents were evaluated in this study. While all the capsule groups (C) confirmed the label information, it was observed that one-third of the syrup groups (S) had less than the specified content. Capsule groups generally had richer EPA and DHA contents than syrup groups in the samples examined. The peroxide values (PV) of all fish oil capsules and syrups were found in the range of 1.97-2.89 mEq/kg and 2.22-18.30 mEq/kg, respectively. As for free fatty acids (FFA) values, the C4, S6, S9, and S10 groups were above the 3% oleic acid limit recommended for high-quality oils. However, thiobarbituric acid reactive substances (TBARs) values were found below 1 mg MA/kg in all groups. All fish oil supplements were within the limits specified in terms of As (0.50-4.19 µg/g), Cd (0.14 µg/g detected for one group, C5), Cu (not detected), Fe (0.32-15.7 µg/g), and Hg (≤ 0.1 µg/g). On the other hand, two fish oil supplements from the capsule group (0.17 for C6 and 1.01 µg/g for C8) and one group from the syrup group (0.29 µg/g for S10) exceeded the recommended limit in terms of Pb (0.1 mg/kg). As a result of the research, it can be concluded that the chemical quality of fish oils in syrup form needs to be improved and their reliability in terms of fatty acid content should be increased. Considering the heavy metals, it seems significant to follow up the fish oil products more strictly.
Collapse
Affiliation(s)
- Gülsün Ozyurt
- Faculty of Fisheries, Department of Seafood Processing Technology, Cukurova University, 01330, Balcali, Adana, Turkey
| | - Dilan Ekmen
- Faculty of Fisheries, Department of Seafood Processing Technology, Cukurova University, 01330, Balcali, Adana, Turkey
| | - Mustafa Durmuş
- Faculty of Fisheries, Department of Seafood Processing Technology, Cukurova University, 01330, Balcali, Adana, Turkey
| | - Yilmaz Ucar
- Faculty of Fisheries, Department of Seafood Processing Technology, Cukurova University, 01330, Balcali, Adana, Turkey.
- Fatsa Faculty of Marine Science, Department of Fisheries Engineering Technology, Ordu University, Ordu, Turkey.
| |
Collapse
|
6
|
Du Q, Zhou L, Li M, Lyu F, Liu J, Ding Y. Omega‐3 polyunsaturated fatty acid encapsulation system: Physical and oxidative stability, and medical applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qiwei Du
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Linhui Zhou
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Minghui Li
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Fei Lyu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Jianhua Liu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Yuting Ding
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| |
Collapse
|
7
|
Murphy CH, McGlory C. Fish Oil for Healthy Aging: Potential Application to Master Athletes. Sports Med 2021; 51:31-41. [PMID: 34515971 PMCID: PMC8566636 DOI: 10.1007/s40279-021-01509-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
Master athletes perform high volumes of exercise training yet display lower levels of physical functioning and exercise performance when compared with younger athletes. Several reports in the clinical literature show that long chain n-3 polyunsaturated fatty acid (LC n-3 PUFA) ingestion promotes skeletal muscle anabolism and strength in untrained older persons. There is also evidence that LC n-3 PUFA ingestion improves indices of muscle recovery following damaging exercise in younger persons. These findings suggest that LC n-3 PUFA intake could have an ergogenic effect in master athletes. However, the beneficial effect of LC n-3 PUFA intake on skeletal muscle in response to exercise training in both older and younger persons is inconsistent and, in some cases, generated from low-quality studies or those with a high risk of bias. Other factors such as the choice of placebo and health status of participants also confound interpretation of existing reports. As such, when considered on balance, the available evidence does not indicate that ingestion of LC n-3 PUFAs above current population recommendations (250–500 mg/day; 2 portions of oily fish per week) enhances exercise performance or recovery from exercise training in master athletes. Further work is now needed related to how the dose, duration, and co-ingestion of LC n-3 PUFAs with other nutrients such as amino acids impact the adaptive response to exercise training. This work should also consider how LC n-3 PUFA supplementation may differentially alter the lipid profile of cellular membranes of key regulatory sites such as the sarcolemma, mitochondria, and sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Caoileann H Murphy
- Department of Agrifood Business & Spatial Analysis, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queen's University, 28 Division St, Kingston, ON, Canada.
| |
Collapse
|
8
|
Hansen MW, Ørn S, Erevik CB, Bjørkavoll-Bergseth MF, Skadberg Ø, Melberg TH, Aakre KM, Kleiven Ø. Regular consumption of cod liver oil is associated with reduced basal and exercise-induced C-reactive protein levels; a prospective observational trial : A NEEDED (The North Sea Race Endurance Exercise Study) 2014 sub-study. J Int Soc Sports Nutr 2021; 18:51. [PMID: 34183020 PMCID: PMC8240263 DOI: 10.1186/s12970-021-00437-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/29/2021] [Indexed: 12/31/2022] Open
Abstract
Background Dietary supplement use among recreational athletes is common, with the intention of reducing inflammation and improving recovery. We aimed to describe the relationship between omega-3 fatty acid supplement use and inflammation induced by strenuous exercise. Methods C-reactive protein (CRP) concentrations were measured in 1002 healthy recreational athletes before and 24 h after a 91-km bicycle race. The use of omega-3 fatty acid supplements was reported in 856 out of 1002 recreational athletes, and the association between supplement use and the exercise-induced CRP response was assessed. Results Two hundred seventy-four subjects reported regular use of omega-3 fatty acid supplements. One hundred seventy-three of these used cod liver oil (CLO). Regular users of omega-3 fatty acid supplements had significantly lower basal and exercise-induced CRP levels as compared to non-users (n = 348, p < 0.001). Compared to non-users, regular users had a 27% (95% confidence interval (CI): 14–40) reduction in Ln CRP response (unadjusted model, p < 0.001) and 16% (95% CI: 5–28, p = 0.006) reduction after adjusting for age, sex, race duration, body mass index, delta creatine kinase, MET hours per week, resting heart rate and higher education. CLO was the primary driver of this response with a 34% (95% CI: 19–49) reduction (unadjusted model, p < 0.001) compared to non-users. Corresponding numbers in the adjusted model were 24% (95% CI: 11–38, p < 0.001). Conclusion Basal CRP levels were reduced, and the exercise-induced CRP response was attenuated in healthy recreational cyclists who used omega-3 fatty acid supplements regularly. This effect was only present in regular users of CLO. Trial registration NCT02166216, registered June 18, 2014 – Retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s12970-021-00437-1.
Collapse
Affiliation(s)
- Mette Wærstad Hansen
- Cardiology Department, Stavanger University Hospital, PO 8400, 4068, Stavanger, Norway
| | - Stein Ørn
- Cardiology Department, Stavanger University Hospital, PO 8400, 4068, Stavanger, Norway.,Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Christine B Erevik
- Cardiology Department, Stavanger University Hospital, PO 8400, 4068, Stavanger, Norway
| | | | - Øyvind Skadberg
- Department of Biochemistry, Stavanger University Hospital, Stavanger, Norway
| | - Tor H Melberg
- Cardiology Department, Stavanger University Hospital, PO 8400, 4068, Stavanger, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristin M Aakre
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Øyunn Kleiven
- Cardiology Department, Stavanger University Hospital, PO 8400, 4068, Stavanger, Norway.
| |
Collapse
|
9
|
Zhang J, Freund MA, Culler MD, Yang R, Chen PB, Park Y, Decker EA, Zhang G. How To Stabilize ω-3 Polyunsaturated Fatty Acids (PUFAs) in an Animal Feeding Study?-Effects of the Temperature, Oxygen Level, and Antioxidant on Oxidative Stability of ω-3 PUFAs in a Mouse Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13146-13153. [PMID: 32159344 DOI: 10.1021/acs.jafc.9b08298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Substantial studies have shown that ω-3 polyunsaturated fatty acids (PUFAs) have various health-promoting effects; however, there are inconsistent results from animal studies that showed that ω-3 PUFAs have no effects or even detrimental effects. Emerging research suggests that oxidized ω-3 PUFAs have different effects compared to unoxidized ω-3 PUFAs; therefore, lipid oxidation of dietary ω-3 PUFAs could contribute to the mixed results of ω-3 PUFAs in animal studies. Here, we prepared an AIN-93G-based, semi-purified, powder diet, which is one of the most commonly used rodent diets in animal studies, to study the oxidative stability of fortified ω-3 PUFAs in animal feed. We found that lowering the storage temperature or the addition of a certain antioxidant, notably tert-butylhydroquinone (TBHQ), helps to stabilize ω-3 PUFAs and suppress ω-3 oxidation in the animal diet, while reducing the level of oxygen in the storage atmosphere is not very effective. The addition of 50 ppm of TBHQ in the diet inhibited 99.5 ± 0.1% formation of primary oxidation products and inhibited 96.1 ± 0.7% formation of secondary oxidation products, after 10 days of storage of the prepared diet at a typical animal-feeding experiment condition. Overall, our results highlight that ω-3 PUFAs are highly prone to lipid oxidation in a typical animal-feeding experiment, emphasizing the critical importance to stabilize ω-3 PUFAs in animal studies.
Collapse
Affiliation(s)
- Jianan Zhang
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Michael A Freund
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mitchell D Culler
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ran Yang
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Phoebe B Chen
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Eric A Decker
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Oppedisano F, Macrì R, Gliozzi M, Musolino V, Carresi C, Maiuolo J, Bosco F, Nucera S, Caterina Zito M, Guarnieri L, Scarano F, Nicita C, Coppoletta AR, Ruga S, Scicchitano M, Mollace R, Palma E, Mollace V. The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. Biomedicines 2020; 8:biomedicines8090306. [PMID: 32854210 PMCID: PMC7554783 DOI: 10.3390/biomedicines8090306] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Polyunsaturated fatty acids (n-3 PUFAs) are long-chain polyunsaturated fatty acids with 18, 20 or 22 carbon atoms, which have been found able to counteract cardiovascular diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in particular, have been found to produce both vaso- and cardio-protective response via modulation of membrane phospholipids thereby improving cardiac mitochondrial functions and energy production. However, antioxidant properties of n-3 PUFAs, along with their anti-inflammatory effect in both blood vessels and cardiac cells, seem to exert beneficial effects in cardiovascular impairment. In fact, dietary supplementation with n-3 PUFAs has been demonstrated to reduce oxidative stress-related mitochondrial dysfunction and endothelial cell apoptosis, an effect occurring via an increased activity of endogenous antioxidant enzymes. On the other hand, n-3 PUFAs have been shown to counteract the release of pro-inflammatory cytokines in both vascular tissues and in the myocardium, thereby restoring vascular reactivity and myocardial performance. Here we summarize the molecular mechanisms underlying the anti-oxidant and anti-inflammatory effect of n-3 PUFAs in vascular and cardiac tissues and their implication in the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Roberta Macrì
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Cristina Carresi
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Francesca Bosco
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Saverio Nucera
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Federica Scarano
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Caterina Nicita
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Stefano Ruga
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Rocco Mollace
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
- Division of Cardiology, University Hospital Policlinico Tor Vergata, 00133 Rome, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Vincenzo Mollace
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
- IRCCS San Raffaele Pisana, 00163 Roma, Italy
- Correspondence:
| |
Collapse
|
11
|
Inguglia L, Chiaramonte M, Di Stefano V, Schillaci D, Cammilleri G, Pantano L, Mauro M, Vazzana M, Ferrantelli V, Nicolosi R, Arizza V. Salmo salar fish waste oil: Fatty acids composition and antibacterial activity. PeerJ 2020; 8:e9299. [PMID: 32596043 PMCID: PMC7307567 DOI: 10.7717/peerj.9299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Fish by-products are generally used to produce fishmeal or fertilizers, with fish oil as a by-product. Despite their importance, fish wastes are still poorly explored and characterized and more studies are needed to reveal their potentiality. The goal of the present study was to qualitatively characterize and investigate the antimicrobial effects of the fish oil extracted from Salmo salar waste samples and to evaluate the potential use of these compounds for treating pathogen infections. METHODS Salmo salar waste samples were divided in two groups: heads and soft tissues. Fatty acids composition, and in particular the content in saturated (SAFAs), mono-unsaturated (MUFAs) and Polyunsaturated (PUFAs) fatty acids, was characterized through GC/MS Thermo Focus GC-DSQ II equipped with a ZB-5 fused silica capillary tubes column. The antimicrobial activity of the salmon waste oils was evaluated through the Minimum Inhibitory Concentration assay and the antibiotics contamination was determined by Liquid Chromatography with tandem Mass Spectrometry (LC-MS/MS) analysis. All experiments were done at least in triplicate. RESULTS GC/MS analysis has shown the specific fatty acid composition of the salmon waste oils and their enrichment in MUFAs and PUFAs, with special reference to omega-3, -6, -7, -9 fatty acids. Furthermore, our study has highlighted the antimicrobial activity of the fish waste oil samples against two Gram+ and Gram- bacterial strains. CONCLUSIONS These data confirm that the fish waste is still quantitatively and qualitatively an important source of available biological properties that could be extracted and utilized representing an important strategy to counteract infective diseases in the context of the circular economy.
Collapse
Affiliation(s)
| | | | | | | | | | - Licia Pantano
- Istituto Zooprofilattico della Sicilia “A.Mirri”, Palermo, Italy, Italy
| | - Manuela Mauro
- STEBICEF, University of Palermo, Palermo, Italy, Italy
| | | | | | | | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to assess whether dietary fish oil supplements can be appropriate for patients with elevated triglycerides and cardiovascular risk based on a comprehensive analysis of their composition, and level of regulatory oversight. RECENT FINDINGS Approximately 19 million people in the United States take fish oil supplements, many for the purpose of treating or preventing heart disease. Unlike prescription products, fish oil supplements are classified as food by the Food and Drug Administration (FDA) and are not required to undergo manufacturing oversight or clinical testing. Analysis of widely used dietary fish oil supplements show that they may have lower amounts of ω-3 than advertised as well as significant levels of saturated fat and oxidized oils which actually may contribute to dyslipidemia. Clinical outcome trials have failed to show a consistent cardiovascular benefit with fish oil supplements and other low-dose mixed ω-3 fatty acids. SUMMARY In light of limited regulatory oversight and evidence of quality concerns, dietary fish oil supplements are not an appropriate substitute for FDA approved prescription ω-3 fatty acids for their indicated use in treatment of elevated triglycerides or the prevention of cardiovascular events.
Collapse
Affiliation(s)
| | - Michael Lero
- Elucida Research LLC, Beverly, MA, USA
- University of Massachusetts School of Medicine, Worcester, MA, USA
| | - R. Preston Mason
- Elucida Research LLC, Beverly, MA, USA
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Hilleman DE, Wiggins BS, Bottorff MB. Critical Differences Between Dietary Supplement and Prescription Omega-3 Fatty Acids: A Narrative Review. Adv Ther 2020; 37:656-670. [PMID: 31919792 PMCID: PMC6999166 DOI: 10.1007/s12325-019-01211-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Currently available omega-3 (OM-3) fatty acid products in the US are either nonprescription dietary supplements (e.g., fish oils) or prescription (Rx) medications. As such, we aimed to describe critical therapeutic differences among the OM-3 fatty acids, focusing on differences between fish oil supplements and Rx OM-3s. METHODS A narrative review of known papers salient to this topic was conducted. RESULTS Despite the multiple purported clinical benefits, the published evidence for OM-3 dietary supplements is generally insufficient, inconsistent, or negative. Rx OM-3 products are indicated as an adjunct to diet to reduce triglycerides (TG) in adults with severe hypertriglyceridemia (TG ≥ 500 mg/dl). Recently, the Rx eicosapentaenoic acid (EPA)-only OM-3, icosapent ethyl, demonstrated cardiovascular (CV) risk reduction among statin-treated patients at high risk of CV disease in a large CV outcomes trial (CVOT), and is now also indicated as an adjunct to maximally tolerated statin therapy to reduce the risk of myocardial infarction, stroke, coronary revascularization, and unstable angina requiring hospitalization in adult patients with elevated TG (≥ 150 mg/dL) and established CVD or diabetes mellitus and ≥ 2 additional risk factors for CVD. In contrast to the rigorous regulatory standards for safety, efficacy, and manufacturing of medications (whether Rx or over the counter), the Food and Drug Administration manages dietary supplements as food. Issues specific to OM-3 dietary supplements include variable content, labeling inconsistencies, and poor product quality/impurity. Given these issues, OM-3 dietary supplements should not be substituted for Rx OM-3 products. The efficacy of the EPA-only Rx OM-3 product in a large CVOT cannot be extrapolated to other OM-3 products. CONCLUSION Consumers and health care providers need to recognize critical differences between Rx and OM-3 dietary supplements to ensure appropriate use of each OM-3 product.
Collapse
Affiliation(s)
- Daniel E Hilleman
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA.
| | | | - Michael B Bottorff
- Department of Pharmacy Practice, Manchester University, Fort Wayne, IN, USA
| |
Collapse
|
14
|
Skulas-Ray AC, Wilson PWF, Harris WS, Brinton EA, Kris-Etherton PM, Richter CK, Jacobson TA, Engler MB, Miller M, Robinson JG, Blum CB, Rodriguez-Leyva D, de Ferranti SD, Welty FK. Omega-3 Fatty Acids for the Management of Hypertriglyceridemia: A Science Advisory From the American Heart Association. Circulation 2019; 140:e673-e691. [PMID: 31422671 DOI: 10.1161/cir.0000000000000709] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypertriglyceridemia (triglycerides 200-499 mg/dL) is relatively common in the United States, whereas more severe triglyceride elevations (very high triglycerides, ≥500 mg/dL) are far less frequently observed. Both are becoming increasingly prevalent in the United States and elsewhere, likely driven in large part by growing rates of obesity and diabetes mellitus. In a 2002 American Heart Association scientific statement, the omega-3 fatty acids (n-3 FAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were recommended (at a dose of 2-4 g/d) for reducing triglycerides in patients with elevated triglycerides. Since 2002, prescription agents containing EPA+DHA or EPA alone have been approved by the US Food and Drug Administration for treating very high triglycerides; these agents are also widely used for hypertriglyceridemia. The purpose of this advisory is to summarize the lipid and lipoprotein effects resulting from pharmacological doses of n-3 FAs (>3 g/d total EPA+DHA) on the basis of new scientific data and availability of n-3 FA agents. In treatment of very high triglycerides with 4 g/d, EPA+DHA agents reduce triglycerides by ≥30% with concurrent increases in low-density lipoprotein cholesterol, whereas EPA-only did not raise low-density lipoprotein cholesterol in very high triglycerides. When used to treat hypertriglyceridemia, n-3 FAs with EPA+DHA or with EPA-only appear roughly comparable for triglyceride lowering and do not increase low-density lipoprotein cholesterol when used as monotherapy or in combination with a statin. In the largest trials of 4 g/d prescription n-3 FA, non-high-density lipoprotein cholesterol and apolipoprotein B were modestly decreased, indicating reductions in total atherogenic lipoproteins. The use of n-3 FA (4 g/d) for improving atherosclerotic cardiovascular disease risk in patients with hypertriglyceridemia is supported by a 25% reduction in major adverse cardiovascular events in REDUCE-IT (Reduction of Cardiovascular Events With EPA Intervention Trial), a randomized placebo-controlled trial of EPA-only in high-risk patients treated with a statin. The results of a trial of 4 g/d prescription EPA+DHA in hypertriglyceridemia are anticipated in 2020. We conclude that prescription n-3 FAs (EPA+DHA or EPA-only) at a dose of 4 g/d (>3 g/d total EPA+DHA) are an effective and safe option for reducing triglycerides as monotherapy or as an adjunct to other lipid-lowering agents.
Collapse
|
15
|
|
16
|
Preston Mason R. New Insights into Mechanisms of Action for Omega-3 Fatty Acids in Atherothrombotic Cardiovascular Disease. Curr Atheroscler Rep 2019; 21:2. [PMID: 30637567 PMCID: PMC6330561 DOI: 10.1007/s11883-019-0762-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Treatment of hypercholesterolemia with statins results in significant reductions in cardiovascular risk; however, individuals with well-controlled low-density lipoprotein cholesterol (LDL-C) levels, but persistent high triglycerides (TG), remain at increased risk. Genetic and epidemiologic studies have shown that elevated fasting TG levels are associated with incident cardiovascular events. At effective doses, omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), lower TG levels but may have additional atheroprotective properties compared to other TG-lowering therapies such as niacin and fibrates. The purpose of this review is to evaluate mechanisms related to the potential benefits of omega-3 fatty acids in atherothrombotic disease. RECENT FINDINGS Large randomized clinical trials are currently under way to test the cardiovascular benefits of omega-3 fatty acids at a pharmacologic dosage (4 g/day). A large randomized trial with a prescription EPA-only formulation was shown to reduce a composite of cardiovascular events by 25% in statin-treated patients with established cardiovascular disease or diabetes and other CV risk factors. EPA and DHA have distinct tissue distributions as well as disparate effects on membrane structure and lipid dynamics, rates of lipid oxidation, and signal transduction pathways. Compared to other TG-lowering therapies, EPA has been found to inhibit cholesterol crystal formation, inflammation, and oxidative modification of atherogenic lipoprotein particles. The anti-inflammatory and endothelial benefits of EPA are enhanced in combination with a statin. Omega-3 fatty acids like EPA only at a pharmacologic dose reduce fasting TG and interfere with mechanisms of atherosclerosis that results in reduced cardiovascular events. Additional mechanistic trials will provide further insights into their role in reducing cardiovascular risk in subjects with well-managed LDL-C but elevated TG levels.
Collapse
Affiliation(s)
- R Preston Mason
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Elucida Research LLC, Beverly, MA, 01915, USA.
| |
Collapse
|
17
|
Heller M, Gemming L, Tung C, Grant R. Oxidation of fish oil supplements in Australia. Int J Food Sci Nutr 2019; 70:540-550. [DOI: 10.1080/09637486.2018.1542666] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Monique Heller
- Australasian Research Institute, Sydney Adventist Hospital, Wahroonga, Australia
- University of Sydney, Nutrition and Dietetics Group, Charles Perkins Centre, School of Life and Environmental Sciences, Sydney, Australia
| | - Luke Gemming
- University of Sydney, Nutrition and Dietetics Group, Charles Perkins Centre, School of Life and Environmental Sciences, Sydney, Australia
| | - Chin Tung
- Australasian Research Institute, Sydney Adventist Hospital, Wahroonga, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Wahroonga, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Sydney Adventist Hospital Clinical School, University of Sydney, Sydney, Australia
| |
Collapse
|
18
|
Jansson P, Kay B. Aldehydes identified in commercially available ω-3 supplements via 1 H NMR spectroscopy. Nutrition 2018; 60:74-79. [PMID: 30529885 DOI: 10.1016/j.nut.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/13/2018] [Accepted: 10/07/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Cardiovascular disease (CVD) is the leading cause of mortality globally. Studies have suggested that supplementary ω-3 oils may provide cardiovascular protection, although the literature is equivocal. Recently, it has been established that many commercially available ω-3 supplements are unacceptably oxidized, leading to myriad potential health risks. One oxidation product of concern is aldehydes, which have been shown to have mutagenic, cytotoxic, and inflammatory properties that may contribute to many different disease processes, including CVD. The aim of this study was to assess the prevalence of aldehyde contamination in commercially available ω-3 supplements. METHODS We tested 12 different ω-3 oils (6 fish, 4 krill, 2 algae), using 1 H-nuclear magnetic resonance scanning. This work is of a pilot nature, as such we randomly selected and purchased 12 different oils over the counter from various local retailers according to the sales representatives' recommendations. RESULTS The four krill products contained aldehydes at concentrations between 5.652 (±0.496) and 6.779 (±1.817) mMol/L. Both algae samples contained aldehydes: 1.235 (±0.111) and 1.565 (±0.618) mMol/L. Two of the six fish oils contained aldehydes 1.568 (±0.291) and 4.319 (±2.361) mMol/L. There is currently no standard for aldehyde content nor for labeling of ω-3 supplements. Two-thirds (8 of 12) of the ω-3 supplements tested in this study contained aldehydes. Aldehydes have the potential to precipitate serious health problems even at very low absolute intake volumes. These findings may provide reason for sober reflection.
Collapse
Affiliation(s)
- Pim Jansson
- Independent nutritionist and biomedical scientist, Mapua, New Zealand
| | - Bartholomew Kay
- Independent physiologist and nutritionist, Mapua, New Zealand.
| |
Collapse
|
19
|
Wang W, Yang H, Johnson D, Gensler C, Decker E, Zhang G. Chemistry and biology of ω-3 PUFA peroxidation-derived compounds. Prostaglandins Other Lipid Mediat 2017; 132:84-91. [DOI: 10.1016/j.prostaglandins.2016.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022]
|
20
|
High-quality fish oil has a more favourable effect than oxidised fish oil on intermediate-density lipoprotein and LDL subclasses: a randomised controlled trial. Br J Nutr 2017; 117:1291-1298. [PMID: 28558855 DOI: 10.1017/s0007114517001167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fish oil (FO) supplementation reduces the risk of CVD. However, it is not known if FO of different qualities have different effects on lipoprotein subclasses in humans. We aimed at investigating the effects of oxidised FO and high-quality FO supplementation on lipoprotein subclasses and their lipid concentrations in healthy humans. In all, fifty-four subjects completed a double-blind randomised controlled intervention study. The subjects were randomly assigned to receive high-quality FO (n 17), oxidised FO (n 18) or high-oleic sunflower oil capsules (HOSO, n 19) for 7 weeks. The concentration of marine n-3 fatty acids was equal in high-quality FO and oxidised FO (1·6 g EPA+DHA/d). The peroxide value (PV) and anisidine value (AV) were 4 mEq/kg and 3 in high-quality FO and HOSO, whereas the PV and AV in the oxidised FO were 18 mEq/kg and 9. Blood samples were collected at baseline and end of study. NMR spectroscopy was applied for the analysis of lipoprotein subclasses and their lipid concentrations. High-quality FO reduced the concentration of intermediate-density lipoprotein (IDL) particles and large, medium and small LDL particles, as well as the concentrations of total lipids, phospholipids, total cholesterol, cholesteryl esters and free cholesterol in IDL and LDL subclasses compared with oxidised FO and HOSO. Hence, high-quality FO and oxidised FO differently affect lipid composition in lipoprotein subclasses, with a more favourable effect mediated by high-quality FO. In future trials, reporting the oxidation levels of FO would be useful.
Collapse
|
21
|
Bannenberg G, Mallon C, Edwards H, Yeadon D, Yan K, Johnson H, Ismail A. Omega-3 Long-Chain Polyunsaturated Fatty Acid Content and Oxidation State of Fish Oil Supplements in New Zealand. Sci Rep 2017; 7:1488. [PMID: 28469193 PMCID: PMC5431122 DOI: 10.1038/s41598-017-01470-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/22/2017] [Indexed: 11/12/2022] Open
Abstract
Forty-seven fish oil products available on the New Zealand market were analyzed for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content, as well as for oxidative status in a collaborative effort by several analytical laboratories. Of the tested products, 72%, 86% and 77% complied with voluntary industry-set maximum limits on Peroxide Value (PV), para-Anisidine Value (p-AV), and TOTOX, respectively. 91% of the products complied with EPA/DHA content claims. All fish oils complied with a p-AV limit of 30, 98% with a PV limit of 10 meq O2/kg, and 96% with a calculated TOTOX value of 50, which are less stringent limits used by the European and British Pharmacopeia and the Australian authorities. The results are in stark contrast to the very low percentage of fish oil products reported to be in compliance with primary oxidation limits and EPA/DHA content by a recently published assessment of fish oil supplements in New Zealand. Possible reasons for this discrepancy are evaluated and discussed.
Collapse
Affiliation(s)
- Gerard Bannenberg
- Global Organization for EPA and DHA omega-3s (GOED), 1075 Hollywood Ave, Salt Lake City, UT, 84105, USA
| | - Craig Mallon
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD, 21045, USA
| | - Holly Edwards
- Omega Protein, 6961 Brookhollow West Dr., Suite 190, Houston, TX, 77040-3256, USA
| | - Derek Yeadon
- Eurofins Central Analytical Laboratories, 2219 Lakeshore Drive, Suite 100, New Orleans, LA, 70122, USA
| | - Kevin Yan
- Nutrasource Diagnostics Inc, 203-120 Research lane, Guelph, ON, N1G 0B4, Canada
| | - Holly Johnson
- Alkemist Labs, 1260 Logan Ave, Costa Mesa, CA, 92626, USA
| | - Adam Ismail
- Global Organization for EPA and DHA omega-3s (GOED), 1075 Hollywood Ave, Salt Lake City, UT, 84105, USA.
| |
Collapse
|
22
|
Mason RP, Sherratt SC. Omega-3 fatty acid fish oil dietary supplements contain saturated fats and oxidized lipids that may interfere with their intended biological benefits. Biochem Biophys Res Commun 2017; 483:425-429. [DOI: 10.1016/j.bbrc.2016.12.127] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 11/29/2022]
|
23
|
Bioavailability of n-3 fatty acids from n-3-enriched foods and fish oil with different oxidative quality in healthy human subjects: a randomised single-meal cross-over study. J Nutr Sci 2016; 5:e43. [PMID: 28620470 PMCID: PMC5465811 DOI: 10.1017/jns.2016.34] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/23/2023] Open
Abstract
Regular consumption of long-chain n-3 fatty acids (LC n-3 FA) reduces postprandial triacylglycerolaemia. Functional foods and supplements are alternative sources of LC n-3 FA; however, emulsification technologies, food matrices and altered lipid oxidation levels affect their bioavailability. Moreover, which functional foods are optimal LC n-3 FA carriers is unknown. The aim of the study was to determine the bioavailability of LC n-3 FA and the postprandial TAG response after the intake of oxidised or non-oxidised cod liver oil and after the intake of emulsified or non-emulsified LC n-3 FA using novel functional food items as LC n-3 FA carriers in a randomised cross-over acute study. A total of twenty-four healthy subjects completed the study in which subjects consumed one of four different test meals containing 1·5 g LC n-3 FA, or a control meal with no LC n-3 FA. Postprandial TAG-rich lipoproteins were isolated and their fatty acid composition was measured. The LC n-3 FA from emulsified foods were more rapidly incorporated into TAG-rich lipoproteins compared with non-emulsified foods. The incorporation of LC n-3 FA was similar for oils emulsified in yogurt or juice and was unaffected by the oxidative status of the oil. Postprandial TAG levels did not differ among the various test meals. In conclusion, emulsification increases the bioavailability of LC n-3 FA through a more rapid incorporation into TAG-rich lipoproteins, and juice and yogurt are equally suited as LC n-3 FA carriers. The acute intake of oxidised cod liver oil does not influence the incorporation of LC n-3 FA into TAG-rich lipoproteins.
Collapse
|
24
|
Myhrstad MCW, Ottestad I, Günther CC, Ryeng E, Holden M, Nilsson A, Brønner KW, Kohler A, Borge GIA, Holven KB, Ulven SM. The PBMC transcriptome profile after intake of oxidized versus high-quality fish oil: an explorative study in healthy subjects. GENES AND NUTRITION 2016; 11:16. [PMID: 27551317 PMCID: PMC4968435 DOI: 10.1186/s12263-016-0530-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 04/06/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Marine long-chain polyunsaturated fatty acids are susceptible to oxidation, generating a range of different oxidation products with suggested negative health effects. The aim of the present study was to utilize sensitive high-throughput transcriptome analyses to investigate potential unfavorable effects of oxidized fish oil (PV: 18 meq/kg; AV: 9) compared to high-quality fish oil (PV: 4 meq/kg; AV: 3). METHODS In a double-blinded randomized controlled study for seven weeks, 35 healthy subjects were assigned to 8 g of either oxidized fish oil or high quality fish oil. The daily dose of EPA+DHA was 1.6 g. Peripheral blood mononuclear cells were isolated at baseline and after 7 weeks and transcriptome analyses were performed with the illuminaHT-12 v4 Expression BeadChip. RESULTS No gene transcripts, biological processes, pathway or network were significantly changed in the oxidized fish oil group compared to the fish oil group. Furthermore, gene sets related to oxidative stress and cardiovascular disease were not differently regulated between the groups. Within group analyses revealed a more prominent effect after intake of high quality fish oil as 11 gene transcripts were significantly (FDR < 0.1) changed from baseline versus three within the oxidized fish oil group. CONCLUSION The suggested concern linking lipid oxidation products to short-term unfavorable health effects may therefore not be evident at a molecular level in this explorative study. TRIAL REGISTRATION ClinicalTrials.gov, NCT01034423.
Collapse
Affiliation(s)
- Mari C W Myhrstad
- Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. Box 4, St. Olavs plass, 0130 Oslo, Norway
| | - Inger Ottestad
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway ; Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. Box 4, St. Olavs plass, 0130 Oslo, Norway
| | | | - Einar Ryeng
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | | | - Astrid Nilsson
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, Aas, N-1431 Norway
| | - Kirsti W Brønner
- TINE SA, Centre for Research and Development, P.O. Box 7, Kalbakken, 0902 Oslo, Norway
| | - Achim Kohler
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, Aas, N-1431 Norway ; Department of Mathematical Sciences and Technology (IMT), Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Grethe I A Borge
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, Aas, N-1431 Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway ; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Rikshospitalet, P.O Box 4950, Nydalen, Oslo, Norway
| | - Stine M Ulven
- Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. Box 4, St. Olavs plass, 0130 Oslo, Norway ; Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway
| |
Collapse
|
25
|
Jackowski SA, Alvi AZ, Mirajkar A, Imani Z, Gamalevych Y, Shaikh NA, Jackowski G. Oxidation levels of North American over-the-counter n-3 (omega-3) supplements and the influence of supplement formulation and delivery form on evaluating oxidative safety. J Nutr Sci 2015; 4:e30. [PMID: 26688721 PMCID: PMC4678768 DOI: 10.1017/jns.2015.21] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/23/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to evaluate the oxidation status of North American n-3 (omega-3) PUFA nutritional supplements commercially available in Canada and evaluate the influence of product formulation and delivery form on oxidative safety. A total of 171 North American over-the-counter n-3 PUFA nutritional supplements were analysed for oxidation safety. Primary and secondary oxidation and total oxidation (TOTOX) were determined using the American Oil Chemists' Society (AOCS) procedures. Comparisons between supplements' final forms, oil source and n-3 PUFA concentration quartiles, as measures of product formulations and delivery forms, were compared using ANOVA. Of the products successfully tested, 50 % exceeded the voluntary recommended levels for markers of oxidation. Another 18 % of products were approaching the limits with 1-3 years before expiration. Encapsulated products without flavour additives had significantly lower secondary and TOTOX levels than bulk oils and flavoured products (P < 0·05). Children's products had significantly higher primary, secondary and TOTOX levels compared with all other products (P < 0·05). Markers of oxidation did not differ between oil sources (P > 0·05), with the exception of krill oil products having higher secondary oxidation levels than plant-based products (P > 0·05). Markers of oxidation did not differ between n-3 PUFA supplement concentration quartiles. Consumers may be at risk of exposure to higher levels of oxidative products. New regulatory mandates need to be introduced to ensure that all n-3 PUFA products, used as nutritional supplements, regardless of their formulation or delivery form, can be tested for oxidative safety and compliance.
Collapse
Affiliation(s)
- Stefan A Jackowski
- University of Saskatchewan , Saskatoon , SK , Canada ; Pivotal Therapeutics Inc. , Woodbridge , ON , Canada
| | - Azhar Z Alvi
- Pivotal Therapeutics Inc. , Woodbridge , ON , Canada
| | | | - Zahabia Imani
- Pivotal Therapeutics Inc. , Woodbridge , ON , Canada
| | | | | | | |
Collapse
|
26
|
ω-3 Fatty Acids and Cardiovascular Diseases: Effects, Mechanisms and Dietary Relevance. Int J Mol Sci 2015; 16:22636-61. [PMID: 26393581 PMCID: PMC4613328 DOI: 10.3390/ijms160922636] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/01/2015] [Accepted: 09/09/2015] [Indexed: 02/06/2023] Open
Abstract
ω-3 fatty acids (n-3 FA) have, since the 1970s, been associated with beneficial health effects. They are, however, prone to lipid peroxidation due to their many double bonds. Lipid peroxidation is a process that may lead to increased oxidative stress, a condition associated with adverse health effects. Recently, conflicting evidence regarding the health benefits of intake of n-3 from seafood or n-3 supplements has emerged. The aim of this review was thus to examine recent literature regarding health aspects of n-3 FA intake from fish or n-3 supplements, and to discuss possible reasons for the conflicting findings. There is a broad consensus that fish and seafood are the optimal sources of n-3 FA and consumption of approximately 2-3 servings per week is recommended. The scientific evidence of benefits from n-3 supplementation has diminished over time, probably due to a general increase in seafood consumption and better pharmacological intervention and acute treatment of patients with cardiovascular diseases (CVD).
Collapse
|
27
|
Marventano S, Kolacz P, Castellano S, Galvano F, Buscemi S, Mistretta A, Grosso G. A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: does the ratio really matter? Int J Food Sci Nutr 2015; 66:611-22. [PMID: 26307560 DOI: 10.3109/09637486.2015.1077790] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) have been considered of great interest for human health due to their potential anti-inflammatory action that may protect from a number of chronic-degenerative diseases with an inflammatory pathogenesis. This review aimed to report the most updated evidence of both n-3 and n-6 PUFAs effect on cardiovascular disease, cancer, and depression in humans. Attention has been also paid to those studies exploring the effects of the ratio intake. Results from pooled analyses of human studies reported a general positive effect of n-3 PUFAs intake on all outcomes considered. In contrast, the role of n-6 PUFAs on human health needs to be better assessed in order to clearly identify which compound exerts beneficial/harmful effects. Only a limited number of clinical studies considered the n-3:n-6 PUFAs ratio, rather reporting contrasting results. A number of limitations when considering the ratio between these two families of PUFAs have risen.
Collapse
Affiliation(s)
- Stefano Marventano
- a Department of Medical, Surgical Sciences, and Advanced Technologies "G.F. Ingrassia", Section of Hygiene and Public Health , University of Catania , Catania , Italy
| | - Paulina Kolacz
- b Department of Human Nutrition , Jagiellonian University Medical College in Krakow , Krakow , Poland
| | - Sabrina Castellano
- c Department of Biomedical and Biotechnological Sciences, Section of Pharmacology and Biochemistry , University of Catania , Catania , Italy , and
| | - Fabio Galvano
- c Department of Biomedical and Biotechnological Sciences, Section of Pharmacology and Biochemistry , University of Catania , Catania , Italy , and
| | - Silvio Buscemi
- d Department of Internal Medicine , University of Palermo , Palermo , Italy
| | - Antonio Mistretta
- a Department of Medical, Surgical Sciences, and Advanced Technologies "G.F. Ingrassia", Section of Hygiene and Public Health , University of Catania , Catania , Italy
| | - Giuseppe Grosso
- a Department of Medical, Surgical Sciences, and Advanced Technologies "G.F. Ingrassia", Section of Hygiene and Public Health , University of Catania , Catania , Italy
| |
Collapse
|
28
|
Effect of n-3 PUFA supplementation at different EPA:DHA ratios on the spontaneously hypertensive obese rat model of the metabolic syndrome. Br J Nutr 2015; 113:878-87. [DOI: 10.1017/s0007114514004437] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The increasing incidence of the metabolic syndrome (MetS), a combination of risk factors before the onset of CVD and type 2 diabetes, encourages studies on the role of functional food components such as long-chain n-3 PUFA as preventive agents. In the present study, we explore the effect of EPA and DHA supplementation in different proportions on spontaneously hypertensive obese (SHROB) rats, a model for the MetS in a prediabetic state with mild oxidative stress. SHROB rats were randomised into four groups (n 7), each supplemented with EPA/DHA at ratios of 1:1, 2:1 and 1:2, or soyabean oil as the control for 13 weeks. The results showed that in all the proportions tested, EPA/DHA supplementation significantly lowered total and LDL-cholesterol concentrations, compared with those of the control group. EPA/DHA supplementation at the ratios of 1:1 and 2:1 significantly decreased inflammation (C-reactive protein levels) and lowered oxidative stress (decreased excretion of urinary isoprostanes), mainly at the ratio of 1:2. The activity of antioxidant enzymes increased in erythrocytes, abdominal fat and kidneys, with magnitudes depending on the EPA:DHA ratio. PUFA mixtures from fish affected different MetS markers of CVD risk factors in SHROB rats, depending on the ratios of EPA/DHA supplementation. The activation of endogenous defence systems may be related to the reduction of inflammation and oxidative stress.
Collapse
|
29
|
Giordano E, Visioli F. Long-chain omega 3 fatty acids: molecular bases of potential antioxidant actions. Prostaglandins Leukot Essent Fatty Acids 2014; 90:1-4. [PMID: 24345866 DOI: 10.1016/j.plefa.2013.11.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/20/2022]
Abstract
Several lines of investigation are being developed to assess the impact of polyunsaturated fatty acids, namely those of the omega 3 series, intake on oxidative stress. Keeping in mind that there might be a dose-response relation, in vivo and in vitro data strongly suggest that omega 3 fatty acids might act as anti- rather than pro-oxidant in several cells such as vascular cells, hence diminishing inflammation, oxidative stress, and, in turn, the risk of atherosclerosis and degenerative disorders such as cardiovascular disease.
Collapse
Affiliation(s)
- Elena Giordano
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid, Spain.
| |
Collapse
|