1
|
Wang C, Yang X, Guo D, Huo W, Yu N, Zhang Y. Transcranial direct current stimulation-induced changes in motor cortical connectivity are associated with motor gains following ischemic stroke. Sci Rep 2024; 14:15645. [PMID: 38977806 PMCID: PMC11231232 DOI: 10.1038/s41598-024-66464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Understanding the response of the injured brain to different transcranial direct current stimulation (tDCS) montages may help explain the variable tDCS treatment results on poststroke motor gains. Cortical connectivity has been found to reflect poststroke motor gains and cortical plasticity, but the changes in connectivity following tDCS remain unknown. We aimed to investigate the relationship between tDCS-induced changes in cortical connectivity and poststroke motor gains. In this study, participants were assigned to receive four tDCS montages (anodal, cathodal, bilateral, and sham) over the primary motor cortex (M1) according to a single-blind, randomized, crossover design. Electroencephalography (EEG) and Jebsen-Taylor hand function test (JTT) were performed before and after the intervention. Motor cortical connectivity was measured using beta-band coherence with the ipsilesional and contralesional M1 as seed regions. Motor gain was evaluated based on the JTT completion time. We examined the relationship between baseline connectivity and clinical characteristics and that between changes in connectivity and motor gains after different tDCS montages. Baseline functional connectivity, motor impairment, and poststroke duration were correlated. High ipsilesional M1-frontal-temporal connectivity was correlated with a good baseline motor status, and increased connectivity was accompanied by good functional improvement following anodal tDCS treatment. Low contralesional M1-frontal-central connectivity was correlated with a good baseline motor status, and decreased connectivity was accompanied by good functional improvement following cathodal tDCS treatment. In conclusion, EEG-based motor cortical connectivity was correlated with stroke characteristics, including motor impairment and poststroke duration, and motor gains induced by anodal and cathodal tDCS.
Collapse
Affiliation(s)
- Chunfang Wang
- Rehabilitation Medical Department, Tianjin Union Medical Centre, Tianjin, China
- Tianjin Institute of Rehabilitation, Tianjin, China
- Tianjin Key Specialty of Spinal Rehabilitation with Integrated Traditional Chinese and Western Medicine, Tianjin, China
| | - Xiangli Yang
- Otolaryngological Department, Tianjin Union Medical Centre, Tianjin, China.
| | - Dan Guo
- Rehabilitation Medical Department, Tianjin Union Medical Centre, Tianjin, China
- Tianjin Institute of Rehabilitation, Tianjin, China
- Tianjin Key Specialty of Spinal Rehabilitation with Integrated Traditional Chinese and Western Medicine, Tianjin, China
| | - Weiguang Huo
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, China.
| | - Ying Zhang
- Rehabilitation Medical Department, Tianjin Union Medical Centre, Tianjin, China.
- Tianjin Institute of Rehabilitation, Tianjin, China.
- Tianjin Key Specialty of Spinal Rehabilitation with Integrated Traditional Chinese and Western Medicine, Tianjin, China.
| |
Collapse
|
2
|
Sanna A, Pau M, Pilia G, Porta M, Casu G, Secci V, Cartella E, Demattia A, Firinu S, Pau C, Milia A, Cocco E, Tacconi P. Comparison of Two Therapeutic Approaches of Cerebellar Transcranial Direct Current Stimulation in a Sardinian Family Affected by Spinocerebellar Ataxia 38: a Clinical and Computerized 3D Gait Analysis Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:973-980. [PMID: 37540312 DOI: 10.1007/s12311-023-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Spinocerebellar ataxia 38 (SCA 38) is a very rare autosomal dominant inherited disorder caused by a mutation in ELOV5 gene, specifically expressed in cerebellar Purkinje cells, encoding an enzyme involved in the synthesis of fatty acids. Seven symptomatic SCA 38 patients of a Sardinian family were administered 15 sessions of cerebellar anodal transcranial direct current stimulation (tDCS) in a cross-over study, employing deltoid cerebellar-only (C-tDCS) and cerebello-spinal (CS-tDCS) cathodal montage. Clinical evaluation was performed at baseline (T0), after 15 sessions of tDCS (T1) and after 1 month of follow-up (T2). Modified International Cooperative Ataxia Rating Scale (MICARS) and the Robertson dysarthria profile were used to rate ataxic and dysarthric symptoms, respectively. Alertness and split attention tests from Zimmermann test battery for attentional performance were employed to rate attentive functions. Moreover, 3D computerized gait analysis was employed to obtain a quantitative measure of efficacy of tDCS on motor symptoms. While clinical data showed that both CS and C-tDCS improved motor, dysarthric, and cognitive scores, the quantitative analysis of gait revealed significant improvement in spatio-temporal parameters only for C-tDCS treatment. Present findings, yet preliminary and limited by the small size of the tested sample, confirm the therapeutic potential of cerebellar tDCS in improving motor and cognitive symptoms in spinocerebellar ataxias and underline the need to obtain quantitative and objective measures to monitor the efficacy of a therapeutic treatment and to design tailored rehabilitative interventions. ClinicalTrials.gov identifier: NCT05951010.
Collapse
Affiliation(s)
- Angela Sanna
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy.
| | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | | | - Micaela Porta
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Giulia Casu
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Valentina Secci
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy
| | | | | | - Stefano Firinu
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy
| | - Chiara Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Antonio Milia
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Cagliari, Italy
| | - Paolo Tacconi
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Navarro-López V, Del-Valle-Gratacós M, Carratalá-Tejada M, Cuesta-Gómez A, Fernández-Vázquez D, Molina-Rueda F. The efficacy of transcranial direct current stimulation on upper extremity motor function after stroke: A systematic review and comparative meta-analysis of different stimulation polarities. PM R 2024; 16:496-510. [PMID: 37873699 DOI: 10.1002/pmrj.13088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND The efficacy of transcranial direct current stimulation (tDCS) has been studied extensively. The cathodic (c-tDCS), anodic (a-tDCS), and bihemispheric stimulation have demonstrated efficacy in the management of the paretic upper extremity (UE) after stroke, but it has not been determined which stimulation polarity has, so far, shown the best results. OBJECTIVE To evaluate the available evidence to determine which tDCS polarity has the best results in improving UE motor function after stroke. METHODS PubMed, PEDro, Web of Science, EMBASE, and SCOPUS databases were searched. Different Medical Subject Headings (MeSH) terms were combined for the search strategy, to cover all studies that performed a comparison between different tDCS configurations focused on UE motor rehabilitation in people with lived experience of stroke. RESULTS Fifteen studies remained for qualitative analysis and 12 for quantitative analysis. Non-significant differences with a 95% confidence interval (CI) were obtained for c-tDCS versus a-tDCS (g = 0.10, 95% CI = -0.13; 0.33, p = .39, N = 292), for a-tDCS versus bihemispheric (g = 0.02, 95% CI = -0.46; 0.42, p = .93, N = 81), and for c-tDCS versus bihemispheric (g = 0.09, 95% CI = -0.84; .66, p = .73, N = 100). No significant differences between the subgroups of the meta-analysis were found. CONCLUSIONS The results of the present meta-analysis showed no evidence that a stimulation polarity is superior to the others in the rehabilitation of UE motor function after stroke. A non-significant improvement trend was observed toward c-tDCS compared to a-tDCS.
Collapse
Affiliation(s)
- Víctor Navarro-López
- International Doctoral School, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
| | | | - María Carratalá-Tejada
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
| | - Alicia Cuesta-Gómez
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
| | - Diego Fernández-Vázquez
- International Doctoral School, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
| | - Francisco Molina-Rueda
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
4
|
Choi DS, Lee S. Optimizing electrode placement for transcranial direct current stimulation in nonsuperficial cortical regions: a computational modeling study. Biomed Eng Lett 2024; 14:255-265. [PMID: 38374912 PMCID: PMC10874366 DOI: 10.1007/s13534-023-00335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 02/21/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique for modulating neuronal excitability by sending a weak current through electrodes attached to the scalp. For decades, the conventional tDCS electrode for stimulating the superficial cortex has been widely reported. However, the investigation of the optimal electrode to effectively stimulate the nonsuperficial cortex is still lacking. In the current study, the optimal tDCS electrode montage that can deliver the maximum electric field to nonsuperficial cortical regions is investigated. Two finite element head models were used for computational simulation to determine the optimal montage for four different nonsuperficial regions: the left foot motor cortex, the left dorsomedial prefrontal cortex (dmPFC), the left medial orbitofrontal cortex (mOFC), and the primary visual cortex (V1). Our findings showed a good consistency in the optimal montage between two models, which led to the anode and cathode being attached to C4-C3 for the foot motor, F4-F3 for the dmPFC, Fp2-F7 for the mOFC, and Oz-Cz for V1. Our suggested montages are expected to enhance the overall effectiveness of stimulation of nonsuperficial cortical areas. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-023-00335-2.
Collapse
Affiliation(s)
- Da Som Choi
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
| | - Sangjun Lee
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
5
|
Chang H, Sheng Y, Liu J, Yang H, Pan X, Liu H. Noninvasive Brain Imaging and Stimulation in Post-Stroke Motor Rehabilitation: A Review. IEEE Trans Cogn Dev Syst 2023; 15:1085-1101. [DOI: 10.1109/tcds.2022.3232581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Hui Chang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Yixuan Sheng
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Jinbiao Liu
- Research Centre for Augmented Intelligence, Zhejiang Laboratory, Artificial Intelligence Research Institute, Hangzhou, China
| | - Hongyu Yang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Xiangyu Pan
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Honghai Liu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| |
Collapse
|
6
|
Zhou K, Zhou Y, Zeng Y, Zhang J, Cai X, Qin J, Li Z, Yan F. Research Hotspots and Global Trends of Transcranial Direct Current Stimulation in Stroke: A Bibliometric Analysis. Neuropsychiatr Dis Treat 2023; 19:601-613. [PMID: 36950717 PMCID: PMC10025138 DOI: 10.2147/ndt.s400923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/25/2023] [Indexed: 03/24/2023] Open
Abstract
Purpose Transcranial direct current stimulation has been widely used in the clinical treatment of stroke. The purpose of this study was to perform a bibliometric analysis of scientific literature in this field. Methods Articles and reviews regarding transcranial direct current stimulation in stroke from January 01, 2004 to May 31, 2022 were identified from the Science Citation Index-Expanded of the Web of Science Core Collection database. CiteSpace 6.1.R2, Bibliometrix and the Bibliometric Online Analysis Platform were used to analyze data. Results A total of 905 papers were obtained, with the highest number of publications coming from the USA. The institutions and authors with the most publications were Harvard Medical School and Fregni F respectively. Nitsche MA had the most co-citations, followed by Fregni F. Neurosciences was the most fruitful research area and Brain Stimulation had the highest H-index. The research topics could be divided into three sections: mechanisms of treatment, comparison of efficacy with transcranial magnetic stimulation, clinical application of post-stroke dysfunction. The field of "walking", "strength" and "virtual reality therapy" are the future research hotspots of transcranial direct current stimulation. Conclusion The overall research showed a slow growth trend, and the outstanding contribution of the USA in this field cannot be ignored. Relevant researchers are suggested to focus on international collaboration and actively conduct high-quality randomized controlled clinical trials on research hotspots and frontiers in order to identify the optimal stimulation paradigm for clinical purposes.
Collapse
Affiliation(s)
- Kebing Zhou
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Yu Zhou
- Department of Rehabilitation, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Yuena Zeng
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Jiahui Zhang
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Xiaoyan Cai
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Jieying Qin
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
- Correspondence: Fengxia Yan; Jiahui Zhang, School of Nursing, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, 510632, People’s Republic of China, Tel +86-20-85225836, Fax +86-20-8522227, Email ;
| |
Collapse
|
7
|
From Molecule to Patient Rehabilitation: The Impact of Transcranial Direct Current Stimulation and Magnetic Stimulation on Stroke-A Narrative Review. Neural Plast 2023; 2023:5044065. [PMID: 36895285 PMCID: PMC9991485 DOI: 10.1155/2023/5044065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 03/04/2023] Open
Abstract
Stroke is a major health problem worldwide, with numerous health, social, and economic implications for survivors and their families. One simple answer to this problem would be to ensure the best rehabilitation with full social reintegration. As such, a plethora of rehabilitation programs was developed and used by healthcare professionals. Among them, modern techniques such as transcranial magnetic stimulation and transcranial direct current stimulation are being used and seem to bring improvements to poststroke rehabilitation. This success is attributed to their capacity to enhance cellular neuromodulation. This modulation includes the reduction of the inflammatory response, autophagy suppression, antiapoptotic effects, angiogenesis enhancement, alterations in the blood-brain barrier permeability, attenuation of oxidative stress, influence on neurotransmitter metabolism, neurogenesis, and enhanced structural neuroplasticity. The favorable effects have been demonstrated at the cellular level in animal models and are supported by clinical studies. Thus, these methods proved to reduce infarct volumes and to improve motor performance, deglutition, functional independence, and high-order cerebral functions (i.e., aphasia and heminegligence). However, as with every therapeutic method, these techniques can also have limitations. Their regimen of administration, the phase of the stroke at which they are applied, and the patients' characteristics (i.e., genotype and corticospinal integrity) seem to influence the outcome. Thus, no response or even worsening effects were obtained under certain circumstances both in animal stroke model studies and in clinical trials. Overall, weighing up risks and benefits, the new transcranial electrical and magnetic stimulation techniques can represent effective tools with which to improve the patients' recovery after stroke, with minimal to no adverse effects. Here, we discuss their effects and the molecular and cellular events underlying their effects as well as their clinical implications.
Collapse
|
8
|
Zhang B, Huang F, Liu J, Zhang D. Bilateral transcranial direct current stimulation may be a feasible treatment of Parkinsonian tremor. Front Neurosci 2023; 17:1101751. [PMID: 36908793 PMCID: PMC9998710 DOI: 10.3389/fnins.2023.1101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
Background Parkinsonian tremor is a common pathological tremor that affects over 6 million people worldwide. It lowers patients' quality of life and threatens their career development, especially when patients' occupation requires dexterous manipulation. In spite of current available treatments in clinics, there is a lack of low-cost, low side-effect, effective solutions for Parkinsonian tremor. Transcranial direct current stimulation (tDCS) may be an alternative treatment. Objective In this research, we explored the immediate effect of tDCS with a novel bilateral electrode setup over Parkinsonian tremor. In such a bilateral setup, the cathode was placed over the primary cortex contralateral to the more affected side of Parkinsonian tremor while the anode symmetrically over the other hemisphere. It was designed as a modification to the traditional cathodal setup. The performance of this bilateral setup was compared with three other setups including anodal setup, cathodal setup, and sham (control). Methods A randomized, sham-controlled, double-blind, crossover experiment was carried out over 13 qualified patients diagnosed with idiopathic Parkinson's disease (PD). Before and after the stimulus of each tDCS setup, subjects were tested before and after tDCS with four measures, including the Unified Parkinson's Disease Rating Scale (UPDRS), Fahn-Tolosa-Marin Tremor Rating Scale (FTMTRS), Purdue Pegboard Test (PPT) and a self-design Continuous Tremor Signal Assessment (CTSA). Tremor intensity calculated from CTSA data were regarded as the primary outcome of the experiment. Results Statistical results of CTSA, FTMTRS and PPT showed both bilateral tDCS and cathodal tDCS effectively suppressed Parkinsonian tremor. A quantitative comparison of the effect in tremor suppression indicated the optimal suppressive effect was obtained with bilateral tDCS. Based on the results of UPDRS, anodal tDCS was found to benefit subjects' overall performance the most, however, it had little effect in improving Parkinsonian tremor, as revealed by the results of other evaluations. Conclusion Our study suggests a beneficial immediate effect of bilateral tDCS in Parkinsonian tremor suppression. In addition, we assume there may be an underlying interhemispheric unbalance of cortical excitability which contributes to Parkinsonian tremor genesis. Clinical trial registration Identifier: ChiCTR2100054804.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Mechanical Systems and Vibrations, Robotics Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Feifei Huang
- Department of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Liu
- Department of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dingguo Zhang
- Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom
| |
Collapse
|
9
|
Wong PL, Yang YR, Tang SC, Huang SF, Wang RY. Comparing different montages of transcranial direct current stimulation on dual-task walking and cortical activity in chronic stroke: double-blinded randomized controlled trial. BMC Neurol 2022; 22:119. [PMID: 35337288 PMCID: PMC8951706 DOI: 10.1186/s12883-022-02644-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation to modulate cortical activity for improving motor function. However, the different tDCS applications for modulating cortical activity and dual task gait performance in chronic stroke have not yet been investigated. This study investigated the effects of different tDCS applications on dual task gait performance and contralesional M1 activation in chronic stroke. METHODS Forty-eight participants were randomized to anodal, bilateral, cathodal, and sham tDCS groups. Each group received 20 min of tDCS stimulation, except the sham group. Gait performance was measured by GaitRite system during cognitive dual task (CDT) walking, motor dual task (MDT) walking, and single walking (SW). Contralesional M1 activity of unaffected tibialis anterior (TA) was measured using transcranial magnetic stimulation (TMS). Intragroup difference was analyzed by Wilconxon sign ranks test with Bonferroni correction, and Kruskal-Wallis one-way analysis of variance by ranks was used for intergroup comparisons, followed by post-hoc Mann-Whitney U tests with Bonferroni correction. RESULTS The bilateral tDCS (p = 0.017) and cathodal tDCS (p = 0.010) improved the CDT walking speed more than sham group. The bilateral tDCS (p = 0.048) and cathodal tDCS (p = 0.048) also improved the MDT walking speed more than sham group. Furthermore, bilateral tDCS (p = 0.012) and cathodal tDCS (p = 0.040) increased the silent period (SP) more than the anodal and sham group. Thus, one-session of bilateral and cathodal tDCS improved dual task walking performance paralleled with increasing contralesional corticomotor inhibition in chronic stroke. CONCLUSIONS Our results indicate that one-session of bilateral and cathodal tDCS increased contralesional corticomotor inhibition and improved dual task gait performance in chronic stroke. TRIAL REGISTRATION Thai Clinical Trials Registry (TCTR20180116001). Registered prospectively on 16th Jan, 2018 at http://www.thaiclinicaltrials.org .
Collapse
Affiliation(s)
- Pei-Ling Wong
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shun-Chang Tang
- Division of Nerve Repair- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shi-Fong Huang
- Division of Nerve Repair- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
| | - Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| |
Collapse
|
10
|
Muffel T, Shih PC, Kalloch B, Nikulin V, Villringer A, Sehm B. Differential effects of anodal and dual tDCS on sensorimotor functions in chronic hemiparetic stroke patients. Brain Stimul 2022; 15:509-522. [DOI: 10.1016/j.brs.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
|
11
|
Khan A, Yuan K, Bao SC, Ti CHE, Tariq A, Anjum N, Tong RKY. Can Transcranial Electrical Stimulation Facilitate Post-stroke Cognitive Rehabilitation? A Systematic Review and Meta-Analysis. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:795737. [PMID: 36188889 PMCID: PMC9397778 DOI: 10.3389/fresc.2022.795737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/11/2022] [Indexed: 01/12/2023]
Abstract
Background Non-invasive brain stimulation methods have been widely utilized in research settings to manipulate and understand the functioning of the human brain. In the last two decades, transcranial electrical stimulation (tES) has opened new doors for treating impairments caused by various neurological disorders. However, tES studies have shown inconsistent results in post-stroke cognitive rehabilitation, and there is no consensus on the effectiveness of tES devices in improving cognitive skills after the onset of stroke. Objectives We aim to systematically investigate the efficacy of tES in improving post-stroke global cognition, attention, working memory, executive functions, visual neglect, and verbal fluency. Furthermore, we aim to provide a pathway to an effective use of stimulation paradigms in future studies. Methods Preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines were followed. Randomized controlled trials (RCTs) were systematically searched in four different databases, including Medline, Embase, Pubmed, and PsychInfo. Studies utilizing any tES methods published in English were considered for inclusion. Standardized mean difference (SMD) for each cognitive domain was used as the primary outcome measure. Results The meta-analysis includes 19 studies assessing at least one of the six cognitive domains. Five RCTs studying global cognition, three assessing visual neglect, five evaluating working memory, three assessing attention, and nine studies focusing on aphasia were included for meta-analysis. As informed by the quantitative analysis of the included studies, the results favor the efficacy of tES in acute improvement in aphasic deficits (SMD = 0.34, CI = 0.02-0.67, p = 0.04) and attention deficits (SMD = 0.59, CI = -0.05-1.22, p = 0.07), however, no improvement was observed in any other cognitive domains. Conclusion The results favor the efficacy of tES in an improvement in aphasia and attentive deficits in stroke patients in acute, subacute, and chronic stages. However, the outcome of tES cannot be generalized across cognitive domains. The difference in the stimulation montages and parameters, diverse cognitive batteries, and variable number of training sessions may have contributed to the inconsistency in the outcome. We suggest that in future studies, experimental designs should be further refined, and standardized stimulation protocols should be utilized to better understand the therapeutic effect of stimulation.
Collapse
Affiliation(s)
- Ahsan Khan
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai Yuan
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi-Chun Bao
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Chun Hang Eden Ti
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Abdullah Tariq
- Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Nimra Anjum
- Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Raymond Kai-Yu Tong
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China,Hong Kong Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China,*Correspondence: Raymond Kai-Yu Tong
| |
Collapse
|
12
|
Coemans S, Struys E, Vandenborre D, Wilssens I, Engelborghs S, Paquier P, Tsapkini K, Keulen S. A Systematic Review of Transcranial Direct Current Stimulation in Primary Progressive Aphasia: Methodological Considerations. Front Aging Neurosci 2021; 13:710818. [PMID: 34690737 PMCID: PMC8530184 DOI: 10.3389/fnagi.2021.710818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022] Open
Abstract
A variety of tDCS approaches has been used to investigate the potential of tDCS to improve language outcomes, or slow down the decay of language competences caused by Primary Progressive Aphasia (PPA). The employed stimulation protocols and study designs in PPA are generally speaking similar to those deployed in post-stroke aphasic populations. These two etiologies of aphasia however differ substantially in their pathophysiology, and for both conditions the optimal stimulation paradigm still needs to be established. A systematic review was done and after applying inclusion and exclusion criteria, 15 articles were analyzed focusing on differences and similarities across studies especially focusing on PPA patient characteristics (age, PPA variant, language background), tDCS stimulation protocols (intensity, frequency, combined therapy, electrode configuration) and study design as recent reviews and group outcomes for individual studies suggest tDCS is an effective tool to improve language outcomes, while methodological approach and patient characteristics are mentioned as moderators that may influence treatment effects. We found that studies of tDCS in PPA have clinical and methodological and heterogeneity regarding patient populations, stimulation protocols and study design. While positive group results are usually found irrespective of these differences, the magnitude, duration and generalization of these outcomes differ when comparing stimulation locations, and when results are stratified according to the clinical variant of PPA. We interpret the results of included studies in light of patient characteristics and methodological decisions. Further, we highlight the role neuroimaging can play in study protocols and interpreting results and make recommendations for future work.
Collapse
Affiliation(s)
- Silke Coemans
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
| | - Esli Struys
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Dorien Vandenborre
- Department of Speech and Language Pathology, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Ineke Wilssens
- Department of Speech and Language Pathology, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Reference Center for Biological Markers of Dementia, BIODEM, Institute Born-Bunge, Universiteit Antwerpen, Antwerp, Belgium
| | - Philippe Paquier
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles, Antwerp, Belgium
- Department of Translational Neurosciences (TNW), Universiteit Antwerpen, Antwerp, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Stefanie Keulen
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
13
|
Transcranial direct current stimulation for improving ambulation after stroke: a systematic review and meta-analysis. Int J Rehabil Res 2021; 43:299-309. [PMID: 32675686 PMCID: PMC7643800 DOI: 10.1097/mrr.0000000000000427] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Achieving a sufficient level of functional ambulation remains to be a challenge to most stroke survivors. Different modes of transcranial direct current stimulation (tDCS) have been applied for improving various aspects of walking and mobility following stroke. However, systematic reviews before 2017 provided only general effects of tDCS on limited walking outcomes. Therefore, the aims of this study were to update the evidence of tDCS for improving walking and mobility after stroke with emphasis on individual outcomes and to delineate the effects of different modes of tDCS in subgroup analysis. The systematic search of PubMed, Medline, PEDro, Scopus, and Cochrane databases for studies published up to January 2019 identified 14 eligible reports. The PEDro scale indicated a good methodological quality of the included studies (score 6.8). The meta-analysis of primary outcomes revealed that active tDCS had no better effect than sham on walking speed [n = 7, standardized mean difference (SMD) = 0.189, P = 0.252] and 6-minute walking distance (n = 3, SMD = 0.209, P = 0.453). Among the secondary outcomes, significant positive effects were found on functional ambulation category (FAC) (n = 5, SMD = 0.542, P = 0.008), Rivermead Mobility Index (n = 3, SMD = 0.699, P = 0.008), and timed up and go test (TUG) (n = 5, SMD = 0.676, P = 0.001), whereas non-significant positive effects were found on Tinetti test (n = 3, SMD = 0.441, P = 0.062) and Berg Balance Scale (n = 2, SMD = 0.408, P = 0.177). In subgroup analyses, anodal tDCS had significant positive effects on FAC (n = 4, SMD = 0.611, P = 0.005) and dual-hemispheric tDCS on TUG (n = 2, SMD = 1.090, P = 0.000). The results provide up-to-date evidence of variable effects of tDCS on walking and functional mobility after stroke.
Collapse
|
14
|
Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, Brunelin J, Nakamura-Palacios EM, Marangolo P, Venkatasubramanian G, San-Juan D, Caumo W, Bikson M, Brunoni AR. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int J Neuropsychopharmacol 2021; 24:256-313. [PMID: 32710772 PMCID: PMC8059493 DOI: 10.1093/ijnp/pyaa051] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation has shown promising clinical results, leading to increased demand for an evidence-based review on its clinical effects. OBJECTIVE We convened a team of transcranial direct current stimulation experts to conduct a systematic review of clinical trials with more than 1 session of stimulation testing: pain, Parkinson's disease motor function and cognition, stroke motor function and language, epilepsy, major depressive disorder, obsessive compulsive disorder, Tourette syndrome, schizophrenia, and drug addiction. METHODS Experts were asked to conduct this systematic review according to the search methodology from PRISMA guidelines. Recommendations on efficacy were categorized into Levels A (definitely effective), B (probably effective), C (possibly effective), or no recommendation. We assessed risk of bias for all included studies to confirm whether results were driven by potentially biased studies. RESULTS Although most of the clinical trials have been designed as proof-of-concept trials, some of the indications analyzed in this review can be considered as definitely effective (Level A), such as depression, and probably effective (Level B), such as neuropathic pain, fibromyalgia, migraine, post-operative patient-controlled analgesia and pain, Parkinson's disease (motor and cognition), stroke (motor), epilepsy, schizophrenia, and alcohol addiction. Assessment of bias showed that most of the studies had low risk of biases, and sensitivity analysis for bias did not change these results. Effect sizes vary from 0.01 to 0.70 and were significant in about 8 conditions, with the largest effect size being in postoperative acute pain and smaller in stroke motor recovery (nonsignificant when combined with robotic therapy). CONCLUSION All recommendations listed here are based on current published PubMed-indexed data. Despite high levels of evidence in some conditions, it must be underscored that effect sizes and duration of effects are often limited; thus, real clinical impact needs to be further determined with different study designs.
Collapse
Affiliation(s)
- Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Mirret M El-Hagrassy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Sandra Carvalho
- Neurotherapeutics and experimental Psychopathology Group (NEP), Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Jorge Leite
- I2P-Portucalense Institute for Psychology, Universidade Portucalense, Porto, Portugal
| | - Marcel Simis
- Physical and Rehabilitation Medicine Institute of the University of Sao Paulo Medical School General Hospital, Sao Paulo, Brazil
| | - Jerome Brunelin
- CH Le Vinatier, PSYR2 team, Lyon Neuroscience Research Center, UCB Lyon 1, Bron, France
| | - Ester Miyuki Nakamura-Palacios
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Department of Physiological Sciences, Federal University of Espírito Santo, Espírito Santo, Brasil (Dr Nakamura-Palacios)
| | - Paola Marangolo
- Dipartimento di Studi Umanistici, Università Federico II, Naples, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Daniel San-Juan
- Neurophysiology Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS) Surgery Department, School of Medicine, UFRGS; Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA) Laboratory of Pain and Neuromodulation at HCPA, Porto Alegre, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, New York
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry & Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev 2020; 11:CD009645. [PMID: 33175411 PMCID: PMC8095012 DOI: 10.1002/14651858.cd009645.pub4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Stroke is one of the leading causes of disability worldwide. Functional impairment, resulting in poor performance in activities of daily living (ADL) among stroke survivors is common. Current rehabilitation approaches have limited effectiveness in improving ADL performance, function, muscle strength, and cognitive abilities (including spatial neglect) after stroke, with improving cognition being the number one research priority in this field. A possible adjunct to stroke rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability, and hence to improve these outcomes in people after stroke. OBJECTIVES To assess the effects of tDCS on ADL, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register, CENTRAL, MEDLINE, Embase and seven other databases in January 2019. In an effort to identify further published, unpublished, and ongoing trials, we also searched trials registers and reference lists, handsearched conference proceedings, and contacted authors and equipment manufacturers. SELECTION CRITERIA This is the update of an existing review. In the previous version of this review, we focused on the effects of tDCS on ADL and function. In this update, we broadened our inclusion criteria to compare any kind of active tDCS for improving ADL, function, muscle strength and cognitive abilities (including spatial neglect) versus any kind of placebo or control intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality and risk of bias, extracted data, and applied GRADE criteria. If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports. MAIN RESULTS We included 67 studies involving a total of 1729 patients after stroke. We also identified 116 ongoing studies. The risk of bias did not differ substantially for different comparisons and outcomes. The majority of participants had ischaemic stroke, with mean age between 43 and 75 years, in the acute, postacute, and chronic phase after stroke, and level of impairment ranged from severe to less severe. Included studies differed in terms of type, location and duration of stimulation, amount of current delivered, electrode size and positioning, as well as type and location of stroke. We found 23 studies with 781 participants examining the effects of tDCS versus sham tDCS (or any other passive intervention) on our primary outcome measure, ADL after stroke. Nineteen studies with 686 participants reported absolute values and showed evidence of effect regarding ADL performance at the end of the intervention period (standardised mean difference (SMD) 0.28, 95% confidence interval (CI) 0.13 to 0.44; random-effects model; moderate-quality evidence). Four studies with 95 participants reported change scores, and showed an effect (SMD 0.48, 95% CI 0.02 to 0.95; moderate-quality evidence). Six studies with 269 participants assessed the effects of tDCS on ADL at the end of follow-up and provided absolute values, and found improved ADL (SMD 0.31, 95% CI 0.01 to 0.62; moderate-quality evidence). One study with 16 participants provided change scores and found no effect (SMD -0.64, 95% CI -1.66 to 0.37; low-quality evidence). However, the results did not persist in a sensitivity analysis that included only trials with proper allocation concealment. Thirty-four trials with a total of 985 participants measured upper extremity function at the end of the intervention period. Twenty-four studies with 792 participants that presented absolute values found no effect in favour of tDCS (SMD 0.17, 95% CI -0.05 to 0.38; moderate-quality evidence). Ten studies with 193 participants that presented change values also found no effect (SMD 0.33, 95% CI -0.12 to 0.79; low-quality evidence). Regarding the effects of tDCS on upper extremity function at the end of follow-up, we identified five studies with a total of 211 participants (absolute values) without an effect (SMD -0.00, 95% CI -0.39 to 0.39; moderate-quality evidence). Three studies with 72 participants presenting change scores found an effect (SMD 1.07; 95% CI 0.04 to 2.11; low-quality evidence). Twelve studies with 258 participants reported outcome data for lower extremity function and 18 studies with 553 participants reported outcome data on muscle strength at the end of the intervention period, but there was no effect (high-quality evidence). Three studies with 156 participants reported outcome data on muscle strength at follow-up, but there was no evidence of an effect (moderate-quality evidence). Two studies with 56 participants found no evidence of effect of tDCS on cognitive abilities (low-quality evidence), but one study with 30 participants found evidence of effect of tDCS for improving spatial neglect (very low-quality evidence). In 47 studies with 1330 participants, the proportions of dropouts and adverse events were comparable between groups (risk ratio (RR) 1.25, 95% CI 0.74 to 2.13; random-effects model; moderate-quality evidence). AUTHORS' CONCLUSIONS: There is evidence of very low to moderate quality on the effectiveness of tDCS versus control (sham intervention or any other intervention) for improving ADL outcomes after stroke. However, the results did not persist in a sensitivity analyses including only trials with proper allocation concealment. Evidence of low to high quality suggests that there is no effect of tDCS on arm function and leg function, muscle strength, and cognitive abilities in people after stroke. Evidence of very low quality suggests that there is an effect on hemispatial neglect. There was moderate-quality evidence that adverse events and numbers of people discontinuing the treatment are not increased. Future studies should particularly engage with patients who may benefit the most from tDCS after stroke, but also should investigate the effects in routine application. Therefore, further large-scale randomised controlled trials with a parallel-group design and sample size estimation for tDCS are needed.
Collapse
Affiliation(s)
- Bernhard Elsner
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
- Department of Physiotherapy, SRH Hochschule für Gesundheit Gera, 07548 Gera, Germany
| | - Joachim Kugler
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
| | - Marcus Pohl
- Neurological Rehabilitation, Helios Klinik Schloss Pulsnitz, Pulsnitz, Germany
| | - Jan Mehrholz
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
| |
Collapse
|
16
|
Breaking the ice to improve motor outcomes in patients with chronic stroke: a retrospective clinical study on neuromodulation plus robotics. Neurol Sci 2020; 42:2785-2793. [PMID: 33159273 DOI: 10.1007/s10072-020-04875-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/01/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Stroke is one of the main causes of impairment affecting daily activities and quality of life. There is a growing effort to potentiate the recovery of functional gait and to enable stroke patients to walk independently. AIM To estimate the effects of dual-site transcranial direct current stimulation (dstDCS) on gait recovery in chronic stroke patients provided with robot-aided gait training (RAGT). METHODS Thirty-seven patients were included in this retrospective clinical study. Nine patients were provided with dstDCS during the first 10 min of RAGT by using Lokomat®Pro (on-RAGT), 15 patients immediately after RAGT (post-RAGT), and 13 patients immediately before RAGT (pre-RAGT). RESULTS Each group improved over time concerning disability burden and lower limb strength. on-RAGT and post-RAGT experienced better improvement in balance (p < 0.001) and, moderately, gait endurance (p = 0.04) as compared to pre-RAGT. Furthermore, all treatments decreased the facilitation of the unaffected hemisphere (p < 0.001) and the inhibition of the affected hemisphere (p < 0.001). The duration of such aftereffects was found to be greater for post-RAGT. DISCUSSION AND CONCLUSION This is the first trial with dstDCS coupled with RAGT in chronic stroke patients with gait impairment. When timely coupled with RAGT, dstDCS may be considered an effective tool for the recovery of lower limb function in patients with first unilateral stroke in the chronic phase. Moreover, our data suggest the ductility of dstDCS concerning RAGT timing, thus making this intervention suitable in a neurorehabilitation setting and well adaptable to patients' needs.
Collapse
|
17
|
Enhancing Stroke Recovery Across the Life Span With Noninvasive Neurostimulation. J Clin Neurophysiol 2020; 37:150-163. [DOI: 10.1097/wnp.0000000000000543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
18
|
Santos Ferreira I, Teixeira Costa B, Lima Ramos C, Lucena P, Thibaut A, Fregni F. Searching for the optimal tDCS target for motor rehabilitation. J Neuroeng Rehabil 2019; 16:90. [PMID: 31315679 PMCID: PMC6637619 DOI: 10.1186/s12984-019-0561-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/28/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been investigated over the years due to its short and also long-term effects on cortical excitability and neuroplasticity. Although its mechanisms to improve motor function are not fully understood, this technique has been suggested as an alternative therapeutic method for motor rehabilitation, especially those with motor function deficits. When applied to the primary motor cortex, tDCS has shown to improve motor function in healthy individuals, as well as in patients with neurological disorders. Based on its potential effects on motor recovery, identifying optimal targets for tDCS stimulation is essential to improve knowledge regarding neuromodulation as well as to advance the use of tDCS in clinical motor rehabilitation. METHODS AND RESULTS Therefore, this review discusses the existing evidence on the application of four different tDCS montages to promote and enhance motor rehabilitation: (1) anodal ipsilesional and cathodal contralesional primary motor cortex tDCS, (2) combination of central tDCS and peripheral electrical stimulation, (3) prefrontal tDCS montage and (4) cerebellar tDCS stimulation. Although there is a significant amount of data testing primary motor cortex tDCS for motor recovery, other targets and strategies have not been sufficiently tested. This review then presents the potential mechanisms and available evidence of these other tDCS strategies to promote motor recovery. CONCLUSIONS In spite of the large amount of data showing that tDCS is a promising adjuvant tool for motor rehabilitation, the diversity of parameters, associated with different characteristics of the clinical populations, has generated studies with heterogeneous methodologies and controversial results. The ideal montage for motor rehabilitation should be based on a patient-tailored approach that takes into account aspects related to the safety of the technique and the quality of the available evidence.
Collapse
Affiliation(s)
- Isadora Santos Ferreira
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | - Beatriz Teixeira Costa
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | - Clara Lima Ramos
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | - Pedro Lucena
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, 79/96 13th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
19
|
Pellegrino G, Arcara G, Di Pino G, Turco C, Maran M, Weis L, Piccione F, Siebner HR. Transcranial direct current stimulation over the sensory-motor regions inhibits gamma synchrony. Hum Brain Mapp 2019; 40:2736-2746. [PMID: 30854728 DOI: 10.1002/hbm.24556] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/27/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique able to induce plasticity phenomena. Although tDCS application has been spreading over a variety of neuroscience domains, the mechanisms by which the stimulation acts are largely unknown. We investigated tDCS effects on cortical gamma synchrony, which is a crucial player in cortical function. We performed a randomized, sham-controlled, double-blind study on healthy subjects, combining tDCS and magnetoencephalography. By driving brain activity via 40 Hz auditory stimulation during magnetoencephalography, we experimentally tuned cortical gamma synchrony and measured it before and after bilateral tDCS of the primary sensory-motor hand regions (anode left, cathode right). We demonstrated that the stimulation induces a remarkable decrease of gamma synchrony (13 out of 15 subjects), as measured by gamma phase at 40 Hz. tDCS has strong remote effects, as the cortical region mostly affected was located far away from the stimulation site and covered a large area of the right centro-temporal cortex. No significant differences between stimulations were found for baseline gamma synchrony, as well as early transient auditory responses. This suggests a specific tDCS effect on externally driven gamma synchronization. This study sheds new light on the effect of tDCS on cortical function showing that the net effect of the stimulation on cortical gamma synchronization is an inhibition.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Giorgio Arcara
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Giovanni Di Pino
- Department of Neurology, NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome, Italy
| | - Cristina Turco
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Matteo Maran
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Luca Weis
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Francesco Piccione
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital, Bispebjerg, Denmark
| |
Collapse
|
20
|
Shaheiwola N, Zhang B, Jia J, Zhang D. Using tDCS as an Add-On Treatment Prior to FES Therapy in Improving Upper Limb Function in Severe Chronic Stroke Patients: A Randomized Controlled Study. Front Hum Neurosci 2018; 12:233. [PMID: 29970994 PMCID: PMC6018756 DOI: 10.3389/fnhum.2018.00233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Upper limb function recovery is of vital importance for stroke patients. However, it is difficult to get ideal recovery, especially for patients with severe chronic stroke. As the first randomized controlled long-term trial combining bilateral transcranial direct current stimulation (tDCS) and functional electrical stimulation (FES) therapy, this study examined the efficacy of a novel protocol that included applying tDCS as an add-on treatment prior to FES therapy over the course of a 4-week program. Methods: Thirty subjects with severe chronic stroke were randomized to either Group A (active tDCS+FES) (N = 15) or Group B (sham tDCS+FES) (N = 15). Five assessments including 3 behavioral outcome measurement scales [the Fugl-Meyer scale (cFMA), the Wolf motor function test (WMFT) and the modified Ashworth scale (MAS)], the surface electromyography (sEMG) evaluation and the transcranial magnetic stimulation (TMS) assessment were performed to evaluate subjects before and after the overall therapy. Results: In Group A, the combined protocol was well tolerated by all patients and induced significant improvements in upper extremity motor abilities in terms of the assessments of cFMA [t(14) = -5.658, p < 0.05], WMFT [t(14) = -3.746, p < 0.05], MAS [t(14) = 5.236, p < 0.05], sEMG and TMS. The results of between-group comparisons showed there was a significant difference between Group A and Group B in terms of the assessments of cFMA [t(28) = 2.223, p < 0.05], WMFT [t(28) = -2.152, p < 0.05] and sEMG [F(1, 196) = 0.918, p < 0.05]. Conclusion: The proposed protocol can facilitate improvements in upper extremity motor abilities in severe chronic stroke patients and is more beneficial than the protocol with FES therapy alone. Our results showed efficacy of the new paradigm with combined intervention in both the central nervous system and the peripheral nervous system. TRIAL REGISTRATION ChiCTR-ICR-15006108.
Collapse
Affiliation(s)
- Nuerjiayi Shaheiwola
- State Key Laboratory of Mechanical System and Vibration, Robotics Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Zhang
- State Key Laboratory of Mechanical System and Vibration, Robotics Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Dingguo Zhang
- State Key Laboratory of Mechanical System and Vibration, Robotics Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Zich C, Harty S, Kranczioch C, Mansfield KL, Sella F, Debener S, Cohen Kadosh R. Modulating hemispheric lateralization by brain stimulation yields gain in mental and physical activity. Sci Rep 2017; 7:13430. [PMID: 29044223 PMCID: PMC5647441 DOI: 10.1038/s41598-017-13795-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/02/2017] [Indexed: 01/24/2023] Open
Abstract
Imagery plays an important role in our life. Motor imagery is the mental simulation of a motor act without overt motor output. Previous studies have documented the effect of motor imagery practice. However, its translational potential for patients as well as for athletes, musicians and other groups, depends largely on the transfer from mental practice to overt physical performance. We used bilateral transcranial direct current stimulation (tDCS) over sensorimotor areas to modulate neural lateralization patterns induced by unilateral mental motor imagery and the performance of a physical motor task. Twenty-six healthy older adults participated (mean age = 67.1 years) in a double-blind cross-over sham-controlled study. We found stimulation-related changes at the neural and behavioural level, which were polarity-dependent. Specifically, for the hand contralateral to the anode, electroencephalographic activity induced by motor imagery was more lateralized and motor performance improved. In contrast, for the hand contralateral to the cathode, hemispheric lateralization was reduced. The stimulation-related increase and decrease in neural lateralization were negatively related. Further, the degree of stimulation-related change in neural lateralization correlated with the stimulation-related change on behavioural level. These convergent neurophysiological and behavioural effects underline the potential of tDCS to improve mental and physical motor performance.
Collapse
Affiliation(s)
- Catharina Zich
- Department of Psychology, University of Oldenburg, 26111, Oldenburg, Germany. .,Department of Experimental Psychology, University of Oxford, OX1 3UD, Oxford, UK.
| | - Siobhán Harty
- Department of Experimental Psychology, University of Oxford, OX1 3UD, Oxford, UK
| | - Cornelia Kranczioch
- Department of Psychology, University of Oldenburg, 26111, Oldenburg, Germany
| | - Karen L Mansfield
- Department of Experimental Psychology, University of Oxford, OX1 3UD, Oxford, UK
| | - Francesco Sella
- Department of Experimental Psychology, University of Oxford, OX1 3UD, Oxford, UK
| | - Stefan Debener
- Department of Psychology, University of Oldenburg, 26111, Oldenburg, Germany
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, OX1 3UD, Oxford, UK.
| |
Collapse
|
22
|
Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8905637. [PMID: 29057269 PMCID: PMC5615953 DOI: 10.1155/2017/8905637] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/12/2017] [Accepted: 08/10/2017] [Indexed: 01/19/2023]
Abstract
A better understanding of the neural substrates that underlie motor recovery after stroke has led to the development of innovative rehabilitation strategies and tools that incorporate key elements of motor skill relearning, that is, intensive motor training involving goal-oriented repeated movements. Robotic devices for the upper limb are increasingly used in rehabilitation. Studies have demonstrated the effectiveness of these devices in reducing motor impairments, but less so for the improvement of upper limb function. Other studies have begun to investigate the benefits of combined approaches that target muscle function (functional electrical stimulation and botulinum toxin injections), modulate neural activity (noninvasive brain stimulation), and enhance motivation (virtual reality) in an attempt to potentialize the benefits of robot-mediated training. The aim of this paper is to overview the current status of such combined treatments and to analyze the rationale behind them.
Collapse
|
23
|
Matteo BM, Viganò B, Cerri CG, Meroni R, Cornaggia CM, Perin C. Transcranial direct current stimulation (tDCS) combined with blindsight rehabilitation for the treatment of homonymous hemianopia: a report of two-cases. J Phys Ther Sci 2017; 29:1700-1705. [PMID: 28932016 PMCID: PMC5599849 DOI: 10.1589/jpts.29.1700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/08/2017] [Indexed: 11/24/2022] Open
Abstract
[Purpose] Homonymous hemianopia is one of the most common symptoms following neurologic damage leading to impairments of functional abilities and activities of daily living. There are two main types of restorative rehabilitation in hemianopia: "border training" which involves exercising vision at the edge of the damaged visual field, and "blindsight training," which is based on exercising the unconscious perceptual functions deep inside the blind hemifield. Only border effects have been shown to be facilitated by transcranial direct current stimulation (tDCS). This pilot study represents the first attempt to associate the modulatory effects of tDCS over the parieto-occipital cortex to blindsight treatment in the rehabilitation of the homonymous hemianopia. [Subjects and Methods] Patients TA and MR both had chronic hemianopia. TA underwent blindsight treatment which was combined with tDCS followed by blindsight training alone. MR underwent the two training rounds in reverse order. [Results] The patients showed better scores in clinical-instrumental, functional, and ecological assessments after tDCS combined with blindsight rehabilitation rather than rehabilitation alone. [Conclusion] In this two-case report parietal-occipital tDCS modulate the effects induced by blindsight treatment on hemianopia.
Collapse
Affiliation(s)
- Barbara Maria Matteo
- School of Medicine and Surgery, University of
Milan-Bicocca: Piazza dell’Ateneo Nuovo, 1, 20126, Milan, Italy
| | - Barbara Viganò
- School of Psychology, University of Milan-Bicocca,
Italy
| | - Cesare Giuseppe Cerri
- School of Medicine and Surgery, University of
Milan-Bicocca: Piazza dell’Ateneo Nuovo, 1, 20126, Milan, Italy
| | - Roberto Meroni
- School of Medicine and Surgery, University of
Milan-Bicocca: Piazza dell’Ateneo Nuovo, 1, 20126, Milan, Italy
| | - Cesare Maria Cornaggia
- School of Medicine and Surgery, University of
Milan-Bicocca: Piazza dell’Ateneo Nuovo, 1, 20126, Milan, Italy
| | - Cecilia Perin
- School of Medicine and Surgery, University of
Milan-Bicocca: Piazza dell’Ateneo Nuovo, 1, 20126, Milan, Italy
| |
Collapse
|
24
|
Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. Neuroimage 2017; 157:34-44. [PMID: 28572060 DOI: 10.1016/j.neuroimage.2017.05.060] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/08/2017] [Accepted: 05/27/2017] [Indexed: 01/28/2023] Open
Abstract
Scientists and clinicians have traditionally targeted single brain regions with stimulation to modulate brain function and disease. However, brain regions do not operate in isolation, but interact with other regions through networks. As such, stimulation of one region may impact and be impacted by other regions in its network. Here we test whether the effects of brain stimulation can be enhanced by simultaneously targeting a region and its network, identified with resting state functional connectivity MRI. Fifteen healthy participants received two types of transcranial direct current stimulation (tDCS): a traditional two-electrode montage targeting a single brain region (left primary motor cortex [M1]) and a novel eight-electrode montage targeting this region and its associated resting state network. As a control, 8 participants also received multifocal tDCS mismatched to this network. Network-targeted tDCS more than doubled the increase in left M1 excitability over time compared to traditional tDCS and the multifocal control. Modeling studies suggest these results are unlikely to be due to tDCS effects on left M1 itself, however it is impossible to completely exclude this possibility. It also remains unclear whether multifocal tDCS targeting a network selectively modulates this network and which regions within the network are most responsible for observed effects. Despite these limitations, network-targeted tDCS appears to be a promising approach for enhancing tDCS effects beyond traditional stimulation targeting a single brain region. Future work is needed to test whether these results extend to other resting state networks and enhance behavioral or therapeutic effects.
Collapse
|
25
|
Cooperation Not Competition: Bihemispheric tDCS and fMRI Show Role for Ipsilateral Hemisphere in Motor Learning. J Neurosci 2017; 37:7500-7512. [PMID: 28674174 PMCID: PMC5546115 DOI: 10.1523/jneurosci.3414-16.2017] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/01/2017] [Accepted: 04/17/2017] [Indexed: 11/21/2022] Open
Abstract
What is the role of ipsilateral motor and premotor areas in motor learning? One view is that ipsilateral activity suppresses contralateral motor cortex and, accordingly, that inhibiting ipsilateral regions can improve motor learning. Alternatively, the ipsilateral motor cortex may play an active role in the control and/or learning of unilateral hand movements. We approached this question by applying double-blind bihemispheric transcranial direct current stimulation (tDCS) over both contralateral and ipsilateral motor cortex in a between-group design during 4 d of unimanual explicit sequence training in human participants. Independently of whether the anode was placed over contralateral or ipsilateral motor cortex, bihemispheric stimulation yielded substantial performance gains relative to unihemispheric or sham stimulation. This performance advantage appeared to be supported by plastic changes in both hemispheres. First, we found that behavioral advantages generalized strongly to the untrained hand, suggesting that tDCS strengthened effector-independent representations. Second, functional imaging during speed-matched execution of trained sequences conducted 48 h after training revealed sustained, polarity-independent increases in activity in both motor cortices relative to the sham group. These results suggest a cooperative rather than competitive interaction of the two motor cortices during skill learning and suggest that bihemispheric brain stimulation during unimanual skill learning may be beneficial because it harnesses plasticity in the ipsilateral hemisphere.SIGNIFICANCE STATEMENT Many neurorehabilitation approaches are based on the idea that is beneficial to boost excitability in the contralateral hemisphere while attenuating that of the ipsilateral cortex to reduce interhemispheric inhibition. We observed that bihemispheric transcranial direct current stimulation (tDCS) with the excitatory anode either over contralateral or ipsilateral motor cortex facilitated motor learning nearly twice as strongly as unihemispheric tDCS. These increases in motor learning were accompanied by increases in fMRI activation in both motor cortices that outlasted the stimulation period, as well as increased generalization to the untrained hand. Collectively, our findings suggest a cooperative rather than a competitive role of the hemispheres and imply that it is most beneficial to harness plasticity in both hemispheres in neurorehabilitation of motor deficits.
Collapse
|
26
|
Determining the benefits of transcranial direct current stimulation on functional upper limb movement in chronic stroke. Int J Rehabil Res 2017; 40:138-145. [PMID: 28196011 DOI: 10.1097/mrr.0000000000000220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
tDCS for motor stroke: The relevance of systematic comparisons. Clin Neurophysiol 2017; 128:1367-1368. [PMID: 28527669 DOI: 10.1016/j.clinph.2017.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 11/23/2022]
|
28
|
The effect of transcranial direct current stimulation on motor sequence learning and upper limb function after stroke. Clin Neurophysiol 2017; 128:1389-1398. [PMID: 28410884 DOI: 10.1016/j.clinph.2017.03.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/19/2017] [Accepted: 03/24/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To assess the impact of electrode arrangement on the efficacy of tDCS in stroke survivors and determine whether changes in transcallosal inhibition (TCI) underlie improvements. METHODS 24 stroke survivors (3-124months post-stroke) with upper limb impairment participated. They received blinded tDCS during a motor sequence learning task, requiring the paretic arm to direct a cursor to illuminating targets on a monitor. Four tDCS conditions were studied (crossover); anodal to ipsilesional M1, cathodal to contralesional M1, bihemispheric, sham. The Jebsen Taylor hand function test (JTT) was assessed pre- and post-stimulation and TCI assessed as the ipsilateral silent period (iSP) duration using transcranial magnetic stimulation. RESULTS The time to react to target illumination reduced with learning of the movement sequence, irrespective of tDCS condition (p>0.1). JTT performance improved after unilateral tDCS (anodal or cathodal) compared with sham (p<0.05), but not after bihemispheric (p>0.1). There was no effect of tDCS on change in iSP duration (p>0.1). CONCLUSIONS Unilateral tDCS is effective for improving JTT performance, but not motor sequence learning. SIGNIFICANCE This has implications for the design of future clinical trials.
Collapse
|
29
|
Birba A, Ibáñez A, Sedeño L, Ferrari J, García AM, Zimerman M. Non-Invasive Brain Stimulation: A New Strategy in Mild Cognitive Impairment? Front Aging Neurosci 2017; 9:16. [PMID: 28243198 PMCID: PMC5303733 DOI: 10.3389/fnagi.2017.00016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/20/2017] [Indexed: 01/05/2023] Open
Abstract
Non-invasive brain stimulation (NIBS) techniques can significantly modulate cognitive functions in healthy subjects and patients with neuropsychiatric disorders. Recently, they have been applied in patients with mild cognitive impairment (MCI) and subjective cognitive impairment (SCI) to prevent or delay the development of Alzheimer’s disease (AD). Here we review this emerging empirical corpus and discuss therapeutic effects of NIBS on several target functions (e.g., memory for face-name associations and non-verbal recognition, attention, psychomotor speed, everyday memory). Available studies have yielded mixed results, possibly due to differences among their tasks, designs, and samples, let alone the latter’s small sizes. Thus, the impact of NIBS on cognitive performance in MCI and SCI remains to be determined. To foster progress in this direction, we outline methodological approaches that could improve the efficacy and specificity of NIBS in both conditions. Furthermore, we discuss the need for multicenter studies, accurate diagnosis, and longitudinal approaches combining NIBS with specific training regimes. These tenets could cement biomedical developments supporting new treatments for MCI and preventive therapies for AD.
Collapse
Affiliation(s)
- Agustina Birba
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro UniversityBuenos Aires, Argentina; National Scientific and Technical Research Council (CONICET)Buenos Aires, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro UniversityBuenos Aires, Argentina; National Scientific and Technical Research Council (CONICET)Buenos Aires, Argentina; Universidad Autónoma del CaribeBarranquilla, Colombia; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo IbañezSantiago de Chile, Chile; Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC)Sydney, NSW, Australia
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro UniversityBuenos Aires, Argentina; National Scientific and Technical Research Council (CONICET)Buenos Aires, Argentina
| | - Jesica Ferrari
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University Buenos Aires, Argentina
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro UniversityBuenos Aires, Argentina; National Scientific and Technical Research Council (CONICET)Buenos Aires, Argentina; Faculty of Education, National University of Cuyo (UNCuyo)Mendoza, Argentina
| | - Máximo Zimerman
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University Buenos Aires, Argentina
| |
Collapse
|
30
|
Lefebvre S, Liew SL. Anatomical Parameters of tDCS to Modulate the Motor System after Stroke: A Review. Front Neurol 2017; 8:29. [PMID: 28232816 PMCID: PMC5298973 DOI: 10.3389/fneur.2017.00029] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/23/2017] [Indexed: 01/19/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method to modulate the local field potential in neural tissue and consequently, cortical excitability. As tDCS is relatively portable, affordable, and accessible, the applications of tDCS to probe brain-behavior connections have rapidly increased in the last 10 years. One of the most promising applications is the use of tDCS to modulate excitability in the motor cortex after stroke and promote motor recovery. However, the results of clinical studies implementing tDCS to modulate motor excitability have been highly variable, with some studies demonstrating that as many as 50% or more of patients fail to show a response to stimulation. Much effort has therefore been dedicated to understand the sources of variability affecting tDCS efficacy. Possible suspects include the placement of the electrodes, task parameters during stimulation, dosing (current amplitude, duration of stimulation, frequency of stimulation), individual states (e.g., anxiety, motivation, attention), and more. In this review, we first briefly review potential sources of variability specific to stroke motor recovery following tDCS. We then examine how the anatomical variability in tDCS placement [e.g., neural target(s) and montages employed] may alter the neuromodulatory effects that tDCS exerts on the post-stroke motor system.
Collapse
Affiliation(s)
- Stephanie Lefebvre
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, Division of Biokinesiology and Physical Therapy, Department of Neurology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Sook-Lei Liew
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, Division of Biokinesiology and Physical Therapy, Department of Neurology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
31
|
Cho JY, Lee A, Kim MS, Park E, Chang WH, Shin YI, Kim YH. Dual-mode noninvasive brain stimulation over the bilateral primary motor cortices in stroke patients. Restor Neurol Neurosci 2017; 35:105-114. [DOI: 10.3233/rnn-160669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jae Yong Cho
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ahee Lee
- Department of Health Science and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Min Su Kim
- Department of Rehabilitation Medicine, Wonkwang University, College of Medicine, Iksan, Republic of Korea
| | - Eunhee Park
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Science and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Kirton A. Advancing non-invasive neuromodulation clinical trials in children: Lessons from perinatal stroke. Eur J Paediatr Neurol 2017; 21:75-103. [PMID: 27470654 DOI: 10.1016/j.ejpn.2016.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/21/2016] [Accepted: 07/02/2016] [Indexed: 12/18/2022]
Abstract
Applications of non-invasive brain stimulation including therapeutic neuromodulation are expanding at an alarming rate. Increasingly established scientific principles, including directional modulation of well-informed cortical targets, are advancing clinical trial development. However, high levels of disease burden coupled with zealous enthusiasm may be getting ahead of rational research and evidence. Experience is limited in the developing brain where additional issues must be considered. Properly designed and meticulously executed clinical trials are essential and required to advance and optimize the potential of non-invasive neuromodulation without risking the well-being of children and families. Perinatal stroke causes most hemiplegic cerebral palsy and, as a focal injury of defined timing in an otherwise healthy brain, is an ideal human model of developmental plasticity. Advanced models of how the motor systems of young brains develop following early stroke are affording novel windows of opportunity for neuromodulation clinical trials, possibly directing neuroplasticity toward better outcomes. Reviewing the principles of clinical trial design relevant to neuromodulation and using perinatal stroke as a model, this article reviews the current and future issues of advancing such trials in children.
Collapse
Affiliation(s)
- Adam Kirton
- Departments of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, 2888 Shaganappi Trail NW, Calgary, AB T3B6A8, Canada.
| |
Collapse
|
33
|
|
34
|
Del Felice A, Daloli V, Masiero S, Manganotti P. Contralesional Cathodal versus Dual Transcranial Direct Current Stimulation for Decreasing Upper Limb Spasticity in Chronic Stroke Individuals: A Clinical and Neurophysiological Study. J Stroke Cerebrovasc Dis 2016; 25:2932-2941. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 07/16/2016] [Accepted: 08/07/2016] [Indexed: 11/16/2022] Open
|
35
|
Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 2016; 128:56-92. [PMID: 27866120 DOI: 10.1016/j.clinph.2016.10.087] [Citation(s) in RCA: 1113] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/19/2022]
Abstract
A group of European experts was commissioned by the European Chapter of the International Federation of Clinical Neurophysiology to gather knowledge about the state of the art of the therapeutic use of transcranial direct current stimulation (tDCS) from studies published up until September 2016, regarding pain, Parkinson's disease, other movement disorders, motor stroke, poststroke aphasia, multiple sclerosis, epilepsy, consciousness disorders, Alzheimer's disease, tinnitus, depression, schizophrenia, and craving/addiction. The evidence-based analysis included only studies based on repeated tDCS sessions with sham tDCS control procedure; 25 patients or more having received active treatment was required for Class I, while a lower number of 10-24 patients was accepted for Class II studies. Current evidence does not allow making any recommendation of Level A (definite efficacy) for any indication. Level B recommendation (probable efficacy) is proposed for: (i) anodal tDCS of the left primary motor cortex (M1) (with right orbitofrontal cathode) in fibromyalgia; (ii) anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) (with right orbitofrontal cathode) in major depressive episode without drug resistance; (iii) anodal tDCS of the right DLPFC (with left DLPFC cathode) in addiction/craving. Level C recommendation (possible efficacy) is proposed for anodal tDCS of the left M1 (or contralateral to pain side, with right orbitofrontal cathode) in chronic lower limb neuropathic pain secondary to spinal cord lesion. Conversely, Level B recommendation (probable inefficacy) is conferred on the absence of clinical effects of: (i) anodal tDCS of the left temporal cortex (with right orbitofrontal cathode) in tinnitus; (ii) anodal tDCS of the left DLPFC (with right orbitofrontal cathode) in drug-resistant major depressive episode. It remains to be clarified whether the probable or possible therapeutic effects of tDCS are clinically meaningful and how to optimally perform tDCS in a therapeutic setting. In addition, the easy management and low cost of tDCS devices allow at home use by the patient, but this might raise ethical and legal concerns with regard to potential misuse or overuse. We must be careful to avoid inappropriate applications of this technique by ensuring rigorous training of the professionals and education of the patients.
Collapse
|
36
|
Hanley CJ, Singh KD, McGonigle DJ. Transcranial modulation of brain oscillatory responses: A concurrent tDCS–MEG investigation. Neuroimage 2016; 140:20-32. [DOI: 10.1016/j.neuroimage.2015.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/13/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022] Open
|
37
|
Alam MA, Subramanyam Rallabandi VP, Roy PK. Systems Biology of Immunomodulation for Post-Stroke Neuroplasticity: Multimodal Implications of Pharmacotherapy and Neurorehabilitation. Front Neurol 2016; 7:94. [PMID: 27445961 PMCID: PMC4923163 DOI: 10.3389/fneur.2016.00094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022] Open
Abstract
AIMS Recent studies indicate that anti-inflammatory drugs, act as a double-edged sword, not only exacerbating secondary brain injury but also contributing to neurological recovery after stroke. Our aim is to explore whether there is a beneficial role for neuroprotection and functional recovery using anti-inflammatory drug along with neurorehabilitation therapy using transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), so as to improve functional recovery after ischemic stroke. METHODS We develop a computational systems biology approach from preclinical data, using ordinary differential equations, to study the behavior of both phenotypes of microglia, such as M1 type (pro-inflammatory) vis-à-vis M2 type (anti-inflammatory) under anti-inflammatory drug action (minocycline). We explore whether pharmacological treatment along with cerebral stimulation using tDCS and rTMS is beneficial or not. We utilize the systems pathway analysis of minocycline in nuclear factor kappa beta (NF-κB) signaling and neurorehabilitation therapy using tDCS and rTMS that act through brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) signaling pathways. RESULTS We demarcate the role of neuroinflammation and immunomodulation in post-stroke recovery, under minocycline activated-microglia and neuroprotection together with improved neurogenesis, synaptogenesis, and functional recovery under the action of rTMS or tDCS. We elucidate the feasibility of utilizing rTMS/tDCS to increase neuroprotection across the reperfusion stage during minocycline administration. We delineate that the signaling pathways of minocycline by modulation of inflammatory genes in NF-κB and proteins activated by tDCS and rTMS through BDNF, TrkB, and calmodulin kinase (CaMK) signaling. Utilizing systems biology approach, we show that the activation pathways for pharmacotherapy (minocycline) and neurorehabilitation (rTMS applied to ipsilesional cortex and tDCS) results into increased neuronal and synaptic activity that commonly occur through activation of N-methyl-d-aspartate receptors. We construe that considerable additive neuroprotection effect would be obtained and delayed reperfusion injury can be remedied, if one uses multimodal intervention of minocycline together with tDCS and rTMS. CONCLUSION Additive beneficial effect is, thus, noticed for pharmacotherapy along with neurorehabilitation therapy, by maneuvering the dynamics of immunomodulation using anti-inflammatory drug and cerebral stimulation for augmenting the functional recovery after stroke, which may engender clinical applicability for enhancing plasticity, rehabilitation, and neurorestoration.
Collapse
Affiliation(s)
| | | | - Prasun K Roy
- National Brain Research Centre , Gurgaon , India
| |
Collapse
|
38
|
Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev 2016; 3:CD009645. [PMID: 26996760 PMCID: PMC6464909 DOI: 10.1002/14651858.cd009645.pub3] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Stroke is one of the leading causes of disability worldwide. Functional impairment, resulting in poor performance in activities of daily living (ADLs) among stroke survivors is common. Current rehabilitation approaches have limited effectiveness in improving ADL performance, function, muscle strength and cognitive abilities (including spatial neglect) after stroke, but a possible adjunct to stroke rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability, and hence to improve ADL performance, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke. OBJECTIVES To assess the effects of tDCS on ADLs, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register (February 2015), the Cochrane Central Register of Controlled Trials (CENTRAL; the Cochrane Library; 2015, Issue 2), MEDLINE (1948 to February 2015), EMBASE (1980 to February 2015), CINAHL (1982 to February 2015), AMED (1985 to February 2015), Science Citation Index (1899 to February 2015) and four additional databases. In an effort to identify further published, unpublished and ongoing trials, we searched trials registers and reference lists, handsearched conference proceedings and contacted authors and equipment manufacturers. SELECTION CRITERIA This is the update of an existing review. In the previous version of this review we focused on the effects of tDCS on ADLs and function. In this update, we broadened our inclusion criteria to compare any kind of active tDCS for improving ADLs, function, muscle strength and cognitive abilities (including spatial neglect) versus any kind of placebo or control intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality and risk of bias (JM and MP) and extracted data (BE and JM). If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports. MAIN RESULTS We included 32 studies involving a total of 748 participants aged above 18 with acute, postacute or chronic ischaemic or haemorrhagic stroke. We also identified 55 ongoing studies. The risk of bias did not differ substantially for different comparisons and outcomes.We found nine studies with 396 participants examining the effects of tDCS versus sham tDCS (or any other passive intervention) on our primary outcome measure, ADLs after stroke. We found evidence of effect regarding ADL performance at the end of the intervention period (standardised mean difference (SMD) 0.24, 95% confidence interval (CI) 0.03 to 0.44; inverse variance method with random-effects model; moderate quality evidence). Six studies with 269 participants assessed the effects of tDCS on ADLs at the end of follow-up, and found improved ADL performance (SMD 0.31, 95% CI 0.01 to 0.62; inverse variance method with random-effects model; moderate quality evidence). However, the results did not persist in a sensitivity analysis including only trials of good methodological quality.One of our secondary outcome measures was upper extremity function: 12 trials with a total of 431 participants measured upper extremity function at the end of the intervention period, revealing no evidence of an effect in favour of tDCS (SMD 0.01, 95% CI -0.48 to 0.50 for studies presenting absolute values (low quality evidence) and SMD 0.32, 95% CI -0.51 to 1.15 (low quality evidence) for studies presenting change values; inverse variance method with random-effects model). Regarding the effects of tDCS on upper extremity function at the end of follow-up, we identified four studies with a total of 187 participants (absolute values) that showed no evidence of an effect (SMD 0.01, 95% CI -0.48 to 0.50; inverse variance method with random-effects model; low quality evidence). Ten studies with 313 participants reported outcome data for muscle strength at the end of the intervention period, but in the corresponding meta-analysis there was no evidence of an effect. Three studies with 156 participants reported outcome data on muscle strength at follow-up, but there was no evidence of an effect.In six of 23 studies (26%), dropouts, adverse events or deaths that occurred during the intervention period were reported, and the proportions of dropouts and adverse events were comparable between groups (risk difference (RD) 0.01, 95% CI -0.02 to 0.03; Mantel-Haenszel method with random-effects model; low quality evidence; analysis based only on studies that reported either on dropouts, or on adverse events, or on both). However, this effect may be underestimated due to reporting bias. AUTHORS' CONCLUSIONS At the moment, evidence of very low to moderate quality is available on the effectiveness of tDCS (anodal/cathodal/dual) versus control (sham/any other intervention) for improving ADL performance after stroke. However, there are many ongoing randomised trials that could change the quality of evidence in the future. Future studies should particularly engage those who may benefit most from tDCS after stroke and in the effects of tDCS on upper and lower limb function, muscle strength and cognitive abilities (including spatial neglect). Dropouts and adverse events should be routinely monitored and presented as secondary outcomes. They should also address methodological issues by adhering to the Consolidated Standards of Reporting Trials (CONSORT) statement.
Collapse
Affiliation(s)
- Bernhard Elsner
- Dresden Medical School, Technical University DresdenDepartment of Public HealthFetscherstr. 74DresdenSachsenGermany01307
- SRH Fachhochschule für Gesundheit Gera gGmbHLehrstuhl TherapiewissenschaftenGeraGermany07548
| | - Joachim Kugler
- Technical University DresdenDepartment of Public Health, Dresden Medical SchoolLöscherstr. 18DresdenGermanyD‐01307
| | - Marcus Pohl
- Helios Klinik Schloss PulsnitzNeurological RehabilitationWittgensteiner Str. 1PulsnitzSaxonyGermany01896
| | - Jan Mehrholz
- Technical University DresdenDepartment of Public Health, Dresden Medical SchoolLöscherstr. 18DresdenGermanyD‐01307
- Private Europäische Medizinische Akademie der Klinik Bavaria in Kreischa GmbHWissenschaftliches InstitutAn der Wolfsschlucht 1‐2KreischaGermany01731
| | | |
Collapse
|
39
|
Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy. Sci Rep 2016; 6:23271. [PMID: 26980052 PMCID: PMC4793190 DOI: 10.1038/srep23271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/03/2016] [Indexed: 11/16/2022] Open
Abstract
Non-invasive stimulation of the brain using transcranial direct current stimulation (tDCS) during motor rehabilitation can improve the recovery of movements in individuals with stroke. However, the neural substrates that underlie the clinical improvements are not well understood. In this proof-of-principle open-label pilot study, five individuals with stroke received 10 sessions of tDCS while undergoing usual care physical/occupational therapy for the arm and hand. Motor impairment as indexed by the Upper Extremity Fugl Meyer assessment was significantly reduced after the intervention. Resting state fMRI connectivity increased between ipsilesional motor cortex and contralesional premotor cortex after the intervention. These findings provide preliminary evidence that the neural underpinnings of tDCS coupled with rehabilitation exercises, may be mediated by interactions between motor and premotor cortex. The latter, of which has been shown to play an important role in the recovery of movements post-stroke. Our data suggest premotor cortex could be tested as a target region for non-invasive brain-stimulation to enhance connectivity between regions that might be beneficial for stroke motor recovery.
Collapse
|
40
|
Transcranial Direct Current Stimulation of the Leg Motor Cortex Enhances Coordinated Motor Output During Walking With a Large Inter-Individual Variability. Brain Stimul 2016; 9:182-90. [DOI: 10.1016/j.brs.2015.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 09/03/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022] Open
|
41
|
McCambridge AB, Stinear JW, Byblow WD. Neurophysiological and behavioural effects of dual-hemisphere transcranial direct current stimulation on the proximal upper limb. Exp Brain Res 2016; 234:1419-28. [PMID: 26749182 DOI: 10.1007/s00221-015-4547-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/23/2015] [Indexed: 11/25/2022]
Abstract
Dual-hemisphere transcranial direct current stimulation over the primary motor cortex (M1-M1 tDCS) is assumed to modulate neural excitability in a polarity-dependent manner and improve motor performance of the hand. In the proximal upper limb, the neurophysiological and behavioural after-effects of M1-M1 tDCS are not well known. This study investigated the after-effects of M1-M1 tDCS on contralateral, ipsilateral and transcallosal excitability to the proximal upper limb muscle biceps brachii (BB). Circle tracing was used to assess motor performance before and after tDCS as this task requires coordination of proximal and distal musculature. Sixteen healthy right-handed adults participated in the study, each receiving M1-M1 tDCS (1 mA, 15 min) or sham tDCS in separate sessions. The anode was positioned over right M1 and cathode over left M1. M1-M1 tDCS suppressed transcallosal inhibition from the M1 under the cathode (P < 0.045). No other neurophysiologic or behavioural effects were observed (P > 0.6). The study provides important information regarding inconsistent neurophysiological and behavioural changes following tDCS that have implications for future tDCS research on the motor system.
Collapse
Affiliation(s)
- Alana B McCambridge
- Movement Neuroscience Laboratory, Department of Exercise Sciences, and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - James W Stinear
- Movement Neuroscience Laboratory, Department of Exercise Sciences, and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, and Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
42
|
Mortensen J, Figlewski K, Andersen H. Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage: a double-blind randomized controlled trial. Disabil Rehabil 2015; 38:637-43. [DOI: 10.3109/09638288.2015.1055379] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Rocha S, Silva E, Foerster Á, Wiesiolek C, Chagas AP, Machado G, Baltar A, Monte-Silva K. The impact of transcranial direct current stimulation (tDCS) combined with modified constraint-induced movement therapy (mCIMT) on upper limb function in chronic stroke: a double-blind randomized controlled trial. Disabil Rehabil 2015; 38:653-60. [DOI: 10.3109/09638288.2015.1055382] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Jax SA, Rosa-Leyra DL, Coslett HB. Enhancing the mirror illusion with transcranial direct current stimulation. Neuropsychologia 2015; 71:46-51. [PMID: 25796410 DOI: 10.1016/j.neuropsychologia.2015.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/03/2015] [Accepted: 03/17/2015] [Indexed: 11/17/2022]
Abstract
Visual feedback has a strong impact on upper-extremity movement production. One compelling example of this phenomena is the mirror illusion (MI), which has been used as a treatment for post-stroke movement deficits (mirror therapy). Previous research indicates that the MI increases primary motor cortex excitability, and this change in excitability is strongly correlated with the mirror's effects on behavioral performance of neurologically-intact controls. Based on evidence that primary motor cortex excitability can also be increased using transcranial direct current stimulation (tDCS), we tested whether bilateral tDCS to the primary motor cortices (anode right-cathode left and anode left-cathode right) would modify the MI. We measured the MI using a previously-developed task in which participants make reaching movements with the unseen arm behind a mirror while viewing the reflection of the other arm. When an offset in the positions of the two limbs relative to the mirror is introduced, reaching errors of the unseen arm are biased by the reflected arm's position. We found that active tDCS in the anode right-cathode left montage increased the magnitude of the MI relative to sham tDCS and anode left-cathode right tDCS. We take these data as a promising indication that tDCS could improve the effect of mirror therapy in patients with hemiparesis.
Collapse
Affiliation(s)
- Steven A Jax
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.
| | | | - H Branch Coslett
- Department of Neurology, University of Pennsylvania School of Medicine, USA
| |
Collapse
|
45
|
Transcranial direct current stimulation to primary motor area improves hand dexterity and selective attention in chronic stroke. Am J Phys Med Rehabil 2015; 93:1057-64. [PMID: 24919077 DOI: 10.1097/phm.0000000000000127] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether transcranial direct current stimulation (tDCS) applied to the primary motor hand area modulates hand dexterity and selective attention after stroke. DESIGN This study was a double-blind, placebo-controlled, randomized crossover trial involving subjects with chronic stroke. Ten stroke survivors with some pinch strength in the paretic hand received three different tDCS interventions assigned in random order in separate sessions-anodal tDCS targeting the primary motor area of the lesioned hemisphere (M1lesioned), cathodal tDCS applied to the contralateral hemisphere (M1nonlesioned), and sham tDCS-each for 20 mins. The primary outcome measures were Purdue pegboard test scores for hand dexterity and response time in the color-word Stroop test for selective attention. Pinch strength of the paretic hand was the secondary outcome. RESULTS Cathodal tDCS to M1nonlesioned significantly improved affected hand dexterity (by 1.1 points on the Purdue pegboard unimanual test, P = 0.014) and selective attention (0.6 secs faster response time on the level 3 Stroop interference test for response inhibition, P = 0.017), but not pinch strength. The outcomes were not improved with anodal tDCS to M1lesioned or sham tDCS. CONCLUSIONS Twenty minutes of cathodal tDCS to M1nonlesioned can promote both paretic hand dexterity and selective attention in people with chronic stroke.
Collapse
|
46
|
Cohen Kadosh R. Modulating and enhancing cognition using brain stimulation: Science and fiction. JOURNAL OF COGNITIVE PSYCHOLOGY 2015. [DOI: 10.1080/20445911.2014.996569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
Sattler V, Acket B, Raposo N, Albucher JF, Thalamas C, Loubinoux I, Chollet F, Simonetta-Moreau M. Anodal tDCS Combined With Radial Nerve Stimulation Promotes Hand Motor Recovery in the Acute Phase After Ischemic Stroke. Neurorehabil Neural Repair 2015; 29:743-54. [DOI: 10.1177/1545968314565465] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Objective. The question of the best therapeutic window in which noninvasive brain stimulation (NIBS) could potentiate the plastic changes for motor recovery after a stroke is still unresolved. Most of the previous NIBS studies included patients in the chronic phase of recovery and very few in the subacute or acute phase. We investigated the effect of transcranial direct current stimulation (tDCS) combined with repetitive peripheral nerve stimulation (rPNS) on the time course of motor recovery in the acute phase after a stroke. Methods. Twenty patients enrolled within the first few days after a stroke were randomized in 2 parallel groups: one receiving 5 consecutive daily sessions of anodal tDCS over the ipsilesional motor cortex in association with rPNS and the other receiving the same rPNS combined with sham tDCS. Motor performance (primary endpoint: Jebsen and Taylor Hand Function Test [JHFT]) and transcranial magnetic stimulation cortical excitability measures were obtained at baseline (D1), at the end of the treatment (D5), and at 2 and 4 weeks’ follow-up (D15 and D30). Results. The time course of motor recovery of the 2 groups of patients was different and positively influenced by the intervention (Group × Time interaction P = .01). The amount of improvement on the JHFT was greater at D15 and D30 in the anodal tDCS group than in the sham group. Conclusion. These results show that early cortical neuromodulation with anodal tDCS combined with rPNS can promote motor hand recovery and that the benefit is still present 1 month after the stroke.
Collapse
Affiliation(s)
- Virginie Sattler
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Inserm, Imagerie cérébrale et handicaps neurologiques UMR 825, Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Blandine Acket
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Inserm, Imagerie cérébrale et handicaps neurologiques UMR 825, Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Nicolas Raposo
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Inserm, Imagerie cérébrale et handicaps neurologiques UMR 825, Toulouse, France
| | - Jean-François Albucher
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Inserm, Imagerie cérébrale et handicaps neurologiques UMR 825, Toulouse, France
| | - Claire Thalamas
- Centre d’Investigation Clinique, CHU Purpan, Toulouse, France
| | - Isabelle Loubinoux
- Inserm, Imagerie cérébrale et handicaps neurologiques UMR 825, Toulouse, France
| | - François Chollet
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Inserm, Imagerie cérébrale et handicaps neurologiques UMR 825, Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Marion Simonetta-Moreau
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Inserm, Imagerie cérébrale et handicaps neurologiques UMR 825, Toulouse, France
- Université de Toulouse, Toulouse, France
| |
Collapse
|
48
|
Tazoe T, Endoh T, Kitamura T, Ogata T. Polarity specific effects of transcranial direct current stimulation on interhemispheric inhibition. PLoS One 2014; 9:e114244. [PMID: 25478912 PMCID: PMC4257682 DOI: 10.1371/journal.pone.0114244] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/05/2014] [Indexed: 11/19/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been used as a useful interventional brain stimulation technique to improve unilateral upper-limb motor function in healthy humans, as well as in stroke patients. Although tDCS applications are supposed to modify the interhemispheric balance between the motor cortices, the tDCS after-effects on interhemispheric interactions are still poorly understood. To address this issue, we investigated the tDCS after-effects on interhemispheric inhibition (IHI) between the primary motor cortices (M1) in healthy humans. Three types of tDCS electrode montage were tested on separate days; anodal tDCS over the right M1, cathodal tDCS over the left M1, bilateral tDCS with anode over the right M1 and cathode over the left M1. Single-pulse and paired-pulse transcranial magnetic stimulations were given to the left M1 and right M1 before and after tDCS to assess the bilateral corticospinal excitabilities and mutual direction of IHI. Regardless of the electrode montages, corticospinal excitability was increased on the same side of anodal stimulation and decreased on the same side of cathodal stimulation. However, neither unilateral tDCS changed the corticospinal excitability at the unstimulated side. Unilateral anodal tDCS increased IHI from the facilitated side M1 to the unchanged side M1, but it did not change IHI in the other direction. Unilateral cathodal tDCS suppressed IHI both from the inhibited side M1 to the unchanged side M1 and from the unchanged side M1 to the inhibited side M1. Bilateral tDCS increased IHI from the facilitated side M1 to the inhibited side M1 and attenuated IHI in the opposite direction. Sham-tDCS affected neither corticospinal excitability nor IHI. These findings indicate that tDCS produced polarity-specific after-effects on the interhemispheric interactions between M1 and that those after-effects on interhemispheric interactions were mainly dependent on whether tDCS resulted in the facilitation or inhibition of the M1 sending interhemispheric volleys.
Collapse
Affiliation(s)
- Toshiki Tazoe
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- * E-mail:
| | - Takashi Endoh
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Faculty of Child Development and Education, Uekusa Gakuen University, Chiba, Japan
| | - Taku Kitamura
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Division of Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Toru Ogata
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
49
|
Tremblay S, Beaulé V, Proulx S, Lafleur LP, Doyon J, Marjańska M, Théoret H. The use of magnetic resonance spectroscopy as a tool for the measurement of bi-hemispheric transcranial electric stimulation effects on primary motor cortex metabolism. J Vis Exp 2014:e51631. [PMID: 25490453 DOI: 10.3791/51631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood. To help improve this understanding, proton magnetic resonance spectroscopy ((1)H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner. In fact, a recent study demonstrated that (1)H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with (1)H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices. Methodological factors to consider and possible modifications to the protocol are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Julien Doyon
- Department of Psychology, University of Montréal
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota;
| | - Hugo Théoret
- Department of Psychology, University of Montréal;
| |
Collapse
|
50
|
Transcranial direct current stimulation for motor recovery of upper limb function after stroke. Neurosci Biobehav Rev 2014; 47:245-59. [DOI: 10.1016/j.neubiorev.2014.07.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 01/20/2023]
|