1
|
Le K, Wang X, Chu J, Lundt M, Lee YY, Conrey A, Frey I, Giannini S, Kosinski PA, Hausman JM, Low PS, Jeffries N, Desai SA, Thein SL. Activating pyruvate kinase improves red blood cell integrity by reducing band 3 tyrosine phosphorylation. Blood Adv 2024; 8:5653-5662. [PMID: 39265169 PMCID: PMC11564025 DOI: 10.1182/bloodadvances.2024013504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024] Open
Abstract
ABSTRACT In a phase 1 study (NCT04000165), we established proof of concept for activating pyruvate kinase (PK) in sickle cell disease (SCD) as a viable antisickling therapy. AG-348 (mitapivat), a PK activator, increased adenosine triphosphate (ATP) and decreased 2,3-diphosphoglycerate levels while patients were on treatment, in line with the mechanism of the drug. We noted that the increased hemoglobin (Hb) persisted for 4 weeks after stopping AG-348 until the end of study (EOS). Here, we investigated the pathways modulated by activating PK that may contribute to the improved red blood cell (RBC) survival after AG-348 cessation. We evaluated frozen whole blood samples taken at multiple time points from patients in the phase 1 study, from which RBC ghosts were isolated and analyzed by western blotting for tyrosine phosphorylation of band 3 (Tyr-p-bd3), ankyrin-1, and intact (active) protein tyrosine phosphatase 1B (PTP1B) levels. We observed a significant dose-dependent decrease in mean Tyr-p-bd3 from baseline in the patients, accompanied by an increase in the levels of membrane-associated ankyrin-1 and intact PTP1B, all of which returned to near baseline by EOS. Because PTP1B is cleaved (inactivated) by intracellular Ca2+-dependent calpain, we next measured the effect of AG-348 on ATP production and calpain activity and the plasma membrane Ca2+ ATPase pump-mediated efflux kinetics in HbAA and HbSS erythrocytes. AG-348 treatment increased ATP levels, decreased calpain activity, and increased Ca2+ efflux. Altogether, our data indicate that ATP increase is a key mechanism underlying the increase in hemoglobin levels upon PK activation in SCD. This trial was registered at www.clinicaltrials.gov as #NCT04000165.
Collapse
Affiliation(s)
- Kang Le
- Laboratory of Sickle Cell Genetics and Pathophysiology, Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xunde Wang
- Laboratory of Sickle Cell Genetics and Pathophysiology, Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jonathan Chu
- Apicomplexan Molecular Physiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Maureen Lundt
- Laboratory of Sickle Cell Genetics and Pathophysiology, Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Yuan Yee Lee
- Laboratory of Sickle Cell Genetics and Pathophysiology, Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Anna Conrey
- Laboratory of Sickle Cell Genetics and Pathophysiology, Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ingrid Frey
- Laboratory of Sickle Cell Genetics and Pathophysiology, Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | | | - John M. Hausman
- Department of Chemistry, Purdue University, West Lafayette, IN
- Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Philip S. Low
- Department of Chemistry, Purdue University, West Lafayette, IN
- Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Neal Jeffries
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sanjay A. Desai
- Apicomplexan Molecular Physiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Swee Lay Thein
- Laboratory of Sickle Cell Genetics and Pathophysiology, Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
2
|
Branch DR. Warm autoimmune hemolytic anemia: new insights and hypotheses. Curr Opin Hematol 2023; 30:203-209. [PMID: 37497853 PMCID: PMC10552839 DOI: 10.1097/moh.0000000000000779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
PURPOSE OF REVIEW Warm autoimmune hemolytic anemia (wAIHA) is the most common of the immune hemolytic anemias. Although there are numerous case reports and reviews regarding this condition, some of the unusual and more recent findings have not been fully defined and may be contentious. This review will provide insight into the common specificity of the warm autoantibodies and hypothesize a novel mechanism of wAIHA, that is proposed to be linked to the controversial subject of red blood cell senescence. RECENT FINDINGS AND HYPOTHESES It is now well established that band 3 on the red blood cell is the main target of autoantibodies in wAIHA. wAIHA targets the older red blood cells (RBCs) in about 80% of cases and, recently, it has been shown that the RBCs in these patients are aging faster than normal. It has been proposed that in these 80% of patients, that the autoantibody recognizes the senescent red blood cell antigen on band 3. It is further hypothesized that this autoantibody's production and potency has been exacerbated by hypersensitization to the RBC senescent antigen, which is processed through the adaptive immune system to create the pathogenic autoantibody. Recent publications have supported previous data that the senescent RBC antigen is exposed via a dynamic process, wherein oscillation of a band 3 internal loop flipping to the cell surface, creates a conformational neoantigen that is the RBC senescent antigen. It has also recently been shown that the cytokine profile in patients with wAIHA favors production of inflammatory cytokines/chemokines that includes interleukin-8 which can activate neutrophils to increase the oxidative stress on circulating RBCs to induce novel antigens, as has been postulated to favour exposure of the senescent RBC antigen. SUMMARY This manuscript reviews new findings and hypotheses regarding wAIHA and proposes a novel mechanism active in most wAIHA patients that is due to an exacerbation of normal RBC senescence.
Collapse
Affiliation(s)
- Donald R Branch
- Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto and the Canadian Blood Services, Centre for Innovation, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
3
|
Yang M, Sheng Q, Ge S, Song X, Dong J, Guo C, Liao L. Mutations and clinical characteristics of dRTA caused by SLC4A1 mutations: Analysis based on published patients. Front Pediatr 2023; 11:1077120. [PMID: 36776909 PMCID: PMC9910804 DOI: 10.3389/fped.2023.1077120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND AIMS The genetic and clinical characteristics of patients with distal renal tubular acidosis (dRTA) caused by SLC4A1 mutations have not been systematically recorded before. Here, we summarized the SLC4A1 mutations and clinical characteristics associated with dRTA. METHODS Database was searched, and the mutations and clinical manifestations of patients were summarized from the relevant articles. RESULTS Fifty-three eligible articles involving 169 patients were included and 41 mutations were identified totally. Fifteen mutations involving 100 patients were autosomal dominant inheritance, 21 mutations involving 61 patients were autosomal recessive inheritance. Nephrocalcinosis or kidney stones were found in 72.27%, impairment in renal function in 14.29%, developmental disorders in 61.16%, hematological abnormalities in 33.88%, and muscle weakness in 13.45% of patients. The age of onset was younger (P < 0.01), urine pH was higher (P < 0.01), and serum potassium was lower (P < 0.001) in recessive patients than patients with dominant SLC4A1 mutations. Autosomal recessive inheritance was more often found in Asian patients (P < 0.05). CONCLUSIONS The children present with metabolic acidosis with high urinary pH, accompanying hypokalemia, hyperchloremia, nephrocalcinosis, growth retardation and hematological abnormalities should be suspected as dRTA and suggested a genetic testing. The patients with recessive dRTA are generally more severely affected than that with dominant SLC4A1 mutations. Autosomal recessive inheritance was more often found in Asian patients, and more attentions should be paid to the Asian patients.
Collapse
Affiliation(s)
- Mengge Yang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China.,Cheeloo College of Medicine, Shandong University, Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji-nan, China
| | - Qiqi Sheng
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Ji-nan, China
| | - Shenghui Ge
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China
| | - Xinxin Song
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji-nan, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Ji-nan, China
| | - Congcong Guo
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China.,College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji-nan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China.,Cheeloo College of Medicine, Shandong University, Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji-nan, China.,College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji-nan, China
| |
Collapse
|
4
|
Hsu K, Lee TY, Lin JY, Chen PL. A Balance between Transmembrane-Mediated ER/Golgi Retention and Forward Trafficking Signals in Glycophorin-Anion Exchanger-1 Interaction. Cells 2022; 11:3512. [PMID: 36359907 PMCID: PMC9653601 DOI: 10.3390/cells11213512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 12/04/2023] Open
Abstract
Anion exchanger-1 (AE1) is the main erythroid Cl-/HCO3- transporter that supports CO2 transport. Glycophorin A (GPA), a component of the AE1 complexes, facilitates AE1 expression and anion transport, but Glycophorin B (GPB) does not. Here, we dissected the structural components of GPA/GPB involved in glycophorin-AE1 trafficking by comparing them with three GPB variants-GPBhead (lacking the transmembrane domain [TMD]), GPBtail (mainly the TMD), and GP.Mur (glycophorin B-A-B hybrid). GPB-derived GP.Mur bears an O-glycopeptide that encompasses the R18 epitope, which is present in GPA but not GPB. By flow cytometry, AE1 expression in the control erythrocytes increased with the GPA-R18 expression; GYP.Mur+/+ erythrocytes bearing both GP.Mur and GPA expressed more R18 epitopes and more AE1 proteins. In contrast, heterologously expressed GPBtail and GPB were predominantly localized in the Golgi apparatus of HEK-293 cells, whereas GBhead was diffuse throughout the cytosol, suggesting that glycophorin transmembrane encoded an ER/Golgi retention signal. AE1 coexpression could reduce the ER/Golgi retention of GPB, but not of GPBtail or GPBhead. Thus, there are forward-trafficking and transmembrane-driven ER/Golgi retention signals encoded in the glycophorin sequences. How the balance between these opposite trafficking signals could affect glycophorin sorting into AE1 complexes and influence erythroid anion transport remains to be explored.
Collapse
Affiliation(s)
- Kate Hsu
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 25245, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 25245, Taiwan
- Department of Exercise & Health Sciences, University of Taipei, Taipei 100234, Taiwan
| | - Ting-Ying Lee
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
| | - Jian-Yi Lin
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
| | - Pin-Lung Chen
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
| |
Collapse
|
5
|
Zhang R, Chen Z, Song Q, Wang S, Liu Z, Zhao X, Shi X, Guo W, Lang Y, Bottillo I, Shao L. Identification of seven exonic variants in the SLC4A1, ATP6V1B1, and ATP6V0A4 genes that alter RNA splicing by minigene assay. Hum Mutat 2021; 42:1153-1164. [PMID: 34157794 DOI: 10.1002/humu.24246] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022]
Abstract
Primary distal renal tubular acidosis (dRTA) is a rare tubular disease associated with variants in SLC4A1, ATP6V0A4, ATP6V1B1, FOXⅠ1, or WDR72 genes. Currently, there is growing evidence that all types of exonic variants can alter splicing regulatory elements, affecting the precursor messenger RNA (pre-mRNA) splicing process. This study was to determine the consequences of variants associated with dRTA on pre-mRNA splicing combined with predictive bioinformatics tools and minigene assay. As a result, among the 15 candidate variants, 7 variants distributed in SLC4A1 (c.1765C>T, p.Arg589Cys), ATP6V1B1 (c.368G>T, p.Gly123Val; c.370C>T, p.Arg124Trp; c.484G>T, p.Glu162* and c.1102G>A, p.Glu368Lys) and ATP6V0A4 genes (c.322C>T, p.Gln108* and c.1572G>A, p.Pro524Pro) were identified to result in complete or incomplete exon skipping by either disruption of exonic splicing enhancers (ESEs) and generation of exonic splicing silencers, or interference with the recognition of the classic splicing site, or both. To our knowledge, this is the first study on pre-mRNA splicing of exonic variants in the dRTA-related genes. These results highlight the importance of assessing the effects of exonic variants at the mRNA level and suggest that minigene analysis is an effective tool for evaluating the effects of splicing on variants in vitro.
Collapse
Affiliation(s)
- Ruixiao Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zeqing Chen
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Qijing Song
- Emergency Center, People's Hospital of Jimo District, Qingdao, China
| | - Sai Wang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China.,Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Zhiying Liu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xiangzhong Zhao
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaomeng Shi
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Wencong Guo
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yanhua Lang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Irene Bottillo
- Division of Medical Genetics, Department of Molecular Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Ugurel E, Kisakurek ZB, Aksu Y, Goksel E, Cilek N, Yalcin O. Calcium/protein kinase C signaling mechanisms in shear-induced mechanical responses of red blood cells. Microvasc Res 2021; 135:104124. [PMID: 33359148 DOI: 10.1016/j.mvr.2020.104124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022]
Abstract
Red blood cell (RBC) deformability has vital importance for microcirculation in the body, as RBCs travel in narrow capillaries under shear stress. Deformability can be defined as a remarkable cell ability to change shape in response to an external force which allows the cell to pass through the narrowest blood capillaries. Previous studies showed that RBC deformability could be regulated by Ca2+/protein kinase C (PKC) signaling mechanisms due to the phosphorylative changes in RBC membrane proteins by kinases and phosphatases. We investigated the roles of Ca2+/PKC signaling pathway on RBC mechanical responses and impaired RBC deformability under continuous shear stress (SS). A protein kinase C inhibitor Chelerythrine, a tyrosine phosphatase inhibitor Calpeptin, and a calcium channel blocker Verapamil were applied into human blood samples in 1 micromolar concentration. Samples with drugs were treated with or without 3 mM Ca2+. A shear stress at 5 Pa level was applied to each sample continuously for 300 s. RBC deformability was measured by a laser-assisted optical rotational cell analyzer (LORRCA) and was calculated as the change in elongation index (EI) of RBC upon a range of shear stress (SS, 0.3-50 Pa). RBC mechanical stress responses were evaluated before and after continuous SS through the parameterization of EI-SS curves. The drug administrations did not produce any significant alterations in RBC mechanical responses when they were applied alone. However, the application of the drugs together with Ca2+ substantially increased RBC deformability compared to calcium alone. Verapamil significantly improved Ca2+-induced impairments of deformability both before and after 5 Pa SS exposure (p < 0.0001). Calpeptin and Chelerythrine significantly ameliorated impaired deformability only after continuous SS (p < 0.05). Shear-induced improvements of deformability were conserved by the drug administrations although shear-induced deformability was impaired when the drugs were applied with calcium. The blocking of Ca2+ channel by Verapamil improved impaired RBC mechanical responses independent of the SS effect. The inhibition of tyrosine phosphatase and protein kinase C by Calpeptin and Chelerythrine, respectively, exhibited ameliorating effects on calcium-impaired deformability with the contribution of shear stress. The modulation of Ca2+/PKC signaling pathway could regulate the mechanical stress responses of RBCs when cells are under continuous SS exposure. Shear-induced improvements in the mechanical properties of RBCs by this signaling mechanism could facilitate RBC flow in the microcirculation of pathophysiological disorders, wherein Ca2+ homeostasis is disturbed and RBC deformability is reduced.
Collapse
Affiliation(s)
- Elif Ugurel
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey; Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | | | - Yasemin Aksu
- School of Medicine, Koç University, Istanbul, Turkey
| | - Evrim Goksel
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey; Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Neslihan Cilek
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey; Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Yalcin
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey; Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey; School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
7
|
Sakuraya K, Nozu K, Oka I, Fujinaga S, Nagano C, Ohtomo Y, Iijima K. A different clinical manifestation in a Japanese family with autosomal dominant distal renal tubular acidosis caused by SLC4A1 mutation. CEN Case Rep 2020; 9:442-445. [DOI: 10.1007/s13730-020-00500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022] Open
|
8
|
More TA, Kedar PS. Genotypic analysis of SLC4A1 A858D mutation in Indian population associated with distal renal tubular Acidosis (dRTA) coupled with hemolytic anemia. Gene 2020; 769:145241. [PMID: 33068675 DOI: 10.1016/j.gene.2020.145241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/27/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Although distinctive, distal renal tubular acidosis (dRTA) and Hereditary Spherocytosis (HS) shares a common protein, the anion exchanger1 (AE1) encoded by SLC4A1gene. In spite of this, the co-existence of dRTA and HS has rarely been observed. To date, 23 mutations have been identified in SLC4A1 gene causing both autosomal recessive (AR) and autosomal dominant (AD) forms of dRTA. METHODS We have assessed the applicability of the High Resolution Melting curve (HRM) method for the detection of SLC4A1 (A858D) mutation in 12 Indian families having AR dRTA coupled with HS. The reliability of the HRM analysis was verified by comparing the results of the HRM method with those of conventional methods such as Polymerase Chain Reaction-Restriction Fragment-Length Polymorphism (PCR-RFLP) and Sanger sequencing thereby confirming the diagnosis. RESULTS We here described the clinical, hematological and genetic data of 16 individuals from 12 families having AR dRTA coupled with HS. All patients carried homozygous SLC4A1 (A858D) mutation, whereas their family members had heterozygous A858D obtained by HRM analysis and confirmed by RFLP and Sanger sequencing. CONCLUSION Our data indicates that a missense mutation of A858D in SLC4A1 gene is the most common cause of dRTA coupled with HS in the Indian population. HRM analysis can be used as a rapid screening method for common SLC4A1 mutations that cause AR dRTA in the Indian population.
Collapse
Affiliation(s)
- Tejashree Anil More
- Department of Hematogenetics, ICMR-National Institute of Immunohematology, KEM Hospital Campus, Parel, Mumbai 40012, India
| | - Prabhakar S Kedar
- Department of Hematogenetics, ICMR-National Institute of Immunohematology, KEM Hospital Campus, Parel, Mumbai 40012, India.
| |
Collapse
|
9
|
Bloch EM, Branch HA, Sakac D, Leger RM, Branch DR. Differential red blood cell age fractionation and Band 3 phosphorylation distinguish two different subtypes of warm autoimmune hemolytic anemia. Transfusion 2020; 60:1856-1866. [PMID: 32750167 DOI: 10.1111/trf.15911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 11/29/2022]
Abstract
Warm autoimmune hemolytic anemia (wAIHA) is a blood disorder characterized by the increased destruction of autologous red blood cells (RBCs) due to the presence of opsonizing pathogenic autoantibodies. Preliminary reports published more than three decades ago proposed the presence of two wAIHA subtypes: Type I, in which autoantibodies preferentially recognize the oldest, most dense RBCs; and Type II, characterized by autoantibodies that show no preference. STUDY DESIGN AND METHODS We evaluated patients having wAIHA for Type I and II subtype using discontinuous Percoll gradient age fractionation and direct antiglobulin test (DAT). We performed Western immunoblotting and mass spectrometry to show autoantibody specificity for Band 3. We investigated Band 3 tyrosine phosphorylation in different Percoll fractions to determine aging associated with oxidative stress. RESULTS We confirm the existence of two subtypes of wAIHA, Type I and Type II, and that autoantibodies recognize Band 3. Type I patients were characterized by five Percoll fractions, with a DAT showing IgG opsonization F1 < F5 and elevated Band 3 phosphorylation compared to healthy controls (HCs). In contrast, Type II wAIHA patients were characterized by three to four Percoll fractions, where the DAT IgG opsonization shows F1 ≥ F3/4 and Band 3 phosphorylation was absent or significantly decreased compared to HC. CONCLUSIONS Type I patients have increased Band 3 tyrosine phosphorylation that may represent accelerated aging of their RBCs resulting in exacerbation of a pathologic form of RBC senescence. Type II patients show decreased Band 3 tyrosine phosphorylation and lack the oldest, most dense RBCs suggesting premature RBC clearance and a more severe wAIHA.
Collapse
Affiliation(s)
- Evgenia M Bloch
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Haley A Branch
- Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Darinka Sakac
- Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Regina M Leger
- American Red Cross, Southern California Region, Pomona, California, USA
| | - Donald R Branch
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Jin Y, Liang Q, Tieleman DP. Interactions between Band 3 Anion Exchanger and Lipid Nanodomains in Ternary Lipid Bilayers: Atomistic Simulations. J Phys Chem B 2020; 124:3054-3064. [DOI: 10.1021/acs.jpcb.0c01055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yapan Jin
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
11
|
Kitao A, Kawamoto S, Kurata K, Hayakawa I, Yamasaki T, Matsuoka H, Sumi Y, Kakeji Y, Kamesaki T, Minami H. Band 3 ectopic expression in colorectal cancer induces an increase in erythrocyte membrane-bound IgG and may cause immune-related anemia. Int J Hematol 2020; 111:657-666. [PMID: 31997080 DOI: 10.1007/s12185-020-02831-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/20/2022]
Abstract
Autoimmune hemolytic anemia (AIHA) is a rare comorbidity in colorectal cancer (CRC) and has an unknown etiology. Previously, we described an AIHA case secondary to CRC with ectopic band 3 expression. Herein, we investigated ectopic band 3 expression and erythrocyte membrane-bound IgG in a CRC cohort. Between September 2016 and August 2018, 50 patients with CRC and 26 healthy controls were enrolled in the present study. The expression of band 3 and SLC4A1 mRNA was observed in 97% of CRC surgical specimens. Although clinical AIHA was not observed in any patient with CRC, a direct antiglobulin test was positive in 10 of the patients in the CRC group (p = 0.01). Flow cytometry revealed significantly increased erythrocyte membrane-bound IgG among patients with CRC compared to healthy controls (mean ± standard deviation; 38.8 ± 4.7 vs. 29.9 ± 15.6, p = 0.012). Normocytic anemia was observed, including in cases negative for fecal occult blood, suggesting a shortened erythrocyte life-span due to increased membrane-bound IgG. Immunoprecipitation revealed increased anti-band 3 autoantibodies in patients' sera. Mouse experiments recapitulated this phenomenon. We also confirmed that band 3 expression is controlled by 5'AMP-activated protein kinase under hypoxic conditions. These findings increase our understanding of the etiology of cancer-related anemia.
Collapse
Affiliation(s)
- Akihito Kitao
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Shinichiro Kawamoto
- Department of Transfusion Medicine and Cell Therapy, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Keiji Kurata
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Ikuyo Hayakawa
- Department of Transfusion Medicine and Cell Therapy, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takashi Yamasaki
- Department of Diagnostic Pathology, Kohnan Hospital, Kobe, Hyogo, Japan
| | - Hiroshi Matsuoka
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Yasuo Sumi
- Department of Surgery, Asahikawa Medical University Hospital, Asahikawa, Hokkaido, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Toyomi Kamesaki
- Center for Community Medicine, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital, Kobe, Hyogo, Japan
- Department of Transfusion Medicine and Cell Therapy, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
12
|
Zhang R, Wang C, Lang Y, Gao Y, Chen Z, Lu J, Zhao X, Shao L. Five Novel Mutations in Chinese Children with Primary Distal Renal Tubular Acidosis. Genet Test Mol Biomarkers 2018; 22:599-606. [PMID: 30256676 DOI: 10.1089/gtmb.2018.0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ruixiao Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, P.R. China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Cui Wang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, P.R. China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Yanhua Lang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, P.R. China
| | - Yanxia Gao
- Department of Nephrology, Qingdao Branch of Qilu Hospital of Shandong University, Qingdao, P.R. China
| | - Zeqing Chen
- Academy for Engineer and Technology, The Fudan University, Shanghai, P.R. China
| | - Jingru Lu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, P.R. China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Xiangzhong Zhao
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, P.R. China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| |
Collapse
|
13
|
Song Q, Song W, Zhang W, He L, Fang R, Zhou Y, Shen B, Hu M, Zhao J. Identification of erythrocyte membrane proteins interacting with Mycoplasma suis GAPDH and OSGEP. Res Vet Sci 2018; 119:85-90. [PMID: 29890385 DOI: 10.1016/j.rvsc.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/12/2016] [Accepted: 05/04/2018] [Indexed: 11/28/2022]
Abstract
Mycoplasma suis (M. suis) is an uncultivable haemotrophic mycoplasma that parasitizes the red blood cells of a wide range of domestic and wild animals. Adhesion of M. suis to host erythrocytes is crucial for its unique RBC-dependent lifecycle. MSG1 protein (now named as GAPDH) with homology to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was the first identified adhesion protein of M. suis. In this study, we found that O-sialoglycoprotein endopeptidase (OSGEP) is another M. suis protein capable of binding porcine erythrocytes. Recombinant OSGEP expressed in E. coli demonstrated surface localization similar to GAPDH. Purified rOSGEP bound to erythrocyte membrane preparations in a dose-dependent manner and this adhesion could be specifically inhibited by anti-rOSGEP antibodies. E. coli transformants expressing OSGEP on their surface were able to adhere to porcine erythrocytes. Furthermore, using far-western and pull-down assays, we determined the host membrane proteins that interacted with OSGEP and GAPDH were Band3 and glycophorin A (GPA). In conclusion, our studies indicated that OSGEP and GAPDH could interact with both Band3 and GPA to mediate adhesion of M. suis to porcine erythrocytes.
Collapse
Affiliation(s)
- Qiqi Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; College of Animal Science and Veterinary Medicine, Tianjin Agricultural, University, Tianjin 300384, PR China
| | - Weijiao Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Weijing Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yanqin Zhou
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
14
|
γ-COPI mediates the retention of kAE1 G701D protein in Golgi apparatus – a mechanistic explanation of distal renal tubular acidosis associated with the G701D mutation. Biochem J 2017. [DOI: 10.1042/bcj20170088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations of the solute carrier family 4 member 1 (SLC4A1) gene encoding kidney anion (chloride/bicarbonate ion) exchanger 1 (kAE1) can cause genetic distal renal tubular acidosis (dRTA). Different SLC4A1 mutations give rise to mutant kAE1 proteins with distinct defects in protein trafficking. The mutant kAE1 protein may be retained in endoplasmic reticulum (ER) or Golgi apparatus, or mis-targeted to the apical membrane, failing to display its function at the baso-lateral membrane. The ER-retained mutant kAE1 interacts with calnexin chaperone protein; disruption of this interaction permits the mutant kAE1 to reach the cell surface and display anion exchange activity. However, the mechanism of Golgi retention of mutant kAE1 G701D protein, which is otherwise functional, is still unclear. In the present study, we show that Golgi retention of kAE1 G701D is due to a stable interaction with the Golgi-resident protein, coat protein complex I (COPI), that plays a role in retrograde vesicular trafficking and Golgi-based quality control. The interaction and co-localization of kAE1 G701D with the γ-COPI subunit were demonstrated in human embryonic kidney (HEK-293T) cells by co-immunoprecipitation and immunofluorescence staining. Small interference RNA (siRNA) silencing of COPI expression in the transfected HEK-293T cells increased the cell surface expression of transgenic kAE1 G701D, as shown by immunofluorescence staining. Our data unveil the molecular mechanism of Golgi retention of kAE1 G701D and suggest that disruption of the COPI-kAE1 G701D interaction could be a therapeutic strategy to treat dRTA caused by this mutant.
Collapse
|
15
|
Fowler PW, Sansom MSP, Reithmeier RAF. Effect of the Southeast Asian Ovalocytosis Deletion on the Conformational Dynamics of Signal-Anchor Transmembrane Segment 1 of Red Cell Anion Exchanger 1 (AE1, Band 3, or SLC4A1). Biochemistry 2017; 56:712-722. [PMID: 28068080 PMCID: PMC5299548 DOI: 10.1021/acs.biochem.6b00966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first transmembrane (TM1) helix in the red cell anion exchanger (AE1, Band 3, or SLC4A1) acts as an internal signal anchor that binds the signal recognition particle and directs the nascent polypeptide chain to the endoplasmic reticulum (ER) membrane where it moves from the translocon laterally into the lipid bilayer. The sequence N-terminal to TM1 forms an amphipathic helix that lies at the membrane interface and is connected to TM1 by a bend at Pro403. Southeast Asian ovalocytosis (SAO) is a red cell abnormality caused by a nine-amino acid deletion (Ala400-Ala408) at the N-terminus of TM1. Here we demonstrate, by extensive (∼4.5 μs) molecular dynamics simulations of TM1 in a model 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membrane, that the isolated TM1 peptide is highly dynamic and samples the structure of TM1 seen in the crystal structure of the membrane domain of AE1. The SAO deletion not only removes the proline-induced bend but also causes a "pulling in" of the part of the amphipathic helix into the hydrophobic phase of the bilayer, as well as the C-terminal of the peptide. The dynamics of the SAO peptide very infrequently resembles the structure of TM1 in AE1, demonstrating the disruptive effect the SAO deletion has on AE1 folding. These results provide a precise molecular view of the disposition and dynamics of wild-type and SAO TM1 in a lipid bilayer, an important early biosynthetic intermediate in the insertion of AE1 into the ER membrane, and extend earlier results of cell-free translation experiments.
Collapse
Affiliation(s)
- Philip W Fowler
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Reinhart A F Reithmeier
- Department of Biochemistry, University of Toronto , 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
16
|
Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv Drug Deliv Rev 2016; 106:88-103. [PMID: 26941164 DOI: 10.1016/j.addr.2016.02.007] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
Abstract
Red blood cells (RBCs) constitute a unique drug delivery system as a biologic or hybrid carrier capable of greatly enhancing pharmacokinetics, altering pharmacodynamics (for example, by changing margination within the intravascular space), and modulating immune responses to appended cargoes. Strategies for RBC drug delivery systems include internal and surface loading, and the latter can be performed both ex vivo and in vivo. A relatively new avenue for RBC drug delivery is their application as a carrier for nanoparticles. Efforts are also being made to incorporate features of RBCs in nanocarriers to mimic their most useful aspects, such as long circulation and stealth features. RBCs have also recently been explored as carriers for the delivery of antigens for modulation of immune response. Therefore, RBC-based drug delivery systems represent supercarriers for a diverse array of biomedical interventions, and this is reflected by several industrial and academic efforts that are poised to enter the clinical realm.
Collapse
|
17
|
Identification of adducin-binding residues on the cytoplasmic domain of erythrocyte membrane protein, band 3. Biochem J 2016; 473:3147-58. [PMID: 27435097 DOI: 10.1042/bcj20160328] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/19/2016] [Indexed: 12/26/2022]
Abstract
Two major complexes form structural bridges that connect the erythrocyte membrane to its underlying spectrin-based cytoskeleton. Although the band 3-ankyrin bridge may account for most of the membrane-to-cytoskeleton interactions, the linkage between the cytoplasmic domain of band 3 (cdb3) and adducin has also been shown to be critical to membrane integrity. In the present paper, we demonstrate that adducin, a major component of the spectrin-actin junctional complex, binds primarily to residues 246-264 of cdb3, and mutation of two exposed glutamic acid residues within this sequence completely abrogates both α- and β-adducin binding. Because these residues are located next to the ankyrin-binding site on cdb3, it seems unlikely that band 3 can bind ankyrin and adducin concurrently, reducing the chances of an association between the ankyrin and junctional complexes that would significantly compromise erythrocyte membrane integrity. We also demonstrate that adducin binds the kidney isoform of cdb3, a spliceoform that lacks the first 65 amino acids of erythrocyte cdb3, including the central strand of a large β-pleated sheet. Because kidney cdb3 is not known to bind any of the common peripheral protein partners of erythrocyte cdb3, including ankyrin, protein 4.1, glyceraldehyde-3-phosphate dehydrogenase, aldolase, and phosphofructokinase, retention of this affinity for adducin was unexpected.
Collapse
|
18
|
Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci U S A 2016; 113:7118-23. [PMID: 27274069 DOI: 10.1073/pnas.1525184113] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cellular pH homeostasis is fundamental for life, and all cells adapt to maintain this balance. In plants, the chemical form of nitrogen supply, nitrate and ammonium, is one of the cellular pH dominators. We report that the rice nitrate transporter OsNRT2.3 is transcribed into two spliced isoforms with a natural variation in expression ratio. One splice form, OsNRT2.3b is located on the plasma membrane, is expressed mainly in the phloem, and has a regulatory motif on the cytosolic side that acts to switch nitrate transport activity on or off by a pH-sensing mechanism. High OsNRT2.3b expression in rice enhances the pH-buffering capacity of the plant, increasing N, Fe, and P uptake. In field trials, increased expression of OsNRT2.3b improved grain yield and nitrogen use efficiency (NUE) by 40%. These results indicate that pH sensing by the rice nitrate transporter OsNRT2.3b is important for plant adaption to varied N supply forms and can provide a target for improving NUE.
Collapse
|
19
|
Ficarra S, Tellone E, Pirolli D, Russo A, Barreca D, Galtieri A, Giardina B, Gavezzotti P, Riva S, De Rosa MC. Insights into the properties of the two enantiomers of trans-δ-viniferin, a resveratrol derivative: antioxidant activity, biochemical and molecular modeling studies of its interactions with hemoglobin. MOLECULAR BIOSYSTEMS 2016; 12:1276-86. [PMID: 26883599 DOI: 10.1039/c5mb00897b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resveratrol is widely known as an antioxidant and anti-inflammatory molecule. The present study first reports the effects of trans-δ-viniferin (TVN), a dimer of resveratrol, on human erythrocytes. The antioxidant activity of TVN was tested using in vitro model systems such as hydroxy radical scavenging, DPPH and lipid peroxidation. In addition we have examined the influence of the 15R,22R- and 15S,22S-enantiomers (abbreviated R,R-TVN, and S,S-TVN, respectively) on anion transport, ATP release, caspase 3 activation. Given that hemoglobin (Hb) redox reactions are the major source of RBC oxidative stress, we also explored the effects of TVN on hemoglobin function. TVN showed moderate antioxidant properties and good protective activity from hemoglobin oxidation. Potential binding sites of R,R-TVN and S,S-TVN with oxy- and deoxy-Hb were also investigated through an extensive in silico docking approach and molecular dynamics calculations. The whole molecular modeling studies indicate that binding of R,R-TVN and S,S-TVN to Hb lacks of specific ligand-target interactions. This is the first report on the biological activity of the individual enantiomers of a resveratrol-related dimer.
Collapse
Affiliation(s)
- Silvana Ficarra
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche e ambientali, Università degli Studi di Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Binding of human myeloperoxidase to red blood cells: Molecular targets and biophysical consequences at the plasma membrane level. Arch Biochem Biophys 2015; 591:87-97. [PMID: 26714302 DOI: 10.1016/j.abb.2015.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/30/2015] [Accepted: 12/15/2015] [Indexed: 12/25/2022]
Abstract
Myeloperoxidase (MPO) is an oxidant-producing enzyme that can also bind to cellular surface proteins. We found that band 3 protein and glycophorins A and B were the key MPO-binding targets of human red blood cells (RBCs). The interaction of MPO with RBC proteins was mostly electrostatic in nature because it was inhibited by desialation, exogenic sialic acid, high ionic strength, and extreme pH. In addition, MPO failed to interfere with the lectin-induced agglutination of RBCs, suggesting a minor role of glycan-recognizing mechanisms in MPO binding. Multiple biophysical properties of RBCs were altered in the presence of native (i.e., not hypochlorous acid-damaged) MPO. These changes included transmembrane potential, availability of intracellular Ca(2+), and lipid organization in the plasma membrane. MPO-treated erythrocytes became larger in size, structurally more rigid, and hypersensitive to acidic and osmotic hemolysis. Furthermore, we found a significant correlation between the plasma MPO concentration and RBC rigidity index in type-2 diabetes patients with coronary heart disease. These findings suggest that MPO functions as a mediator of novel regulatory mechanism in microcirculation, indicating the influence of MPO-induced abnormalities on RBC deformability under pathological stress conditions.
Collapse
|
21
|
Nuiplot NO, Junking M, Duangtum N, Khunchai S, Sawasdee N, Yenchitsomanus PT, Akkarapatumwong V. Transmembrane protein 139 (TMEM139) interacts with human kidney isoform of anion exchanger 1 (kAE1). Biochem Biophys Res Commun 2015; 463:706-11. [DOI: 10.1016/j.bbrc.2015.05.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/31/2015] [Indexed: 12/29/2022]
|
22
|
Villa CH, Pan DC, Zaitsev S, Cines DB, Siegel DL, Muzykantov VR. Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier. Ther Deliv 2015; 6:795-826. [PMID: 26228773 PMCID: PMC4712023 DOI: 10.4155/tde.15.34] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
For several decades, researchers have used erythrocytes for drug delivery of a wide variety of therapeutics in order to improve their pharmacokinetics, biodistribution, controlled release and pharmacodynamics. Approaches include encapsulation of drugs within erythrocytes, as well as coupling of drugs onto the red cell surface. This review focuses on the latter approach, and examines the delivery of red blood cell (RBC)-surface-bound anti-inflammatory, anti-thrombotic and anti-microbial agents, as well as RBC carriage of nanoparticles. Herein, we discuss the progress that has been made in surface loading approaches, and address in depth the issues relevant to surface loading of RBC, including intrinsic features of erythrocyte membranes, immune considerations, potential surface targets and techniques for the production of affinity ligands.
Collapse
Affiliation(s)
- Carlos H Villa
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel C Pan
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei Zaitsev
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas B Cines
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald L Siegel
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Shimo H, Arjunan SNV, Machiyama H, Nishino T, Suematsu M, Fujita H, Tomita M, Takahashi K. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes. PLoS Comput Biol 2015; 11:e1004210. [PMID: 26046580 PMCID: PMC4457884 DOI: 10.1371/journal.pcbi.1004210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/24/2015] [Indexed: 01/06/2023] Open
Abstract
Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs. In order to maintain a steady internal environment, our bodies must be able to specifically recognize old and damaged red blood cells (RBCs), and remove them from the circulation in a timely manner. Clusters of membrane protein band 3, which form in response to elevated oxidative damage, serve as essential molecular markers that initiate this cell removal process. However, little is known about the details of how these clusters are formed and how their properties change under different conditions. To understand these mechanisms in detail, we developed a computational model that enables the prediction of the time course profiles of metabolic intermediates, as well as the visualization of the resulting band 3 distribution during oxidative treatment. Our model predictions were in good agreement with previous published experimental data, and provided predictive insights on the key factors of cluster formation. Furthermore, simulation experiments of the effects of multiple oxidative pulses and cytoskeletal defect using the model also suggested that clustering is enhanced under such conditions. Analyses using our model can provide hypotheses and suggest experiments to aid the understanding of the physiology of anemia-associated RBC disorders, and optimization of quality control of RBCs in stored blood.
Collapse
Affiliation(s)
- Hanae Shimo
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Osaka, Japan
- Department of Biochemistry, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | | | - Hiroaki Machiyama
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Taiko Nishino
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Makoto Suematsu
- Department of Biochemistry, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Hideaki Fujita
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Department of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| | - Koichi Takahashi
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Osaka, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- * E-mail:
| |
Collapse
|
24
|
Baldwin M, Yamodo I, Ranjan R, Li X, Mines G, Marinkovic M, Hanada T, Oh SS, Chishti AH. Human erythrocyte band 3 functions as a receptor for the sialic acid-independent invasion of Plasmodium falciparum. Role of the RhopH3-MSP1 complex. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2855-70. [PMID: 25157665 DOI: 10.1016/j.bbamcr.2014.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 12/15/2022]
Abstract
Plasmodium falciparum takes advantage of two broadly defined alternate invasion pathways when infecting human erythrocytes: one that depends on and the other that is independent of host sialic acid residues on the erythrocyte surface. Within the sialic acid-dependent (SAD) and sialic acid-independent (SAID) invasion pathways, several alternate host receptors are used by P. falciparum based on its particular invasion phenotype. Earlier, we reported that two putative extracellular regions of human erythrocyte band 3 termed 5C and 6A function as host invasion receptor segments binding parasite proteins MSP1 and MSP9 via a SAID mechanism. In this study, we developed two mono-specific anti-peptide chicken IgY antibodies to demonstrate that the 5C and 6A regions of band 3 are exposed on the surface of human erythrocytes. These antibodies inhibited erythrocyte invasion by the P. falciparum 3D7 and 7G8 strains (SAID invasion phenotype), and the blocking effect was enhanced in sialic acid-depleted erythrocytes. In contrast, the IgY antibodies had only a marginal inhibitory effect on FCR3 and Dd2 strains (SAD invasion phenotype). A direct biochemical interaction between erythrocyte band 3 epitopes and parasite RhopH3, identified by the yeast two-hybrid screen, was established. RhopH3 formed a complex with MSP119 and the 5ABC region of band 3, and a recombinant segment of RhopH3 inhibited parasite invasion in human erythrocytes. Together, these findings provide evidence that erythrocyte band 3 functions as a major host invasion receptor in the SAID invasion pathway by assembling a multi-protein complex composed of parasite ligands RhopH3 and MSP1.
Collapse
Affiliation(s)
- Michael Baldwin
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Innocent Yamodo
- St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | - Ravi Ranjan
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Xuerong Li
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Gregory Mines
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Marina Marinkovic
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Toshihiko Hanada
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Steven S Oh
- St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | - Athar H Chishti
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA.
| |
Collapse
|
25
|
Baleotti W, Ruiz MO, Fabron A, Castilho L, Giuliatti S, Donadi EA. HLA-DRB1*07:01 allele is primarily associated with the Diego a alloimmunization in a Brazilian population. Transfusion 2014; 54:2468-76. [PMID: 24724911 DOI: 10.1111/trf.12652] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND The Diego blood group presents a major polymorphic site at Residue 854, causing a proline (Di(b) antigen) to leucine (Di(a) antigen) substitution. Di(a) alloimmunization has been observed among Asian and Native South American populations. Considering that Brazilians represent a genetically diverse population, and considering that we have observed a high incidence of Di(a) alloimmunization, we typed HLA-DRB1 alleles in these patients and performed in silico studies to investigate the possible associated mechanisms. STUDY DESIGN AND METHODS We studied 212 alloimmunized patients, of whom 24 presented immunoglobulin G anti-Di(a) , 15 received Di(a+) red blood cells and were not immunized, and 1008 were healthy donors. HLA typing was performed using commercial kits. In silico analyses were performed using the TEPITOPEpan software to identify Diego-derived anchor peptide binding to HLA-DRB1 molecules. Residue alignment was performed using the IMGT/HLA for amino acid identity and homology analyses. RESULTS HLA-DRB1*07:01 allele was overrepresented in Di(a) -alloimmunized patients compared to nonimmunized patients and to healthy donors. Two motifs were predicted to be potential epitopes for Di(a) alloimmunization, the WVVKSTLAS motif was predicted to bind several HLA-DR molecules, and the FVLILTVPL motif exhibited highest affinity for the HLA-DRB1*07:01 molecule. Pocket 4 of the DRB1*07:01 molecule contained specific residues not found in other HLA-DRB1 molecules, particularly those at Positions 13(Y), 74(Q), and 78(V). CONCLUSION Individuals carrying the HLA-DRB1*07:01 allele present an increased risk for Di(a) alloimmunization. The identification of susceptible individuals and the knowledge of potential sensitization peptides are relevant approaches for transfusion care, diagnostic purposes, and desensitization therapies.
Collapse
Affiliation(s)
- Wilson Baleotti
- Faculty of Medicine of Marília (FAMEMA), Marília, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Erythrocyte Membrane Properties in Patients with Essential Hypertension. Cell Biochem Biophys 2013; 67:1089-102. [DOI: 10.1007/s12013-013-9613-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Janvier D, Lam Y, Lopez I, Elakredar L, Bierling P. A major target for warm immunoglobulin G autoantibodies: the third external loop of Band 3. Transfusion 2012; 53:1948-55. [PMID: 23241102 DOI: 10.1111/trf.12026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 10/20/2012] [Accepted: 10/29/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Rh proteins and the Wr(b) antigen, which results from an interaction between Band 3 and glycophorin A, are the most common targets for warm immunoglobulin (Ig)G autoantibodies. Apart from autoanti-Di(b) , a scarce specificity, IgG warm autoantibodies specific for Band 3 have never been characterized by serologic methods. STUDY DESIGN AND METHODS Blood samples from 120 patients with autoimmune hemolytic anemia (AIHA) and IgG-coated red blood cells (RBCs) were studied by serologic methods. Some autoantibodies were investigated by immunochemical methods. RESULTS Autoantibodies against the third external loop of Band 3 have a distinctive pattern of reactivity in that they fail to react after RBC treatment with α-chymotrypsin and pronase, whereas papain, ficin, and trypsin have no effect. Eleven (9%) patients had pure anti-Band 3 autoantibodies. Autoanti-Band 3 antibodies were associated with other specificities in 66 (55%) patients. Immunoprecipitation and rare RBCs from a Wu+ homozygote, known to have an unusual pattern of reactivity after protease treatment, were used to confirm the Band 3 specificity. Treatment with sodium hypochlorite, believed to oxidize the Met residue at Position 559 in the third loop, showed that these autoantibodies were heterogeneous. Most antibodies reacted optimally at 37 °C, but two patients had incomplete cold IgG autoantibodies. Unlike autoantibodies to Rh proteins, warm autoanti-Band 3 activate complement and are almost totally bound to autologous RBCs. CONCLUSION We describe the first cases of warm IgG autoantibodies specific for the third loop of Band 3. This external loop also appears as a major target in patients with warm antibody AIHA.
Collapse
Affiliation(s)
- Daniel Janvier
- Etablissement Français du Sang Ile-de-France, Paris, France
| | | | | | | | | |
Collapse
|
28
|
Khositseth S, Bruce LJ, Walsh SB, Bawazir WM, Ogle GD, Unwin RJ, Thong MK, Sinha R, Choo KE, Chartapisak W, Kingwatanakul P, Sumboonnanonda A, Vasuvattakul S, Yenchitsomanus P, Wrong O. Tropical distal renal tubular acidosis: clinical and epidemiological studies in 78 patients. QJM 2012; 105:861-77. [PMID: 22919024 DOI: 10.1093/qjmed/hcs139] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Distal renal tubular acidosis (dRTA) caused by mutations of the SLC4A1 gene encoding the erythroid and kidney isoforms of anion exchanger 1 (AE1 or band 3) has a high prevalence in some tropical countries, particularly Thailand, Malaysia, the Philippines and Papua New Guinea (PNG). Here the disease is almost invariably recessive and can result from either homozygous or compound heterozygous SLC4A1 mutations. METHODS We have collected and reviewed our own and published data on tropical dRTA to provide a comprehensive series of clinical and epidemiological studies in 78 patients. RESULTS Eight responsible SLC4A1 mutations have been described so far, four of them affecting multiple unrelated families. With the exception of the mutation causing South-East Asian ovalocytosis (SAO), none of these mutations has been reported outside the tropics, where dRTA caused by SLC4A1 mutations is much rarer and almost always dominant, resulting from mutations that are quite different from those found in the tropics. SLC4A1 mutations, including those causing dRTA, may cause morphological red cell changes, often with excess haemolysis. In dRTA, these red cell changes are usually clinically recessive and not present in heterozygotes. The high tropical prevalence of dRTA caused by SLC4A1 mutations is currently unexplained. CONCLUSION A hypothesis suggesting that changes in red cell metabolism caused by these mutations might protect against malaria is put forward to explain the phenomenon, and a possible mechanism for this effect is proposed.
Collapse
Affiliation(s)
- S Khositseth
- University College Medical School, Royal Free Campus and Hospital, London NW3 2PF, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fluman N, Ryan CM, Whitelegge JP, Bibi E. Dissection of mechanistic principles of a secondary multidrug efflux protein. Mol Cell 2012; 47:777-87. [PMID: 22841484 DOI: 10.1016/j.molcel.2012.06.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 05/17/2012] [Accepted: 06/19/2012] [Indexed: 12/01/2022]
Abstract
Multidrug transporters are ubiquitous efflux pumps that provide cells with defense against various toxic compounds. In bacteria, which typically harbor numerous multidrug transporter genes, the majority function as secondary multidrug/proton antiporters. Proton-coupled secondary transport is a fundamental process that is not fully understood, largely owing to the obscure nature of proton-transporter interactions. Here we analyzed the substrate/proton coupling mechanism in MdfA, a model multidrug/proton antiporter. By measuring the effect of protons on substrate binding and by directly measuring proton binding and release, we show that substrates and protons compete for binding to MdfA. Our studies strongly suggest that competition is an integral feature of secondary multidrug transport. We identified the proton-binding acidic residue and show that, surprisingly, the substrate binds at a different site. Together, the results suggest an interesting mode of indirect competition as a mechanism of multidrug/proton antiport.
Collapse
Affiliation(s)
- Nir Fluman
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
30
|
Suo WH, Zhang N, Wu PP, Zhao L, Song LJ, Shen WW, Zheng L, Tao J, Long XD, Fu GH. Anti-tumour effects of small interfering RNA targeting anion exchanger 1 in experimental gastric cancer. Br J Pharmacol 2012; 165:135-47. [PMID: 21649639 DOI: 10.1111/j.1476-5381.2011.01521.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Anion exchanger 1 (AE1) is an integral membrane protein found in erythrocytes. Our previous studies have demonstrated that AE1 is expressed in human gastric cancer cells and may be involved in the carcinogenesis of cancer. In this study, we further investigated the role of AE1 in gastric carcinogenesis and the anti-tumour effects of AE1-targeted small interfering RNAs (siRNAs) in two experimental models of gastric cancer. EXPERIMENTAL APPROACH Molecular and cellular experiments were performed to elucidate the role of AE1 in the malignant transformation of gastric epithelium and the effects of AE1-targeted siRNAs on gastric cancer cells. The anti-tumour effect of the siRNA was evaluated in vivo in two mouse models, nude mice implanted with human gastric cancer xenografts (Model I) and mice with gastric cancer induced by N-methyl-N-nitrosourea (MNU) and Helicobacter pylori (Model II). KEY RESULTS AE1 was found to increase gastric carcinogenesis by promoting cell proliferation. AE1-targeted siRNA significantly suppressed AE1 expression and hindered tumour growth. Furthermore, the siRNA markedly decreased the detection rate of gastric cancer, in parallel with an increase in atypical hyperplasia at the end of the experiment in Model II. CONCLUSIONS AND IMPLICATIONS Knockdown of AE1 expression in gastric mucosa by administration of synthetic siRNAs significantly inhibits the growth of gastric cancer and decreases the detection rate of this tumour in experimental mice. These results suggest that AE1 is potentially a key therapeutic target and the silencing of AE1 expression in gastric mucosa could provide a new therapeutic approach for treating gastric cancer.
Collapse
Affiliation(s)
- Wen-Hao Suo
- Department of Pathology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Delobel J, Prudent M, Rubin O, Crettaz D, Tissot JD, Lion N. Subcellular fractionation of stored red blood cells reveals a compartment-based protein carbonylation evolution. J Proteomics 2012; 76 Spec No.:181-93. [PMID: 22580360 DOI: 10.1016/j.jprot.2012.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 04/28/2012] [Accepted: 05/02/2012] [Indexed: 12/13/2022]
Abstract
During blood banking, erythrocytes undergo storage lesions, altering or degrading their metabolism, rheological properties, and protein content. Carbonylation is a hallmark of protein oxidative lesions, thus of red blood cell oxidative stress. In order to improve global erythrocyte protein carbonylation assessment, subcellular fractionation has been established, allowing us to work on four different protein populations, namely soluble hemoglobin, hemoglobin-depleted soluble fraction, integral membrane and cytoskeleton membrane protein fractions. Carbonylation in erythrocyte-derived microparticles has also been investigated. Carbonylated proteins were derivatized with 2,4-dinitrophenylhydrazine (2,4-DNPH) and quantified by western blot analyses. In particular, carbonylation in the cytoskeletal membrane fraction increased remarkably between day 29 and day 43 (P<0.01). Moreover, protein carbonylation within microparticles released during storage showed a two-fold increase along the storage period (P<0.01). As a result, carbonylation of cytoplasmic and membrane protein fractions differs along storage, and the present study allows explaining two distinct steps in global erythrocyte protein carbonylation evolution during blood banking. This article is part of a Special Issue entitled: Integrated omics.
Collapse
Affiliation(s)
- Julien Delobel
- Service Régional Vaudois de Transfusion Sanguine, route de Corniche 2, CH-1066 Epalinges, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Cai M, Zhao W, Shang X, Jiang J, Ji H, Tang Z, Wang H. Direct evidence of lipid rafts by in situ atomic force microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1243-50. [PMID: 22351491 DOI: 10.1002/smll.201102183] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Indexed: 05/11/2023]
Abstract
Lipid rafts are membrane microdomains enriched with cholesterol, glycosphingolipids, and proteins. Although they are broadly presumed to play a pivotal role in various cellular functions, there are still fierce debates about the composition, functions, and even existence of lipid rafts. Here high-resolution and time-lapse in situ atomic force microscopy is used to directly confirm the existence of lipid rafts in native erythrocyte membranes. The results indicate some important aspects of lipid rafts: most of the lipid rafts are in the size range of 100-300 nm and have irregular shape; the detergent-resistant membranes consist of cholesterol microdomains and are not likely the same as the lipid rafts; cholesterol contributes significantly to the formation and stability of the protein domains; and Band III is an important protein of lipid rafts in the inner leaflet of erythrocyte membranes, indicating that lipid rafts are exactly the functional domains in plasma membrane. This work provides direct evidence of the presence, size, and main constitutive protein of lipid rafts at a resolution of a few nanometers, which will pave the way for studying their structure and functions in detail.
Collapse
Affiliation(s)
- Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | | | | | | | | | | | | |
Collapse
|
33
|
Mazzulla S, Sesti S, Schella A, Perrotta I, Anile A, Drogo S. Protective Effect of <i>Aloe vera (Aloe barbadensis</i> Miller) on Erythrocytes Anion Transporter and Oxidative Change. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/fns.2012.312222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Wang CC, Sato K, Otsuka Y, Otsu W, Inaba M. Clathrin-mediated endocytosis of mammalian erythroid AE1 anion exchanger facilitated by a YXXΦ or a noncanonical YXXXΦ motif in the N-terminal stretch. J Vet Med Sci 2011; 74:17-25. [PMID: 21873807 DOI: 10.1292/jvms.11-0345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To explore the roles of the conserved YXXΦ-type motif in the erythroid-specific N-terminal stretch of anion exchanger 1 (AE1), cell surface expression and internalization of various mutants derived from murine erythroid AE1 tagged with an N-terminal enhanced green fluorescent protein and an extracellular FLAG (EGFP-mAE1Flag) were explored in K562 and HEK293 cells. EGFP-mAE1Flag showed rapid internalization, in association with the internalizations of transferrin and the endogenous AE1 chaperone-like protein glycophorin A in K562 cells. Disruption of the conserved Y72VEL sequence markedly reduced the internalization and increased the relative abundance of cell-surface AE1, whereas substitution of the N-terminal region from bovine AE1 that lacks the relevant motif for the corresponding region had less of an effect on internalization. Deletion or substitution mutations of the Y7EDQL sequence in the bovine N-terminal stretch resulted in the decreased internalization of the AE1 proteins. Cell surface biotinylation and deglycosylation studies showed that approximately 30% of the cell-surface EGFP-mAE1Flag and several other mutants was sorted to the plasma membrane without N-glycan maturation in the Golgi apparatus. These findings indicate that the conserved YXXΦ sequence or a noncanonical YXXXΦ sequence in the N-terminal region facilitates the endocytic recycling of erythroid AE1 through a clathrin-mediated pathway.
Collapse
Affiliation(s)
- Chen-Chi Wang
- Laboratory of Molecular Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
35
|
Duangtum N, Junking M, Sawasdee N, Cheunsuchon B, Limjindaporn T, Yenchitsomanus PT. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B). Biochem Biophys Res Commun 2011; 413:69-74. [PMID: 21871436 DOI: 10.1016/j.bbrc.2011.08.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of α-intercalated cells of the kidney collecting duct leads to the defect of the Cl(-)/HCO(3)(-) exchange and the failure of proton (H(+)) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney α-intercalated cells.
Collapse
Affiliation(s)
- Natapol Duangtum
- Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | | | | | | | | |
Collapse
|
36
|
Ficarra S, Russo A, Stefanizzi F, Mileto M, Barreca D, Bellocco E, Laganà G, Leuzzi U, Giardina B, Galtieri A, Tellone E. Palytoxin Induces Functional Changes of Anion Transport in Red Blood Cells: Metabolic Impact. J Membr Biol 2011; 242:31-9. [DOI: 10.1007/s00232-011-9374-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
|
37
|
Choi J, Reipa V, Hitchins VM, Goering PL, Malinauskas RA. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol Sci 2011; 123:133-43. [PMID: 21652737 DOI: 10.1093/toxsci/kfr149] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Silver nanomaterials are increasingly being used as antimicrobial agents in medical devices. This study assessed the in vitro hemolytic potential of unbound silver particles in human blood to determine which physical and chemical particle properties contribute to mechanisms of red blood cell (RBC) damage. Four silver particle powders (two nano-sized and two micron-sized) were dispersed in water and characterized using transmission electron microscopy, dynamic light scattering, surface-enhanced Raman spectroscopy, and zeta potential measurement. Particle size and agglomeration were dependent on the suspension media. Under similar conditions to the hemolysis assay, with the particles added to phosphate buffered saline (PBS) and plasma, the size of the nanoparticles increased compared with particles suspended in water alone due to interaction with chloride ions and plasma proteins. To determine hemolysis response, aqueous particle suspensions were mixed with heparinized human blood diluted in PBS for 3.5 h at 37°C. Both nanoparticle preparations were significantly more hemolytic than micron-sized particles at equivalent mass concentrations > 220 μg/ml and at estimated surface area concentrations > 10 cm(2)/ml. The presence or absence of surface citrate on nanoparticles showed no significant difference in hemolysis. However, the aqueous nanoparticle preparations released significantly more silver ions than micron-sized particles, which correlated with increased hemolysis. Although significant size changes occurred to the silver particles due to interaction with media components, the higher level of in vitro hemolysis observed with nanoparticles compared with micron-sized particles may be related to their greater surface area, increased silver ion release, and direct interaction with RBCs.
Collapse
Affiliation(s)
- Jonghoon Choi
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | | | | | | | |
Collapse
|
38
|
Sowah D, Casey JR. An intramolecular transport metabolon: fusion of carbonic anhydrase II to the COOH terminus of the Cl(-)/HCO(3)(-)exchanger, AE1. Am J Physiol Cell Physiol 2011; 301:C336-46. [PMID: 21543742 DOI: 10.1152/ajpcell.00005.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anion exchanger 1 (AE1) is the plasma membrane Cl(-)/HCO(3)(-) exchanger of erythrocytes. Carbonic anhydrases (CA) provide substrate for AE1 by catalyzing the reaction, H(2)O + CO(2) ↔ HCO(3)(-) + H(+). The physical complex of CAII with AE1 has been proposed to maximize anion exchange activity. To examine the effect of CAII catalysis on AE1 transport rate, we fused either CAII-wild type or catalytically inactive CAII-V143Y to the cytoplasmic COOH terminus of AE1 to form AE1.CAII and AE1.CAII-V143Y, respectively. When expressed in transfected human embryonic kidney 293 cells, AE1.CAII had a similar Cl(-)/HCO(3)(-) exchange activity to AE1 alone, as assessed by the flux of H(+) equivalents (87 ± 4% vs. AE1) or rate of change of intracellular Cl(-) concentration (93 ± 4% vs. AE1), suggesting that CAII does not activate AE1. In contrast, AE1.CAII-V143Y displayed transport rates for H(+) equivalents and Cl(-) of 55 ± 2% and of 40 ± 2%, versus AE1. Fusion of CAII to AE1 therefore reduces anion transport activity, but this reduction is compensated for during Cl(-)/HCO(3)(-) exchange by the presence of catalytically active CAII. Overexpression of free CAII-V143Y acts in a dominant negative manner to reduce AE1-mediated HCO(3)(-) transport by displacement of endogenous CAII-wild type from its binding site on AE1. To examine whether AE1.CAII bound endogenous CAII, we coexpressed CAII-V143Y along with AE1 or AE1.CAII. The bicarbonate transport activity of AE1 was inhibited by CAII-V143Y, whereas the activity of AE1.CAII was unaffected by CAII-V143Y, suggesting impaired transport activity upon displacement of functional CAII from AE1 but not AE1.CAII. Taken together, these data suggest that association of functional CAII with AE1 increases Cl(-)/HCO(3)(-) exchange activity, consistent with the HCO(3)(-) transport metabolon model.
Collapse
Affiliation(s)
- Daniel Sowah
- Membrane Protein Disease Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
39
|
Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3. Blood 2011; 117:5998-6006. [PMID: 21474668 DOI: 10.1182/blood-2010-11-317024] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic domain of band 3 serves as a center of erythrocyte membrane organization and constitutes the major substrate of erythrocyte tyrosine kinases. Tyrosine phosphorylation of band 3 is induced by several physiologic stimuli, including malaria parasite invasion, cell shrinkage, normal cell aging, and oxidant stress (thalassemias, sickle cell disease, glucose-6-phosphate dehydrogenase deficiency, etc). In an effort to characterize the biologic sequelae of band 3 tyrosine phosphorylation, we looked for changes in the polypeptide's function that accompany its phosphorylation. We report that tyrosine phosphorylation promotes dissociation of band 3 from the spectrin-actin skeleton as evidenced by: (1) a decrease in ankyrin affinity in direct binding studies, (2) an increase in detergent extractability of band 3 from ghosts, (3) a rise in band 3 cross-linkability by bis-sulfosuccinimidyl-suberate, (4) significant changes in erythrocyte morphology, and (5) elevation of the rate of band 3 diffusion in intact cells. Because release of band 3 from its ankyrin and adducin linkages to the cytoskeleton can facilitate changes in multiple membrane properties, tyrosine phosphorylation of band 3 is argued to enable adaptive changes in erythrocyte biology that permit the cell to respond to the above stresses.
Collapse
|
40
|
Oxygen-linked modulation of erythrocyte metabolism: state of the art. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2010; 8 Suppl 3:s53-8. [PMID: 20606750 DOI: 10.2450/2010.009s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Basu A, Mazor S, Casey JR. Distance Measurements within a Concatamer of the Plasma Membrane Cl−/HCO3− Exchanger, AE1. Biochemistry 2010; 49:9226-40. [DOI: 10.1021/bi101134h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Arghya Basu
- Membrane Protein Research Group, Department of Physiology and Department of Biochemistry, School of Molecular and Systems Medicine, 721 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Shirley Mazor
- Membrane Protein Research Group, Department of Physiology and Department of Biochemistry, School of Molecular and Systems Medicine, 721 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Joseph R. Casey
- Membrane Protein Research Group, Department of Physiology and Department of Biochemistry, School of Molecular and Systems Medicine, 721 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
42
|
Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 μ1A (AP-1 mu1A). Biochem Biophys Res Commun 2010; 401:85-91. [DOI: 10.1016/j.bbrc.2010.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/05/2010] [Indexed: 01/04/2023]
|
43
|
|
44
|
van den Akker E, Satchwell TJ, Williamson RC, Toye AM. Band 3 multiprotein complexes in the red cell membrane; of mice and men. Blood Cells Mol Dis 2010; 45:1-8. [DOI: 10.1016/j.bcmd.2010.02.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 02/02/2023]
|
45
|
Shao L, Xu Y, Dong Q, Lang Y, Yue S, Miao Z. A novel SLC4A1 variant in an autosomal dominant distal renal tubular acidosis family with a severe phenotype. Endocrine 2010; 37:473-8. [PMID: 20960171 DOI: 10.1007/s12020-010-9340-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 03/26/2010] [Indexed: 10/19/2022]
Abstract
Mutations in SLC4A1, encoding the chloride-bicarbonate exchanger AE1, cause distal renal tubular acidosis (dRTA), a disease of defective urinary acidification by the distal nephron. We searched for SLC4A1 gene mutations in six patients from a Chinese family with a severe phenotype of dRTA (growth impairment, severe metabolic acidosis, with/or without gross nephrocalcinosis and renal impairment). All coding regions of kidney isoform of AE1, including intron-exon boundaries, were analyzed using PCR followed by direct sequence analysis. A novel 1-bp duplication at nucleotide 2713 (c.2713dupG, band 3 Qingdao) in exon 20 of SLC4A1 in this family was identified by direct sequencing analysis. This duplication alters the encoded protein through codon 905, and results in a reading frame for 15 extra condons (instead of 8) before the new stop condon at position 919 (p.Asp905Glyfs15). We suggest that RTA should be considered as a diagnostic possibility in adult subjects with nephrocalcinosis and chronic renal insufficiency, and family survey should be carefully performed.
Collapse
Affiliation(s)
- Leping Shao
- Department of Nephrology, Affilated Hospital of Qingdao University School of Medicine, #16, Jiangsu Road, Qingdao 266003, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
46
|
Ungsupravate D, Sawasdee N, Khositseth S, Udomchaiprasertkul W, Khoprasert S, Li J, Reithmeier RAF, Yenchitsomanus PT. Impaired trafficking and intracellular retention of mutant kidney anion exchanger 1 proteins (G701D and A858D) associated with distal renal tubular acidosis. Mol Membr Biol 2010; 27:92-103. [DOI: 10.3109/09687681003588020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Janvier D, Lam Y, Galicier L, Bierling P. A new cold autoagglutinin specificity: the third external loop of band 3. Transfusion 2010; 50:47-52. [DOI: 10.1111/j.1537-2995.2009.02383.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Yamaguchi T, Fujii T, Abe Y, Hirai T, Kang D, Namba K, Hamasaki N, Mitsuoka K. Helical image reconstruction of the outward-open human erythrocyte band 3 membrane domain in tubular crystals. J Struct Biol 2009; 169:406-12. [PMID: 20005958 DOI: 10.1016/j.jsb.2009.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 11/19/2022]
Abstract
The C-terminal membrane domain of erythrocyte band 3 functions as an anion exchanger. Here, we report the three-dimensional (3D) structure of the membrane domain in an inhibitor-stabilized, outward-open conformation at 18A resolution. Unstained, frozen-hydrated tubular crystals containing the membrane domain of band 3 purified from human red blood cells (hB3MD) were examined using cryo-electron microscopy and iterative helical real-space reconstruction (IHRSR). The 3D image reconstruction of the tubular crystals showed the molecular packing of hB3MD dimers with dimensions of 60 x 110 A in the membrane plane and a thickness of 70A across the membrane. Immunoelectron microscopy and carboxyl-terminal digestion demonstrated that the intracellular surface of hB3MD was exposed on the outer surface of the tubular crystal. A 3D density map revealed that hB3MD consists of at least two subdomains and that the outward-open form is characterized by a large hollow area on the extracellular surface and continuous density on the intracellular surface.
Collapse
|
49
|
Pasini EM, Lutz HU, Mann M, Thomas AW. Red blood cell (RBC) membrane proteomics--Part I: Proteomics and RBC physiology. J Proteomics 2009; 73:403-20. [PMID: 19540949 DOI: 10.1016/j.jprot.2009.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 05/29/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
Abstract
Membrane proteomics is concerned with accurately and sensitively identifying molecules involved in cell compartmentalisation, including those controlling the interface between the cell and the outside world. The high lipid content of the environment in which these proteins are found often causes a particular set of problems that must be overcome when isolating the required material before effective HPLC-MS approaches can be performed. The membrane is an unusually dynamic cellular structure since it interacts with an ever changing environment. A full understanding of this critical cell component will ultimately require, in addition to proteomics, lipidomics, glycomics, interactomics and study of post-translational modifications. Devoid of nucleus and organelles in mammalian species other than camelids, and constantly in motion in the blood stream, red blood cells (RBCs) are the sole mammalian oxygen transporter. The fact that mature mammalian RBCs have no internal membrane-bound organelles, somewhat simplifies proteomics analysis of the plasma membrane and the fact that it has no nucleus disqualifies microarray based methods. Proteomics has the potential to provide a better understanding of this critical interface, and thereby assist in identifying new approaches to diseases.
Collapse
Affiliation(s)
- Erica M Pasini
- Biomedical Primate Research Centre, Lange Kleiweg 139, 2288 GJ Rijswijk, The Netherlands
| | | | | | | |
Collapse
|
50
|
Xu WQ, Song LJ, Liu Q, Zhao L, Zheng L, Yan ZW, Fu GH. Expression of anion exchanger 1 is associated with tumor progress in human gastric cancer. J Cancer Res Clin Oncol 2009; 135:1323-30. [PMID: 19330352 DOI: 10.1007/s00432-009-0573-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 03/09/2009] [Indexed: 12/28/2022]
Abstract
PURPOSE Anion exchanger 1 (AE1) is a transmembrane glycoprotein which is abundantly expressed in erythrocyte plasma membrane and mediates the electroneutral exchange of Cl(-) and HCO(3) (-). We previously reported that the AE1 protein was unexpectedly expressed in the gastric and colonic cancer and take part in the carcinogenesis of the cancer cells. The aim of the present study is to determine the potential clinical implications of AE1 expression in gastric carcinoma. METHODS Immunohistochemistry assay was used to determine the expression of AE1 protein. The expression of AE1 in normal and malignant tissues from 286 patients with early and advanced gastric carcinoma was examined. The correlations of AE1 expression with clinicopathological parameters, including age, tumor size, location and subtypes, expression frequency, survival period and lymph metastasis were assessed by Chi-squared test and t test analysis. RESULTS AE1 immunoreactivity was negative in normal gastric tissue. Positive immunostaining of AE1 was detected in gastric carcinoma regardless of the location. AE1 was most frequently expressed in the gastric antrum carcinoma compared with gastric body cancer (P = 0.034). Expression of AE1 was significantly associated with bigger tumor size, deeper invasion, shorter survival period, and non-lymph metastasis. In para-cancer tissues of intestinal-type gastric cancer, the expression frequency of AE1 was higher than that in diffuse-type (P = 0.011). CONCLUSION The results showed a strong association of AE1 expression with the onset and progression of the gastric cancer and that may be helpful for improving the tumor classification and the treatment of cancer.
Collapse
Affiliation(s)
- Wei-Qing Xu
- Department of Pathology, Institutes of Medical Sciences, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|