1
|
Savinova OS, Savinova TS, Fedorova TV. Oestrogen Detoxification Ability of White Rot Fungus Trametes hirsuta LE-BIN 072: Exoproteome and Transformation Product Profiling. J Fungi (Basel) 2024; 10:795. [PMID: 39590714 PMCID: PMC11595678 DOI: 10.3390/jof10110795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
White rot fungi, especially representatives of the genus Trametes spp. (Polyporaceae), are effective destructors of various xenobiotics, including oestrogens (phenol-like steroids), which are now widespread in the environment and pose a serious threat to the health of humans, animals and aquatic organisms. In this work, the ability of the white rot fungus Trametes hirsuta LE-BIN 072 to transform oestrone (E1) and 17β-oestradiol (E2), the main endocrine disruptors, was shown. More than 90% of the initial E1 and E2 were removed by the fungus during the first 24 h of transformation. The transformation process proceeded predominantly in the direction of the initial substrates' detoxification, with the radical oxidative coupling of E1 and E2 as well as their metabolites and the formation of less toxic dimers in various combinations. A number of minor metabolites, in particular, less toxic estriol (E3), were identified by HPLC-MS. The formation of E1 from E2 and vice versa were shown. The exoproteome of the white rot fungus during the transformation of oestrogens was studied in detail for the first time. The contribution of ligninolytic peroxidases (MnP5, MnP7 and VP2) to the process of the extracellular detoxification of oestrogens and their possible metabolites is highlighted. Thus, the studied strain appears to be a promising mycodetoxicant of phenol-like steroids in aquatic environments.
Collapse
Affiliation(s)
- Olga S. Savinova
- Bach Institute of Biochemistry, Federal Research Center, Fundamentals of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (T.S.S.); (T.V.F.)
| | | | | |
Collapse
|
2
|
Barber V, Mielke T, Cartwright J, Díaz-Rodríguez A, Unsworth WP, Grogan G. Unspecific Peroxygenase (UPO) can be Tuned for Oxygenation or Halogenation Activity by Controlling the Reaction pH. Chemistry 2024; 30:e202401706. [PMID: 38700372 DOI: 10.1002/chem.202401706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Unspecific Peroxygenases (UPOs) are increasingly significant enzymes for selective oxygenations as they are stable, highly active and catalyze their reactions at the expense of only hydrogen peroxide as the oxidant. Their structural similarity to chloroperoxidase (CPO) means that UPOs can also catalyze halogenation reactions based upon the generation of hypohalous acids from halide and H2O2. Here we show that the halogenation and oxygenation modes of a UPO can be stimulated at different pH values. Using simple aromatic compounds such as thymol, we show that, at a pH of 3.0 and 6.0, either brominated or oxygenated products respectively are produced. Preparative 100 mg scale transformations of substrates were performed with 60-72 % isolated yields of brominated products obtained. A one-pot bromination-oxygenation cascade reaction on 4-ethylanisole, in which the pH was adjusted from 3.0 to 6.0 at the halfway stage, yielded sequentially brominated and oxygenated products 1-(3-bromo-4-methoxyphenyl)ethyl alcohol and 3-bromo-4-methoxy acetophenone with 82 % combined conversion. These results identify UPOs as an unusual example of a biocatalyst that is tunable for entirely different chemical reactions, dependent upon the reaction conditions.
Collapse
Affiliation(s)
- Verity Barber
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Tamara Mielke
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Jared Cartwright
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Alba Díaz-Rodríguez
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
3
|
Dos Santos VHP, Andre RS, Dos Anjos JP, Mercante LA, Correa DS, Silva EO. Biotransformation of progesterone by endophytic fungal cells immobilized on electrospun nanofibrous membrane. Folia Microbiol (Praha) 2024; 69:407-414. [PMID: 37979123 DOI: 10.1007/s12223-023-01113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Biotransformation of steroids by fungi has been raised as a successful, eco-friendly, and cost-effective biotechnological alternative for chemical derivatization. Endophytic fungi live inside vegetal tissues without causing damage to the host plant, making available unique enzymes that carry out uncommon reactions. Moreover, using nanofibrous membranes as support for immobilizing fungal cells is a powerful strategy to improve their performance by enabling the combined action of adsorption and transformation processes, along with increasing the stability of the fungal cell. In the present study, we report the use of polyacrylonitrile nanofibrous membrane (PAN NFM) produced by electrospinning as supporting material for immobilizing the endophytic fungus Penicillium citrinum H7 aiming the biotransformation of progesterone. The PAN@H7 NFM displayed a high progesterone transformation efficiency (above 90%). The investigation of the biotransformation pathway of progesterone allowed the putative structural characterization of its main fungal metabolite by GC-MS analysis. The oxidative potential of P. citrinum H7 was selective for the C-17 position of the steroidal nucleus.
Collapse
Affiliation(s)
| | - Rafaela S Andre
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970, Brazil
| | - Jeancarlo Pereira Dos Anjos
- University Center SENAI CIMATEC, Salvador, 41650-010, Brazil
- INCT in Energy and Environment, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Luiza A Mercante
- Institute of Chemistry, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970, Brazil
| | - Eliane Oliveira Silva
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, 40170-115, Brazil.
| |
Collapse
|
4
|
Purbaya S, Harneti D, Safriansyah W, Rahmawati, Wulandari AP, Mulyani Y, Supratman U. Secondary Metabolites of Biscogniauxia: Distribution, Chemical Diversity, Bioactivity, and Implications of the Occurrence. Toxins (Basel) 2023; 15:686. [PMID: 38133190 PMCID: PMC10747060 DOI: 10.3390/toxins15120686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023] Open
Abstract
The genus Biscogniauxia, a member of the family Xylariaceae, is distributed worldwide with more than 50 recognized taxa. Biscogniauxia species is known as a plant pathogen, typically acting as a parasite on tree bark, although certain members of this genus also function as endophytic microorganisms. Biscogniauxia endophytic strain has received attention in many cases, which includes constituent research leading to the discovery of various bioactive secondary metabolites. Currently, there are a total of 115 chemical compounds belonging to the class of secondary metabolites, and among these compounds, fatty acids have been identified. In addition, the strong pharmacological agents of this genus are (3aS,4aR,8aS,9aR)-3a-hydroxy-8a-methyl-3,5-dimethylenedecahydronaphto [2,3-b]furan-2(3H)-one (HDFO) (antifungal), biscopyran (phytotoxic activity), reticulol (antioxidant), biscogniazaphilone A and B (antimycobacterial), and biscogniauxone (Enzyme GSK3 inhibitor). This comprehensive research contributes significantly to the potential discovery of novel drugs produced by Biscogniauxia and holds promise for future development. Importantly, it represents the first-ever review of natural products originating from the Biscogniauxia genus.
Collapse
Affiliation(s)
- Sari Purbaya
- Department of Chemistry, Faculty of Science and Informatics, Universitas Jenderal Achmad Yani, Cimahi 40531, Indonesia;
- Departments of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (D.H.); (W.S.); (Y.M.)
| | - Desi Harneti
- Departments of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (D.H.); (W.S.); (Y.M.)
| | - Wahyu Safriansyah
- Departments of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (D.H.); (W.S.); (Y.M.)
| | - Rahmawati
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Asri Peni Wulandari
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Yeni Mulyani
- Departments of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (D.H.); (W.S.); (Y.M.)
| | - Unang Supratman
- Departments of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (D.H.); (W.S.); (Y.M.)
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| |
Collapse
|
5
|
Kollerov VV, Shutov AA, Donova MV. Selective Microbial Conversion of DHEA into 7α-OH-DHEA. Methods Mol Biol 2023; 2704:269-275. [PMID: 37642850 DOI: 10.1007/978-1-0716-3385-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
7α-Hydroxy dehydroepiandrosterone (7α-OH-prasterone, 7α-OH-DHEA) is a key steroid intermediate in the synthesis of valuable pharmaceuticals widely used in the treatment of autoimmune illness, rheumatoid arthritis, colitis, and other severe diseases. The steroid can be produced using a filamentous fungus, which is capable of regio- and stereospecific hydroxylation of the steroid 3β-alcohol (DHEA) in the allylic position C7. Here, we describe a method for highly selective microbial production of 7α-OH-DHEA from DHEA using the zygomycete Backusella lamprospora VKM F-944. The method ensures high yield of 7α-OH-DHEA (up to 89%, mol/mol) even at high concentration of the substrate DHEA (15 g/L).
Collapse
Affiliation(s)
- Vyacheslav V Kollerov
- Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Andrei A Shutov
- Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Marina V Donova
- Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
6
|
Kuru A, Yildirim K. Microbial conversion of pregnenolone by some filamentous fungi. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2150967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ali Kuru
- Department of Chemistry, Faculty of Sciences, Sakarya University, Sakarya, Turkey
| | - Kudret Yildirim
- Department of Chemistry, Faculty of Sciences, Sakarya University, Sakarya, Turkey
| |
Collapse
|
7
|
Pereira Dos Santos VH, Luiz JHH, Dos Anjos JP, de Oliveira Silva E. Oxidative potential of two Brazilian endophytic fungi from Handroanthus impetiginosus towards progesterone. Steroids 2022; 187:109101. [PMID: 35970224 DOI: 10.1016/j.steroids.2022.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
Biotransformation has been successfully employed to conduct uncommon reactions, which would hardly be carried out by chemical synthesis. A wide diversity of compounds may be metabolized by fungi, leading to chemical derivatives through selective reactions that work under ecofriendly conditions. Endophytic fungi live inside vegetal tissues without causing damage to the host plant, making available unique enzymes for interesting chemical derivatization. Biotransformation of steroids by endophytic fungi may provide new derivatives as these microorganisms came from uncommon and underexplored habitats. In this study, endophytic strains isolated from Handroanthus impetiginosus leaves were assayed for biotransformation of progesterone, and its derivatives were identified through GC-EI-MS analysis. The endophyte Talaromyces sp. H4 was capable of transforming the steroidal nucleus selectively into four products through selective ene-reduction of the C4-C5 double bond and C-17 oxidation. The best conversion rate of progesterone (>90 %) was reached with Penicillium citrinum H7 endophytic strain that transformed the substrate into one derivative. The results highlight endophytic fungi's potential to obtain new and interesting steroidal derivatizations.
Collapse
Affiliation(s)
| | | | - Jeancarlo Pereira Dos Anjos
- University Center SENAI CIMATEC, Salvador, BA, Brazil; INCT in Energy and Environment, Federal University of Bahia, Salvador, BA, Brazil
| | - Eliane de Oliveira Silva
- Departament of Organic Chemistry, Chemistry Institute, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
8
|
Kollerov V, Donova M. Ursodeoxycholic acid production by Gibberella zeae mutants. AMB Express 2022; 12:105. [PMID: 35939125 PMCID: PMC9360310 DOI: 10.1186/s13568-022-01446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Ursodeoxycholic acid (UDCA) is a highly demanded pharmaceutical steroid widely used in medicine. An ascomycete Gibberella zeae VKM F-2600 is capable of producing UDCA by 7β-hydroxylation of lithocholic acid (LCA). The present study is aimed at the improvement of the fungus productivity. The original procedures for the protoplast obtaining followed by UV mutagenesis and screening of ketoconazole-resistant mutant clones have been applied. The highest yield of G. zeae protoplasts was obtained when using the mycelium in the active growth phase, ammonium chloride as an osmotic stabilizer and treatment of the fungal cells by the lytic enzymes cocktail from Trichoderma hurzanium. The conditions for effective protoplast regeneration and the UV-mutagenesis were found to provide 6–12% survival rate of the protoplasts with superior number of possible mutations. Three of 27 ketoconazole-resistant mutant clones obtained have been selected due to their increased biocatalytic activity towards LCA. The mutant G. zeae M23 produced 26% more UDCA even at relatively high LCA concentration (4 g/L) as compared with parent fungal strain, and the conversion reached 88% (w/w). The yield of UDCA reached in this study prefers those ever reported. The results contribute to the knowledge on ascomycete mutagenesis, and are of importance for biotechnological production of value added cholic acids. Efficient procedures for production and regeneration of Gibberella zeae protoplasts were determined. Fungal mutants were obtained with elevated 7β-hydroxylase activity. Mutant G. zeae M23 almost fully converts LCA (4 g/L) to UDCA.
Collapse
Affiliation(s)
- Vyacheslav Kollerov
- Federal Research Center Pushchino Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, 142290, Pushchino, Moscow Region, Russia.
| | - Marina Donova
- Federal Research Center Pushchino Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, 142290, Pushchino, Moscow Region, Russia
| |
Collapse
|
9
|
Biotransformation of Androstenedione by Filamentous Fungi Isolated from Cultural Heritage Sites in the State Tretyakov Gallery. BIOLOGY 2022; 11:biology11060883. [PMID: 35741405 PMCID: PMC9220046 DOI: 10.3390/biology11060883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary Microorganisms are able to grow on substrates of the most diverse nature. One of the most practical habitats, in terms of cultural heritage conservation, is fine art objects such as tempera or oil paintings on canvas. Since tempera paints are produced on the basis of egg yolk, which is one of the richest sources of cholesterol in nature (up to 2% of dry weight), and in the process of aging of tempera materials, changes in cholesterol do not affect the core structure of the steroid nucleus, the group of fungi that we have isolated are tempera painting destructors is seen as a promising object for screening for their possible steroid-transforming activities. In this regard, the purpose of our work was to determine the ability to transform pharmaceutically significant steroids with dominant fungi-destructors of tempera paintings, previously isolated in the State Tretyakov Gallery. Consequently, we have demonstrated for the first time that fungi-destructors of tempera paintings have steroid-transforming activity and are promising microorganisms for screening for biotechnologically significant transformations of steroids with further industrial use. Abstract The transformation of steroids by microorganisms is widely used in medical biotechnology. A huge group of filamentous fungi is one of the most promising taxa for screening new biocatalytic reactions in order to obtain pharmaceutically significant steroids. In this work, we screened 10 filamentous fungi-destructors of egg tempera for the ability to biotransform androst-4-en-3,17-dione (AD) during cultivation in a liquid nutrient medium or in a buffer solution. These taxonomically unrelated strains, belonging to the classes Eurotiomycetes, Dothideomycetes and Sordariomycetes, are dominant representatives of the microbiome from halls where works of tempera painting are stored in the State Tretyakov Gallery (STG, Moscow, Russia). Since the binder of tempera paints, egg yolk, contains about 2% cholesterol, these degrading fungi appear to be a promising group for screening for steroid converting activity. It turned out that all the studied fungi-destructors are able to transform AD. Some strains showed transformation efficiency close to the industrial strain Curvularia lunata RNCIM F-981. In total, 33 steroids formed during the transformation of AD were characterized, for 19 of them the structure was established by gas chromatography/mass spectrometry analysis. In this work, we have shown for the first time that fungi-destructors of tempera paintings can efficiently transform steroids.
Collapse
|
10
|
Qian M, Zeng Y, Mao S, Jia L, Hua E, Lu F, Liu X. Engineering of a fungal steroid 11α-hydroxylase and construction of recombinant yeast for improved production of 11α-hydroxyprogesterone. J Biotechnol 2022; 353:1-8. [PMID: 35654275 DOI: 10.1016/j.jbiotec.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022]
Abstract
Cytochrome P450 enzyme CYP68J5 from filamentous fungus Aspergillus ochraceus is industrially used for selective C11α-hydroxylation of canrenone and progesterone. To improve its selectivity of C11α-hydroxylation for relevant steroid substrates, a sequence-based targeted mutagenesis combined with saturation mutagenesis was conducted to search for variants with improved hydroxylation reaction specificity toward progesterone and D-ethylgonendione. Recombinant yeast expressing triple mutant V64F/E65G/N66T showed significantly increased C11α-hydroxylation selectivity (85 % VS WT 69.7 %). Saturation mutagenesis of V64, E65 and N66 resulted in the identification of single mutant V64K with greatly enhanced 11α-hydroxylation specificity toward progesterone (90.6 % VS WT 69.7 %). Furthermore, mutant N66D showed significant enhanced selectivity of C11α-hydroxylation toward D-ethylgonendione (70.8 % VS WT 58 %). Evaluation of recombinant yeast over-expressing V64K for progesterone transformation in 50 mL scale resulted in product 11α-OH progesterone concentrations of 432.5 mg/L, a 30.2 % increase compared with the CYP68J5 control. Our results also reveal that V64, E65 and N66 are key residues of CYP68J5 influencing its selectivity of C11α-hydroxylation, thus offering opportunities for further engineering of CYP68J5 for expanded industrial applications.
Collapse
Affiliation(s)
- Miao Qian
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, China, The College of Chemical Engineering and Materials Science, TUST, Tianjin 300457, China
| | - Yulong Zeng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Longgang Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Erbing Hua
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Xiaoguang Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, China, The College of Chemical Engineering and Materials Science, TUST, Tianjin 300457, China.
| |
Collapse
|
11
|
Aguiar LO, Silva EDO, David JM. Biotransformation of chalcones and flavanones: An update on their bio-based derivatizations. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2073226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | - Jorge M. David
- Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
12
|
Kollerov V, Shutov A, Kazantsev A, Donova M. Hydroxylation of pregnenolone and dehydroepiandrosterone by zygomycete Backusella lamprospora VKM F-944: selective production of 7α-OH-DHEA. Appl Microbiol Biotechnol 2021; 106:535-548. [PMID: 34939135 DOI: 10.1007/s00253-021-11737-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023]
Abstract
In this paper, we studied the transformation of two 3β-hydroxy-5-ene-steroids-pregnenolone and dehydroepiandrosterone (DHEA) by Backusella lamprospora VKM F- 944. The soil-dwelling zygomycete wild-type strain has been earlier selected during the screening and previously unexplored for this purpose. The fungus fully converted pregnenolone to form a mixture of axial 7α-hydroxy-pregnenolone and 7α,11α-dihydroxy-pregnenolone, while no metabolites with β-orientation of the hydroxyl group were detected. The pathway to 7α,11α-diOH-pregnenolone seems to include 7α-hydroxylation of 11α-hydroxylated derivative. The only product from DHEA was identified as 7α-hydroxy-DHEA. The structures of steroid metabolites were confirmed by HPLC, mass-spectrometry (MS), and 1H and 13C NMR analyses. Under the optimized conditions, the yield of 7α-OH-DHEA reached 94% (w/w) or over 14 g/L in absolute terms, even at high concentration of the substrate (DHEA) (15 g/L). To our knowledge, it is the highest yield of the value-added 7α-OH-DHEA reported so far. The results contribute to the knowledge of the diversity of the wild-type fungal strains capable of effective steroid hydroxylation. They could be applied for the production of allylic steroid 7α-alcohols that are widely used in medicine. KEY POINTS: • Zygomycete Backusella lamprospora actively hydroxylates 3β-hydroxy-5-en-steroids. • Axial 7α-hydroxylation is the preferable reaction by the strain towards pregnenolone and DHEA. • The strain selectively produces 7α-OH-DHEA even at high substrate concentrations (up to 15 g/L).
Collapse
Affiliation(s)
- Vyacheslav Kollerov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Prospekt Nauki, 5, 142290, Pushchino, Moscow region, Russia.
| | - Andrei Shutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Prospekt Nauki, 5, 142290, Pushchino, Moscow region, Russia
| | - Alexey Kazantsev
- Chemical Department, Moscow State University, GSP-1, Leninskiye Gori, 1, Moscow, Russia
| | - Marina Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Prospekt Nauki, 5, 142290, Pushchino, Moscow region, Russia
| |
Collapse
|
13
|
Steroid modification by filamentous fungus Drechslera sp.: Focus on 7-hydroxylase and 17β-hydroxysteroid dehydrogenase activities. Fungal Biol 2021; 126:91-100. [PMID: 34930562 DOI: 10.1016/j.funbio.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022]
Abstract
Fungal strain Drechslera sp. Ph F-34 was shown to modify 3-oxo- and 3-hydroxy steroids of androstane series to form the corresponding allylic 7-alcohols and 17β-reduced derivatives thus evidencing the presence of 7α-, 7β-hydroxylase and 17β-hydroxysteroid dehydrogenase (17β-HSD) activities. The growing mycelium predominantly hydroxylated androsta-1,4-diene-3,17-dione (ADD) at the 7β-position, while much lower 7α-hydroxylation was observed. Along with 7β-hydroxy-ADD and its corresponding 7α-isomer, their respective 17β-alcohols were produced. In this study, transformation of ADD, androst-4-en-17β-ol-3-one (testosterone, TS) and 3β-hydroxyandrost-5-en-17-one (dehydroepiandrosterone, DHEA) by resting mycelium of Drechslera sp. have been estimated in different conditions with regard to the inducibility and functionality of the 17β-HSD and 7-hydroxylase enzyme systems. Steroids of androstane, pregnane and cholane series were evaluated as inducers. The inhibitory analysis was provided using cycloheximide (CHX). Steroids were assayed using TLC and HPLC methods, and the structures were confirmed by mass-spectrometry, 1H and 13C NMR spectroscopy data. 17β-HSD of the mycelium constitutively reduced 17-carbonyl group of ADD and DHEA to form the corresponding 17β-alcohols, namely, androsta-1,4-diene-17β-ol-3-one (1-dehydro-TS), and androst-5-ene-3β,17β-diol. Production of the 7α- and 7β-hydroxylated derivatives depended on the induction conditions. The inducer effect relied on the steroid structure and decreased in the order: DHEA > pregnenolone > lithocholic acid. β-Sitosterol did not induce hydroxylase activity in Drechslera sp. CHX fully inhibited the synthesis of 7-hydroxylase in Drechslera mycelium thus providing selective 17-keto reduction. Results contribute to the diversity of steroid modifying enzymes in fungi and can be used at the development of novel biocatalysts for production of valuable steroid 7(α/β)- and 17β-alcohols.
Collapse
|
14
|
Łyczko P, Panek A, Ceremuga I, Świzdor A. The catalytic activity of mycelial fungi towards 7-oxo-DHEA - an endogenous derivative of steroidal hormone dehydroepiandrosterone. Microb Biotechnol 2021; 14:2187-2198. [PMID: 34327850 PMCID: PMC8449666 DOI: 10.1111/1751-7915.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/16/2021] [Indexed: 11/28/2022] Open
Abstract
Seventeen species of fungi belonging to thirteen genera were screened for the ability to carry out the transformation of 7-oxo-DHEA (7-oxo-dehydroepiandrosterone). Some strains expressed new patterns of catalytic activity towards the substrate, namely 16β-hydroxylation (Laetiporus sulphureus AM498), Baeyer-Villiger oxidation of ketone in D-ring to lactone (Fusicoccum amygdali AM258) and esterification of the 3β-hydroxy group (Spicaria divaricata AM423). The majority of examined strains were able to reduce the 17-oxo group of the substrate to form 3β,17β-dihydroxy-androst-5-en-7-one. The highest activity was reached with Armillaria mellea AM296 and Ascosphaera apis AM496 for which complete conversion of the starting material was achieved, and the resulting 17β-alcohol was the sole reaction product. Two strains of tested fungi were also capable of stereospecific reduction of the conjugated 7-keto group leading to 7β-hydroxy-DHEA (Inonotus radiatus AM70) or a mixture of 3β,7α,17β-trihydroxy-androst-5-ene and 3β,7β,17β-trihydroxy-androst-5-ene (Piptoporus betulinus AM39). The structures of new metabolites were confirmed by MS and NMR analysis. They were also examined for their cholinesterase inhibitory activity in an enzymatic-based assay in vitro test.
Collapse
Affiliation(s)
- Paulina Łyczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, Wrocław, 50-375, Poland
| | - Anna Panek
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, Wrocław, 50-375, Poland
| | - Ireneusz Ceremuga
- Department of Medical Biochemistry, Wrocław Medical University, Chałubińskiego 10, Wrocław, 50-368, Poland
| | - Alina Świzdor
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, Wrocław, 50-375, Poland
| |
Collapse
|
15
|
Lemmel F, Maunoury-Danger F, Leyval C, Cébron A. Altered fungal communities in contaminated soils from French industrial brownfields. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124296. [PMID: 33268205 DOI: 10.1016/j.jhazmat.2020.124296] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 05/20/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and metals are contaminants of industrial brownfield soils. Pollutants can have harmful effects on fungi, which are major actors of soil functioning. Our objective was to highlight fungal selection following long-term contamination of soils. Fungal diversity was assessed on 30 top-soil samples from ten sites gathered in three groups with different contamination levels and physico-chemical characteristics: 1) uncontaminated controls, 2) slag heaps displaying high PAH and moderate metal contaminations, and 3) settling ponds displaying high metal and intermediate PAH contaminations. Although fungal abundance and richness were similar among the soil groups, the diversity and evenness indices were lower for the slag heap group. Fungal diversity differed among soil groups at the phylum and OTU levels, and indicator species were identified. The relative abundance of Agaricomycetes, Saccharomycetes, Leotiomycetes and Chytridiomycota was higher in the control soils than in the two groups of contaminated soils. Cryptomycota LKM11 representatives were favoured in the slag heap and settling pond groups, and their relative abundance was correlated to the zinc and lead contamination levels. Dothideomycetes - positively linked to PAH contamination - and Eurotiomycetes were specific to the slag heap group. Pucciniomycetes and especially Gymnosporangium members were favoured in the settling pond soils.
Collapse
Affiliation(s)
- Florian Lemmel
- Université de Lorraine, CNRS, LIEC, Nancy F-54000, France
| | | | - Corinne Leyval
- Université de Lorraine, CNRS, LIEC, Nancy F-54000, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC, Nancy F-54000, France.
| |
Collapse
|
16
|
Pereira dos Santos VH, Coelho Neto DM, Lacerda Júnior V, Borges WDS, de Oliveira Silva E. Fungal Biotransformation: An Efficient Approach for Stereoselective Chemical Reactions. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201111203506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is great interest in developing chemical technologies to achieve regioselective
and stereoselective reactions since only one enantiomer is required for producing the
chiral leads for drug development. These selective reactions are provided by traditional
chemical synthetic methods, even under expensive catalysts and long reaction times. Filamentous
fungi are efficient biocatalysts capable of catalyzing a wide variety of reactions with
significant contributions to the development of clean and selective processes. Although some
enzymes have already been employed in isolated forms or as crude protein extracts as catalysts
for conducting selective reactions, the use of whole-cell provides advantages regarding
cofactor regenerations. It is also possible to carry out conversions at chemically unreactive
positions and to perform racemic resolution through microbial transformation. The current
literature contains several reports on the biotransformation of different compounds by fungi, which generated chemical
analogs with high selectivity, using mild and eco-friendly conditions. Prompted by the enormous pharmacological
interest in the development of stereoselective chemical technologies, this review covers the biotransformations catalyzed
by fungi that yielded chiral products with enantiomeric excesses published over the period 2010-2020. This
work highlights new approaches for the achievement of a variety of bioactive chiral building blocks, which can be a
good starting point for the synthesis of new compounds combining biotransformation and synthetic organic chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Eliane de Oliveira Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
17
|
Mao S, Wang X, Zhang Z, Wang S, Li K, Lu F, Qin H. 15α-hydroxylation of D-ethylgonendione by Penicillium raistrickii in deep eutectic solvents DESs containing system. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Yildirim K, Kuru A, Yılmazer Keskin S, Ergin S. Microbial transformation of dehydroepiandrosterone (DHEA) by some fungi. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1844191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kudret Yildirim
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, 54187, Turkey
| | - Ali Kuru
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, 54187, Turkey
| | - Semra Yılmazer Keskin
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, 54187, Turkey
| | - Sinan Ergin
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, 54187, Turkey
| |
Collapse
|
19
|
Ibrahim I, Khan N, Siddiqui M, Hassan Ajandouz E, Jabeen A, Mesmar J, Baydoun E, Iqbal Choudhary M. Biotransformation of contraceptive drug desogestrel with Cunninghamella elegans, and anti-inflammatory activity of its metabolites. Steroids 2020; 162:108694. [PMID: 32650000 DOI: 10.1016/j.steroids.2020.108694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 01/13/2023]
Abstract
Biotransformation of an orally active contraceptive drug, desogestrel (1), with Cunninghamella elegans yielded a new metabolite, 13β-ethyl-11-methylene-18,19-dinor-17α-pregn-4-en-20-yn-17β-ol-3,6-dione (2), along with five known metabolites, i.e., 13β-ethyl-11-methylene-18,19-dinor-17α-pregn-4-en-20-yn-3β,6β,17β-triol (3), 13β-ethyl-11-methylene-18,19-dinor-17α-pregn-4-en-20-yn-6β,17β-diol-3-one (4), 13β-ethyl-11-methylene-18,19-dinor-17α-pregn-4-en-20-yn-17β-ol-3-one (5), 13β-ethyl-11-epoxy-18,19-dinor-17α-pregn-4-en-20-yn-17β-ol-3-one (6), and 13β-ethyl-11-methylene-18,19-dinor-17α-pregn-4-en-20-yn-10β,17β-diol-3-one (7). The structure of new metabolite 2 was elucidated by using 1H-, 13C-, and 2D-NMR, EI-, and HREI-MS, IR, and UV spectroscopic data. Compounds 1-7 were evaluated for anti-inflammatory activities, i.e., inhibition of T-cell proliferation, and pro-inflammatory cytokine (TNF-α). Compounds 1 (IC50 = 1.12 ± 0.03 µg/mL), 2 (IC50 = 1.15 ± 0.05 µg/mL), 3 (IC50 = 1.15 ± 0.05 µg/mL), 4 (IC50 = 1.40 ± 0.03 µg/mL), 5 (IC50 = 1.78 ± 0.08 µg/mL), and 6 (IC50 = 1.36 ± 0.07 µg/mL) were identified as potent inhibitors of T-cells proliferation, in comparison to the standard drug, prednisolone (IC50 = 3.51 ± 0.03 µg/mL). Compound 7 (IC50 = 6.18 ± 0.04 µg/mL) showed a good activity. In addition, substrate 1 (IC50 ≤ 1 µg/mL), and its metabolites 2 (IC50 = 4.1 ± 0.60 µg/mL), and 6 (IC50 = 6.8 ± 0.8 µg/mL) also showed a potent inhibition of pro-inflammatory cytokine (TNF-α) production, as compared to the standards drug, pentoxifilline (IC50 = 94.8 ± 2.1 µg/mL). Whereas compounds 3 (IC50 = 57.9 ± 7.6 µg/mL), and 5 (IC50 = 27.2 ± 6.8 µg/mL) showed a moderate inhibition of TNF-α production, while compounds 4 and 7 showed no inhibition. Compounds 1-7 were found to be non-cytotoxic to 3T3 normal cell line (mouse fibroblast).
Collapse
Affiliation(s)
- Iman Ibrahim
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon; CNRS, Centrale Marseille iSm2, UMR 7313, Aix Marseille University, 13397 Marseille, France
| | - Nisha Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mahwish Siddiqui
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - El Hassan Ajandouz
- CNRS, Centrale Marseille iSm2, UMR 7313, Aix Marseille University, 13397 Marseille, France
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Joelle Mesmar
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
20
|
Heidary M, Ghasemi S, Habibi Z, Ansari F. Biotransformation of androst-4-ene-3,17-dione and nandrolone decanoate by genera of Aspergillus and Fusarium. Biotechnol Lett 2020; 42:1767-1775. [PMID: 32358727 DOI: 10.1007/s10529-020-02902-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/27/2020] [Indexed: 11/24/2022]
Abstract
The ability of five fungal species belonging to two genera of Aspergillus and Fusarium has been examined in the microbial transformation of androst-4-ene-3, 17-dione (AD). Furthermore, the biotransformation of nandrolone decanoate (2) by F. fujikuroi has been studied. AD (1) was converted by cultures of Aspergillus sp. PTCC 5266 to form 11α-hydroxy-AD (3) as the only product, with a yield of 86% in 3 days. Moreover, two hydroxylated metabolites 11α-hydroxy-AD (3, 65%) and 7β-hydroxy-AD (4; 18%) were isolated in biotransformation of AD by A. nidulans. On the other hand, it was metabolized by F. oxysporum to produce 14α-hydroxy-AD (5; 38%) and testosterone (6; 12%). Microbial transformation of AD by F. solani led to the production of 11α-hydroxy-AD (3; 54%) and testosterone (6; 14%). AD was reduced at the 17-position by F. fujikuroi to produce testosterone in the yield of 42%. Finally, nandrolone decanoate was transformed by F. fujikuroi via hydrolysis and oxidation at the 17-position to produce two metabolites namely 17β-hydroxyestr-4-en-3-one (7, 25.4%) and estr-4-en-3,17-dione (8, 33%), respectively. The all metabolites were purified and subsequently identified based on their spectra data analysis and comparing them to the literature data.
Collapse
Affiliation(s)
- Marjan Heidary
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C, Tehran, Iran
| | - Saba Ghasemi
- Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran.
| | - Zohreh Habibi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C, Tehran, Iran.
| | - Fatemeh Ansari
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C, Tehran, Iran
| |
Collapse
|
21
|
Fungal biocatalysts for labdane diterpene hydroxylation. Bioprocess Biosyst Eng 2020; 43:1051-1059. [PMID: 32020446 DOI: 10.1007/s00449-020-02303-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/27/2020] [Indexed: 01/23/2023]
Abstract
Labdane diterpenes and their derivatives have shown remarkable biological activities and are useful as chiral building blocks for the synthesis of a variety of bioactive compounds. There is great interest in developing biocatalyst technology to achieve regio- and stereoselective hydroxylation of unactivated C-H bonds in complex natural products, since the functionalization of unactivated C-H bonds generally requires hard reaction conditions and highly reactive oxidizing agents, which are limited regarding the control of regio- and stereoselectivity. Filamentous fungi are efficient biocatalysts capable of catalyzing a wide variety of hydroxylation reactions, and the use of whole cell biocatalysts provides advantages regarding cofactor regeneration and is much less expensive. Therefore, the goal of this study was to select biocatalysts to develop biotransformation processes that can be scalable under mild reaction conditions for hydroxylation of a labdane diterpene, 3β-acetoxy-copalic acid, which contains the trans-decalin moiety and a side chain dienic system appropriate for the preparation of a variety of compounds. Biotransformation processes were carried out and five filamentous fungi were selected as capable of producing hydroxylated diterpenes at positions C-3, C-6, C-7 and C-18 of the trans-decalin moiety and C-13 of the side chain dienic system. Hydroxylation reactions occurred with regio- and stereoselectivity by using some fungi that produced only the 6α, 7α and 13α-hydroxyl derivatives. The chemical structures of the hydroxylated diterpenes were determined from spectrometric and spectroscopic data, and the relative stereochemistry of stereogenic centers was established from coupling constants, by NOE-diff experiments and/or by computational calculations.
Collapse
|
22
|
Kollerov V, Shutov A, Kazantsev A, Donova M. Biotransformation of androstenedione and androstadienedione by selected Ascomycota and Zygomycota fungal strains. PHYTOCHEMISTRY 2020; 169:112160. [PMID: 31600654 DOI: 10.1016/j.phytochem.2019.112160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/30/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Filamentous fungi is a huge phylum of lower eukaryotes with diverse activities towards various substrates, however, their biocatalytic potential towards steroids remains greatly underestimated. In this study, more than forty Ascomycota and Zygomycota fungal strains of 23 different genera were screened for the ability to catalyze structural modifications of 3-oxo-androstane steroids, - androst-4-ene-3,17-dione (AD) and androsta-1,4-diene-3,17-dione (ADD). Previously unexplored for these purposes strains of Absidia, Acremonium, Beauveria, Cunninghamella, Doratomyces, Drechslera, Fusarium, Gibberella genera were revealed capable of producing in a good yield valuable 7α-, 7β-, 11α- and 14α-hydroxylated derivatives, as well as 17β-reduced and 1(2)-dehydrogenated androstanes. The bioconversion routes of AD and ADD were proposed based on the key intermediates identification and time courses of the bioprocesses. Six ascomycete strains were discovered to provide effective 7β-hydroxylation of ADD which has not been so far reported. The structures of major products and intermediates were confirmed by HPLC, mass-spectrometry (MS), 1H and 13C NMR analyses. The results contribute to the knowledge on the functional diversity of steroid-transforming filamentous fungi. Previously unexplored fungal biocatalysts capable of effective performing structural modification of AD and ADD can be applied for industrial bioprocesses of new generation.
Collapse
Affiliation(s)
- Vyacheslav Kollerov
- Federal Research Center «Pushchino Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, 142290, Pushchino, Moscow Region, Russia; Pharmins Ltd., Institutskaya ul, 4, 142290, Pushchino, Moscow Region, Russia.
| | - Andrei Shutov
- Federal Research Center «Pushchino Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, 142290, Pushchino, Moscow Region, Russia; Pharmins Ltd., Institutskaya ul, 4, 142290, Pushchino, Moscow Region, Russia
| | - Alexey Kazantsev
- Moscow State University, GSP-1, Leninskiye Gori, 1, Chemical Department, Moscow, Russia
| | - Marina Donova
- Federal Research Center «Pushchino Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, 142290, Pushchino, Moscow Region, Russia; Pharmins Ltd., Institutskaya ul, 4, 142290, Pushchino, Moscow Region, Russia
| |
Collapse
|
23
|
Zhou L, Li H, Xu Y, Liu W, Zhang X, Gong J, Xu Z, Shi J. Effects of a nonionic surfactant TX-40 on 9α-hydroxyandrost-4-ene-3,17-dione biosynthesis and physiological properties of Mycobacterium sp. LY-1. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Zoghi M, Gandomkar S, Habibi Z. Biotransformation of progesterone and testosterone enanthate by Circinella muscae. Steroids 2019; 151:108446. [PMID: 31302114 DOI: 10.1016/j.steroids.2019.108446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/07/2019] [Accepted: 07/06/2019] [Indexed: 11/20/2022]
Abstract
In this study, the biotransformation of progesterone (1) and testosterone enanthate (5) using the whole cells of Circinella muscae was investigated for the first time. Microbial transformation of 1 with C. muscae afforded three known metabolites including 9α-hydroxyprogesterone (2), 14α-hydroxyprogesterone (3) and 6β,14α dihydroxyprogesterone (4) after 6 days of incubation at 26 °C. The biotransformation of 5 with C. muscae yielded a new metabolite; 8β,14α-dihydroxytestosterone (8), in addition to two known metabolites; 6β-hydroxytestosterone (6), and 9α-hydroxytestosterone (7). The structure of the metabolites were established on the basis of spectroscopic data.
Collapse
Affiliation(s)
- Mahsa Zoghi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University G.C, Tehran, Iran
| | - Somayyeh Gandomkar
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University G.C, Tehran, Iran.
| | - Zohreh Habibi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University G.C, Tehran, Iran.
| |
Collapse
|
25
|
Ghasemi S, Heidary M, Habibi Z. The 11α-hydroxylation of medroxyprogesterone acetate by Absidia griseolla var. igachii and Acremonium chrysogenum. Steroids 2019; 149:108427. [PMID: 31228485 DOI: 10.1016/j.steroids.2019.108427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/08/2019] [Accepted: 06/13/2019] [Indexed: 11/26/2022]
Abstract
Medroxyprogesterone acetate (MPA) (1) has been transformed by two filamentous fungi, including Absidia griseolla var. igachii and Acremonium chrysogenum, into 11α-hydroxy-medroxyprogesterone acetate (2) as the major metabolite. The structure of the product was identified by different spectroscopic methods (1D- and 2D-NMR, EI-MS, and elemental analysis). Moreover, a time course study determined by HPLC showed 63% and 48% yields for the metabolite by using the two mentioned fungi, respectively. Finally, the effect of the temperature and concentration of the substrate were investigated, which the optimal fermentation conditions were found to be 25 °C with a substrate concentration of 0.1% (w/v). This study reports for the first time the production of 11α-hydroxy-medroxyprogesterone acetate as a fungal biotransformation product.
Collapse
Affiliation(s)
- Saba Ghasemi
- Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran.
| | - Marjan Heidary
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran
| | - Zohreh Habibi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran.
| |
Collapse
|
26
|
Microbial transformation of cholesterol: reactions and practical aspects-an update. World J Microbiol Biotechnol 2019; 35:131. [PMID: 31432251 DOI: 10.1007/s11274-019-2708-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
Cholesterol is a C27-sterol employed as starting material for the synthesis of valuable pharmaceutical steroids and precursors. The microbial transformations of cholesterol have been widely studied, since they are performed with high regio- and stereoselectivity and allow the production of steroidal compounds which are difficult to synthesize by classical chemical methods. In recent years, ongoing research is being conducted to discover novel biocatalysts and to develop biotechnological processes to improve existing biocatalysts and biotransformation reactions. The main objective of this review is to present the most remarkable advances in fungal and bacterial transformation of cholesterol, focusing on the different types of microbial reactions and biocatalysts, biotransformation products, and practical aspects related to sterol dispersion improvement, covering literature since 2000. It reviews the conversion of cholesterol by whole-cell biocatalysts and by purified enzymes that lead to various structural modifications, including side chain cleavage, hydroxylation, dehydrogenation/reduction, isomerization and esterification. Finally, approaches used to improve the poor solubility of cholesterol in aqueous media, such as the use of different sterol-solubilizing agents or two-phase conversion system, are also discussed.
Collapse
|
27
|
Yildirim K, Kuru A, Küçükbaşol E. Microbial transformation of androstenedione by Cladosporium sphaerospermum and Ulocladium chartarum. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1604690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Kudret Yildirim
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Ali Kuru
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Eda Küçükbaşol
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| |
Collapse
|
28
|
Yildirim K, Kuru A, Yılmaz Ş. Biotransformation of testosterone by Cladosporium sphaerospermum. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1583747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kudret Yildirim
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Ali Kuru
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Şengül Yılmaz
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| |
Collapse
|
29
|
Kollerov VV, Shutov AA, Kazantsev AV, Donova MV. Biocatalytic modifications of pregnenolone by selected filamentous fungi. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2018.1549237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Vyacheslav V. Kollerov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center «Pushchino Center for Biological Research of the Russian Academy of Sciences», Pushchino, Moscow region, Russia
| | - Andrei A. Shutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center «Pushchino Center for Biological Research of the Russian Academy of Sciences», Pushchino, Moscow region, Russia
| | | | - Marina V. Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center «Pushchino Center for Biological Research of the Russian Academy of Sciences», Pushchino, Moscow region, Russia
| |
Collapse
|
30
|
Giorgi V, Chaves M, Menéndez P, García Carnelli C. Bioprospecting of whole-cell biocatalysts for cholesterol biotransformation. World J Microbiol Biotechnol 2019; 35:12. [PMID: 30604276 DOI: 10.1007/s11274-018-2586-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/22/2018] [Indexed: 11/28/2022]
Abstract
Microorganisms were isolated from industrial wool scouring effluents and from the soil adjacent to the wastewater treatment lagoon, both sterols-rich environments, in order to search for novel biocatalysts able to transform cholesterol. The isolates were identified on the basis of morphological and biochemical characteristics and phylogenetic analysis. Furthermore, a rapid and accurate bacteria identification by matrix assisted laser desorption/ionization-time-of-flight mass spectrometry was carried out. Bacteria and fungi including representatives of the genera Fusarium, Talaromyces, Trichoderma, Mucor, Aspergillus, Citrobacter, Proteus, Klebsiella, Exiguobacterium, Acinetobacter, Tsukamurella, Bacillus, and Streptomyces were found and evaluated for their ability to biotransform cholesterol by whole-cell treatment system. The results show that a Trichoderma koningiopsis strain, as well as two strains of Mucor circinelloides were able to transform cholesterol into value-added products. The major products were characterized as 7β-hydroxycholesterol, 4-cholesten-3-one, 5α,6α-epoxycholestan-3β-ol and 5β,6β-epoxycholestan-3β-ol. To the best of our knowledge, the present study is the first report of cholesterol biotransformation by representatives of Trichoderma and Mucor genera.
Collapse
Affiliation(s)
- Victoria Giorgi
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica y, Departamento de Biociencias, Facultad de Química, Universidad de la República (UdelaR), CP 11800, Montevideo, Uruguay.
| | - Michel Chaves
- LaBioChem, Institute of Chemistry, University of Campinas, Campinas, SP, 13084-971, Brazil
| | - Pilar Menéndez
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica y, Departamento de Biociencias, Facultad de Química, Universidad de la República (UdelaR), CP 11800, Montevideo, Uruguay.,Laboratorio de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), CP 11800, Montevideo, Uruguay
| | - Carlos García Carnelli
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica y, Departamento de Biociencias, Facultad de Química, Universidad de la República (UdelaR), CP 11800, Montevideo, Uruguay.,Laboratorio de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), CP 11800, Montevideo, Uruguay
| |
Collapse
|
31
|
Nickavar B, Vahidi H, Eslami M. An efficient biotransformation of progesterone into 11α-hydroxyprogesterone by Rhizopus microsporus var. oligosporus. Z NATURFORSCH C 2018; 74:9-15. [PMID: 30367812 DOI: 10.1515/znc-2018-0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023]
Abstract
Rhizopus microsporus var. oligosporus is a fungus that belongs to the Mucoraceae family that is used for the preparation of some soy-fermented foods. Microbial biotransformation of progesterone by R. microsporus var. oligosporus afforded some monohydroxylated and dihydroxylated metabolites. The main product was purified using chromatographic methods and identified as 11α-hydroxyprogesterone on the basis of its spectroscopic features. Time course studies by high-performance thin-layer chromatography demonstrated that this fungi efficiently hydroxylated progesterone at the 11α-position for 3 days with a yield of 76.48%, but beyond this time, the microorganism transformed 11α-hydroxyprogesterone into dihydroxylated metabolites. 11α-Hydroxyprogesterone is widely used as a precursor in the synthesis of hydrocortisone and other steroidal anti-inflammatory agents.
Collapse
Affiliation(s)
- Bahman Nickavar
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box 14155-6153, Tehran, Iran, Phone: +98-21-88200064, Fax: +98-21-88665250, E-mail:
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box 14155-6153, Tehran, Iran
| | - Mehrnoosh Eslami
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box 14155-6153, Tehran, Iran
| |
Collapse
|
32
|
Javid M, Nickavar B, Vahidi H, Faramarzi MA. Baeyer-Villiger oxidation of progesterone by Aspergillus sojae PTCC 5196. Steroids 2018; 140:52-57. [PMID: 30055193 DOI: 10.1016/j.steroids.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 01/31/2023]
Abstract
Microbial transformations are capable of producing steroid substances difficult to synthesize by chemical methods. Strains belonging to the genus Aspergillus are effective facilitators of microbial biotransformations due to their enzymatic diversity. In this study, the biotransformation of progesterone by the fungus Aspergillus sojae (A. sojae) PTCC 5196 was examined. Analysis of the bioconversion process revealed that progesterone was converted to testololactone through a three-step pathway (17β-acetyl side chain cleavage, 17β-hydroxyl oxidation, and oxygenative lactonization of 17-ketone), indicating the presence of Baeyer-Villiger monooxygenase (BVMO) activity in the fungal strain. GC analysis confirmed the production of testololactone with a yield of 99% in 24 h. Faster testololactone production was induced in the presence of both C-21 (progesterone) and C-19 (androstenedione, testosterone, and dehydroepiandrosterone [DHEA]) steroid substances. Due to the high biotransformation rate observed in the present study, A. sojae may be a novel and promising candidate in the production of testololactone.
Collapse
Affiliation(s)
- Mehri Javid
- Department of Pharmaceutical Biotechnology and Pharmacognosy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box 14155-6153, Tehran, Iran
| | - Bahman Nickavar
- Department of Pharmaceutical Biotechnology and Pharmacognosy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box 14155-6153, Tehran, Iran
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology and Pharmacognosy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box 14155-6153, Tehran, Iran.
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| |
Collapse
|
33
|
Sultana N. Microbial biotransformation of bioactive and clinically useful steroids and some salient features of steroids and biotransformation. Steroids 2018; 136:76-92. [PMID: 29360535 DOI: 10.1016/j.steroids.2018.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 12/16/2017] [Accepted: 01/16/2018] [Indexed: 01/11/2023]
Abstract
Steroids are perhaps one of the most widely used group of drugs in present day. Beside the established utilization as immunosuppressive, anti-inflammatory, anti-rheumatic, progestational, diuretic, sedative, anabolic and contraceptive agents, recent applications of steroid compounds include the treatment of some forms of cancer, osteoporosis, HIV infections and treatment of declared AIDS. Steroids isolated are often available in minute amounts. So biotransformation of natural products provides a powerful means in solving supply problems in clinical trials and marketing of the drug for obtaining natural products in bulk amounts. If the structure is complex, it is often an impossible task to isolate enough of the natural products for clinical trials. The microbial biotransformation of steroids yielded several novel metabolites, exhibiting different activities. The metabolites produced from pregnenolone acetate by Cunning hamella elegans and Rhizopus stolonifer were screened against tyrosinase and cholinesterase showed significant inhibitory activities than the parent compound. Diosgenin and its transformed sarsasapogenin were screened for their acetyl cholinesterase and butyryl cholinesterase inhibitory activities. Sarsasapogenin was screened for phytotoxicity, and was found to be more active than the parent compound. Diosgenin, prednisone and their derivatives were screened for their anti-leishmanial activity. All derivatives were found to be more active than the parent compound. The biotransformation of steroids have been reviewed to a little extent. This review focuses on the biotransformation and functions of selected steroids, the classification, advantages and agents of enzymatic biotransformation and examines the potential role of new enzymatically transformed steroids and their derivatives in the chemoprevention and treatment of other diseases. tyrosinase and cholinesterase inhibitory activities, severe asthma, rheumatic disorders, renal disorders and diseases of inflammatory bowel, skin, gastrointestinal tract.
Collapse
Affiliation(s)
- Nighat Sultana
- Pharmaceutical Research Center, PCSIR Laboratories Complex, Shahrah-e-Dr. Salimuzzaman Siddiqui, Off University Road, Karachi 75280, Pakistan.
| |
Collapse
|
34
|
Yildirim K, Kuru A, Yılmaz Ş. Biotransformation of Testosterone by Ulocladium Chartarum Mrc 72584. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15341764332783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The incubation of testosterone 1 with Ulocladium chartarum MRC 72584 has been reported. U. chartarum MRC 72584 hydroxylated testosterone 1 at C-7β, C-6β, C-14α and C-12β, accompanied by a 5α-reduction and oxidations at C-6 and at C-17.
Collapse
Affiliation(s)
- Kudret Yildirim
- Chemistry Department, Sakarya University, 54187 Sakarya, Turkey
| | - Ali Kuru
- Chemistry Department, Sakarya University, 54187 Sakarya, Turkey
| | - Şengül Yılmaz
- Chemistry Department, Sakarya University, 54187 Sakarya, Turkey
| |
Collapse
|
35
|
Świzdor A, Panek A, Ostrowska P. Metabolic fate of pregnene-based steroids in the lactonization pathway of multifunctional strain Penicillium lanosocoeruleum. Microb Cell Fact 2018; 17:100. [PMID: 29940969 PMCID: PMC6019235 DOI: 10.1186/s12934-018-0948-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/16/2018] [Indexed: 01/14/2023] Open
Abstract
Background Metabolic activities of microorganisms to modify the chemical structures of organic compounds became an effective tool for the production of high-valued steroidal drugs or their precursors. Currently research efforts in production of steroids of pharmaceutical interest are focused on either optimization of existing processes or identification of novel potentially useful bioconversions. Previous studies demonstrated that P. lanosocoeruleum KCH 3012 metabolizes androstanes to the corresponding lactones with high yield. In order to explore more thoroughly the factors determining steroid metabolism by this organism, the current study was initiated to delineate the specificity of this fungus with respect to the cleavage of steroid side chain of progesterone and pregnenolone The effect of substituents at C-16 in 16-dehydropregnenolone, 16α,17α-epoxy-pregnenolone and 16α-methoxy-pregnenolone on the pattern of metabolic processing of these steroids was also investigated. Results and discussion All of the analogues tested (except the last of the listed) in multi-step transformations underwent the Baeyer–Villiger oxidation to their δ-d-lactones. The activity of 3β-HSD was a factor affecting the composition of the product mixtures. 16α,17α-epoxy-pregnenolone underwent a rare epoxide opening with retention stereochemistry to give four 16α-hydroxy-lactones. Apart from oxidative transformations, a reductive pathway was revealed with the unique hydrogenation of 5-ene double bond leading to the formation of 3β,16α-dihydroxy-17a-oxa-d-homo-5α-androstan-17-one. 16α-Methoxy-pregnenolone was transformed to the 20(R)-alcohol with no further conversion. Conclusions This work clearly demonstrated that P. lanosocoeruleum KCH 3012 has great multi-functional catalytic properties towards the pregnane-type steroids. Studies have highlighted that a slight modification of the d-ring of substrates may control metabolic fate either into the lactonization or reductive and oxidative pathways. Possibility of epoxide opening by enzymes from this microorganism affords a unique opportunity for generation of novel bioactive steroids. Electronic supplementary material The online version of this article (10.1186/s12934-018-0948-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alina Świzdor
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida, 25, 50-375, Wrocław, Poland
| | - Anna Panek
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida, 25, 50-375, Wrocław, Poland.
| | - Paulina Ostrowska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida, 25, 50-375, Wrocław, Poland
| |
Collapse
|
36
|
Özçınar Ö, Yusufoglu H, Kivçak B, Bedir E. Biotransformation of Neoruscogenin by the Endophytic Fungus Alternaria eureka. JOURNAL OF NATURAL PRODUCTS 2018; 81:1357-1367. [PMID: 29893560 DOI: 10.1021/acs.jnatprod.7b00898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biotransformation of neoruscogenin (NR, 1, spirosta-5,25(27)-diene-1β,3β-diol), the major bioactive sapogenin of Ruscus preparations, was carried out with the endophytic fungus Alternaria eureka. Fourteen new biotransformation products (2-15) were isolated, and their structures were elucidated by NMR and HRESIMS data analyses. A. eureka affected mainly oxygenation, oxidation, and epoxidation reactions on the B and C rings of the sapogenin to afford compounds 8-15. In addition to these, cleavage of the spiroketal system as in compounds 2-7 and subsequent transformations provided unusual metabolites. This is the first study reporting conversion of the spirostanol skeleton to cholestane-type metabolites 2-5. Additionally, the cleavage of the C-22/C-26 oxygen bridge yielding a furostanol-type steroidal framework and subsequent formation of the epoxy bridge between C-18 and C-22 in 7 was encountered for the first time in steroid chemistry.
Collapse
Affiliation(s)
- Özge Özçınar
- Department of Pharmacognosy, Faculty of Pharmacy , Ege University , 35100 Bornova - İzmir , Turkey
| | - Hasan Yusufoglu
- Department of Pharmacognosy, College of Pharmacy , Prince Sattam Bin Abdulaziz University , 11942 Al-Kharj , Saudi Arabia
| | - Bijen Kivçak
- Department of Pharmacognosy, Faculty of Pharmacy , Ege University , 35100 Bornova - İzmir , Turkey
| | - Erdal Bedir
- Department of Bioengineering, Faculty of Engineering , Izmir Institute of Technology , 35430 Urla - Izmir , Turkey
| |
Collapse
|
37
|
Świzdor A, Panek A, Milecka-Tronina N. Hydroxylative activity of Aspergillus niger towards androst-4-ene and androst-5-ene steroids. Steroids 2017; 126:101-106. [PMID: 28827070 DOI: 10.1016/j.steroids.2017.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/05/2017] [Accepted: 08/14/2017] [Indexed: 11/27/2022]
Abstract
Aspergillus niger, one of fungal species most frequently used for experimental and industrial-scale biotransformations of various organic compounds, is generally known to transform steroids at 16β position. In this work, application of the strain A. niger KCH910 to bioconversion of dehydroepiandrosterone (DHEA), androstenediol and testosterone is described, with emphasis on the metabolic steps leading to the products. Evidence from this study indicated that incubated 5-ene steroids underwent bioconversion within two metabolic pathways: oxidation by the action of 3β-HSD (3β-hydroxysteroid dehydrogenase) to 4-ene steroids, and minor allylic hydroxylation to epimeric 7-alcohols. Further transformation of the 3-oxo-4-ene metabolites resulted in non-selective 16-hydroxylation. It is the first report on an A. niger strain able to introduce not only 16β- but also 16α-hydroxyl function into steroids.
Collapse
Affiliation(s)
- Alina Świzdor
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Anna Panek
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Natalia Milecka-Tronina
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
38
|
Hunter AC, Oni YI, Dodd HT, Raftery J, Gardiner JM, Uttley M. Metabolism of steroidal lactones by the fungus Corynespora cassiicola CBS 161.60 results in a mechanistically unique intramolecular ring-D cyclization resulting in C-14 spiro-lactones. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:939-945. [PMID: 28606744 DOI: 10.1016/j.bbalip.2017.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 11/28/2022]
Abstract
The fungus Corynespora cassiicola metabolises exogenous steroids in a unique and highly specific manner. Central to this, is the ability of this organism to functionalise substrates (androgens, progestogens) at the highly stereochemically hindered 8β-position of the steroid nucleus. A recent study has identified that 8β-hydroxylation occurs through inverted binding in a 9α-hydroxylase. In order to discern the metabolic fate of more symmetrical molecules, we have investigated the metabolism of a range of steroidal analogues functionalised with ring-D lactones, but differing in their functional group stereochemistry at carbon-3. Remarkably, the 3α-functionalised steroidal lactones underwent a mechanistically unique two step intramolecular cyclisation resulting in the generation of a ring-D spiro-carbolactone. This rapid rearrangement initiated with hydroxylation at carbon 14 followed by transesterification, resulting in ring contraction with formation of a butyrolactone at carbon-14. Remarkably this rearrangement was found to be highly dependent on the stereochemistry at carbon-3, with the β-analogues only undergoing 9α-hydroxylation. The implications of these findings and their mechanistic bases are discussed.
Collapse
Affiliation(s)
- A Christy Hunter
- De Montfort University, Leicester School of Pharmacy, The Gateway, Leicester LE1 9BH, UK.
| | | | - Howard T Dodd
- University of Brighton, School of Pharmacy and Biomolecular Sciences, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - James Raftery
- University of Manchester, School of Chemistry University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - John M Gardiner
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Megan Uttley
- University of Manchester, School of Chemistry University of Manchester, Oxford Road, Manchester, M13 9PL, UK; Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
39
|
Nassiri Koopaei N, Abdollahi M. Health risks associated with the pharmaceuticals in wastewater. ACTA ACUST UNITED AC 2017; 25:9. [PMID: 28403898 PMCID: PMC5389172 DOI: 10.1186/s40199-017-0176-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/06/2017] [Indexed: 11/01/2022]
Abstract
The overwhelming population growth in recent decades and water crisis along with limited and uneven geographical distribution of fresh water resources is a growing challenge for the economic and human development. Wastewater reclamation and use could be an alternative for intact water sources and a promising solution to water scarcity and unequal distribution. However, wastewater is a double-edged resource both as an accessible water source for food production and human usage and concurrently may carry uncharacterized content with unknown toxicological profile causing acute or long-term health risks. Pharmaceuticals, cosmeceuticals, nanomaterials and their chemical decomposition derivatives found in wastewater are not well known in many cases. Their unknown toxicity, teratogenicity and carcinogenicity profile associated with lack of monitoring and control measures impose a significant hazard risk on the public health. This paper reviews the evidence on the health risks associated with the wastewater use for irrigated food production and the imposed risk on the end consumers mainly from pharmaceutical industry and related research facilities. Then, we suggest an applied framework for planning and policy-making to mitigate the health risks and optimally employ reclaimed wastewater for human purposes.
Collapse
Affiliation(s)
- Nasser Nassiri Koopaei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. .,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Yildirim K, Kuru A. Microbial hydroxylation of epiandrosterone by Aspergillus candidus. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1289184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kudret Yildirim
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Ali Kuru
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| |
Collapse
|
41
|
Mascotti ML, Palazzolo MA, Bisogno FR, Kurina-Sanz M. Biotransformation of dehydro-epi-androsterone by Aspergillus parasiticus: Metabolic evidences of BVMO activity. Steroids 2016; 109:44-9. [PMID: 27025973 DOI: 10.1016/j.steroids.2016.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/10/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022]
Abstract
The research on the synthesis of steroids and its derivatives is of high interest due to their clinical applications. A particular focus is given to molecules bearing a D-ring lactone like testolactone because of its bioactivity. The Aspergillus genus has been used to perform steroid biotransformations since it offers a toolbox of redox enzymes. In this work, the use of growing cells of Aspergillus parasiticus to study the bioconversion of dehydro-epi-androsterone (DHEA) is described, emphasizing the metabolic steps leading to D-ring lactonization products. It was observed that A. parasiticus is not only capable of transforming bicyclo[3.2.0]hept-2-en-6-one, the standard Baeyer-Villiger monooxygenase (BVMO) substrate, but also yielded testololactone and the homo-lactone 3β-hydroxy-17a-oxa-D-homoandrost-5-en-17-one from DHEA. Moreover, the biocatalyst degraded the lateral chain of cortisone by an oxidative route suggesting the action of a BVMO, thus providing enough metabolic evidences denoting the presence of BVMO activity in A. parasiticus. Furthermore, since excellent biotransformation rates were observed, A. parasiticus is a promising candidate for the production of bioactive lactone-based compounds of steroidal origin in larger scales.
Collapse
Affiliation(s)
- M Laura Mascotti
- Area de Química Orgánica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, INTEQUI-CONICET, San Luis 5700, Argentina
| | - Martín A Palazzolo
- Area de Química Orgánica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, INTEQUI-CONICET, San Luis 5700, Argentina
| | - Fabricio R Bisogno
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, INFIQC-CONICET, Córdoba 5000, Argentina
| | - Marcela Kurina-Sanz
- Area de Química Orgánica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, INTEQUI-CONICET, San Luis 5700, Argentina.
| |
Collapse
|
42
|
Heidary M, Habibi Z. Microbial transformation of androst-4-ene-3,17-dione by three fungal species Absidia griseolla var. igachii, Circinella muscae and Trichoderma virens. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Yildirim K, Kuru A. The Biotransformation of Some Steroids by Aspergillus Sydowii MRC 200653. JOURNAL OF CHEMICAL RESEARCH 2016. [DOI: 10.3184/174751916x14526064507450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The incubation of testosterone, dehydroepiandrosterone, progesterone and pregnenolone with Aspergillus sydowii MRC 200653 is reported. Testosterone was mainly hydroxylated at C-6β and to a minor extent at C-14α and C −15α. Most of dehydroepiandrosterone was metabolised by a 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase activity and then hydroxylated at C-6β. The remaining dehydroepiandrosterone was only hydroxylated at C-7β or C-7α. Both progesterone and pregnenolone were mainly hydroxylated at C-11α and C-15β and to a minor extent at C-6β and C-7β. The same metabolites were recovered from both biotransformations.
Collapse
Affiliation(s)
- Kudret Yildirim
- Chemistry Department, Sakarya University, 54187, Sakarya, Turkey
| | - Ali Kuru
- Chemistry Department, Sakarya University, 54187, Sakarya, Turkey
| |
Collapse
|
44
|
Yildirim K, Kuru A. Biotransformation of Some Steroids by Aspergillus Candidus. JOURNAL OF CHEMICAL RESEARCH 2015. [DOI: 10.3184/174751915x14403454824263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The biotransformation of dehydroepiandrosterone, progesterone and pregnenolone by Aspergillus candidus MRC 200634 for 5 days is reported. Dehydroepiandrosterone was hydroxylated at C-6β, C-7β, C-7α, C-11α and C-15α. The 17-ketone was reduced to the 17β-alcohol whilst ring A of dehydroepiandrosterone was oxidised to a 4-en-3-one moiety. Progesterone was mainly hydroxylated at C-11α and C-15β and to a lesser extent at C-14α. Pregnenolone gave the same metabolites.
Collapse
Affiliation(s)
- Kudret Yildirim
- Chemistry Department, Sakarya University, 54187, Sakarya, Turkey
| | - Ali Kuru
- Chemistry Department, Sakarya University, 54187, Sakarya, Turkey
| |
Collapse
|