1
|
Apostolova D, Apostolov G, Moten D, Batsalova T, Dzhambazov B. Claudin-12: guardian of the tissue barrier or friend of tumor cells. Tissue Barriers 2024:2387408. [PMID: 39087432 DOI: 10.1080/21688370.2024.2387408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Tight junctions (TJs) are an important component of cellular connectivity. Claudin family proteins, as a constituent of TJs, determine their barrier properties, cell polarity and paracellular permeability. Claudin-12 is an atypical member of the claudin family, as it belongs to the group of non-classical claudins that lack a PDZ-binding domain. It has been shown that claudin-12 is involved in paracellular Ca2+ transients and it is present in normal and hyperplastic tissues in addition to neoplastic tissues. Dysregulation of claudin-12 expression has been reported in various cancers, suggesting that this protein may play an important role in cancer cell migration, invasion, and metastasis. Some studies have shown that claudin-12 gene functions as a tumor suppressor, but others have reported that overexpression of claudin-12 significantly increases the metastatic properties of various tumor cells. Investigating this dual role of claudin-12 is of utmost importance and should therefore be studied in detail. The aim of this review is to provide an overview of the information available to date on claudin-12, including its structure, expression in various tissues and substances that may affect it, with a final focus on its role in cancer.
Collapse
Affiliation(s)
- Desislava Apostolova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Georgi Apostolov
- Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Dzhemal Moten
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Balik Dzhambazov
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
2
|
Rowshan N, Anjomshoa M, Farahzad A, Bijad E, Amini-Khoei H. Gut-brain barrier dysfunction bridge autistic-like behavior in mouse model of maternal separation stress: A behavioral, histopathological, and molecular study. Int J Dev Neurosci 2024; 84:314-327. [PMID: 38584149 DOI: 10.1002/jdn.10329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Autism spectrum disorder (ASD) is a fast-growing neurodevelopmental disorder throughout the world. Experiencing early life stresses (ELS) like maternal separation (MS) is associated with autistic-like behaviors. It has been proposed that disturbance in the gut-brain axis-mediated psychiatric disorders following MS. The role of disruption in the integrity of gut-brain barrier in ASD remains unclear. Addressing this knowledge gap, in this study we aimed to investigate role of the gut-brain barrier integrity in mediating autistic-like behaviors in mouse models of MS stress. To do this, mice neonates are separated daily from their mothers from postnatal day (PND) 2 to PND 14 for 3 hours. During PND58-60, behavioral tests related to autistic-like behaviors including three-chamber sociability, shuttle box, and resident-intruder tests were performed. Then, prefrontal cortex (PFC), hippocampus, and colon samples were dissected out for histopathological and molecular evaluations. Results showed that MS is associated with impaired sociability and social preference indexes, aggressive behaviors, and impaired passive avoidance memory. The gene expression of CLDN1 decreased in the colon, and the gene expression of CLDN5, CLDN12, and MMP9 increased in the PFC of the MS mice. MS is associated with decrease in the diameter of CA1 and CA3 areas of the hippocampus. In addition, MS led to histopathological changes in the colon. We concluded that, probably, disturbance in the gut-brain barrier integrities mediated the autistic-like behavior in MS stress in mice.
Collapse
Affiliation(s)
- Negin Rowshan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Anjomshoa
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Anahita Farahzad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
3
|
Lapmanee S, Supkamonseni N, Bhubhanil S, Treesaksrisakul N, Sirithanakorn C, Khongkow M, Namdee K, Surinlert P, Tipbunjong C, Wongchitrat P. Stress-induced changes in cognitive function and intestinal barrier integrity can be ameliorated by venlafaxine and synbiotic supplementations. PeerJ 2024; 12:e17033. [PMID: 38435986 PMCID: PMC10908264 DOI: 10.7717/peerj.17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
Stress profoundly impacts various aspects of both physical and psychological well-being. Our previous study demonstrated that venlafaxine (Vlx) and synbiotic (Syn) treatment attenuated learned fear-like behavior and recognition memory impairment in immobilized-stressed rats. In this study, we further investigated the physical, behavior, and cellular mechanisms underlying the effects of Syn and/or Vlx treatment on brain and intestinal functions in stressed rats. Adult male Wistar rats, aged 8 weeks old were subjected to 14 days of immobilization stress showed a decrease in body weight gain and food intake as well as an increase in water consumption, urinary corticosterone levels, and adrenal gland weight. Supplementation of Syn and/or Vlx in stressed rats resulted in mitigation of weight loss, restoration of normal food and fluid intake, and normalization of corticosterone levels. Behavioral analysis showed that treatment with Syn and/or Vlx enhanced depressive-like behaviors and improved spatial learning-memory impairment in stressed rats. Hippocampal dentate gyrus showed stress-induced neuronal cell death, which was attenuated by Syn and/or Vlx treatment. Stress-induced ileum inflammation and increased intestinal permeability were both effectively reduced by the supplementation of Syn. In addition, Syn and Vlx partly contributed to affecting the expression of the glial cell-derived neurotrophic factor in the hippocampus and intestines of stressed rats, suggesting particularly protective effects on both the gut barrier and the brain. This study highlights the intricate interplay between stress physiological responses in the brain and gut. Syn intervention alleviate stress-induced neuronal cell death and modulate depression- and memory impairment-like behaviors, and improve stress-induced gut barrier dysfunction which were similar to those of Vlx. These findings enhance our understanding of stress-related health conditions and suggest the synbiotic intervention may be a promising approach to ameliorate deleterious effects of stress on the gut-brain axis.
Collapse
Affiliation(s)
- Sarawut Lapmanee
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | - Nattapon Supkamonseni
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | - Sakkarin Bhubhanil
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | | | - Chaiyos Sirithanakorn
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Katawut Namdee
- National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Piyaporn Surinlert
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Synthesis and Applications of Graphene, Thammasat University, Pathumthani, Thailand
| | - Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
4
|
Doney E, Dion-Albert L, Coulombe-Rozon F, Osborne N, Bernatchez R, Paton SE, Kaufmann FN, Agomma RO, Solano JL, Gaumond R, Dudek KA, Szyszkowicz JK, Lebel M, Doyen A, Durand A, Lavoie-Cardinal F, Audet MC, Menard C. Chronic Stress Exposure Alters the Gut Barrier: Sex-Specific Effects on Microbiota and Jejunum Tight Junctions. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:213-228. [PMID: 38306213 PMCID: PMC10829561 DOI: 10.1016/j.bpsgos.2023.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 02/04/2024] Open
Abstract
Background Major depressive disorder (MDD) is the leading cause of disability worldwide. Of individuals with MDD, 30% to 50% are unresponsive to common antidepressants, highlighting untapped causal biological mechanisms. Dysfunction in the microbiota-gut-brain axis has been implicated in MDD pathogenesis. Exposure to chronic stress disrupts blood-brain barrier integrity; still, little is known about intestinal barrier function in these conditions, particularly for the small intestine, where absorption of most foods and drugs takes place. Methods We investigated how chronic social or variable stress, two mouse models of depression, impact the jejunum intestinal barrier in males and females. Mice were subjected to stress paradigms followed by analysis of gene expression profiles of intestinal barrier-related targets, fecal microbial composition, and blood-based markers. Results Altered microbial populations and changes in gene expression of jejunum tight junctions were observed depending on the type and duration of stress, with sex-specific effects. We used machine learning to characterize in detail morphological tight junction properties, identifying a cluster of ruffled junctions in stressed animals. Junctional ruffling is associated with inflammation, so we evaluated whether lipopolysaccharide injection recapitulates stress-induced changes in the jejunum and observed profound sex differences. Finally, lipopolysaccharide-binding protein, a marker of gut barrier leakiness, was associated with stress vulnerability in mice, and translational value was confirmed on blood samples from women with MDD. Conclusions Our results provide evidence that chronic stress disrupts intestinal barrier homeostasis in conjunction with the manifestation of depressive-like behaviors in a sex-specific manner in mice and, possibly, in human depression.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Francois Coulombe-Rozon
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Natasha Osborne
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Renaud Bernatchez
- Department of Computer Science and Software Engineering and Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada
| | - Sam E.J. Paton
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Fernanda Neutzling Kaufmann
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Roseline Olory Agomma
- Department of Computer Science and Software Engineering and Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada
| | - José L. Solano
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Raphael Gaumond
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Katarzyna A. Dudek
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Joanna Kasia Szyszkowicz
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Alain Doyen
- Department of Food Science, Institute of Nutrition and Functional Foods, Université Laval, Québec City, Québec, Canada
| | - Audrey Durand
- Department of Computer Science and Software Engineering and Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada
| | - Flavie Lavoie-Cardinal
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Marie-Claude Audet
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
5
|
Molotla-Torres DE, Guzmán-Mejía F, Godínez-Victoria M, Drago-Serrano ME. Role of Stress on Driving the Intestinal Paracellular Permeability. Curr Issues Mol Biol 2023; 45:9284-9305. [PMID: 37998758 PMCID: PMC10670774 DOI: 10.3390/cimb45110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The gut epithelium is a polarized monolayer that exhibits apical and basolateral membrane surfaces. Monolayer cell components are joined side by side via protein complexes known as tight junction proteins (TJPs), expressed at the most apical extreme of the basolateral membrane. The gut epithelium is a physical barrier that determinates intestinal permeability, referred to as the measurement of the transit of molecules from the intestinal lumen to the bloodstream or, conversely, from the blood to the gut lumen. TJPs play a role in the control of intestinal permeability that can be disrupted by stress through signal pathways triggered by the ligation of receptors with stress hormones like glucocorticoids. Preclinical studies conducted under in vitro and/or in vivo conditions have addressed underlying mechanisms that account for the impact of stress on gut permeability. These mechanisms may provide insights for novel therapeutic interventions in diseases in which stress is a risk factor, like irritable bowel syndrome. The focus of this study was to review, in an integrative context, the neuroendocrine effects of stress, with special emphasis on TJPs along with intestinal permeability.
Collapse
Affiliation(s)
- Daniel Efrain Molotla-Torres
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Calzada del Hueso No. 1100, Ciudad de México CP 04960, Mexico;
| | - Fabiola Guzmán-Mejía
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, Ciudad de México CP 04960, Mexico
| | - Marycarmen Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Ciudad de México CP 11340, Mexico;
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, Ciudad de México CP 04960, Mexico
| |
Collapse
|
6
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Owrang M, Noorafshan A, Rafati A, Karbalay-Doust S. The effects of curcumin and sertraline on stress-induced changes in the stomach tissues of rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2057-2069. [PMID: 36917242 DOI: 10.1007/s00210-023-02453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/27/2023] [Indexed: 03/15/2023]
Abstract
Exposure to stressors can cause functional disorders and structural damage to the stomach. Sertraline (SER) is an antidepressant and curcumin (CUR) is a natural compound with many properties. The current study aimed to investigate the impacts of stress, SER, and CUR on the stomach tissue using stereological methods. In total, 24 male and 24 female Sprague-Dawley rats were divided into four groups. In the control group, the rats were not exposed to stress. However, the animals in stress, SER and, CUR groups were exposed to daily stress and were orally fed with distilled water, SER (10 mg/kg/day), and CUR (100 mg/kg/day), respectively. The volume, surface area, and number of nerve, parietal, and chief cells were evaluated by stereological methods. Results showed that stress increased the stomach and its mucosa and submucosa volumes, while it decreased the surface area of the mucosa. Furthermore, this disorder increased the number of neurons in the submucosa and myenteric plexuses while it decreased the number of parietal and chief cells. However, treating stressed rats with SER or CUR could prevent these changes. The results showed that the consumption of SER or CUR could be used as a preventive or adjunctive treatment for stressful situations.
Collapse
Affiliation(s)
- Marzieh Owrang
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Zand Ave., Shiraz, 71348-45794, Iran
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Zand Ave., Shiraz, 71348-45794, Iran
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- City University in Canada, 789 W Pender ST Suite 310, Vancouver, BC V6C 1H2, Canada
| | - Ali Rafati
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Zand Ave., Shiraz, 71348-45794, Iran
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Zand Ave., Shiraz, 71348-45794, Iran.
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Jiang J, Fu Y, Tang A, Gao X, Zhang D, Shen Y, Mou T, Hu S, Gao J, Lai J. Sex difference in prebiotics on gut and blood-brain barrier dysfunction underlying stress-induced anxiety and depression. CNS Neurosci Ther 2023; 29 Suppl 1:115-128. [PMID: 36650644 PMCID: PMC10314104 DOI: 10.1111/cns.14091] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Most of the previous studies have demonstrated the potential antidepressive and anxiolytic role of prebiotic supplement in male subjects, yet few have females enrolled. Herein, we explored whether prebiotics administration during chronic stress prevented depression-like and anxiety-like behavior in a sex-specific manner and the mechanism of behavioral differences caused by sex. METHODS Female and male C57 BL/J mice on normal diet were supplemented with or without a combination of fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS) during 3- and 4-week chronic restraint stress (CRS) treatment, respectively. C57 BL/J mice on normal diet without CRS were used as controls. Behavior consequences, gut microbiota, dysfunction of gut and brain-blood barriers, and inflammatory profiles were measured. RESULTS In the 3rd week, FOS + GOS administration attenuated stress-induced anxiety-like behavior in female, but not in male mice, and the anxiolytic effects in males were observed until the 4th week. However, protective effects of prebiotics on CRS-induced depression were not observed. Changes in the gene expression of tight junction proteins in the distal colon and hippocampus, and decreased number of colon goblet cells following CRS were restored by prebiotics only in females. In both female and male mice, prebiotics alleviated stress-induced BBB dysfunction and elevation in pro-inflammatory cytokines levels, and modulated gut microbiota caused by stress. Furthermore, correlation analysis revealed that anxiety-like behaviors were significantly correlated with levels of pro-inflammatory cytokines and gene expression of tight junction proteins in the hippocampus of female mice, and the abundance of specific gut microbes was also correlated with anxiety-like behaviors, pro-inflammatory cytokines, and gene expression of tight junction proteins in the hippocampus of female mice. CONCLUSION Female mice were more vulnerable to stress and prebiotics than males. The gut microbiota, gut and blood-brain barrier, and inflammatory response may mediate the protective effects of prebiotics on anxiety-like behaviors in female mice.
Collapse
Affiliation(s)
- Jiajun Jiang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Yaoyang Fu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Anying Tang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xingle Gao
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Danhua Zhang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yuting Shen
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Brain Research Institute of Zhejiang UniversityHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain‐machine IntegrationZhejiang University School of MedicineHangzhouChina
| | - Jingfang Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
- The First College of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Brain Research Institute of Zhejiang UniversityHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain‐machine IntegrationZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
9
|
Abstract
Preclinical evidence has firmly established bidirectional interactions among the brain, the gut, and the gut microbiome. Candidate signaling molecules and at least three communication channels have been identified. Communication within this system is nonlinear, is bidirectional with multiple feedback loops, and likely involves interactions between different channels. Alterations in gut-brain-microbiome interactions have been identified in rodent models of several digestive, psychiatric, and neurological disorders. While alterations in gut-brain interactions have clearly been established in irritable bowel syndrome, a causative role of the microbiome in irritable bowel syndrome remains to be determined. In the absence of specific microbial targets for more effective therapies, current approaches are limited to dietary interventions and centrally targeted pharmacological and behavioral approaches. A more comprehensive understanding of causative influences within the gut-brain-microbiome system and well-designed randomized controlled trials are needed to translate these exciting preclinical findings into effective therapies. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience and Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA; emayer@.ucla.edu
| | - Karina Nance
- G. Oppenheimer Center for Neurobiology of Stress and Resilience and Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA; emayer@.ucla.edu
| | - Shelley Chen
- G. Oppenheimer Center for Neurobiology of Stress and Resilience and Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA; emayer@.ucla.edu
| |
Collapse
|
10
|
Karailiev P, Hlavacova N, Chmelova M, Homer NZM, Jezova D. Tight junction proteins in the small intestine and prefrontal cortex of female rats exposed to stress of chronic isolation starting early in life. Neurogastroenterol Motil 2021; 33:e14084. [PMID: 33497497 DOI: 10.1111/nmo.14084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Simultaneous evaluation of barrier protein expression in the gut and the brain and their modulation under stress conditions have not been studied before now. As the permeability and function of the gut and blood-brain barrier are different and both express the MRs, we hypothesized that stress of post-weaning social isolation induces changes in tight junction protein expression in the gut which are (1) independent of changes in the brain and (2) are mediated via the mineralocorticoid receptor (MR). METHODS First, using UPLC-MS/MS we have successfully validated and selected a dose (1.2 mg/rat/day) of the MR antagonist spironolactone to treat female rats exposed to stress of chronic isolation or control conditions from postnatal day 21 for 9 weeks. KEY RESULTS Isolation stress caused an enhancement of gene expression of occludin and ZO-1 and a decrease in claudin-5 and MR expression in both the small intestine and prefrontal cortex. Isolation stress failed to decrease claudin-5 (small intestine) and MR (prefrontal cortex) gene expression in spironolactone-treated rats. MR blockade resulted in a decrease in claudin-15 expression in the small intestine. Anxiogenic effect of chronic stress, measured in elevated plus-maze test, was partly prevented by spironolactone treatment. CONCLUSIONS & INFERENCES Claudins, the main regulators of intestinal barrier permeability responded to chronic stress of social isolation and/or simultaneous blockade of MR in female rats by alterations independent of changes in the brain cortex. The results suggest a physiological role of MR in the control of claudin expression in the small intestine, but not in the brain cortex.
Collapse
Affiliation(s)
- Peter Karailiev
- Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Natasa Hlavacova
- Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Magdalena Chmelova
- Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh CRF, Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
11
|
Guzmán-Mejía F, Godínez-Victoria M, Vega-Bautista A, Pacheco-Yépez J, Drago-Serrano ME. Intestinal Homeostasis under Stress Siege. Int J Mol Sci 2021; 22:ijms22105095. [PMID: 34065791 PMCID: PMC8150578 DOI: 10.3390/ijms22105095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/15/2023] Open
Abstract
Intestinal homeostasis encompasses a complex and balanced interplay among a wide array of components that collaborate to maintain gut barrier integrity. The appropriate function of the gut barrier requires the mucus layer, a sticky cushion of mucopolysaccharides that overlays the epithelial cell surface. Mucus plays a critical anti-inflammatory role by preventing direct contact between luminal microbiota and the surface of the epithelial cell monolayer. Moreover, mucus is enriched with pivotal effectors of intestinal immunity, such as immunoglobulin A (IgA). A fragile and delicate equilibrium that supports proper barrier function can be disturbed by stress. The impact of stress upon intestinal homeostasis results from neuroendocrine mediators of the brain-gut axis (BGA), which comprises a nervous branch that includes the enteric nervous system (ENS) and the sympathetic and parasympathetic nervous systems, as well as an endocrine branch of the hypothalamic-pituitary-adrenal axis. This review is the first to discuss the experimental animal models that address the impact of stress on components of intestinal homeostasis, with special emphasis on intestinal mucus and IgA. Basic knowledge from animal models provides the foundations of pharmacologic and immunological interventions to control disturbances associated with conditions that are exacerbated by emotional stress, such as irritable bowel syndrome.
Collapse
Affiliation(s)
- Fabiola Guzmán-Mejía
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960 Mexico City, Mexico; (F.G.-M.); (A.V.-B.)
| | - Marycarmen Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, CP 11340 Mexico City, Mexico;
- Correspondence: (M.G.-V.); (M.E.D.-S.); Tel.: +52-55-5729-6000 (ext. 62743) (M.G.-V.); +52-55-5483-7000 (ext. 3624) (M.E.D.-S.)
| | - Alan Vega-Bautista
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960 Mexico City, Mexico; (F.G.-M.); (A.V.-B.)
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, CP 11340 Mexico City, Mexico;
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960 Mexico City, Mexico; (F.G.-M.); (A.V.-B.)
- Correspondence: (M.G.-V.); (M.E.D.-S.); Tel.: +52-55-5729-6000 (ext. 62743) (M.G.-V.); +52-55-5483-7000 (ext. 3624) (M.E.D.-S.)
| |
Collapse
|
12
|
Souza LKM, Nogueira KM, Araújo TSL, Sousa NA, Sousa FBM, Oliveira AP, Sales T, Silva K, Rocha TM, Leal LKAM, Magalhães PJC, Souza MHLP, Medeiros JVR. Anti-diarrheal therapeutic potential of diminazene aceturate stimulation of the ACE II/Ang-(1-7)/Mas receptor axis in mice: A trial study. Biochem Pharmacol 2021; 186:114500. [PMID: 33684388 DOI: 10.1016/j.bcp.2021.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
The angiotensin (Ang) II converting enzyme (ACE II) pathway has recently been shown to be associated with several beneficial effects on the body, especially on the cardiac system and gastrointestinal tract. ACE II is responsible for converting Ang II into the active peptide Ang-(1-7), which in turn binds to a metabotropic receptor, the Mas receptor (MasR). Recent studies have demonstrated that Diminazene Aceturate (DIZE), a trypanosomicide used in animals, activates the ACE II pathway. In this study, we aimed to evaluate the antidiarrheal effects promoted by the administration of DIZE to activate the ACE II/Ang-(1-7)/MasR axis in induced diarrhea mice models. The results show that activation of the ACE II pathway exerts antidiarrheal effects that reduce total diarrheal stools and enteropooling. In addition, it increases Na+/K+-ATPase activity and reduces gastrointestinal transit and thus inhibits contractions of intestinal smooth muscle; decreases transepithelial electrical resistance, epithelial permeability, PGE2-induced diarrhea, and proinflammatory cytokines; and increases anti-inflammatory cytokines. Enzyme-linked immunosorbent assay (ELISA) demonstrated that DIZE, when activating the ACE II/Ang-(1-7)/MasR axis, can still interact with GM1 receptors, which reduces cholera toxin-induced diarrhea. Therefore, activation of the ACE II/Ang-(1-7)/MasR axis can be an important pharmacological target for the treatment of diarrheal diseases.
Collapse
Affiliation(s)
- Luan K M Souza
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI 64049-550, Brazil; Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Parnaíba Delta (UFDPar), Av. São Sebastião, n° 2819, CEP 64202-02 Parnaíba, PI, Brazil.
| | - Kerolayne M Nogueira
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Thiago S L Araújo
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI 64049-550, Brazil; Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Parnaíba Delta (UFDPar), Av. São Sebastião, n° 2819, CEP 64202-02 Parnaíba, PI, Brazil
| | - Nayara A Sousa
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI 64049-550, Brazil; Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Parnaíba Delta (UFDPar), Av. São Sebastião, n° 2819, CEP 64202-02 Parnaíba, PI, Brazil
| | - Francisca B M Sousa
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI 64049-550, Brazil; Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Parnaíba Delta (UFDPar), Av. São Sebastião, n° 2819, CEP 64202-02 Parnaíba, PI, Brazil
| | - Ana P Oliveira
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI 64049-550, Brazil; Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Parnaíba Delta (UFDPar), Av. São Sebastião, n° 2819, CEP 64202-02 Parnaíba, PI, Brazil
| | - Thiago Sales
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Karine Silva
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Talita M Rocha
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Luzia K A M Leal
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Pedro J C Magalhães
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Marcellus H L P Souza
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Jand V R Medeiros
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI 64049-550, Brazil; Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Parnaíba Delta (UFDPar), Av. São Sebastião, n° 2819, CEP 64202-02 Parnaíba, PI, Brazil; Biotechnology and Biodiversity Center Research, BIOTEC, Federal University of Parnaíba Delta, Parnaíba, PI 64202-020, Brazil
| |
Collapse
|
13
|
Aguilera-Lizarraga J, Florens MV, Viola MF, Jain P, Decraecker L, Appeltans I, Cuende-Estevez M, Fabre N, Van Beek K, Perna E, Balemans D, Stakenborg N, Theofanous S, Bosmans G, Mondelaers SU, Matteoli G, Ibiza Martínez S, Lopez-Lopez C, Jaramillo-Polanco J, Talavera K, Alpizar YA, Feyerabend TB, Rodewald HR, Farre R, Redegeld FA, Si J, Raes J, Breynaert C, Schrijvers R, Bosteels C, Lambrecht BN, Boyd SD, Hoh RA, Cabooter D, Nelis M, Augustijns P, Hendrix S, Strid J, Bisschops R, Reed DE, Vanner SJ, Denadai-Souza A, Wouters MM, Boeckxstaens GE. Local immune response to food antigens drives meal-induced abdominal pain. Nature 2021; 590:151-156. [PMID: 33442055 DOI: 10.1038/s41586-020-03118-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022]
Abstract
Up to 20% of people worldwide develop gastrointestinal symptoms following a meal1, leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H1-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders.
Collapse
Affiliation(s)
- Javier Aguilera-Lizarraga
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Morgane V Florens
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Maria Francesca Viola
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Piyush Jain
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Lisse Decraecker
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Iris Appeltans
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Maria Cuende-Estevez
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Naomi Fabre
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Kim Van Beek
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Eluisa Perna
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Dafne Balemans
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Nathalie Stakenborg
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Stavroula Theofanous
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Goele Bosmans
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Stéphanie U Mondelaers
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Gianluca Matteoli
- Laboratory for Mucosal Immunology, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Sales Ibiza Martínez
- Laboratory for Mucosal Immunology, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium.,Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Cintya Lopez-Lopez
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | | - Karel Talavera
- Laboratory for Ion Channel Research, VIB Center for Brain and Disease Research, KU Leuven Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Yeranddy A Alpizar
- Neuroscience Research group, BIOMED, Hasselt University, Hasselt, Belgium
| | | | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Ricard Farre
- Mucosal Permeability Lab, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Frank A Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Jiyeon Si
- KU Leuven Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium.,VIB KU Leuven Center for Microbiology, Leuven, Belgium
| | - Jeroen Raes
- KU Leuven Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium.,VIB KU Leuven Center for Microbiology, Leuven, Belgium
| | - Christine Breynaert
- Allergy and Clinical Immunology Research Group, KU Leuven Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Rik Schrijvers
- Allergy and Clinical Immunology Research Group, KU Leuven Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Cédric Bosteels
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Ramona A Hoh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Deirdre Cabooter
- KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Maxim Nelis
- KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Patrick Augustijns
- KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Medical School Hamburg, Hamburg, Germany
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Raf Bisschops
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Alexandre Denadai-Souza
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Mira M Wouters
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Guy E Boeckxstaens
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium.
| |
Collapse
|
14
|
Ilchmann-Diounou H, Menard S. Psychological Stress, Intestinal Barrier Dysfunctions, and Autoimmune Disorders: An Overview. Front Immunol 2020; 11:1823. [PMID: 32983091 PMCID: PMC7477358 DOI: 10.3389/fimmu.2020.01823] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune disorders (ADs) are multifactorial diseases involving, genetic, epigenetic, and environmental factors characterized by an inappropriate immune response toward self-antigens. In the past decades, there has been a continuous rise in the incidence of ADs, which cannot be explained by genetic factors alone. Influence of psychological stress on the development or the course of autoimmune disorders has been discussed for a long time. Indeed, based on epidemiological studies, stress has been suggested to precede AD occurrence and to exacerbate symptoms. Furthermore, compiling data showed that most of ADs are associated with gastrointestinal symptoms, that is, microbiota dysbiosis, intestinal hyperpermeability, and intestinal inflammation. Interestingly, social stress (acute or chronic, in adult or in neonate) is a well-described intestinal disrupting factor. Taken together, those observations question a potential role of stress-induced defect of the intestinal barrier in the onset and/or the course of ADs. In this review, we aim to present evidences supporting the hypothesis for a role of stress-induced intestinal barrier disruption in the onset and/or the course of ADs. We will mainly focus on autoimmune type 1 diabetes, multiple sclerosis and systemic lupus erythematosus, ADs for which we could find sufficient circumstantial data to support this hypothesis. We excluded gastrointestinal (GI) ADs like coeliac disease to privilege ADs not focused on intestinal disorders to avoid confounding factors. Indeed, GIADs are characterized by antibodies directed against intestinal barrier actors.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/epidemiology
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/microbiology
- Autoimmunity
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/microbiology
- Dysbiosis
- Gastrointestinal Microbiome
- Host-Pathogen Interactions
- Humans
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Lupus Erythematosus, Systemic/epidemiology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/microbiology
- Multiple Sclerosis/epidemiology
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/microbiology
- Permeability
- Risk Factors
- Stress, Psychological/epidemiology
- Stress, Psychological/immunology
- Stress, Psychological/metabolism
- Stress, Psychological/microbiology
Collapse
Affiliation(s)
| | - Sandrine Menard
- Neuro-Gastroenterology and Nutrition Team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
15
|
Jarillo-Luna RA, Gutiérrez-Meza JM, Franco-Vadillo A, Rivera-Aguilar V, Toledo-Blas M, Cárdenas-Jaramillo LM. Restraint stress increased the permeability of the nasal epithelium in BALB/c mice. Psychoneuroendocrinology 2020; 117:104700. [PMID: 32387874 DOI: 10.1016/j.psyneuen.2020.104700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022]
Abstract
Stress seems to affect the onset and evolution of diverse illnesses with an inflammatory substrate. Whether physiological or psychological, stress increases epithelial permeability. In the mucosa of the nasal cavity and upper respiratory tract, the epithelial barrier is regulated in large part by bicellular and tricellular tight junctions (bTJs and tTJs, respectively). The junctional complexes are composed of multiple membrane proteins: claudins, tight-junction-associated MARVEL proteins (TAMs: occludin, tricellulin and marvelD3), and scaffolding proteins such as ZO-1, -2 and -3. The aim of the present study was to examine the possible modification of nasal permeability and TJ protein expression in a mouse model of acute psychological stress (a 4-h immobility session). Serum corticosterone was quantified from plasma samples to verify the onset of stress. Evaluation was made of the relative concentration of key proteins in nasal mucosa by using Western blot, and of changes in permeability by analyzing FITC-Dextran leakage from the nose to the blood. Compared to the control, the stressed group showed a greater epithelial permeability to FITC-Dextran, a reduced expression of occludin and tricellulin, and an elevated expression of ZO-2 and claudin-4. This evidence points to increased paracellular flow of large molecules through an altered structure of tTJs. Apparently, the structure of bTJs remained unchanged. The current findings could provide insights into the relation of stress to the onset/exacerbation of respiratory infections and/or allergies.
Collapse
Affiliation(s)
- Rosa Adriana Jarillo-Luna
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP.11340, Ciudad de México, Mexico; Coordinación de Morfología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP. 11340, Ciudad de México, Mexico.
| | - Juan Manuel Gutiérrez-Meza
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP.11340, Ciudad de México, Mexico; Coordinación de Morfología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP. 11340, Ciudad de México, Mexico
| | - Antonio Franco-Vadillo
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP.11340, Ciudad de México, Mexico; Coordinación de Morfología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP. 11340, Ciudad de México, Mexico
| | - Victor Rivera-Aguilar
- Departamento de Microbiología, UBIPRO, FES-Iztacala, UNAM, Avenida de los Barrios s/n, CP. 54090, Tlalnepantla Edo. de México, Mexico
| | - Mireille Toledo-Blas
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP.11340, Ciudad de México, Mexico
| | - Luz María Cárdenas-Jaramillo
- Coordinación de Morfología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP. 11340, Ciudad de México, Mexico
| |
Collapse
|
16
|
Physicochemical and biopharmaceutical characterization of novel Matrix-Liposomes. Eur J Pharm Biopharm 2020; 153:158-167. [PMID: 32522680 DOI: 10.1016/j.ejpb.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 11/24/2022]
Abstract
Matrix-Liposomes (MLs) are a very promising solid oral drug delivery system; however, data on their interaction with biological membranes are not available. Here, we describe the quality of MLs manufactured by dual centrifugation. MLs were prepared with a Z-average range of 139 to 160 nm and a PDI of 0.18 to 0.25. To investigate the effect of MLs on intestinal tissue (with and without mucolytic treatment), we then established an ex vivo rat intestine model. The integrity of the epithelial membranes of rat intestine was not affected by the incubation with MLs without or with pre-mucolytic treatment. Tissue samples were also analysed for changes in P-glycoprotein (P-gp) expression and function. The net secretion of the P-gp substrate Rh123 across the rat duodenum was increased in the presence of MLs. To summarize, MLs do not affect intestinal epithelial integrity, although they impact Rh123 secretion. In future, these novel MLs have to be further evaluated for proficient intestinal drug delivery.
Collapse
|
17
|
Cameron L, Palikhe NS, Laratta C, Vliagoftis H. Elevated Circulating Th2 Cells in Women With Asthma and Psychological Morbidity: A New Asthma Endotype? Clin Ther 2020; 42:1015-1031. [PMID: 32482491 DOI: 10.1016/j.clinthera.2020.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Psychological stress shifts the immune system toward the production of T-helper (Th)-2-mediated cytokines and eosinophilia, increases the risks for both asthma and depression, and can precipitate asthma exacerbations. Th2-mediated inflammation is a characteristic of allergic asthma. We have shown that the levels of CD4+ Th2 cells in the peripheral blood of patients with asthma are associated with severity and/or control of the disease. To improve our understanding of the interactions between stress and asthma symptoms, we evaluated the effects of psychological comorbidity on Th2-mediated inflammation in patients with asthma. METHODS Sixty-six asthmatic patients were recruited from the University of Alberta Asthma Clinic after they gave informed consent. Stress-related effects on asthma and psychological morbidity were assessed using the Asthma Control Questionnaire, completed by the patients at recruitment. Venous blood was collected at recruitment and Th2-mediated immunity evaluated by flow cytometry, quantitative real-time reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay. FINDINGS Patients with stress-triggered asthma (n = 12) had higher percentage of CD4+ T cells (P = 0.006) and Th2 cells (CD4+CRTh2+ T cells; P = 0.002) in peripheral blood compared to patients with asthma who did not experience stress-related worsening of disease (n = 54). The same was true when we analyzed patients with any form of psychological comorbidity (n = 19) compared to those without psychological comorbidities (n = 47). These differences were evident among women, but not among men. Women with psychological comorbidity also required higher doses of inhaled and oral corticosteroids compared to those without psychological comorbidity. IMPLICATIONS Asthma involving psychological morbidity associates with an elevated level of circulating Th2 cells and increased corticosteroid usage, and may be more prevalent in women. Larger-scale prospective studies are required for assessing whether these women constitute a new endotype of Th2-high asthma responsive to treatments aimed to improve psychological comorbidities.
Collapse
Affiliation(s)
- Lisa Cameron
- Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada.
| | - Nami Shrestha Palikhe
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Cheryl Laratta
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Accarie A, Vanuytsel T. Animal Models for Functional Gastrointestinal Disorders. Front Psychiatry 2020; 11:509681. [PMID: 33262709 PMCID: PMC7685985 DOI: 10.3389/fpsyt.2020.509681] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGID), such as functional dyspepsia (FD) and irritable bowel syndrome (IBS) are characterized by chronic abdominal symptoms in the absence of an organic, metabolic or systemic cause that readily explains these complaints. Their pathophysiology is still not fully elucidated and animal models have been of great value to improve the understanding of the complex biological mechanisms. Over the last decades, many animal models have been developed to further unravel FGID pathophysiology and test drug efficacy. In the first part of this review, we focus on stress-related models, starting with the different perinatal stress models, including the stress of the dam, followed by a discussion on neonatal stress such as the maternal separation model. We also describe the most commonly used stress models in adult animals which brought valuable insights on the brain-gut axis in stress-related disorders. In the second part, we focus more on models studying peripheral, i.e., gastrointestinal, mechanisms, either induced by an infection or another inflammatory trigger. In this section, we also introduce more recent models developed around food-related metabolic disorders or food hypersensitivity and allergy. Finally, we introduce models mimicking FGID as a secondary effect of medical interventions and spontaneous models sharing characteristics of GI and anxiety-related disorders. The latter are powerful models for brain-gut axis dysfunction and bring new insights about FGID and their comorbidities such as anxiety and depression.
Collapse
Affiliation(s)
- Alison Accarie
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Abstract
Preclinical evidence strongly suggests a role for the gut microbiome in modulating the host central nervous system function and behavior. Several communication channels have been identified that enable microbial signals to reach the brain and that enable the brain to influence gut microbial composition and function. In rodent models, endocrine, neural, and inflammatory signals generated by gut microbes can alter brain structure and function, while autonomic nervous system activity can affect the microbiome by modulating the intestinal environment and by directly regulating microbial behavior. The amount of information that reaches the brain is dynamically regulated by the blood-brain barrier and the intestinal barrier. In humans, associations between gut microbial composition and function and several brain disorders have been reported, and fecal microbial transplants from patient populations into gnotobiotic mice have resulted in the reproduction of homologous features in the recipient mice. However, in contrast to preclinical findings, there is little information about a causal role of the gut microbiome in modulating human central nervous system function and behavior. Longitudinal studies in large patient populations with therapeutic interventions are required to demonstrate such causality, which will provide the basis for future clinical trials. © 2020 American Physiological Society. Compr Physiol 10:57-72, 2020.
Collapse
Affiliation(s)
- Vadim Osadchiy
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Clair R Martin
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
20
|
Cai L, Hua C, Geng Y, Chen Q, Niu L, Tao S, Ni Y, Zhao R. Chronic Dexamethasone exposure activates the TLR4-Mediated inflammation pathway and induces epithelial apoptosis in the goat colon. Biochem Biophys Res Commun 2019; 518:7-13. [PMID: 31439374 DOI: 10.1016/j.bbrc.2019.07.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022]
Abstract
Chronic stress has a profound effect on health in both animals and humans. Dexamethasone (Dex), a synthetic glucocorticoid, is used to induce chronic stress in many studies. The impact of chronic stress on epithelial cells of hindgut of ruminants is still unknown. In this study, we investigated the effect of chronic stress induced by long term injection of low dosage of Dex on the colonic epithelium of goats. The results showed that Dex exposure increased the number of TUNEL-positive cells, upregulated caspase-3 and caspase-8 enzyme activity, but decreased protein expression of cell proliferation markers proliferating cell nuclear antigen (PCNA) and Cyclin D2(CCND2). It also activated TLR-4 and NF-κB pathway and increased the transcription levels of vital inflammatory cytokines such as interleukin-10 (IL-10), interleukin-1β (IL-1β), and inducible nitric oxide synthase 2 (iNOS2). Chronic stress down-regulated the methylation level of total DNA, suggesting a mechanism for the transcriptional activation of genes, such as claudin-1, claudin-4, ZO-1, and cell cycle-related genes. Taken together, long-term injection of a low dosage of Dex caused damage to the colon epithelium accompanied with the inhibition of cell proliferation and the activation of cell apoptosis and inflammation. However, a general up-regulation of genes expression induced by Dex is due to a lower level of genomic DNA methylation.
Collapse
Affiliation(s)
- Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Canfeng Hua
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yali Geng
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Liqiong Niu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Shiyu Tao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
21
|
Jiang Y, Greenwood-Van Meerveld B, Johnson AC, Travagli RA. Role of estrogen and stress on the brain-gut axis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G203-G209. [PMID: 31241977 PMCID: PMC6734369 DOI: 10.1152/ajpgi.00144.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 01/31/2023]
Abstract
Symptoms of functional gastrointestinal disorders (FGIDs), including fullness, bloating, abdominal pain, and altered gastrointestinal (GI) motility, present a significant clinical problem, with a reported prevalence of 25%-40% within the general population. More than 60% of those affected seek and require healthcare, and affected individuals report a significantly decreased quality of life. FGIDs are highly correlated with episodes of acute and chronic stress and are increased in prevalence and reported severity in women compared with men. Although there is evidence that sex and stress interact to exacerbate FGID symptoms, the physiological mechanisms that mediate these sex-dependent disparities are incompletely understood, although hormonal-related differences in GI motility and visceral sensitivity have been purported to play a significant role in the etiology. In this mini review, we will discuss brain-gut axis control of GI motility and sensitivity, the influence of estrogen on GI motility and sensitivity, and stress modulation of the brain-gut axis.
Collapse
Affiliation(s)
- Yanyan Jiang
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
- Veterans Affairs Health Care System, Oklahoma City, Oklahoma
| | - Anthony C Johnson
- Veterans Affairs Health Care System, Oklahoma City, Oklahoma
- Department of Neurology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
22
|
Machorro-Rojas N, Sainz-Espuñes T, Godínez-Victoria M, Castañeda-Sánchez JI, Campos-Rodríguez R, Pacheco-Yepez J, Drago-Serrano ME. Impact of chronic immobilization stress on parameters of colonic homeostasis in BALB/c mice. Mol Med Rep 2019; 20:2083-2090. [PMID: 31257542 PMCID: PMC6691234 DOI: 10.3892/mmr.2019.10437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/07/2019] [Indexed: 12/24/2022] Open
Abstract
The intestinal epithelium is a monolayer of cells arranged side‑by‑side and connected by tight junction (TJ) proteins expressed at the apical extreme of the paracellular membrane. This layer prevents stress‑induced inflammatory responses, thus helping to maintain gut barrier function and gut homeostasis. The aim of the present study was to evaluate the effects of chronic immobilization stress on the colonic expression of various parameters of homeostasis. A total of two groups of female BALB/c mice (n=6) were included: A stressed group (short‑term immobilization for 2 h/day for 4 consecutive days) and an unstressed (control) group. Colon samples were obtained to detect neutrophils and goblet cells by optical microscopy, TJ protein expression (occludin, and claudin ‑2, ‑4, ‑7, ‑12 and ‑15) by western blotting, mRNA levels of TJ genes and proinflammatory cytokines [tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β, ‑6 and ‑8] by reverse transcription‑quantitative PCR, fecal lactoferrin by ELISA and the number of colony‑forming units of aerobic bacteria. Compared with goblet cells in control mice, goblet cells were enlarged and reduced in number in stressed mice, whereas neutrophil cellularity was unaltered. Stressed mice exhibited reduced mRNA expression for all evaluated TJ mRNAs, with the exception of claudin‑7, which was upregulated. Protein levels of occludin and all claudins (with the exception of claudin‑12) were decreased in stressed mice. Fecal lactoferrin, proinflammatory cytokine mRNA levels and aerobic bacterial counts were all increased in the stressed group. These results indicated that immobilization stress induced proinflammatory and potential remodeling effects in the colon by decreasing TJ protein expression. The present study may be a useful reference for therapies aiming to regulate the effects of stress on intestinal inflammatory dysfunction.
Collapse
Affiliation(s)
- Nancy Machorro-Rojas
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico
| | - Teresita Sainz-Espuñes
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico
| | - Marycarmen Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Judith Pacheco-Yepez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico
| |
Collapse
|
23
|
Santos AGAD, Lima LLD, Mota CA, Gois MB, Fernandes ACBS, Silveira TGV, Sant'Ana DDMG, Nogueira de Melo GDA. Insights of Leishmania (Viannia) braziliensis infection in golden hamster (Mesocricetus auratus) intestine. Biomed Pharmacother 2018; 106:1624-1632. [PMID: 30119238 DOI: 10.1016/j.biopha.2018.07.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
AIM The present study compared and evaluated morphological and quantitative alterations in the ileum of hamsters infected by two L. (V.) braziliensis strains isolated from patients with different lesion aspects and treatment responses. MAIN METHODS Hamsters were infected in the left hindpaw with a suspension of promastigotes (2 × 107/100 μl) of two different strains of L. (V.) braziliensis. After 90 or 120 days, the animals were euthanized. Samples of the ileum and mesenteric lymph node were collected for histological examination and quantitative polymerase chain reaction. KEY FINDINGS All infected animals developed similar profile of paw lesions. In peripheral blood there was an increase in the number of mononuclear cells which contributed to elevated global leukocytes count. Increases in the width and height of villi and width and depth of crypts were observed. The thickness of the muscular layers, submucosa, and intestinal wall also increased. Histopathological alterations were observed, including inflammatory infiltrate in crypts and a large number of immune cells in the lamina propria, submucosa, and muscular layer. Immune cells were found inside myenteric ganglia, with an increase in the number of intraepithelial lymphocytes. Leishmania DNA was detected in the ileum and mesenteric lymph node at both times of infection. The presence of amastigotes in the ileum was revealed by immunohistochemistry. SIGNIFICANCE The infection with different strains of L. (V.) braziliensis causes morphological and quantitative alterations in the ileum of hamsters and the parasite can migrate to the mesenteric lymph node and intestine.
Collapse
Affiliation(s)
| | - Lainy Leiny de Lima
- Universidade Estadual de Maringá, Colombo Avenue, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Camila Alves Mota
- Universidade Estadual de Maringá, Colombo Avenue, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Marcelo Biondaro Gois
- Universidade Federal do Recôncavo da Bahia, Viriato Lobo Street, 44571-020, Santo Antônio de Jesus, Bahia, Brazil
| | | | | | | | | |
Collapse
|
24
|
Martin CR, Osadchiy V, Kalani A, Mayer EA. The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol 2018; 6:133-148. [PMID: 30023410 PMCID: PMC6047317 DOI: 10.1016/j.jcmgh.2018.04.003] [Citation(s) in RCA: 755] [Impact Index Per Article: 107.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Preclinical and clinical studies have shown bidirectional interactions within the brain-gut-microbiome axis. Gut microbes communicate to the central nervous system through at least 3 parallel and interacting channels involving nervous, endocrine, and immune signaling mechanisms. The brain can affect the community structure and function of the gut microbiota through the autonomic nervous system, by modulating regional gut motility, intestinal transit and secretion, and gut permeability, and potentially through the luminal secretion of hormones that directly modulate microbial gene expression. A systems biological model is proposed that posits circular communication loops amid the brain, gut, and gut microbiome, and in which perturbation at any level can propagate dysregulation throughout the circuit. A series of largely preclinical observations implicates alterations in brain-gut-microbiome communication in the pathogenesis and pathophysiology of irritable bowel syndrome, obesity, and several psychiatric and neurologic disorders. Continued research holds the promise of identifying novel therapeutic targets and developing treatment strategies to address some of the most debilitating, costly, and poorly understood diseases.
Collapse
Key Words
- 2BA, secondary bile acid
- 5-HT, serotonin
- ANS, autonomic nervous system
- ASD, autism spectrum disorder
- BBB, blood-brain barrier
- BGM, brain-gut-microbiome
- CNS, central nervous system
- ECC, enterochromaffin cell
- EEC, enteroendocrine cell
- FFAR, free fatty acid receptor
- FGF, fibroblast growth factor
- FXR, farnesoid X receptor
- GF, germ-free
- GI, gastrointestinal
- GLP-1, glucagon-like peptide-1
- GPR, G-protein–coupled receptor
- IBS, irritable bowel syndrome
- Intestinal Permeability
- Irritable Bowel Syndrome
- LPS, lipopolysaccharide
- SCFA, short-chain fatty acid
- SPF, specific-pathogen-free
- Serotonin
- Stress
- TGR5, G protein-coupled bile acid receptor
- Trp, tryptophan
Collapse
Affiliation(s)
| | | | | | - Emeran A. Mayer
- Correspondence Address correspondence to: Emeran A. Mayer, MD, G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California at Los Angeles, MC737818-10833 Le Conte Avenue, Los Angeles, California 90095-7378. fax: (310) 825-1919.
| |
Collapse
|
25
|
He Y, Yuan X, Zhou G, Feng A. Activation of IGF-1/IGFBP-3 signaling by berberine improves intestinal mucosal barrier of rats with acute endotoxemia. Fitoterapia 2018; 124:200-205. [DOI: 10.1016/j.fitote.2017.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
|
26
|
Stress Hormone Cortisol Enhances Bcl2 Like-12 Expression to Inhibit p53 in Hepatocellular Carcinoma Cells. Dig Dis Sci 2017; 62:3495-3500. [PMID: 29043595 DOI: 10.1007/s10620-017-4798-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The pathogenesis of hepatocellular carcinoma (HC) is unclear. It is suggested that psychological stress associates with the pathogenesis of liver cancer. Bcl2-like protein 12 (Bcl2L12) suppresses p53 protein. This study tests a hypothesis that the major stress hormone, cortisol, inhibits the expression of p53 in HC cells (HCC) via up regulating the expression of Bcl2L12. METHODS Peripheral blood samples were collected from patients with HC to be analyzed for the levels of cortisol. HCC were cultured to assess the role of cortisol in the regulation of the expression of Bcl2L12 and p53 in HCC. RESULTS We observed that the serum cortisol levels were higher in HC patients. Expression of Bcl2L12 in HCC was correlated with serum cortisol. Cortisol enhanced the Bcl2L12 expression in HCC. Bcl2L12 binding to the TP53 promoter was correlated with p53 expression in HCC. Cortisol increased the Bcl2L12 expression in HCC to inhibit p53 expression. CONCLUSIONS Stress hormone cortisol suppresses p53 in HCC via enhancing Bcl2L12 expression in HCC. The results suggest that cortisol may be a therapeutic target for the treatment of HC.
Collapse
|
27
|
Food contact materials and gut health: Implications for toxicity assessment and relevance of high molecular weight migrants. Food Chem Toxicol 2017; 109:1-18. [PMID: 28830834 DOI: 10.1016/j.fct.2017.08.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 02/08/2023]
Abstract
Gut health is determined by an intact epithelial barrier and balanced gut microbiota, both involved in the regulation of immune responses in the gut. Disruption of this system contributes to the etiology of various non-communicable diseases, including intestinal, metabolic, and autoimmune disorders. Studies suggest that some direct food additives, but also some food contaminants, such as pesticide residues and substances migrating from food contact materials (FCMs), may adversely affect the gut barrier or gut microbiota. Here, we focus on gut-related effects of FCM-relevant substances (e.g. surfactants, N-ring containing substances, nanoparticles, and antimicrobials) and show that gut health is an underappreciated target in the toxicity assessment of FCMs. Understanding FCMs' impact on gut health requires more attention to ensure safety and prevent gut-related chronic diseases. Our review further points to the existence of large population subgroups with an increased intestinal permeability; this may lead to higher uptake of compounds of not only low (<1000 Da) but also high (>1000 Da) molecular weight. We discuss the potential toxicological relevance of high molecular weight compounds in the gut and suggest that the scientific justification for the application of a molecular weight-based cut-off in risk assessment of FCMs should be reevaluated.
Collapse
|
28
|
Zhao XJ, Zhao Z, Yang DD, Cao LL, Zhang L, Ji J, Gu J, Huang JY, Sun XL. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus. Brain Res Bull 2017; 130:146-155. [DOI: 10.1016/j.brainresbull.2017.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 12/19/2022]
|