1
|
Dutto A, Kan A, Saraw Z, Maillard A, Zindel D, Studart AR. Living Porous Ceramics for Bacteria-Regulated Gas Sensing and Carbon Capture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412555. [PMID: 39659127 DOI: 10.1002/adma.202412555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Microorganisms hosted in abiotic structures have led to engineered living materials that can grow, sense, and adapt in ways that mimic biological systems. Although porous structures should favor colonization by microorganisms, they have not yet been exploited as abiotic scaffolds for the development of living materials. Here, porous ceramics are reported that are colonized by bacteria to form an engineered living material with self-regulated and genetically programmable carbon capture and gas-sensing functionalities. The carbon capture capability is achieved using wild-type photosynthetic cyanobacteria, whereas the gas-sensing function is generated utilizing genetically engineered E. coli. Hierarchical porous clay is used as a ceramic scaffold and evaluated in terms of bacterial growth, water uptake, and mechanical properties. Using state-of-the-art chemical analysis techniques, the ability of the living porous ceramics are demonstrated to capture CO2 directly from the air and to metabolically turn minute amounts of toxic gas into a benign scent detectable by humans.
Collapse
Affiliation(s)
- Alessandro Dutto
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Anton Kan
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Zoubeir Saraw
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Aline Maillard
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Daniel Zindel
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, 8093, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| |
Collapse
|
2
|
Dash S, Mojumder S, Das T, Saha D, Pal M. Highly sensitive and selective rGO-LaFeO 3 nanocomposite based formaldehyde sensors towards air quality monitoring. CHEMOSPHERE 2024; 367:143499. [PMID: 39395479 DOI: 10.1016/j.chemosphere.2024.143499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Formaldehyde (HCHO), a ubiquitous volatile organic compound and recognized human carcinogen, is extensively used in industrial applications such as resin and adhesive production. Even minimal exposure to HCHO can induce serious health effects, including respiratory distress and dermal irritation. Thus, the advancement of highly sensitive and selective sensors for HCHO detection is imperative for safeguarding environmental and indoor air quality. Herein, we report the development of a very sensitive, highly selective, and stable HCHO sensor based on reduced graphene oxide (rGO) and lanthanum ferrite (LaFeO3). LaFeO3 and rGO-LaFeO3 nanocomposites with different compositions were synthesized through an affordable and straightforward sol-gel process. Among them, the LFGO(50:1) sensor demonstrated the highest response and selectivity towards HCHO, with a detection limit (theoretically) as low as 19 ppb (1.5 fold). Notably, it exhibited approximately 15-fold p-type response to 1 ppm of HCHO, while operating at 260 °C. The sensor also showed quick response and recovery times of around 1.5 s and 36 s, respectively while having negligible response to other VOCs, including ethanol, methanol, and NH3. A synergistic effect of rGO and LaFeO3 is attributed to this improved sensing behavior. rGO offers a large surface area that facilitates the adsorption of HCHO molecules, while LaFeO3 acts as a catalyst for the oxidation of HCHO. The sensor also showed good selectivity, stability, and reproducibility, making the material a promising candidate for practical applications towards environment monitoring, indoor air quality control, and industrial safety.
Collapse
Affiliation(s)
- Sanjib Dash
- Csir-Central Glass and Ceramic Research Institute, Kolkata, India
| | - Subhajit Mojumder
- Csir-Central Glass and Ceramic Research Institute, Kolkata, India; Jadavpur University, Department of Physics, Kolkata, India
| | - Tanushri Das
- Csir-Central Glass and Ceramic Research Institute, Kolkata, India; Jadavpur University, Department of Physics, Kolkata, India
| | - Debdulal Saha
- Csir-Central Glass and Ceramic Research Institute, Kolkata, India
| | - Mrinal Pal
- Csir-Central Glass and Ceramic Research Institute, Kolkata, India.
| |
Collapse
|
3
|
Mondal I, Groves M, Driver EM, Vittori W, Halden RU. Carcinogenic formaldehyde in U.S. residential buildings: Mass inventories, human health impacts, and associated healthcare costs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173640. [PMID: 38825200 DOI: 10.1016/j.scitotenv.2024.173640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Formaldehyde, a human carcinogen, is formulated into building materials in the U.S. and worldwide. We used literature information and mass balances to obtain order-of-magnitude estimates of formaldehyde inventories in U.S. residential buildings as well as associated exposures, excess morbidity, and healthcare costs along with other economic ramifications. Use of formaldehyde in building materials dates to the 1940s and continues today unabated, despite its international classification in 2004 as a human carcinogen. Global production of formaldehyde was about 32 million metric tons (MMT) in 2006. In the U.S., 5.7 ± 0.05 to 7.4 ± 0.125 MMT of formaldehyde were produced annually from 2006 to 2022, with 65 ± 5 % of this mass (3.7 ± 0.03 to 4.8 ± 0.08 MMT) entering building materials. For a typical U.S. residential building constructed in 2022, we determined an average total mass of formaldehyde containing chemicals of 48.2 ± 10.1 kg, equivalent to 207 ± 40 g of neat formaldehyde per housing unit. When extrapolated to the entire U.S. housing stock, this equates to 29,800 ± 5760 metric tons of neat formaldehyde. If the health threshold in indoor air of 0.1 mg/m3 is never surpassed in a residential building, safe venting of embedded formaldehyde would take years. Using reported indoor air exceedances, up to 645 ± 33 excess cancer cases may occur U.S. nationwide annually generating up to US$65 M in cancer treatment costs alone, not counting ~16,000 ± 1000 disability adjusted life-years. Other documents showed health effects of formaldehyde exist, but could not be quantified reliably, including sick building syndrome outcomes such as headache, asthma, and various respiratory illnesses. Opportunities to improve indoor air exposure assessments are discussed with special emphasis on monitoring of building wastewater. Safer alternatives to formaldehyde in building products exist and are recommended for future use.
Collapse
Affiliation(s)
- Indrayudh Mondal
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America; School of Sustainable Engineering and the Built Environment, 660 S College Ave, Tempe, AZ 85281, United States of America
| | - Megan Groves
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America
| | - Erin M Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America
| | - Wendy Vittori
- Health Product Declaration Collaborative, 401 Edgewater Place, Suite 600, Wakefield, MA 01880, United States of America
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America.
| |
Collapse
|
4
|
Wang L, Ma Y, Lin W. Construction of a turn-on fluorescent probe for detecting formaldehyde in biological systems and real food samples. Food Chem 2024; 450:139315. [PMID: 38615534 DOI: 10.1016/j.foodchem.2024.139315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The monitoring of formaldehyde (FA) in biosystems and real foods is critical for ensuring human health and food safety. However, the development of effective and highly selective assays for sensing FA in organisms and real food samples remains challenging. Herein, a hydrophilic group-modified the probe (Nap-FA) was reported, which utilizes the specific chemical reaction between FA and hydrazino to trigger a "turn-on" fluorescence response. The probe Nap-FA displayed superior selectivity, high sensitivity, good photostability and a low detection limit in the reaction with FA. Notably, Nap-FA has been successfully used for imaging FA in cells, zebrafish, and plant root tissues. In addition, the rationally constructed probe Nap-FA could rapidly and visually detect FA in real food samples. This work provides a prospective approach for monitoring FA in complex biological systems and food fields.
Collapse
Affiliation(s)
- Lin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Yanyan Ma
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, Shandong 266061, PR China
| | - Weiying Lin
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China; Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
5
|
der Heyden KAV, Gibbon VE, Mpolokeng KS. A South African case study on anatomical embalming for human body donation programmes with toxicological considerations. Ann Anat 2024; 255:152296. [PMID: 38925274 DOI: 10.1016/j.aanat.2024.152296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Body embalming, a practice with deep historical roots across various cultures, forms the backbone of contemporary human body donation educational programmes. In this study, we explored current embalming practices within six South African human anatomical dissection programmes, focusing on the use and volumes of key chemicals-formalin, phenol, and alcohol-and their associated health risks and potential toxicity. We measured and compared aspects of embalming practices such as the duration of body preservation and the annual intake of bodies. Variations in embalming practices and chemical ratios across different South African universities were found. However, the consistent use of formalin, phenol and alcohol were observed across all six programmes. Formaldehyde concentrations used in South African dissection programmes were within the generally acceptable international range. Regarding arterial embalming, South African dissection programmes showed widespread adherence to international embalming practices, with one programme using a substantially lower concentration of formalin. The dual nature of formaldehyde as both an effective preservative and a recognised carcinogen was underscored in relation to human health regarding chemical toxicity. Phenol, like formaldehyde, was consistently used as it is important for the inhibition of bacterial and fungal growth. Alcohol was also consistently used, but there was much greater variation in its volume across South African institutions. Our data showed a slight positive relationship between storage duration and the volumes of formalin and phenol in human embalming fluid. South African regulators enforce stricter exposure limits than those set by the World Health Organisation and various European agencies. While South African institutions operate within internationally acceptable ranges of chemical use that both maximise preservation and minimise toxicity, we acknowledge that these data are preliminary. Further investigation is encouraged to ensure embalming practices effectively protect all those involved and support the educational goals of human anatomical dissection programmes in South Africa.
Collapse
Affiliation(s)
- Kirsten Alexandria van der Heyden
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Victoria Elaine Gibbon
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kentse Sana Mpolokeng
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
6
|
Austin HK, Schoenberg E. A Comprehensive Literature Review on the Effects of Formaldehyde on the Upper Respiratory Tract. Cureus 2024; 16:e59743. [PMID: 38840986 PMCID: PMC11151271 DOI: 10.7759/cureus.59743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Prolonged exposure to indoor air pollutants at high concentrations can have adverse health effects on the respiratory system of individuals who spend most of their time indoors. Formaldehyde (FA) is a common indoor air pollutant because of its extensive use in household products such as cleaners, floorings, and furnishings. As a chemical, FA is highly water soluble and reactive. When its airborne form is inhaled, it is mainly absorbed in the upper airways. FA has been extensively studied for its carcinogenic effects, but it can also cause inflammation in the upper airways. The objective of the current review was to assess the secondary effects of such inflammation and how it can contribute to an increased risk for upper respiratory infections, which are mostly caused by viruses. A rigorous literature review was conducted through gathering, reading, and analyzing relevant literature, including peer-reviewed articles published after 1990 and seminal literature regardless of publication date. Findings from the review provide a greater understanding of the outcomes of FA exposure, the potential accumulative damage to the upper respiratory tract, and the associated increased risk for acute infections of the upper respiratory tract. This information can help in the development and enforcement of stricter regulations for furniture and building materials for household-related products to limit exposure to indoor pollutants such as FA.
Collapse
Affiliation(s)
- Harriet Kaye Austin
- Otolaryngology, University of Central Florida College of Medicine, Orlando, USA
| | - Erik Schoenberg
- Otolaryngology, HCA Florida Orlando Allergy and ENT, Sanford, USA
| |
Collapse
|
7
|
Al Okla SM, Al Rasbi FAZK, Al Marhubi HS, Al Mataani SS, Al Sawai YM, Mohammed HI, Al Mamari MAS, Al Balushi SAA, Abbady AQ. The Impact of Air Pollution on Asthma Severity among Residents Living near the Main Industrial Complex in Oman: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:553. [PMID: 38791768 PMCID: PMC11121288 DOI: 10.3390/ijerph21050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Asthma is a widespread chronic respiratory disease that poses a significant public health challenge. The current study investigated the associations between air pollution and asthma severity among individuals residing near the Sohar industrial port (SIP) in Oman. Despite the presence of multiple major industrial complexes in Oman, limited knowledge regarding their impact on respiratory health is accredited. Hence, the primary objective of this study is to offer valuable insights into the respiratory health consequences of industrial air pollution in Al Batinah North. METHODS The state health clinics' records for patient visits related to asthma were collected for the timeframe spanning 2014 to 2022. Exposure was defined as the distance from the SIP, Majan Industerial Area (MIA), and Sohar Industerial Zone (SIZ) to determine high-, intermediate-, and low-exposure zones (<6 km, 6-12 km and >12 km, respectively). Exposure effect modifications by age, gender, and smoking status were also examined. RESULTS The conducted cross-sectional study of 410 patients (46.1% males and 53.9% females) living in over 17 areas around SIP revealed that 73.2% of asthmatics were under 50 years old, with severity significantly associated with closeness to the port. Risk ratios were estimated to be (RR:2.42; CI95%: 1.01-5.78), (RR:1.91; CI95%: 1.01-3.6), and (RR:1.68; CI95%: 0.92-3.09) for SIP, MIP, and SIZ areas, respectively, compared to the control area. Falaj Al Qabail (6.4 km) and Majees (6 km) had the highest number of asthma patients (N 69 and N 72) and highest percentages of severe asthma cases among these patients (28% and 24%) with significant risk ratios (RR:2.97; CI95%: 1.19-7.45 and RR:2.55; CI95%: 1.00-6.48), correspondingly. Moreover, severe asthma prevalence peaked in the 25-50 age group (RR:2.05; CI95%: 1.26-3.33), and this linkage between asthma and age was much more pronounced in males than females. Smoking and exposure to certain contaminants (dust and smoke) also increased the risk of severe asthma symptoms, but their effects were less important in the high-risk zone, suggesting much more important risk factors. A neural network model accurately predicted asthma risk (94.8% accuracy), with proximity to SIP as the most influential predictor. CONCLUSIONS This study highlights the high asthma burden near SIP, linked to port proximity, smoking, and wind direction as major risk factors. These findings inform vital public health policies to reduce air pollution and improve respiratory health in the region, prompting national policy review.
Collapse
Affiliation(s)
- Souad Mahmoud Al Okla
- College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman; (F.A.Z.K.A.R.); (H.S.A.M.); (S.S.A.M.); (Y.M.A.S.)
- Department of Biology, Faculty of Sciences, Damascus University, Damascus P.O. Box 30621, Syria
| | - Fatima Al Zahra Khamis Al Rasbi
- College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman; (F.A.Z.K.A.R.); (H.S.A.M.); (S.S.A.M.); (Y.M.A.S.)
| | - Hawida Said Al Marhubi
- College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman; (F.A.Z.K.A.R.); (H.S.A.M.); (S.S.A.M.); (Y.M.A.S.)
| | - Shima Salim Al Mataani
- College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman; (F.A.Z.K.A.R.); (H.S.A.M.); (S.S.A.M.); (Y.M.A.S.)
| | - Yusra Mohammed Al Sawai
- College of Medicine and Health Sciences, National University of Science and Technology, P.O. Box 391, Sohar 321, Oman; (F.A.Z.K.A.R.); (H.S.A.M.); (S.S.A.M.); (Y.M.A.S.)
| | - Hasa Ibrahim Mohammed
- Liwa Extended Health Center, Ministry of Health, Liwa 325, Oman; (H.I.M.); (M.A.S.A.M.)
| | | | | | - Abdul Qader Abbady
- Division of Molecular Biomedicine, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus P.O. Box 6091, Syria;
- Department of Biology and Medical Science, Faculty of Pharmacy, International University for Science and Technology (IUST), Damascus, Syria
| |
Collapse
|
8
|
Cox LA, Thompson WJ, Mundt KA. Interventional probability of causation (IPoC) with epidemiological and partial mechanistic evidence: benzene vs. formaldehyde and acute myeloid leukemia (AML). Crit Rev Toxicol 2024; 54:252-289. [PMID: 38753561 DOI: 10.1080/10408444.2024.2337435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Causal epidemiology for regulatory risk analysis seeks to evaluate how removing or reducing exposures would change disease occurrence rates. We define interventional probability of causation (IPoC) as the change in probability of a disease (or other harm) occurring over a lifetime or other specified time interval that would be caused by a specified change in exposure, as predicted by a fully specified causal model. We define the closely related concept of causal assigned share (CAS) as the predicted fraction of disease risk that would be removed or prevented by a specified reduction in exposure, holding other variables fixed. Traditional approaches used to evaluate the preventable risk implications of epidemiological associations, including population attributable fraction (PAF) and the Bradford Hill considerations, cannot reveal whether removing a risk factor would reduce disease incidence. We argue that modern formal causal models coupled with causal artificial intelligence (CAI) and realistically partial and imperfect knowledge of underlying disease mechanisms, show great promise for determining and quantifying IPoC and CAS for exposures and diseases of practical interest. METHODS We briefly review key CAI concepts and terms and then apply them to define IPoC and CAS. We present steps to quantify IPoC using a fully specified causal Bayesian network (BN) model. Useful bounds for quantitative IPoC and CAS calculations are derived for a two-stage clonal expansion (TSCE) model for carcinogenesis and illustrated by applying them to benzene and formaldehyde based on available epidemiological and partial mechanistic evidence. RESULTS Causal BN models for benzene and risk of acute myeloid leukemia (AML) incorporating mechanistic, toxicological and epidemiological findings show that prolonged high-intensity exposure to benzene can increase risk of AML (IPoC of up to 7e-5, CAS of up to 54%). By contrast, no causal pathway leading from formaldehyde exposure to increased risk of AML was identified, consistent with much previous mechanistic, toxicological and epidemiological evidence; therefore, the IPoC and CAS for formaldehyde-induced AML are likely to be zero. CONCLUSION We conclude that the IPoC approach can differentiate between likely and unlikely causal factors and can provide useful upper bounds for IPoC and CAS for some exposures and diseases of practical importance. For causal factors, IPoC can help to estimate the quantitative impacts on health risks of reducing exposures, even in situations where mechanistic evidence is realistically incomplete and individual-level exposure-response parameters are uncertain. This illustrates the strength that can be gained for causal inference by using causal models to generate testable hypotheses and then obtaining toxicological data to test the hypotheses implied by the models-and, where necessary, refine the models. This virtuous cycle provides additional insight into causal determinations that may not be available from weight-of-evidence considerations alone.
Collapse
Affiliation(s)
- Louis A Cox
- Cox Associates and University of Colorado, Denver, CO, USA
| | | | - Kenneth A Mundt
- Independent Consultants in Epidemiology, Amherst, MA, USA
- Adjunct Professor of Epidemiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
9
|
Kleinbeck S, Wolkoff P. Exposure limits for indoor volatile substances concerning the general population: The role of population-based differences in sensory irritation of the eyes and airways for assessment factors. Arch Toxicol 2024; 98:617-662. [PMID: 38243103 PMCID: PMC10861400 DOI: 10.1007/s00204-023-03642-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/21/2024]
Abstract
Assessment factors (AFs) are essential in the derivation of occupational exposure limits (OELs) and indoor air quality guidelines. The factors shall accommodate differences in sensitivity between subgroups, i.e., workers, healthy and sick people, and occupational exposure versus life-long exposure for the general population. Derivation of AFs itself is based on empirical knowledge from human and animal exposure studies with immanent uncertainty in the empirical evidence due to knowledge gaps and experimental reliability. Sensory irritation in the eyes and airways constitute about 30-40% of OELs and is an abundant symptom in non-industrial buildings characterizing the indoor air quality and general health. Intraspecies differences between subgroups of the general population should be quantified for the proposal of more 'empirical' based AFs. In this review, we focus on sensitivity differences in sensory irritation about gender, age, health status, and vulnerability in people, based solely on human exposure studies. Females are more sensitive to sensory irritation than males for few volatile substances. Older people appear less sensitive than younger ones. However, impaired defense mechanisms may increase vulnerability in the long term. Empirical evidence of sensory irritation in children is rare and limited to children down to the age of six years. Studies of the nervous system in children compared to adults suggest a higher sensitivity in children; however, some defense mechanisms are more efficient in children than in adults. Usually, exposure studies are performed with healthy subjects. Exposure studies with sick people are not representative due to the deselection of subjects with moderate or severe eye or airway diseases, which likely underestimates the sensitivity of the group of people with diseases. Psychological characterization like personality factors shows that concentrations of volatile substances far below their sensory irritation thresholds may influence the sensitivity, in part biased by odor perception. Thus, the protection of people with extreme personality traits is not feasible by an AF and other mitigation strategies are required. The available empirical evidence comprising age, lifestyle, and health supports an AF of not greater than up to 2 for sensory irritation. Further, general AFs are discouraged for derivation, rather substance-specific derivation of AFs is recommended based on the risk assessment of empirical data, deposition in the airways depending on the substance's water solubility and compensating for knowledge and experimental gaps. Modeling of sensory irritation would be a better 'empirical' starting point for derivation of AFs for children, older, and sick people, as human exposure studies are not possible (due to ethical reasons) or not generalizable (due to self-selection). Dedicated AFs may be derived for environments where dry air, high room temperature, and visually demanding tasks aggravate the eyes or airways than for places in which the workload is balanced, while indoor playgrounds might need other AFs due to physical workload and affected groups of the general population.
Collapse
Affiliation(s)
- Stefan Kleinbeck
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
| | - Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
10
|
Goyak K, Holm S. Sensory irritation and use of the best available science in setting exposure limits: Issues raised by a scientific panel review of formaldehyde human research studies. Regul Toxicol Pharmacol 2024; 148:105587. [PMID: 38395102 DOI: 10.1016/j.yrtph.2024.105587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
As a high production volume chemical with recognized sensory irritation and widespread exposure, the human health risk potential of formaldehyde has been reviewed by many international regulatory agencies and scientific advisory bodies. A scientific panel, the Human Studies Review Board, under the auspices of the EPA's Toxic Substances Control Act (TSCA) program recently reviewed the sensory irritation studies included in the 2022 Draft Integrated Risk Information System (IRIS) Formaldehyde Hazard Assessment in the context of their use in a weight of evidence evaluation of acute inhalation health effects. This panel issued a series of recommendations on the use of these studies for the purposes of calculating exposure limits (e.g., study design preferences; uncertainty adjustment). Considering that these recommendations might reflect topic areas with varying degrees of scientific consensus, this commentary reflects on commonalities and distinctions amongst international formaldehyde exposure limits based on sensory irritation. Notably, each review panel charged with an assessment of the science recommended that no adjustment was needed to account for either exposure duration or human variability. These areas of scientific consensus should be considered as the best available science for the purposes of setting exposure limits in the anticipated TSCA Risk Evaluation on formaldehyde.
Collapse
Affiliation(s)
- Katy Goyak
- Celanese Corporation, 222 W. Las Colinas Blvd, Irving, TX, USA.
| | - Stewart Holm
- American Forest & Paper Association American Wood Council, 1101 K Street, NW, Washington, DC, USA
| |
Collapse
|
11
|
Harding-Smith E, Shaw DR, Shaw M, Dillon TJ, Carslaw N. Does green mean clean? Volatile organic emissions from regular versus green cleaning products. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:436-450. [PMID: 38258874 DOI: 10.1039/d3em00439b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cleaning products emit a range of volatile organic compounds (VOCs), including some which are hazardous or can undergo chemical transformations to generate harmful secondary pollutants. In recent years, "green" cleaners have become increasingly popular, with an implicit assumption that these are better for our health and/or the environment. However, there is no strong evidence to suggest that they are better for indoor air quality compared to regular products. In this study, the VOC composition of 10 regular and 13 green cleaners was examined by headspace analysis. Monoterpenes were the most prevalent VOCs, with average total monoterpene concentrations of 8.6 and 25.0 mg L-1 for regular and green cleaners, respectively. Speciated monoterpene emissions were applied to a detailed chemical model to investigate the indoor air chemistry following a typical cleaning event. Green cleaners generally emitted more monoterpenes than regular cleaners, resulting in larger increases in harmful secondary pollutant concentrations following use, such as formaldehyde (up to 7%) and PAN species (up to 6%). However, emissions of the most reactive monoterpenes (α-terpinene, terpinolene and α-phellandrene), were observed more frequently from regular cleaners, resulting in a disproportionately large impact on the concentrations of radical species and secondary pollutants that were formed after cleaning occurred.
Collapse
Affiliation(s)
- Ellen Harding-Smith
- Department of Environment and Geography, University of York, UK.
- Department of Chemistry, Wolfson Atmospheric Chemistry Laboratory, University of York, UK
| | - David R Shaw
- Department of Environment and Geography, University of York, UK.
| | - Marvin Shaw
- National Centre for Atmospheric Science, University of York, York, UK
| | - Terry J Dillon
- Department of Chemistry, Wolfson Atmospheric Chemistry Laboratory, University of York, UK
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, UK.
| |
Collapse
|
12
|
Chen Z, Zhou B, Xiao M, Bhowmick T, Karthick Kannan P, Occhipinti LG, Gardner JW, Hasan T. Real-time, noise and drift resilient formaldehyde sensing at room temperature with aerogel filaments. SCIENCE ADVANCES 2024; 10:eadk6856. [PMID: 38335291 PMCID: PMC10857368 DOI: 10.1126/sciadv.adk6856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Formaldehyde, a known human carcinogen, is a common indoor air pollutant. However, its real-time and selective recognition from interfering gases remains challenging, especially for low-power sensors suffering from noise and baseline drift. We report a fully 3D-printed quantum dot/graphene-based aerogel sensor for highly sensitive and real-time recognition of formaldehyde at room temperature. By optimizing the morphology and doping of printed structures, we achieve a record-high and stable response of 15.23% for 1 part per million formaldehyde and an ultralow detection limit of 8.02 parts per billion consuming only ∼130-microwatt power. On the basis of measured dynamic response snapshots, we also develop intelligent computational algorithms for robust and accurate detection in real time despite simulated substantial noise and baseline drift, hitherto unachievable for room temperature sensors. Our framework in combining materials engineering, structural design, and computational algorithm to capture dynamic response offers unprecedented real-time identification capabilities of formaldehyde and other volatile organic compounds at room temperature.
Collapse
Affiliation(s)
- Zhuo Chen
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | - Binghan Zhou
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | - Mingfei Xiao
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | - Tynee Bhowmick
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | | | - Luigi G. Occhipinti
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | | | - Tawfique Hasan
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| |
Collapse
|
13
|
Xu Y, Liu Y, Sun H, Gong X, Yu G, Zhai C, Hu W, Zong Q, Yu Y, Tang Y, Zhang M, Wang F, Zou Y. Global burden of leukemia attributable to occupational exposure to formaldehyde from 1990 to 2019. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3560-3571. [PMID: 38085479 DOI: 10.1007/s11356-023-31350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
The objective of this study was to evaluate the worldwide burden of leukemia owing to occupational exposure to formaldehyde (OEF) from 1990 to 2019. Data on leukemia due to OEF were obtained from the Global Burden of Disease Study (GBD) 2019. By region, age, sex, and disease subtype, the numbers and age-standardized rates (ASRs) associated with deaths, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life years (DALYs) were analyzed. Annual average percentage change (AAPC) was used to estimate disease burden trends from 1990 to 2019. To measure the risk of leukemia due to OEF, the population attributable fraction (PAF) was introduced. From 1990 to 2019, the number of deaths, DALYs, YLLs, and YLDs for leukemia caused by OEF increased by 44%, 34%, 33%, and 124%, respectively. Regarding the change in ASRs, the age-standardized YLDs (ASYLDs) rate of leukemia due to OEF, which was 38.03% (AAPC = 1.17 [95% confidence interval [CI] 1.11, 1.23]), indicated an increased trend. But the age-standardized mortality rate (ASMR), age-standardized DALY (ASDALY) rate, and age-standardized YLL (ASYLL) rate showed decline trends, with - 11.90% (AAPC = - 0.41 [95% CI - 0.45, - 0.37]), - 14.19% (AAPC = - 0.5 [95% CI - 0.55, - 0.45]), and - 14.97% (AAPC = - 0.53 [95% CI - 0.58, - 0.48]), respectively. In terms of PAFs, there were increasing trends in PAFs of age-standardized deaths, ASDALYs, ASYLLs, and ASYLDs for leukemia caused by OEF, with 20.15% (95% uncertainty interval [UI] 11.76%, 30.25%), 36.28% (95% UI 21.46%, 53.42%), 51.91% (95% UI 35.05%, 72.07%), and 36.34% (95% UI 21.58%, 53.63%), respectively. Across the socio-demographic index (SDI) regions, the leukemia burden caused by OEF was concentrated in middle and high-middle SDI regions. Besides, OEF poses a more serious risk for acute leukemia among the leukemia subtype. Globally, leukemia caused by OEF remains a public health burden. Policies must be developed to avoid the burden of leukemia caused by OEF.
Collapse
Affiliation(s)
- Ying Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuqi Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hongyu Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xingyu Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guanghui Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chunxia Zhai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wanqin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qiqun Zong
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yingying Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuqin Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mingyi Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fang Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanfeng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
14
|
Deng B, Ding L, Yang S, Tian H, Sun B. A dual-function fluorescent probe for the detection of pH values and formaldehyde. LUMINESCENCE 2023; 38:1647-1653. [PMID: 37408325 DOI: 10.1002/bio.4552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
A dual-function fluorescent probe (Probe 1) was developed in this work for the separate detection of pH value and formaldehyde (HCHO). Probe 1 could recognize HCHO and the pH value from the amino group. The colour of the probe solution was changed from grey blue to light blue with the increase in the pH value, and luminous intensity became larger with the increase in formaldehyde concentration. The curve function relationship between fluorescence intensity and the pH value was also determined. A smartphone containing a colour detector for imaging was used to record the values of the three primary colours (R value, G value, and B value) for the probe solution in formaldehyde. Importantly, there was a linear functional relationship between the B*R/G value with HCHO concentration. Therefore, the probe could be used as a rapid tool for the detection of formaldehyde. More importantly, Probe 1 was successfully used to detect formaldehyde in an actual distilled liquor sample.
Collapse
Affiliation(s)
- Bing Deng
- Beijing Key Laboratory of Flavor Chemistry | China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Leyuan Ding
- Beijing Key Laboratory of Flavor Chemistry | China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Shaoxiang Yang
- Beijing Key Laboratory of Flavor Chemistry | China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Hongyu Tian
- Beijing Key Laboratory of Flavor Chemistry | China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry | China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
15
|
Xiang W, Wang W, Du L, Zhao B, Liu X, Zhang X, Yao L, Ge M. Toxicological Effects of Secondary Air Pollutants. Chem Res Chin Univ 2023; 39:326-341. [PMID: 37303472 PMCID: PMC10147539 DOI: 10.1007/s40242-023-3050-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 06/13/2023]
Abstract
Secondary air pollutants, originating from gaseous pollutants and primary particulate matter emitted by natural sources and human activities, undergo complex atmospheric chemical reactions and multiphase processes. Secondary gaseous pollutants represented by ozone and secondary particulate matter, including sulfates, nitrates, ammonium salts, and secondary organic aerosols, are formed in the atmosphere, affecting air quality and human health. This paper summarizes the formation pathways and mechanisms of important atmospheric secondary pollutants. Meanwhile, different secondary pollutants' toxicological effects and corresponding health risks are evaluated. Studies have shown that secondary pollutants are generally more toxic than primary ones. However, due to their diverse source and complex generation mechanism, the study of the toxicological effects of secondary pollutants is still in its early stages. Therefore, this paper first introduces the formation mechanism of secondary gaseous pollutants and focuses mainly on ozone's toxicological effects. In terms of particulate matter, secondary inorganic and organic particulate matters are summarized separately, then the contribution and toxicological effects of secondary components formed from primary carbonaceous aerosols are discussed. Finally, secondary pollutants generated in the indoor environment are briefly introduced. Overall, a comprehensive review of secondary air pollutants may shed light on the future toxicological and health effects research of secondary air pollutants.
Collapse
Affiliation(s)
- Wang Xiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Bin Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 P. R. China
| | - Xingyang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Li Yao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| |
Collapse
|
16
|
Wang S, Han Q, Wei Z, Wang Y, Deng L, Chen M. Formaldehyde causes an increase in blood pressure by activating ACE/AT1R axis. Toxicology 2023; 486:153442. [PMID: 36706861 DOI: 10.1016/j.tox.2023.153442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Previous studies suggest some link between formaldehyde exposure and harmful cardiovascular effects. But whether exposure to formaldehyde can cause blood pressure to rise, and if so, what the underlying mechanism is, remains unclear. In this study, C57BL/6 male mice were exposed to 0.1, 0.5, 2.5 mg/m3 of gaseous formaldehyde for 4 h daily over a three-week period. The systolic blood pressure (SBP), diastolic blood pressure (DBP), mean blood pressure (MBP) and heart rate (HR) of the mice were measured by tail-cuff plethysmography, and any histopathological changes in the target organs of hypertension were investigated. The results showed that exposure to formaldehyde did cause a significant increase in blood pressure and heart rate, and resulted in varying degrees of damage to the heart, aortic vessels and kidneys. To explore the underlying mechanism, a specific inhibitor of angiotensin converting enzyme (ACE) was used to block the ACE/AT1R axis. We observed the levels of ACE and angiotensin II type 1 receptor (AT1R), as well as the bradykinin (BK) in cardiac cytoplasm. The data suggest that exposure to formaldehyde induced an increase in the expression of ACE and AT1R, and decreased the levels of BK. Strikingly, treatment with 5 mg/kg/d ACE inhibitor can attenuate the increase in blood pressure and the pathological changes caused by formaldehyde exposure. This result has improved our understanding of whether, and how, formaldehyde exposure affects the development of hypertension.
Collapse
Affiliation(s)
- Shuwei Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079 Hubei, China
| | - Qi Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079 Hubei, China
| | - Zhaolan Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079 Hubei, China
| | - Yunyi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079 Hubei, China
| | - Lingfu Deng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079 Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079 Hubei, China.
| |
Collapse
|
17
|
Mayer A, Nair M, Miskelly GM. Chemical decontamination of methamphetamine and ephedrine using Fe-TAML catalysed hydrogen peroxide oxidation. Forensic Chem 2023. [DOI: 10.1016/j.forc.2023.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
18
|
Shen T, Cai W, Li T, Yu D, Ren C, Yu J. Impact of primary site on survival in patients with nasopharyngeal carcinoma from 2004 to 2015. Front Surg 2022; 9:1001849. [PMID: 36406355 PMCID: PMC9671952 DOI: 10.3389/fsurg.2022.1001849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Background Nasopharynx carcinoma (NPC) is the most common malignant tumor of the nasopharynx. Many studies have shown some factors related with the prognosis of NPC patients. Our study aims to evaluate the differences of prognosis between initial and second primary NPC. Material and methods The Surveillance, Epidemiology, and End Results (SEER) program was used to perform the population-based analysis in NPC patients who were newly diagnosed between 2004 and 2015. Kaplan-Meier and Cox regressions were used to evaluate the effects of primary site on the overall survival (OS), as well as the cancer-specific survival (CSS). Results Our study included 5,012 NPC patients: 4,474 initial primary NPC patients and 5,38 s primary NPC patients. Significant differences were observed in sex, age at diagnosis, race, median household income, histological type, American Joint Committee on Cancer (AJCC) stage, N-stage, radiation treatment and chemotherapy between patients with initial and second NPC (P < 0.05). Moreover, the patients with second NPC had longer survival months. In addition, radiation and chemotherapy were recommended both in first and second primary NPC patients. Conclusion Worse prognosis was observed in patients with second primary NPC compared with those with primary NPC in all subgroups of AJCC stage and age at diagnosis.
Collapse
Affiliation(s)
- Tianyi Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Tingting Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Chengda Ren
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
- Department of Ophthalmology, The Third People’s Hospital of Bengbu, Bengbu, China
- Correspondence: Jing Yu
| |
Collapse
|
19
|
Zhang Y, Yu Y, Zhang C, Song N, Guo Z, Liang M. Highly Sensitive and Selective Detection of Formaldehyde via Bio-Electrocatalysis over Aldehyde Dehydrogenase. Anal Chem 2022; 94:15827-15831. [DOI: 10.1021/acs.analchem.2c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yinuo Zhang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Yue Yu
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Changbin Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Ningning Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Zhanjun Guo
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
20
|
Early-Life Exposure to Formaldehyde through Clothing. TOXICS 2022; 10:toxics10070361. [PMID: 35878266 PMCID: PMC9318620 DOI: 10.3390/toxics10070361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
Clothes contain a wide range of chemicals, some of them potentially hazardous. Recently, there has been a growing interest in eco-friendly clothing, including the use of organic cotton. However, the process of eco-friendly fabric production does not exclude the use of toxic substances, such as formaldehyde, a known human carcinogen. The present investigation was aimed at determining the presence of formaldehyde in eco-friendly and conventional clothing of pregnant women, babies, and toddlers from the Catalan (Spain) market. The potential effects of washing were also investigated by comparing the reduction of formaldehyde in unwashed and washed clothing. Formaldehyde was detected in 20% of samples, with a mean level of 8.96 mg/kg. Formaldehyde levels were surprisingly higher in eco-friendly than in regular garments (10.4 vs. 8.23 mg/kg). However, these differences were only significant (p < 0.05) for bras (11.6 vs. 7.46 mg/kg) and panties (27.1 vs. 6.38 mg/kg) of pregnant women. Dermal exposure and health risks were assessed for three vulnerable population groups: pregnant women, babies, and toddlers. In general, exposure was higher in babies (up to 1.11 × 10−3 mg/kg/day) than in other groups (2.58 × 10−4 and 4.50 × 10−3 mg/kg/day in pregnant women and toddlers, respectively). However, both non-carcinogenic and carcinogenic risks were below the safety limits (<1 and <10−5, respectively) according to national regulations. Notwithstanding, although formaldehyde levels were below the legal limits (<75 mg/kg) and health risks were within acceptable ranges, clothing may contain other toxic substances in addition to formaldehyde, thus increasing the risks. Finally, since no formaldehyde was detected in washed textile samples, a safe and simple practice for the consumers is to wash clothing before the first use.
Collapse
|
21
|
Tian M, Xia P, Yan L, Gou X, Giesy JP, Dai J, Yu H, Zhang X. Toxicological Mechanism of Individual Susceptibility to Formaldehyde-Induced Respiratory Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6511-6524. [PMID: 35438505 DOI: 10.1021/acs.est.1c07945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the mechanisms of individual susceptibility to exposure to environmental pollutants has been a challenge in health risk assessment. Here, an integrated approach combining a CRISPR screen in human cells and epidemiological analysis was developed to identify the individual susceptibility to the adverse health effects of air pollutants by taking formaldehyde (FA) and the associated chronic obstructive pulmonary disease (COPD) as a case study. Among the primary hits of CRISPR screening of FA in human A549 cells, HTR4 was the only gene genetically associated with COPD susceptibility in global populations. However, the association between HTR4 and FA-induced respiratory toxicity is unknown in the literature. Adverse outcome pathway (AOP) network analysis of CRISPR screen hits provided a potential mechanistic link between activation of HTR4 (molecular initiating event) and FA-induced lung injury (adverse outcome). Systematic toxicology tests (in vitro and animal experiments) were conducted to reveal the HTR4-involved biological mechanisms underlying the susceptibility to adverse health effects of FA. Functionality and enhanced expression of HTR4 were required for susceptibility to FA-induced lung injury, and FA-induced epigenetic changes could result in enhanced expression of HTR4. Specific epigenetic and genetic characteristics of HTR4 were associated with the progression and prevalence of COPD, respectively, and these genetic risk factors for COPD could be potential biomarkers of individual susceptibility to adverse respiratory effects of FA. These biomarkers could be of great significance for defining subpopulations susceptible to exposure to FA and reducing uncertainty in the next-generation health risk assessment of air pollutants. Our study delineated a novel toxicological pathway mediated by HTR4 in FA-induced lung injury, which could provide a mechanistic understanding of the potential biomarkers of individual susceptibility to adverse respiratory effects of FA.
Collapse
Affiliation(s)
- Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan Saskatoon, Saskatoon SK S7N 5B3, Canada
- Zoology Department, Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane Road, East Lansing, Michigan 48824, United States
- Department of Environmental Science, Baylor University, Waco, Texas 76798, United States
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
22
|
Zhang H, Zheng Z, Yu T, Liu C, Qian H, Li J. Seasonal and diurnal patterns of outdoor formaldehyde and impacts on indoor environments and health. ENVIRONMENTAL RESEARCH 2022; 205:112550. [PMID: 34902375 DOI: 10.1016/j.envres.2021.112550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Formaldehyde is concerned as an important indoor carcinogen. While contribution of outdoor formaldehyde to indoor concentration is recognized, long-term measurement about its impact on indoor environments remain missing. We measured both outdoor and indoor formaldehyde concentrations for over one year in Nanjing (east-central China) and calculated the outdoor/indoor (O/I) ratios. 64.8% of the measured outdoor concentration have exceeded the chronic reference exposure criteria of 0.009 mg/m3 set by Office of Environmental Health Hazard Assessment (OEHHA). The outdoor concentration was highest in summer with median value of 0.020 mg/m3 and lowest in spring with median value of 0.009 mg/m3. Diurnally, outdoor formaldehyde concentration was highest at noon with median value of 0.013 mg/m3 and lowest at night with median value of 0.01 mg/m3. Health analysis revealed that cancer risk by exposure to this concentration level is 1.6 × 10-4, higher than threshold limit of 10-6. In addition, the median O/I ratios are 0.18 and 0.27 in two offices, indicating that outdoor formaldehyde contributes to indoor concentrations by about one quarter. The change of O/I ratio also shows a similar seasonal and diurnal trend as outdoor concentrations (highest in the summer in a year and at noon in a day). Outdoor formaldehyde concentration is therefore not negligible as a contributor to indoor concentration, especially as indoor concentration limit gets continuously lowered. This factor should be taken into account in indoor air quality design and maintenance.
Collapse
Affiliation(s)
- Hemiao Zhang
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Zihao Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Tao Yu
- Wuhan Second Ship Design and Research Institute, Wuhan, 430205, China; School of Energy and Power Engineering, Beihang University, Beijing, China
| | - Cong Liu
- School of Energy and Environment, Southeast University, Nanjing, China; Engineering Research Center of Building Equipment, Energy, and Environment, Ministry of Education, China.
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Jingguang Li
- Shanghai Research Institute of Building Sciences Co., Ltd., Shanghai, China
| |
Collapse
|
23
|
Zhang S, Pang J, Li Y, Ibarlucea B, Liu Y, Wang T, Liu X, Peng S, Gemming T, Cheng Q, Liu H, Yang J, Cuniberti G, Zhou W, Rümmeli MH. An effective formaldehyde gas sensor based on oxygen-rich three-dimensional graphene. NANOTECHNOLOGY 2022; 33:185702. [PMID: 35078155 DOI: 10.1088/1361-6528/ac4eb4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Three-dimensional (3D) graphene with a high specific surface area and excellent electrical conductivity holds extraordinary potential for molecular gas sensing. Gas molecules adsorbed onto graphene serve as electron donors, leading to an increase in conductivity. However, several challenges remain for 3D graphene-based gas sensors, such as slow response and long recovery time. Therefore, research interest remains in the promotion of the sensitivity of molecular gas detection. In this study, we fabricate oxygen plasma-treated 3D graphene for the high-performance gas sensing of formaldehyde. We synthesize large-area, high-quality, 3D graphene over Ni foam by chemical vapor deposition and obtain freestanding 3D graphene foam after Ni etching. We compare three types of strategies-non-treatment, oxygen plasma, and etching in HNO3solution-for the posttreatment of 3D graphene. Eventually, the strategy for oxygen plasma-treated 3D graphene exceeds expectations, which may highlight the general gas sensing based on chemiresistors.
Collapse
Affiliation(s)
- Shu Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden D-01069, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden D-01069, Germany
| | - Yu Liu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, People's Republic of China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, No.3501 Daxue Road, Jinan 250353, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, People's Republic of China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
| | - Thomas Gemming
- Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, PO Box 270116, Dresden, D-01171 Germany
| | - Qilin Cheng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, People's Republic of China
| | - Jiali Yang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden D-01069, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden D-01069, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden D-01062, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden D-01062, Germany
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan 250022, People's Republic of China
| | - Mark H Rümmeli
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, People's Republic of China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
- Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, PO Box 270116, Dresden, D-01171 Germany
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland
- Institute of Environmental Technology (CEET), VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| |
Collapse
|
24
|
Raydan NDV, Leroyer L, Charrier B, Robles E. Recent Advances on the Development of Protein-Based Adhesives for Wood Composite Materials-A Review. Molecules 2021; 26:molecules26247617. [PMID: 34946693 PMCID: PMC8708089 DOI: 10.3390/molecules26247617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
The industrial market depends intensely on wood-based composites for buildings, furniture, and construction, involving significant developments in wood glues since 80% of wood-based products use adhesives. Although biobased glues have been used for many years, notably proteins, they were replaced by synthetic ones at the beginning of the 20th century, mainly due to their better moisture resistance. Currently, most wood adhesives are based on petroleum-derived products, especially formaldehyde resins commonly used in the particleboard industry due to their high adhesive performance. However, formaldehyde has been subjected to strong regulation, and projections aim for further restrictions within wood-based panels from the European market, due to its harmful emissions. From this perspective, concerns about environmental footprint and the toxicity of these formulations have prompted researchers to re-investigate the utilization of biobased materials to formulate safer alternatives. In this regard, proteins have sparked a new and growing interest in the potential development of industrial adhesives for wood due to their advantages, such as lower toxicity, renewable sourcing, and reduced environmental footprint. This work presents the recent developments in the use of proteins to formulate new wood adhesives. Herein, it includes the historical development of wood adhesives, adhesion mechanism, and the current hotspots and recent progress of potential proteinaceous feedstock resources for adhesive preparation.
Collapse
|
25
|
Lin N, Kwarteng L, Godwin C, Warner S, Robins T, Arko-Mensah J, Fobil JN, Batterman S. Airborne volatile organic compounds at an e-waste site in Ghana: Source apportionment, exposure and health risks. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126353. [PMID: 34175701 PMCID: PMC9925107 DOI: 10.1016/j.jhazmat.2021.126353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 06/01/2023]
Abstract
Informal e-waste recycling processes emit various air pollutants. While there are a number of pollutants of concern, little information exists on volatile organic compounds (VOCs) releases at e-waste sites. To assess occupational exposures and estimate health risks, we measured VOC levels at the Agbogbloshie e-waste site in Ghana, the largest e-waste site in Africa, by collecting both fixed-site and personal samples for analyzing a wide range of VOCs. A total of 54 VOCs were detected, dominated by aliphatic and aromatic compounds. Mean and median concentrations of the total target VOCs were 46 and 37 μg/m3 at the fixed sites, and 485 and 162 μg/m3 for the personal samples. Mean and median hazard ratios were 2.1 and 1.4, respectively, and cancer risks were 4.6 × 10-4 and 1.5 × 10-4. These risks were predominantly driven by naphthalene and benzene; chloroform and formaldehyde were also high in some samples. Based on the VOC composition, the major sources were industry, fuel evaporation and combustion. The concentration gradient across sites and the similarity of VOC profiles indicated that the e-waste site emissions reached neighboring communities. Our results suggest the need to protect e-waste workers from VOC exposure, and to limit emissions that can expose nearby populations.
Collapse
Affiliation(s)
- Nan Lin
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA 48109; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, PR China 200025
| | - Lawrencia Kwarteng
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, P.O. Box LG13, Accra, Ghana
| | - Christopher Godwin
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA 48109
| | - Sydni Warner
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA 48109
| | - Thomas Robins
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA 48109
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, P.O. Box LG13, Accra, Ghana
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, P.O. Box LG13, Accra, Ghana
| | - Stuart Batterman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA 48109.
| |
Collapse
|
26
|
Sutton P, Chartres N, Rayasam SDG, Daniels N, Lam J, Maghrbi E, Woodruff TJ. Reviews in environmental health: How systematic are they? ENVIRONMENT INTERNATIONAL 2021; 152:106473. [PMID: 33798823 PMCID: PMC8118386 DOI: 10.1016/j.envint.2021.106473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Synthesizing environmental health science is crucial to taking action to protect public health. Procedures for evidence evaluation and integration are transitioning from "expert-based narrative" to "systematic" review methods. However, little is known about the methodology being utilized for either type of review. OBJECTIVES To appraise the methodological strengths and weaknesses of a sample of "expert-based narrative" and "systematic" reviews in environmental health. METHODS We conducted a comprehensive search of multiple databases and identified relevant reviews using pre-specified eligibility criteria. We applied a modified version of the Literature Review Appraisal Toolkit (LRAT) to three environmental health topics that assessed the utility, validity and transparency of reviews. RESULTS We identified 29 reviews published between 2003 and 2019, of which 13 (45%) were self-identified as systematic reviews. Across every LRAT domain, systematic reviews received a higher percentage of "satisfactory" ratings compared to non-systematic reviews. In eight of these domains, there was a statistically significant difference observed between the two types of reviews and "satisfactory" ratings. Non-systematic reviews performed poorly with the majority receiving an "unsatisfactory" or "unclear" rating in 11 of the 12 domains. Systematic reviews performed poorly in six of the 12 domains; 10 (77%) did not state the reviews objectives or develop a protocol; eight (62%) did not state the roles and contribution of the authors, or evaluate the internal validity of the included evidence consistently using a valid method; and only seven (54%) stated a pre-defined definition of the evidence bar on which their conclusions were based, or had an author disclosure of interest statement. DISCUSSION Systematic reviews produced more useful, valid, and transparent conclusions compared to non-systematic reviews, but poorly conducted systematic reviews were prevalent. Ongoing development and implementation of empirically based systematic review methods are required in environmental health to ensure transparent and timely decision making to protect the public's health.
Collapse
Affiliation(s)
- Patrice Sutton
- UCSF Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, Box 0132, 490 Illinois Street, Floor 10, San Francisco, CA 94143, United States.
| | - Nicholas Chartres
- UCSF Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, Box 0132, 490 Illinois Street, Floor 10, San Francisco, CA 94143, United States.
| | - Swati D G Rayasam
- UCSF Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, Box 0132, 490 Illinois Street, Floor 10, San Francisco, CA 94143, United States.
| | - Natalyn Daniels
- UCSF Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, Box 0132, 490 Illinois Street, Floor 10, San Francisco, CA 94143, United States
| | - Juleen Lam
- Department of Health Sciences, California State University East Bay, SF 533, 25800 Carlos Bee Blvd, Hayward, CA 94542, United States.
| | - Eman Maghrbi
- Department of Health Sciences, California State University East Bay, SF 533, 25800 Carlos Bee Blvd, Hayward, CA 94542, United States.
| | - Tracey J Woodruff
- UCSF Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, Box 0132, 490 Illinois Street, Floor 10, San Francisco, CA 94143, United States.
| |
Collapse
|
27
|
Tesfaye S, Hamba N, Gerbi A, Negeri Z. Occupational formaldehyde exposure linked to increased systemic health impairments and counteracting beneficial effects of selected antioxidants. ALEXANDRIA JOURNAL OF MEDICINE 2021. [DOI: 10.1080/20905068.2021.1926172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Solomon Tesfaye
- Department of Biomedical Sciences (Medical Anatomy), Institute of Health, Jimma University, Jimma, Ethiopia
| | - Niguse Hamba
- Department of Biomedical Sciences (Medical Anatomy), Institute of Health, Jimma University, Jimma, Ethiopia
| | - Asfaw Gerbi
- Department of Biomedical Sciences (Medical Anatomy), Institute of Health, Jimma University, Jimma, Ethiopia
| | - Zenebe Negeri
- Department of Biomedical Sciences (Medical Physiology), Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
28
|
Kadivar M, Kabir-Mokamelkhah E, Habibi-Shams Z. Work-related Hazards Among Pathologists and Residents of Pathology:Results of a Cross-sectional Study in Iran. IRANIAN JOURNAL OF PATHOLOGY 2021; 16:274-283. [PMID: 34306123 PMCID: PMC8298058 DOI: 10.30699/ijp.2021.132380.2473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND & OBJECTIVE Pathologists as medical professionals involved in the diagnosis and planning of therapies in many diseases are exposed to occupational hazards in workplaces. Hence, we aimed to determine the occupational health problems among Iranian pathologists in this cross-sectional study. METHODS This cross-sectional study was conducted among the Iranian pathologists. The data required for this study was collected through a self-reported questionnaire containing 48 questions about major occupational health problems, including musculoskeletal problems, visual disorders, workplace characteristics, health behavior, and other medical conditions. RESULTS Among the study participants (N=350), 87.4% presented with musculoskeletal disorders in the past year, with the neck as the most common location of pain (71%). Musculoskeletal pain was significantly higher in those working with the computer for more than 5 hours per day (P=0.007). Furthermore, 273 (78%) participants reported visual refractive errors, and myopia was the most common error (53%). Acute injuries were reported in 263 (75%) participants, and the cutting injury had the highest frequency (56.6%). Depression was reported in 54 (15.4%) of the participants, followed by burnout (10.3%) and hypertension (4%). Intolerance reactions to formalin were reported by 222 (63.6%) and were significantly more frequent among the residents (P<0.001). The residents were more prone to musculoskeletal pain (P=0.002) and injury (P=0.026). CONCLUSION We observed a noticeable prevalence of health risks, including musculoskeletal problems, visual disturbances, injuries, and ergonomic problems among the Iranian pathologists. Solving these problems demands thorough prevention and personal protection, as well as educational programs with more attention toward optimization of ergonomics in the workplace and awareness about chemical and biological hazards.
Collapse
Affiliation(s)
- Maryam Kadivar
- Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Zohreh Habibi-Shams
- Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Sun X, Zhang H, Huang L, Hao S, Zhai J, Dong S. A naked-eye readout self-powered electrochemical biosensor toward indoor formaldehyde: On-site detection and exposure risk warning. Biosens Bioelectron 2021; 177:112975. [DOI: 10.1016/j.bios.2021.112975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022]
|
30
|
Lin N, Rosemberg MA, Li W, Meza-Wilson E, Godwin C, Batterman S. Occupational exposure and health risks of volatile organic compounds of hotel housekeepers: Field measurements of exposure and health risks. INDOOR AIR 2021; 31:26-39. [PMID: 32609907 PMCID: PMC8020495 DOI: 10.1111/ina.12709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 05/08/2023]
Abstract
Hotel housekeepers represent a large, low-income, predominantly minority, and high-risk workforce. Little is known about their exposure to chemicals, including volatile organic compounds (VOCs). This study evaluates VOC exposures of housekeepers, sources and factors affecting VOC levels, and provides preliminary estimates of VOC-related health risks. We utilized indoor and personal sampling at two hotels, assessed ventilation, and characterized the VOC composition of cleaning agents. Personal sampling of hotel staff showed a total target VOC concentration of 57 ± 36 µg/m3 (mean ± SD), about twice that of indoor samples. VOCs of greatest health significance included chloroform and formaldehyde. Several workers had exposure to alkanes that could cause non-cancer effects. VOC levels were negatively correlated with estimated air change rates. The composition and concentrations of the tested products and air samples helped identify possible emission sources, which included building sources (for formaldehyde), disinfection by-products in the laundry room, and cleaning products. VOC levels and the derived health risks in this study were at the lower range found in the US buildings. The excess lifetime cancer risk (average of 4.1 × 10-5 ) still indicates a need to lower exposure by reducing or removing toxic constituents, especially formaldehyde, or by increasing ventilation rates.
Collapse
Affiliation(s)
- Nan Lin
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA 48109
| | - Marie-Anne Rosemberg
- Department of Systems, Populations and Leadership, School of Nursing, University of Michigan, Ann Arbor, Michigan, USA 48109
| | - Wei Li
- Department of Systems, Populations and Leadership, School of Nursing, University of Michigan, Ann Arbor, Michigan, USA 48109
| | - Emily Meza-Wilson
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, Michigan, USA 48109
| | - Christopher Godwin
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA 48109
| | - Stuart Batterman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA 48109
| |
Collapse
|
31
|
Shetty SA, Rangiah K. Simple click chemistry-based derivatization to quantify endogenous formaldehyde in milk using ultra-high-performance liquid chromatography/tandem mass spectrometry in selected reaction monitoring mode. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8865. [PMID: 32559321 DOI: 10.1002/rcm.8865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Formaldehyde (FA) exposure via environmental pollution or through the food chain poses a serious threat to human health, especially in developing countries like India. Although the addition of FA to food is proscribed, it is often illegally added to foods such as milk to increase the shelf-life. There are challenges in differentiating the endogenous FA content in milk from externally added FA. METHOD We have developed a simple method using ultra-high-performance liquid chromatography/tandem mass spectrometry in selected reaction monitoring mode (UHPLC/MS/SRM) for the absolute quantification of endogenous FA in milk. The steps include fat removal, protein precipitation using acid, and spiking with labelled FA (FA*), followed by simple click chemistry-based derivatization using Girard P reagent (GP) and final analysis. RESULTS A standard curve with FA* was constructed and used for the calculation of endogenous FA in milk. The optimal conditions for the derivatization reaction using 500 μL of milk were: GP, 50 μg; temperature, 37°C; time, 60 min; and 0.1% HCl. The validation parameters such as accuracy (95.84 to 99.73%), precision (2.84 to 8.02%) and spiked recovery (>95%) are within the FDA guidelines. This method is highly sensitive [limit of detection (LOD) of 1 ng/mL] with a dynamic range of 3.12 to 200 ng/mL. The endogenous FA level in pasteurized cow milk is 70 ng/mL (n = 60). The FA content in raw milk samples from cow, goat and buffalo (each n = 10) varied from 134 to 255 ng/mL. CONCLUSIONS This method is precise and sufficiently sensitive to quantify endogenous FA in milk samples using a minimal sample volume. As it involves simple sample preparation steps, it can be used routinely to quantify endogenous FA.
Collapse
Affiliation(s)
- Sweekruthi A Shetty
- Food Safety and Analytical Quality Control Laboratory, CSIR - Central Food Technological Research Institute, Cheluvamba Mansion, Mysore, 570020, India
| | - Kannan Rangiah
- Food Safety and Analytical Quality Control Laboratory, CSIR - Central Food Technological Research Institute, Cheluvamba Mansion, Mysore, 570020, India
- Institute of Bioinformatics, Discoverer Building, 7th Floor, International Tech Park Whitefield, Bangalore, Karnataka, 560066, India
| |
Collapse
|
32
|
Baldelli A, Jeronimo M, Tinney M, Bartlett K. Real-time measurements of formaldehyde emissions in a gross anatomy laboratory. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2569-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Khamkeaw A, Phisalaphong M, Jongsomjit B, Lin KYA, Yip ACK. Synthesis of mesoporous MFI zeolite via bacterial cellulose-derived carbon templating for fast adsorption of formaldehyde. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121161. [PMID: 31629599 DOI: 10.1016/j.jhazmat.2019.121161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Mesoporous ZSM-5 (MFI) zeolite was synthesized by using bacterial cellulose-derived activated carbon (BC-AC500) with a high surface area as a hard template. Different ratios of BC-AC500 and zeolite precursor gel were prepared in a Teflon-lined autoclave and crystallized at 180 °C for 48 h in a rotating oven. The physicochemical properties of the samples were characterized by x-ray diffraction (XRD), scanning/transmission electron microscopies (SEM/TEM), and N2 physisorption techniques. It was found that the mesoporous ZSM-5 zeolites have a specific surface area of 184-190 m2/g, a high mesopore volume of 0.120-0.956 ml/g and a wide pore size distribution ranging from 5 to 100 nm with a maximum at approximately 25.3 nm. The successfully made mesoporous ZSM-5 was tested as an adsorbent for formaldehyde adsorption in batch mode. The mesoporous ZSM-5 zeolite made from bacterial cellulose-derived activated carbon showed significantly faster adsorption kinetics than conventional ZSM-5 (0.0081 vs. 0.0007 g/mg min, respectively). The prepared material has an adsorption capacity of 98 mg/g and is highly reusable. The reported mesoporous ZSM-5 zeolites can be deployed for the rapid removal of toxic organics from wastewater when urgently needed, e.g., under breakthrough conditions.
Collapse
Affiliation(s)
- Arnon Khamkeaw
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Muenduen Phisalaphong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Bunjerd Jongsomjit
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Alex C K Yip
- Department of Chemical and Process Engineering, The University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
34
|
Lee A, Arachchige BJ, Reed S, Henderson R, Aylward J, McCombe PA. Plasma from some patients with amyotrophic lateral sclerosis exhibits elevated formaldehyde levels. J Neurol Sci 2020; 409:116589. [DOI: 10.1016/j.jns.2019.116589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
|
35
|
Hussain M, Song X, Shah S, Hao C. TD-DFT insights into the sensing potential of the luminescent covalent organic framework for indoor pollutant formaldehyde. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117432. [PMID: 31421348 DOI: 10.1016/j.saa.2019.117432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
This paper investigates the sensitivity of the luminescent thieno[2,3-b]thiophene-based covalent organic framework (TT-COF) towards the formaldehyde using the density functional theory and time-dependent method. The hydrogen bonding dynamics is explored by comparison of geometries, electronic transition energies, binding energies, UV-vis, and infrared spectra. Frontier molecular orbitals examination, natural population analysis, and plotted electron density difference map describe the quenching process explicitly via electron density distribution. The MOMAP program illuminates the quenching owing to TT-COF-HCHO complex radiative rate constant. Furthermore, the S1-T1 energy gap describes the facilitation of the luminescence quenching through the intersystem crossing. Above all results elaborate the TT-COF's potential to detect the formaldehyde.
Collapse
Affiliation(s)
- Manzoor Hussain
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China; Department of Chemistry, Karakoram International University (KIU), Gilgit 15100, Gilgit-Baltistan, Pakistan
| | - Xuedan Song
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Shaheen Shah
- Department of Chemistry, Karakoram International University (KIU), Gilgit 15100, Gilgit-Baltistan, Pakistan
| | - Ce Hao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
36
|
Wolkoff P. Comments to "Assessment of formaldehyde levels in relation to respiratory and allergic symptoms in children from Alba County schools, Romania" by Neamtiu et al. (2019). ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:682. [PMID: 31659491 DOI: 10.1007/s10661-019-7897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, NRCWE, Lersø Parkallé 105, 2920, Copenhagen Ø, Denmark.
| |
Collapse
|
37
|
Liu Q, Zeng X, Tian Y, Hou X, Wu L. Dynamic reaction regulated surface-enhanced Raman scattering for detection of trace formaldehyde. Talanta 2019; 202:274-278. [DOI: 10.1016/j.talanta.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/12/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
|
38
|
Effect of tapering diameters with microbottle resonator for formaldehyde (CH2O) liquid sensing. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Brezhnev A, Neelakantan P, Tanaka R, Brezhnev S, Fokas G, Matinlinna JP. Antibacterial Additives in Epoxy Resin-Based Root Canal Sealers: A Focused Review. Dent J (Basel) 2019; 7:E72. [PMID: 31266165 PMCID: PMC6784478 DOI: 10.3390/dj7030072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/16/2023] Open
Abstract
Dental materials used in root canal treatment have undergone substantial improvements over the past decade. However, one area that still remains to be addressed is the ability of root canal fillings to effectively entomb, kill bacteria, and prevent the formation of a biofilm, all of which will prevent reinfection of the root canal system. Thus far, no published review has analysed the literature on antimicrobial additives to root canal sealers and their influence on physicochemical properties. The aim of this paper was to systematically review the current literature on antimicrobial additives in root canal sealers, their anti-fouling effects, and influence on physicochemical properties. A systematic search was performed in two databases (PubMed and Scopus) to identify studies that investigated the effect of antimicrobial additives in epoxy resin-based root canal sealers. The nature of additives, their antimicrobial effects, methods of antimicrobial testing are critically discussed. The effects on sealer properties have also been reviewed. A total of 31 research papers were reviewed in this work. A variety of antimicrobial agents have been evaluated as additives to epoxy resin-based sealers, including quaternary ammonium compounds, chlorhexidine, calcium hydroxide, iodoform, natural extracts, antibiotics, antifungal drugs, and antimicrobial agent-functionalised nanoparticles. Antimicrobial additives generally improved the antimicrobial effect of epoxy resin-based sealers mainly without deteriorating the physicochemical properties, which mostly remained in accordance with ISO and ANSI/ADA specifications.
Collapse
Affiliation(s)
- Alexander Brezhnev
- Applied Oral Sciences-Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Prasanna Neelakantan
- Discipline of Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Ray Tanaka
- Applied Oral Sciences-Oral and Maxillofacial Radiology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Sergey Brezhnev
- Discipline of Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - George Fokas
- Department of Prosthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jukka P Matinlinna
- Applied Oral Sciences-Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
40
|
Li B, Dong Q, Downen RS, Tran N, Jackson JH, Pillai D, Zaghloul M, Li Z. A Wearable IoT Aldehyde Sensor for Pediatric Asthma Research and Management. SENSORS AND ACTUATORS. B, CHEMICAL 2019; 287:584-594. [PMID: 31938011 PMCID: PMC6959855 DOI: 10.1016/j.snb.2019.02.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A cloud-based wearable IoT aldehyde sensor system for asthma research and management.
Collapse
Affiliation(s)
- Baichen Li
- Department of Biomedical Engineering, The George Washington University
| | - Quan Dong
- Department of Biomedical Engineering, The George Washington University
| | - R Scott Downen
- Department of Biomedical Engineering, The George Washington University
| | - Nam Tran
- Department of Biomedical Engineering, The George Washington University
| | - J Hunter Jackson
- Division of Pulmonary Medicine, Children's National Health System (CNHS)
| | - Dinesh Pillai
- Division of Pulmonary Medicine, Children's National Health System (CNHS)
| | - Mona Zaghloul
- Department of Electrical and Computer Engineering, The George Washington University
| | - Zhenyu Li
- Department of Biomedical Engineering, The George Washington University
| |
Collapse
|
41
|
Tsai WT. An overview of health hazards of volatile organic compounds regulated as indoor air pollutants. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:81-89. [PMID: 30854833 DOI: 10.1515/reveh-2018-0046] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
Indoor air quality (IAQ) standards and guidelines for volatile organic compounds (VOCs) have been stipulated by various national and international agencies. The main purpose of this paper is to establish an overview of indoor VOCs regarding their impacts on human health. Herein, 13 VOCs were designated as indoor air pollutants (IAPs) in the IAQ standards and guidelines. They were further grouped into four types: nonchlorinated aromatic compounds, chlorinated aromatic compounds, chlorinated aliphatic compounds and aldehydes. For this purpose, the present study discusses the criteria for designating VOCs, and summarizes their main sources in indoor environments. Because the occupational exposure limit (OEL) in workplaces has often used as a preliminary basis for establishing acceptable health-based IAQ guidelines in buildings and residences, this paper thus reviews the OEL values, especially in the American Conference of Governmental Industrial Hygienists (ACGIH)-threshold limit value (TLV). In addition, this paper also reviews the information about the classification of carcinogenicity in human by the international agencies for these VOCs. It shows that human tissues, including kidney, liver, leukemia, nasal cavity, paranasal sinus, liver and bile duct, could be more involved in the development of cancers or tumors when people are exposed to these VOCs through inhalation route in buildings over a long period of time.
Collapse
Affiliation(s)
- Wen-Tien Tsai
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, Phone: +886-8-7703202
| |
Collapse
|
42
|
Ashraf MA, Liu Z, Peng W, Parsaee Z. Design, preparation and evaluation of a high performance sensor for formaldehyde based on a novel hybride nonocomposite ZnWO 3/rGO. Anal Chim Acta 2019; 1051:120-128. [PMID: 30661608 DOI: 10.1016/j.aca.2018.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/22/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
The ultrasound wave assisted synthesis of a novel ZnWO3/rGO hybrid nono composition (ZnWO3/rGO HNC) as a high performance sensor for formaldehyde (FA) has been reported. Different techniques of analysis such as XRD, FE-SEM, TGA, XPS, HRTEM and BET were applied for morphological and spectroscopic characterization of the ZnWO3/rGO HNC. The sensing evaluation of the constructed sensor showed high selectivity, sensitivity and a linear correlation between achieved responses and concentration of target gas (1-10 ppm) with R2 = 0.993 at temperature of 95 °C. The determination of FA was validated and performed using gas chromatography-mass spectrometry combined by solid phase micro-extraction after derivatization with O-(2,3,4,5,6-pentafluoro-benzyl)-hydroxylamine hydrochloride. Validation was carried out in terms of limit of detection linearity, precision, and recovery. The mechanistic evaluation of sensing behavior of the ZnWO3/rGO HNC was interpreted based on large specific surface area (SSA) to volume, mesoporous structure and the heterojunction between rGO and ZnWO3 at the interface between the rGO and ZnWO3.
Collapse
Affiliation(s)
- Muhammad Aqeel Ashraf
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Geology Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia; School of Environmental Studies, China University of Geosciences, Wuhan 430074 China
| | - Zhenling Liu
- School of Management, Henan University of Technology, Zhengzhou, 450001, China
| | - Wanxi Peng
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Zohreh Parsaee
- Young Researchers and Elite Club, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| |
Collapse
|
43
|
Review of the evidence for thresholds for DNA-Reactive and epigenetic experimental chemical carcinogens. Chem Biol Interact 2019; 301:88-111. [DOI: 10.1016/j.cbi.2018.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 01/01/2023]
|
44
|
Vazquez-Ferreiro P, Carrera Hueso FJ, Alvarez Lopez B, Diaz-Rey M, Martinez-Casal X, Ramón Barrios MA. Evaluation of formaldehyde as an ocular irritant: a systematic review and Meta-analysis. Cutan Ocul Toxicol 2019; 38:169-175. [DOI: 10.1080/15569527.2018.1561709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | | | | | - Marta Diaz-Rey
- Ophthalmologic Department, Hospital Virxen da Xunqueira, Cee, Spain
| | | | | |
Collapse
|
45
|
Jayanegara A, Sujarnoko TUP, Ridla M, Kondo M, Kreuzer M. Silage quality as influenced by concentration and type of tannins present in the material ensiled: A meta-analysis. J Anim Physiol Anim Nutr (Berl) 2018; 103:456-465. [PMID: 30585655 DOI: 10.1111/jpn.13050] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/03/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022]
Abstract
Protein degradation during ensiling is a major problem. Tannins are known to prevent or decelerate protein degradation in the rumen and may be able to do so in silages as well. Therefore, the present evaluation aimed to analyse the influence of tannins on silage quality. This was done by integrating from all suitable experiments found in literature on the topic in a meta-analysis approach. A total of 122 datasets originating from 28 experiments obtained from 16 published articles and one own unpublished experiment were included in the database. Tannins in the silages originated either from the plants ensiled or from supplementations of tanniferous plants or tannins extracted from such plants. Tannin concentrations ranged from 0 to 57.8 g/kg dry matter, and the ensiling period varied from 30 to 130 days. The analysis was based on the linear mixed model methodology in which the different studies were considered as random effects and tannin-related properties (either concentration or type of tannins) were treated as fixed effects. Results revealed that greater concentrations of tannins were associated with a decrease of butyrate concentration in the silages (p < 0.05). An increasing tannin concentration was also accompanied with smaller proportions of soluble N, free amino acid N, non-protein nitrogen and NH3 -N in total silage N (p < 0.05). The relationships between hydrolysable and condensed tannins and the decline in butyrate and NH3 -N concentrations in the silages were of different magnitude (p < 0.05). A higher tannin concentration was associated with a decline in in vitro dry matter digestibility. It was concluded that tannins apparently have the ability to limit extensive proteolysis which may occur during ensiling and thus may improve the fermentative quality of silages. A desired side effect seems to be given by the tannins' apparent property to limit the activity of the butyrate-producing microbes.
Collapse
Affiliation(s)
- Anuraga Jayanegara
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor, Indonesia
| | - Tekad U P Sujarnoko
- Graduate School of Nutrition and Feed Science, Bogor Agricultural University, Bogor, Indonesia
| | - Muhammad Ridla
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor, Indonesia
| | - Makoto Kondo
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Michael Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland
| |
Collapse
|
46
|
Hussain M, Song X, Zhao J, Luo Y, Hao C. Impact of electronically excited state hydrogen bonding on luminescent covalent organic framework: a TD-DFT investigation. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1543901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Manzoor Hussain
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People’s Republic of China
- Department of Chemistry, Karakoram International University, Gilgit-Baltistan, Pakistan
| | - Xuedan Song
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People’s Republic of China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People’s Republic of China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People’s Republic of China
| | - Ce Hao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People’s Republic of China
| |
Collapse
|
47
|
Sheehan P, Singhal A, Bogen KT, MacIntosh D, Kalmes RM, McCarthy J. Potential Exposure and Cancer Risk from Formaldehyde Emissions from Installed Chinese Manufactured Laminate Flooring. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2018; 38:1128-1142. [PMID: 29139137 DOI: 10.1111/risa.12926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/25/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
Lumber Liquidators (LL) Chinese-manufactured laminate flooring (CLF) has been installed in >400,000 U.S. homes over the last decade. To characterize potential associated formaldehyde exposures and cancer risks, chamber emissions data were collected from 399 new LL CLF, and from LL CLF installed in 899 homes in which measured aggregate indoor formaldehyde concentrations exceeded 100 μg/m3 from a total of 17,867 homes screened. Data from both sources were combined to characterize LL CLF flooring-associated formaldehyde emissions from new boards and installed boards. New flooring had an average (±SD) emission rate of 61.3 ± 52.1 μg/m2 -hour; >one-year installed boards had ∼threefold lower emission rates. Estimated emission rates for the 899 homes and corresponding data from questionnaires were used as inputs to a single-compartment, steady-state mass-balance model to estimate corresponding residence-specific TWA formaldehyde concentrations and potential resident exposures. Only ∼0.7% of those homes had estimated acute formaldehyde concentrations >100 μg/m3 immediately after LL CLF installation. The TWA daily formaldehyde inhalation exposure within the 899 homes was estimated to be 17 μg/day using California Proposition 65 default methods to extrapolate cancer risk (below the regulation "no significant risk level" of 40 μg/day). Using a U.S. Environmental Protection Agency linear cancer risk model, 50th and 95th percentile values of expected lifetime cancer risk for residents of these homes were estimated to be 0.33 and 1.2 per 100,000 exposed, respectively. Based on more recent data and verified nonlinear cancer risk assessment models, LL CLF formaldehyde emissions pose virtually no cancer risk to affected consumers.
Collapse
Affiliation(s)
| | | | | | - David MacIntosh
- Environmental Health and Engineering, Inc., Needham, MA, USA
| | | | - John McCarthy
- Environmental Health and Engineering, Inc., Needham, MA, USA
| |
Collapse
|
48
|
Vitoux MA, Kessal K, Baudouin C, Laprévote O, Melik Parsadaniantz S, Achard S, Brignole-Baudouin F. Formaldehyde Gas Exposure Increases Inflammation in an In Vitro Model of Dry Eye. Toxicol Sci 2018; 165:108-117. [DOI: 10.1093/toxsci/kfy125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Michael-Adrien Vitoux
- Institut de la Vision, CNRS UMR 7210, INSERM UMRS 968, Université Pierre et Marie Curie UM80, Paris 75012, France
| | - Karima Kessal
- Institut de la Vision, CNRS UMR 7210, INSERM UMRS 968, Université Pierre et Marie Curie UM80, Paris 75012, France
| | - Christophe Baudouin
- Institut de la Vision, CNRS UMR 7210, INSERM UMRS 968, Université Pierre et Marie Curie UM80, Paris 75012, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris 75012, France
- Hôpital Ambroise Paré, APHP, Université Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt 92100, France
| | - Olivier Laprévote
- Laboratoire de Chimie - Toxicologie Analytique et Cellulaire, UMR8638, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Stéphane Melik Parsadaniantz
- Institut de la Vision, CNRS UMR 7210, INSERM UMRS 968, Université Pierre et Marie Curie UM80, Paris 75012, France
| | - Sophie Achard
- Laboratoire de Santé Publique et Environnement, EA 4064, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Françoise Brignole-Baudouin
- Institut de la Vision, CNRS UMR 7210, INSERM UMRS 968, Université Pierre et Marie Curie UM80, Paris 75012, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris 75012, France
- Laboratoire de Chimie - Toxicologie Analytique et Cellulaire, UMR8638, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| |
Collapse
|
49
|
Nachaki EO, Ndangili PM, Naumih NM, Masika E. Nickel-Palladium-Based Electrochemical Sensor for Quantitative Detection of Formaldehyde. ChemistrySelect 2018. [DOI: 10.1002/slct.201702019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ernest O. Nachaki
- Department of Chemistry; Kenyatta University; P.O Box 43844 - 00100 Nairobi - Kenya
| | - Peter M. Ndangili
- Department of Chemical Science and Technology; Technical University of Kenya; P.O Box 52428 - 00200 Nairobi - Kenya
| | - Noah M. Naumih
- School of Pharmacy and Health Sciences; United States International University - Africa; P.O Box 14634 - 00800 Nairobi - Kenya
| | - Eric Masika
- Department of Chemistry; Kenyatta University; P.O Box 43844 - 00100 Nairobi - Kenya
| |
Collapse
|
50
|
|